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Abstract—The long short-term memory (LSTM) network 
underpins many achievements and breakthroughs especially in 
natural language processing fields. Essentially, it is endowed with 
certain memory capabilities that can boost the performance. 
Drawing inspiration from it, this paper proposes a memory 
augmented convolutional neural network (MACNN) utilizing self-
organizing maps (SOM) as the memory module. First, we depict 
the potential challenge of applying solely a convolutional neural 
network (CNN) and highlight the advantage of augmenting SOM 
as memory for better network generalization. Based on this 
inspiration, a corresponding network architecture incorporating 
memory is disserted. It instantiates the distributed knowledge 
representation philosophy and tactically combines the SOM and 
CNN together. For the experiment, we test the proposed network 
on various datasets where conventionally only CNN is applied. It 
reveals that based on the same CNN structure and by 
incorporating memory, better results can be achieved, especially 
for datasets consisting of bioimages which are challenging for 
other models. We also illustrate the learned representations to 
interpret the SOM behavior and to comprehend the achieved 
results. 
 
Keywords: Deep Learning (DL), Memory Augmented 
Convolutional Neural Network (MACNN), Self-organizing Maps 
(SOM), Memory Network (MN)  
 
 

I. INTRODUCTION 
HE prosperity of deep learning (DL) triggers the 
retrospection of research on brain-inspired computations. 

For example, tremendous achievements buffeting natural 
language processing (NLP) in recent years are regarded as 
being attributed to the constructions of large long short-term 
memory (LSTM) networks. It encourages Google and 
Facebook to build more sophisticated neural networks 
integrating memory to solve more difficult tasks [1][2]. 
However, certain DL applications are not targeting sequential 
data, such as image classification, face recognition, cancer 
prediction, to name a few. These applications are based on 
variations in convolutional neural network (CNN) architectures,  
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which are generally regarded as computation-oriented. 
Although the network interacts with all the training samples 
during the training process, this process is still regarded as 
being mainly for learning optimal filters for the targeted 
problem instead of learning to memorize. Hence, the impressive 
performance of CNN relies on the features being effectively 
extracted from input data via these optimal filters [3]. 
Alternatively, it means that the prediction is mainly based on 
the computation carried out on the current input sample, while 
the relations with historical samples are quite vague.  

For a group of images containing the same object, e.g., dogs, 
these images share many features common to dog species. For 
a given CNN, categorization of the content in a specific image 
mainly harnesses the knowledge retrieved from the current 
image via applying the learned filters. Instead, humans tend to 
make the judgements comprehensively via cognitive processes 
such as familiarity or even recall if necessary, all of which 
involve the memory system [4]. The above consideration 
encourages us to devise a memory part to couple with the CNN 
to boost the performance. 

Another drive for considering new computation paradigm 
involving memory originates from a specific application of 
CNN, i.e., bioimage classification. Unlike the datasets such as 
ImageNet or COCO for general-purpose application of image 
classification [5][6], bioimage datasets either from clinical 
practice or academic research tend to be small ones with 
imbalanced samples, all of which post challenge for effectively 
utilizing CNN for classification. For example, limited samples 
increase the risk of overfitting for deep neural network; 
however, shallow network may fail to effectively extract 
suitable features for proper classification. However, learning 
from a few samples to generalize on new data in sufficient 
accuracy is natural for humans [7]; and learning capability is 
regarded as interleaving with the memory system [8]. Hence, it 
is promising to propose new network models from a memory 
augmentation perspective. 

But due to the limited understanding of the human memory 
system, inspirations from it may be not so intuitive and difficult 
to manage. Take Google’s proposition, i.e., the differentiable 
neural computer (DNC) as an example [1]. It tries to establish 
an enriched computation model by integrating a large memory, 
and two extra LSTM networks have to be tailored for the 
memory mechanism. Although with succeeded applications to 
complicated problems, however, following the architecture of 
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modern computers avoidably adds complexity to the whole 
architecture and makes modifications and extensions to the 
memory module extremely difficult. 

In fact, the idea of utilizing memory as part of computation 
has its own history. Kant proposed the concepts of memory 
elements and the interconnections between them and their 
functionalities in [9]. John Hopfield introduced Hopfield 
network, working in a content-addressable or associative 
manner with binary threshold nodes in [10]. In this paper, we 
propose using the self-organizing map (SOM) invented by 
Finnish professor Teuvo Kohonen as the memory module to 
fertilize computation [11]. SOM is based on the biological 
models of neural systems [12][13]; thus, it can capture the 
intuitive essence of memory system and meanwhile maintain its 
simplicity. 

In this paper, we propose a neural network architecture 
named MACNN (memory augmented convolutional neural 
network) and evaluate it on datasets which conventionally only 
CNN are applied. We structure the subsequent sections as with 
our contributions. We first introduce the background 
knowledge of SOM to reveal its suitability as memory module, 
followed by the detailed explanation of the overall MACNN 
architecture. Then we experiment on different datasets to show 
the practicability and supremacy of our designed architecture 
via benchmarked results. Simultaneously, we also illustrate the 
learned memory representation to interpret the performance of 
our proposed network. At last, we discuss the difference 
between LSTM and SOM and anticipate future works to 
improve MACNN. 

II. SOM RECAP 
 SOM used to be a popular neural network model and could 
find its various applications in numerous fields [14]. It belongs 
to the category of competitive learning networks and 
implements the winner-take-all learning strategy [11]. The 
arrangement of neurons plus the unsupervised learning 
paradigm enable it to represent the features intrinsically to the 
input sample space in a topological and suitable manner 
automatically. The updating process, which drives the best-
matching unit (BMU) and its neighboring neurons towards the 
value of the newly input sample, endows SOM the potential of 
tracing all past sample values, if the lattice of SOM is large 
enough. Nevertheless, averaging the samples belonging to the 
same category and differentiating the samples belonging to 
different categories are critical for learning. This behavior can 
encourage the features common to all samples to emerge, which 
is critical for model performance. As mentioned above, for 
CNN, where the learned filters act on the input data for final 
classification or regression, the process can be considered 
computation-oriented. Instead for SOM, the weights are 
aggregating on all input data for feature abstraction and hence 
can be considered memory-oriented. This perspective makes 
SOM apt for memory network such as in LAMSTAR [15]. 
Other utilizations of SOM such as visualization of sample space 
can be found in [16][17]. 
 To facilitate the understanding of our designed network and 
its configurations in the following sections, the training process 
of SOM is particularly addressed below. The aspects that can 

be traded off for better performance, such as learning rate 
manipulation, neighbourhood calculation, etc., are also 
highlighted. 
1. Randomly initialize the weights of neurons in the lattice, 

which is of dimensions 𝐻𝐻 × 𝑊𝑊. 𝐻𝐻 denotes the height, and 
𝑊𝑊 denotes the width of the lattice. 

2. Choose an input sample from the training set and present it 
to the lattice. This can be done in a batched way. 

3. Calculate the Euclidean distance between the input sample 
�⃑�𝑣 = (𝑣𝑣1, 𝑣𝑣2,⋯ , 𝑣𝑣𝑛𝑛 )  and the weight vector 𝑤𝑤��⃑ =
(𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝑛𝑛 )  to each neuron in the lattice, with 
‖𝑢𝑢 − 𝑣𝑣‖2 = �∑ (𝑣𝑣𝑖𝑖 − 𝑤𝑤𝑖𝑖)2𝑛𝑛

𝑖𝑖=1  . The node with the least 
distance is selected and named BMU. 

4. Decide the neighbourhood of BMU for the current step. 
The neighbourhood is usually a disc mask, with an initial 
radius 𝜎𝜎0, and shrinks according to formula such as: 

 𝜎𝜎(𝑡𝑡) = 𝜎𝜎0 exp(−𝑡𝑡 𝜆𝜆⁄ ) (1) 

𝜆𝜆 is regarded as the time constant, where 𝜆𝜆 = 𝑇𝑇 ln𝜎𝜎0⁄ , with 
𝑇𝑇  being the total number of learning steps or training 
iterations. 
A boundary-condition analysis reveals that 

  𝜎𝜎(𝑇𝑇) = 𝜎𝜎0 exp(−𝑇𝑇 (𝑇𝑇 ln𝜎𝜎0⁄ )⁄ ) = 1 (2) 

It is within the expectation that update at the last step is 
confined only to the BMU itself. 

5. Adjust weight vectors for the neighbouring neurons.  
Determine the learning rate 𝜂𝜂(𝑡𝑡)  for the current step 
according to (3): 

 𝜂𝜂(𝑡𝑡) = 𝜂𝜂0 exp(−𝑡𝑡 𝜆𝜆⁄ ) (3) 

Calculate the Euclidean distance 𝐷𝐷𝑖𝑖 between the BMU and 
neuron 𝑖𝑖 based on their locations in the lattice, and the 
corresponding distance influence factor Θ𝑖𝑖(𝑡𝑡) as in (4): 

 Θ𝑖𝑖(𝑡𝑡) = exp(−𝐷𝐷𝑖𝑖2 2𝜎𝜎2(𝑡𝑡)⁄ ) (4) 

The adjustment for neuron 𝑖𝑖 is in accordance with (5):  

 𝑤𝑤��⃑ 𝑖𝑖(𝑡𝑡 + 1) = 𝑤𝑤��⃑ 𝑖𝑖(𝑡𝑡) + Θ𝑖𝑖(𝑡𝑡)𝜂𝜂(𝑡𝑡)��⃑�𝑣(𝑡𝑡) −𝑤𝑤��⃑ 𝑖𝑖(𝑡𝑡)� (5) 

6. Repeat 2-5 for 𝑇𝑇 steps. 
 Notably, in the above procedures, most formulas are not 
unique but can have alternatives, providing certain paradigms 
can be satisfied. For example, the radius of the current BMU 
neighbourhood can also be determined as in (6): 

 𝜎𝜎(𝑡𝑡) = 𝜎𝜎0 − (𝜎𝜎0 − 1) 𝑡𝑡 𝑇𝑇⁄  (6) 

 𝜂𝜂(𝑡𝑡) can be alternatively updated as in (7): 

 𝜂𝜂(𝑡𝑡) = 𝜂𝜂0(1 − (𝑡𝑡 − 1) 𝑇𝑇⁄ ) (7) 

 Another method for amending Θ(𝑡𝑡) is according to (8): 

 Θ𝑖𝑖(𝑡𝑡) = max{(𝜎𝜎2(𝑡𝑡) − 𝐷𝐷𝑖𝑖2), 0} 𝜎𝜎2(𝑡𝑡)⁄  (8) 

 Fig. 1 shows different neighborhood-modulated learning 
rates for a given step. Note that in Fig. 1(A), a truncation exists 
beyond the current radius. The choice between these formulas 
inevitably increases the parameter space for exploration for 
fine-tuning. However, on the other end it provides the 
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plausibility to adopt different formulas for different problems 
to achieve the best performance.  

III. NETWORK ARCHITECTURE 
In this work, we design a hybrid architecture that jointly 

combines computation and memory by incorporating a SOM 
into the CNN. The general structure of SOM is shown in Fig. 
2(A). Each component of the input vector connects to a neuron 
that is arranged in a two-dimensional lattice. Assuming that the 
dimension of the input sample is 𝑁𝑁, let 𝑖𝑖 denote the 𝑖𝑖 th input 
component and 𝑗𝑗 denote the 𝑗𝑗th neuron; then, the corresponding 
weights are �𝑤𝑤𝑖𝑖1

𝑗𝑗 ,𝑤𝑤𝑖𝑖2
𝑗𝑗 ,⋯ ,𝑤𝑤𝑖𝑖𝑁𝑁

𝑗𝑗 �.  
To conceive a memory module based on SOM, a change in 

view is needed. As shown in Fig. 2(B), each neuron can be 
thought of storing a vector that has the same dimension as the 
input sample, and the weights linking the input and neurons are 
always of fixed value 1. In fact, at the initial stage of neural 
network development, the plasticity of synapses for learning is 
not well understood. Therefore, the weights are always set fixed, 
and only neurons modulate the relied signals [18]. However, to 
consider from the viewpoint of Fig. 2(B) can ease the 
conceivable barrier when adopting SOM as memory part of the 
network. Viewing the structure of SOM in either Fig. 2(A) or 
Fig. 2(B) takes the same learning or updating mechanism.  

The next consideration is the content to be stored in the 
neurons. In applications, the data samples are usually of high 

dimensions, and to directly store the raw data is inapplicable. 
An alternative is to store some transformed features of lower 
dimensions, as shown in Fig. 2(C). The criterion is that the 
transform should be capable of extracting suitable features from 
the original data. Based on these reflections, the designed neural 
network architecture is shown in Fig. 3.  

In Fig. 3, the overall architecture is a combination of CNN 
and SOM, abbreviated as MACNN (memory augmented 
convolutional neural network). We consider only the 
classification problem in this work, and each class is 
accommodated by a SOM block. The memory or SOM module 
consists of individual SOM blocks. To articulate the original 
input into features for memorization and refinement in the SOM 
blocks, a CNN is introduced to act as the transform based on 
the idea of transfer learning. To make the CNN suitable for 
extracting features, a pre-training stage (or circuitry) is 
introduced. The pre-training stage is the same as the general 
application of CNN. In detail, the CNN is trained first, and then 
the weights are fixed and transferred into the second stage 
(training) to extract the features for further manipulation. 
Subsequently, the extracted features and SOM interact to 
achieve the final computation goal, namely, classification.  

Depending on whether it is the training stage or test stage, 
the inputs are routed into the SOM in different ways. For 
training, the input (extracted feature) is gated by the ground-
truth label. Assuming there are 𝑁𝑁 classes, let 𝑥𝑥 denote the input 

 
Fig. 1.  Learning rate modulated by different neighborhood functions.  
  

 
Fig. 2.  SOM structure: (A) Illustration from the conceptual perspective; (B) Illustration from the pragmatic perspective (C) Dimensional reduction of EEG data 
and interaction with the SOM module. 
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to the SOM module, and 𝑔𝑔(𝑥𝑥) = {𝑔𝑔1(𝑥𝑥),𝑔𝑔2(𝑥𝑥),⋯ ,𝑔𝑔𝑁𝑁(𝑥𝑥)} the 
denotes the gate function, where 𝑔𝑔𝑖𝑖(𝑥𝑥) = 1  if 𝑥𝑥 ∈ 𝐶𝐶𝑖𝑖  and 
𝑔𝑔𝑖𝑖(𝑥𝑥) = 𝑁𝑁/𝐴𝐴 (means unavailable) otherwise. The input to the 
𝑖𝑖th SOM block is 𝑥𝑥 ∙ 𝑔𝑔𝑖𝑖(𝑥𝑥). For example, suppose the current 
input belongs to the first class 𝐶𝐶1. Then, the input goes only to 
the first SOM block and updates the block according to the 
SOM learning method. All other SOM blocks are inactive for 
the current input. For the test stage, the input goes to every SOM 
block for computation.  

The motivation for the design of our network architecture in 
Fig. 3 draws inspiration from the following biological facts 
closely related to neuroscience. First, the memory system is a 
distributed system, and knowledge are stored in different areas 
of the neocortex [19]. Second, long-term memory induces and 
depends on the modulation of synapse plasticity [20]. For a 
classification problem, different categories usually represent 
different concepts. The intention for incorporating separative 
SOM blocks is to cater for the need of representing different 
categories in a distributive manner. The gating mechanism is 
devised to resolve the difficulty of the learning process. SOM 
favors the fact that learning roots in synapse plasticity alteration. 
If the input is routed into all SOM blocks during training, the 
one corresponding to the correct label shall update the weights 
(or the content stored in neurons) towards the favoring direction. 
The rest should be updated in some adversarial directions. The 
problem is in high-dimensional space, it is difficult to define the 
adversarial direction. Therefore, an alternative is to let all SOM 
blocks update only towards the favoring direction. It means that 
only the SOM block corresponding to the correct label learns 
per input sample, with the others remaining inactive. Other 
methods for training might exist, but this method is simple and 
computationally efficient.  

For testing, all weights involved in the whole architecture are 
frozen. The input is routed into every SOM block directly to 
find the BMU. Then the same metrics (usually the Euclidean 
distances) between the input and all BMU candidates are 
calculated, among which the minimum one is located. The 
index of the BMU with minimum distance is regarded as the 
corresponding category to which the input belongs.  

The postulation underpinning the above procedure is that 
during updating, the SOM block corresponding to a certain 
category to which some samples belong, is always learning 

from these samples. Different features, which are supposed to 
be captured by different SOM blocks, differentiate samples 
from each other. These learned features are not from one sample 
but aggregate from all historical samples and get memorized by 
the SOM. This process resembles the memory-forming 
procedure, i.e., perception, consolidation, etc. Compared with 
the vanilla CNN, it is believed that this memory-incorporating 
model can exhibit better performance. 

The algorithm for utilizing the proposed network for 
classification is summarized as follows: 

IV. EXPERIMENTS 
Three datasets are utilized to assess the practicability of the 

proposed network architecture. First, the clean and well-

Pre-training: 
Input: image samples and the corresponding labels from the training set 
Output: trained weights of the CNN 
Procedures: 
1: Train the CNN via backpropagation 
2: Save the trained weights of the CNN 
Training: 
Input: image samples and the corresponding labels from the training set 
Output: trained weights of the overall network 
Procedures: 
1: Load the saved weights of CNN 
2: Repeat the following steps until exceeding the number of iterations: 
3: Fetch an image and its label from the training set 
4: Feed the image into the CNN 
5: Update the weights of SOM block that corresponds to the label 

category using feature from the CNN 
6: Save the weights of the overall network 
Test: 
Input: image samples and the corresponding labels from test set 
Output: the predicted labels and prediction accuracy 
Procedures:  
1: Load the saved weights of the network 
2: Repeat the following steps until exhausting the test set: 
3: Fetch an image and the corresponding label 
4: Feed the image into the network 
5: Find the BMU of each SOM block according to the feature of 

the image retrieved by the CNN 
6: Compute the Euclidean distances of these BMUs with the input 

image 
7: Record the index the minimal distance 
8: Find the corresponding category represented by the index and 

compare it with the ground-truth label 

 

TABLE II 
TEST STATISTICS FOR MNIST EXPERIMENT 

 
 CNN (↓) MACNN (→) Maximum 

No.  1 2 3  
1 0.9881 0.9893 0.9892 0.9896 0.9896 
2 0.9893 0.9895 0.9893 0.9898 0.9898 
3 0.9895 0.9894 0.9889 0.9890 0.9894 
4 0.9913 0.9922 0.9912 0.9918 0.9922 
5 0.9897 0.9901 0.9895 0.9898 0.9901 

Maximum 0.9913 - - - 0.9922 
 

 
Fig. 3.  The overall network architecture. 
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understood MNIST dataset is used to check the feasibility. 
Once the proposed model does not work, the use of clean 
MNIST data can narrow down the reason to the network 
structure rather than the dataset. The second dataset consists of 
breast cancer histopathology image patches, and the third 
dataset is an EEG dataset captured from a visual oddball task. 
These two imbalance bioimage datasets present high variance 
across samples belonging to the same category, a major 
challenge for most ML algorithms. Meanwhile, these datasets 
concern with clinical practice or neurophysiological theory, and 
to improve algorithms in targeting problems in these domains 
is a meaningful work.  

A. MNIST Dataset 
The first dataset for experimenting is the traditional MNIST 

dataset, which is a derivation of a larger handwritten digit set 
from NIST [21]. It contains 60,000 training samples and 10,000 
test samples, which are normalized digit images with 
dimensions of 28 by 28 pixels. Newly constructed networks are 
usually run against it, because on one hand minimal efforts are 
required to pre-process the data, and on the other hand, the 
performances of variational CNN structures are well 
understood, a precursor for the practicability of the proposed 
model for other datasets. 

 The implementation of our proposed network architecture is 
based on TensorFlow, the DL library open-sourced by Google 
[22]. Therefore, it directly utilizes the API, which integrates the 
dataset internally. Because the major task in this paper is not to 
seek the sole CNN structure for SOTA performance but the 
supremacy of augmenting memory to a given CNN, hence a 
vanilla CNN structure is chosen here. The configuration of the 
network structure is given in TABLE I. Note that some 

validations have already been performed to determine some 
hyper-parameters. The number of neurons for the first FC layer 
is not as large as for other structures. This is to mitigate the 
computation in SOM module. For each digit, the length of the 
feature vector used to represent it is still unclear.  

To objectively assess the performance of the proposed 
network architecture, the entire procedure is repeated 5 times. 
For each pre-training CNN, the transferred weights of the CNN 
are used 3 times to train the MACNN, and the maximal test 
accuracy is taken as the performance indicator for the current 
fold. The final comparison is between the maximal prediction 
accuracies of the CNN and MACNN. 

With the above description, taking a learning rate of 0.001 
with a batch number of 64, we pre-train the model (or train the 
sole CNN) for 10,000 iterations. To stabilize the pre-training 
process, the learning rate is decayed by a factor of 0.96 for every 
100 iterations. After pre-training, with a learning rate of 0.2 for 
the SOM module, we train the MACNN for 10,000 iterations. 
Some of the test data are used to monitor both the pre-training 
and training processes, and no overfitting is observed. After 
training both the CNN and MACNN, the statistics for 
prediction on the whole test set are shown as in TABLE II.  

TABLE I  
NETWORK CONFIGURATION FOR MNIST EXPERIMENT 

Network (CNN) Stages 
No. Layer #Filter Kernel Act. Pre-training Training Test 

1 Conv2D 16 5x5 ReLU x* x x 
AvgPool - 2x2 - x x x 

2 Conv2D 32 5x5 ReLU x x x 
AvgPool - 2x2 - x x x 

3 FC 32 - ReLU x x x 
4 FC 10 - Softmax x   

Network (SOM)    

5 Height Width Depth #Blocks  x x 64 64 32 10 
*x indicates the presence of the corresponding layer       

TABLE II 
TEST STATISTICS FOR MNIST EXPERIMENT 

 CNN (↓) MACNN (→) Maximum 
No.  1 2 3  
1 0.9881 0.9893 0.9892 0.9896 0.9896 
2 0.9893 0.9895 0.9893 0.9898 0.9898 
3 0.9895 0.9894 0.9889 0.9890 0.9894 
4 0.9913 0.9922 0.9912 0.9918 0.9922 
5 0.9897 0.9901 0.9895 0.9898 0.9901 

Maximum 0.9913 - - - 0.9922 
 

 
Fig. 4.  Illustration of features of MNIST test samples from CNN and MACNN respectively via t-SNE (A) The CNN case; (B) The MACNN case.  



 

6 
 

TABLE II shows that the accuracy of the MACNN is better 
in most cases, although the improvement is marginal. However, 
a reflection of our method still indicates the improvement is an 
interesting achievement. The scenario for transfer learning 
usually involves a computational model that is developed for 
task A is reused for task B. Here, the features extracted 
admittedly suitable for the CNN are reused to train MACNN. 
and a better result is still achieved, which manifests the promise 
for incorporating memory. By future work on a more 
appropriate transform function as in Fig. 2(C), new prospects of 
the proposed model can be expected.  

As mentioned above, the transform crafted via self-transfer 
learning might overshadow the advantage of our proposed 
network architecture. However, based on our design principle, 
two aspects are still worthy of investigation.  

The first relates to the characteristics of features from the 
respective CNN and MACNN regarding the same test samples. 
In this respect, we propagate all test samples through both the 
CNN and MACNN, then apply t-SNE to visualize the 
distribution of the corresponding samples [23]. From Fig. 4, it 
can be noticed that features from MACNN are more diverse 
than those from the CNN. This diversity or higher variation 
usually confers the advantage of better generalization. For the 
MNIST dataset, this means that the SOM module can tolerate 
larger deformations of handwritten digits belonging to the same 
category.  

The second is that each SOM block learns features towards a 
unique direction. This claim is verified in Fig. 5. To carry this 
out, we first apply principal component analysis (PCA) to the 
content of one SOM block (here the one corresponding to digit 
0), then sort the eigenvectors according to the magnitude of the 
eigenvalues. Next, we project each SOM block along these 
eigenvectors. Fig. 5 shows the case of projections via the first 
three eigenvectors. The brightness of the image indicates the 
component magnitude. It is manifest that knowledge learned by 
SOM block 0 lies along a special direction distinct from the 
remains. From the first row of images, the image patch 
corresponding to 0 is the brightest, while the others dim from 
intermediate to deep dark.  

B. IDC Dataset 
In this experiment, the dataset investigated is an image 

dataset for a subtype of breast cancer [24]. It consists of patches 
of images scanned from invasive ductal carcinoma (IDC) tissue 
regions [25]. The diagnosis of malignant tissue traditionally 
relies on screening of the large digital histopathology image by 
pathologists to distinguish it from the swathes of benign areas. 

This process is time-consuming and challenging and can be 
error-prone for less-experienced technicians. Considering the 
outstanding achievements in utilizing DNN for image 
processing tasks such as classification and segmentation, 
applying DL to detect IDC to assist malignant tumour diagnosis 
is of great significance. 

The dataset consists of 277,524 RGB digital image patches 
with the resolution of 50x50 pixels. These patches were 
extracted from H&E-stained breast histopathology images of 
162 women who were diagnosed with IDC. The ground-truth 
labels for IDC regions are annotated via manual delineation of 
the cancer region by an expert pathologist. Direct operations on 
the original digitized histopathology image slides are 
intractable due to the huge size, which leads to the alternative 
patch-based analysis, i.e., the whole image is sliced into non-
overlapping patches. In general, the breast tissue contains many 
cells, but only some of them are cancerous. For simplicity, 
patches containing cells that are characteristic of IDC are 
labelled "1", and “0” otherwise. However, this labelling 
strategy means that the degrees of IDC are not differentiable 
between patches labelled “1”. More information about the data 
can be found in [24]. An illustration of the respective positive 
and negative case is shown in Fig. 6.  

To avoid redoing the experiment in [24] [26] and make direct 
comparison, the treatment of data is exactly as in these previous 
work. The patient ID files are retrieved from [27] for training, 
validation and testing. The ratio between negative samples and 
positive samples is approximately 1:3. It is common that the 
number of negative samples surpasses the number of positive 

 
Fig. 5.  SOM contents projection along a specific direction (eigenvectors of SOM block 0 in this case). 
  

 
Fig. 6.  Sample patch images of non-IDC(-) and IDC(+)   
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samples for bioimage datasets. However, the imbalance might 
incur misbehaviour of the proposed network if only the 
accuracy is considered. To prevent the perversion during the 
training process, negative samples are resampled to match the 
positive samples. For example, suppose that the batch number 
is 𝑁𝑁 ; 𝑁𝑁/2  negative samples are resampled from the total 
number of negative samples to blend with 𝑁𝑁/2  positive 
samples for each training iteration. There exist other 
alternatives to conquer the imbalance problem, but this one is 
simple and computationally efficient.  

There is no essential difference between this experiment with 
the MNIST experiment; thus, the configuration of the network 
is identical to the MNIST experiment. In addition, 
distinguishing between benign and malignant tissues is a binary 
classification problem; hence, the number of SOM blocks is 2. 
The training and testing processes are the same as the MNIST 
experiment. We notice the tendency of overfitting in the 
training process; therefore, the learning rate of SOM is set to 
0.001, with the neighbourhood modulation scheme governed by 
(7). An unconditional early stop is also adopted here (we set the 
iteration number to 10,000 to calculate parameters during SOM 
updating; however, we stop the training at 5,000).  The testing 
statistics are shown in TABLE III.  

Notably, the prediction accuracy is usually inappropriate for 
imbalance data, because the training process can drive the 
model to misclassify the minority and still retain a high 
accuracy. In this circumstance, F1 score is usually taken as the 
performance indicator [28]. TABLE III clearly reveals that the 
results achieved by MACNN are better than CNN for all cases. 
It not only presents higher accuracies, but also displays greater 
F1 scores. This outcome is another good indicator of the 
necessity of augmenting memory for CNN.  

We also compare our results with the achievements in 
[24][26] in TABLE IV. It is obvious that the performance in our 
work is the best among all. To achieve up-to-date results, 
previous works applied several tricks to the dataset and with 
more complicated network structures. However, the outcome in 

our work is based only on a vanilla CNN plus a memory module, 
without any trickery and cunning involved. We believe that by 
adopting more tactics and continuing exploration of SOM, the 
results can be further improved.  

C. EEG Dataset 
The dataset used in this experiment is an EEG dataset 

captured during a visual oddball task [29]. Neuroscience is 
regarded as having a deep connection with DL; the latter tends 
to draw inspiration from the former. Among the auxiliaries of 
brain research, EEG is no doubt the most convenient and 
economic brain imaging technology to inspect neural activities 
during a specific cognitive process [30]. For most cases, EEG 
signals captured during certain physiological or cognitive 
process are serial data, which can be analyzed by constructing 
an RNN with LSTM cell. But it is not always the case, for 
instance, the P300 phenomenon in typical oddball or speller 
tasks [31]. The imminent EEG amplitude time-locked to the 
appearance of the visual stimulus (target) has a rather  limited 
effective duration (0.7 seconds at most), and RNN is difficult to 
apply in this circumstance. Additionally, EEG signals are 
complicated bio-signals due to high intra-subject and cross-
subject variance and the low signal-to-noise ratio (SNR). Those 
factors render sole application of CNN in this situation not as 
fruitful as in other cases. Hence, our proposed model is very 
appealing for this case. 

The oddball task is based on the neurophysiological activity 
called visual evoked potential (VEP) [32]. The experiment is 
designed as image stimuli, which are of two categories (target 
vs non-target), presented to subjects at a rate of approximately 
0.5 Hz (one image approximately every two seconds) to arouse 
their responses. For this experiment, the targets are enemy 
combatants (34 in total) while non-targets are U.S. soldiers (236 
in total). The subjects were presented with all the 270 images. 
During the experiment, they were instructed to identify each 
image as being a target or not with a unique button press as 
quickly but as accurately as possible. The experiments were 
approved by the U.S. Army Research Laboratory Institutional 
Review Board (Protocol # 20098-10027), with the consent of 
subjects complying with the Federal and Army regulations. 

There were eighteen subjects participated in the experiments, 
which last 15 min on average. The wired 64-channel 
ActiveTwo3 system (sample rate set to 512 Hz) from BioSemi 
were used to record the EEG signals, which are directly 
analyzed in the time domain. For pre-processing, the raw EEG 
data are first rectified via the PREP pipeline [33], and then 
subjected to the multiple artifact rejection algorithm for ICA-
based artifacts removal [34]. Next, the signals are down-
sampled to 256 Hz, following segmentation into [0, 1.0] second 
intervals time-locked to the stimulus onset. To mitigate the 
effect of outliers, epochs with incorrect button presses are 
removed. Then, the mean baseline is removed from each 
channel in each epoch. These procedures lead to a final 382 
target trials and 3249 non-target trials. 

The placement of the 64 channels is complied with the 
international 10-20 system. Because VEP originates from the 
occipital cortex, which is dominantly involved in receiving and 

TABLE IV 
TEST STATISTICS FOR IDC EXPERIMENT VIA DIFFERENT MODELS 

Method Accuracy (%) F1-Score (%) 

CNN-Based [24] 84.23 71.80 
AlexNet-Based [26] 84.68 76.48 

MACNN 86.19 77.48 

 

TABLE III 
TEST STATISTICS FOR IDC EXPERIMENT 

  CNN (↓) MACNN (→)  
No.   1 2 3 Max. 

1 Accuracy 0.8365 0.8419 0.8426 0.8468 0.8468 
F1 Score 0.7525 0.7563 0.7568 0.7611 0.7611 

2 Accuracy 0.8372 0.8448 0.8446 0.8516 0.8516 
F1 Score 0.7505 0.7541 0.7536 0.7587 0.7587 

3 Accuracy 0.8362 0.8492 0.8516 0.8560 0.8560 
F1 Score 0.7500 0.7537 0.7559 0.7584 0.7584 

4 Accuracy 0.8406 0.8619 0.856 0.8474 0.8619 
F1 Score 0.7554 0.7748 0.7697 0.7619 0.7748 

5 Accuracy 0.8388 0.8516 0.8454 0.8475 0.8516 
F1 Score 0.7549 0.7677 0.7613 0.7643 0.7677 

Max. Accuracy 0.8406 - - - 0.8619 
F1 Score 0.7554 - - - 0.7748 
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interpreting visual signals, signals from 12 channels, which 
mainly cover the parietal and occipital areas are selected for 
analysis. As in the IDC experiment, samples of individual 
classes (target vs non-target) are also imbalance; hence, the 
resampling strategy used in the IDC experiment is adopted here 
as well.  

However, the imbalance of the EEG dataset (1:9) is more 
severe than the IDC dataset (1:3). To cater to the appropriate 
learned knowledge representation, the dimensions of separate 
SOM blocks are more diverse. For the network configuration in 
TABLE V, the dimensions of SOM block 0 are quadruple as 
those of block 1. Furthermore, although the change of 
viewpoint from Fig. 7(A) to Fig. 7(B) makes the original EEG 
data no eminent difference from image data, the multi-channel 
property makes the convolutions along the height under dispute. 
Thus, the convolution is 1D and only along the width dimension. 
The training procedure is identical to the previous experiments. 
Because EEG data tend to display low SNR, the learning rate 
of SOM is set to 0.01 to cater for the procedural refining process 
of SOM update. The statistics of the test are shown in TABLE 
VI.  

It is obvious from TABLE VI that the CNN achieves better 
accuracies among multiple runs. However, although MACNN 
fails to beat CNN in terms of accuracy, it is superior in terms of 
the F1 score in most cases. The results indicate that MACNN 
can be a promising application for imbalanced data. We also 
compare with the results from [36], which used the same EEG 
dataset to study different resampling strategies for imbalanced 
data. The best result of our model in TABLE VII suggests that 
by combining SOM and CNN together, challenging issues such 

as imbalanced data can be effectively addressed.  
We also illustrate the distributions of features of all test 

samples extracted by the CNN and MACNN respectively to 
understand the difficulty of highly accurate classification for 
both models and then try to understand the behavior of 
MACNN, which leads to a better result. Fig. 8(A) illustrates the 
features from the CNN via t-SNE, which demonstrates the 
separability of target and non-target samples. Even after several 
neural network operations such as convolution and pooling, the 
interleaving of features is not effectively resolved into a clear 
condition. In contrast, in Fig. 8(B), the features are organized in 
a more categorical way, approximating the intended dichotomic 
phenomena of the oddball task. However, the intrinsic non-
separability of the problem still prohibits achievement of a good 
prediction; nevertheless, it does not obscure that the situation in 
Fig. 8(B) is better than that in Fig. 8(A).  

V. DISCUSSION 
The significance of human memory in the cognitive process 

which shapes our daily life is self-evident. It is well-known that 
the human memory system consists of working memory, short-
term memory and long-term memory. Long-term memory is 
further categorized into explicit memory and implicit memory. 
How to draw from human memory to design a more intelligent 
system is admittedly meaningful research in this DL era, just as 

TABLE V 
NETWORK CONFIGURATION FOR EEG EXPERIMENT 

Network (CNN) Stages 
No. Layer #Filter Kernel Act. Pre-training Training Test 
1 Conv2D 16 1x5 tanh x x x 

AvgPool - 1x2 - x x x 
2 Conv2D 32 1x5 tanh x x x 

AvgPool - 1x2 - x x x 
3 FC 32 - tanh x x x 
4 FC 2 - Softmax x   

Network (SOM)    

0 Height Width Depth Radius  x x 128 128 32 8 

1 Height Width Depth Radius  x x 32 32 32 8 
 

 
Fig. 7.  Viewpoints of EEG from different perspectives. (A) Multi-channel 
data; (B) Image data. 
  

TABLE VI 
TEST STATISTICS FOR EEG EXPERIMENT 

  CNN (↓) MACNN (→)  
No.   1 2 3 Max 

1 Accuracy 0.7884 0.7858 0.7720 0.7934 0.7934 
F1 Score 0.4509 0.4516 0.4290 0.4569 0.4569 

2 Accuracy 0.8702 0.8551 0.8564 0.8589 0.8589 
F1 Score 0.4550 0.4549 0.4818 0.4766 0.4818 

3 Accuracy 0.8513 0.8387 0.8224 0.8236 0.8387 
F1 Score 0.4271 0.4285 0.4291 0.4308 0.4308 

4 Accuracy 0.8488 0.8274 0.8186 0.8136 0.8274 
F1 Score 0.4230 0.4170 0.3999 0.3983 0.4170 

5 Accuracy 0.8299 0.8148 0.8085 0.8047 0.8148 
F1 Score 0.3349 0.3466 0.3448 0.3459 0.3466 

Max Accuracy 0.8702 - - - 0.8589 
F1 Score 0.4550 - - - 0.4818 

 

TABLE VII 
TEST STATISTICS FOR EEG EXPERIMENT VIA DIFFERENT MODELS 

Model NN * SVM CNN MACNN 
Accuracy 0.694 0.756 0.8702 0.8589 
F1 Score 0.309 0.288 0.4550 0.4818 

*Multi-layer Perceptron    
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the work that was done in [1].  
In this research, we proposed SOM that plays the role of 

memory in CNN, is quite different from LSTM, at least from 
the brain-inspired computation perspective. LSTM mainly 
explores the temporal correlation during recursion when 
processing the current sample, and the content expires for new 
input. On the other hand, training an LSTM network is not for 
storing information, but rather to tune the weights associated 
with the input gate, forget gate and output gate. Generally, 
LSTM resembles the working memory.  

However, SOM does store information of the samples. A 
boundary condition analysis can be performed to reveal that in 
an extreme case, the neighborhood of the BMU is just the unit 
itself as in section II. Furthermore, if the learning rate is 1, the 
BMU can be updated to the current sample. Given a sufficiently 
large lattice, all the input samples can be logged; nevertheless, 
this is not the way that SOM is intended to be used. Actually, if 
we think that the current available samples (regardless of 
training, validation or test) are sampled from a given space, the 
updating process of SOM can be treated as an interpolation 
and/or extrapolation of that space, meanwhile, smoothing 
among the samples. As in Fig. 2(B), each node in the lattice can 
be viewed as an instantiation of a class with some learned 
variance, which confers a better generalization, as in the case of 
EEG dataset.  

Our proposed network relies on a proper transform to retrieve 
the appropriate features to be stored in the SOM module. The 
current implementation is based on CNN, which is separately 
pre-trained. In future work, we will investigate the opportunity 
for directly applying an end-to-end training.  Another aspect for 
improving our work is the consideration of learning in an 
adversarial direction simultaneously during training. Currently, 
the SOM blocks always update weights in the direction that 
favors the correct label and neglect all negative samples. How 
to draw inspiration from the biological perspective and to 
architect a network capable of doing so is still under 
investigation. 

VI. CONCLUSION 
In this paper, we proposed a new network architecture named 

MACNN, typically from the memory perspective, i.e., 
augmenting a SOM module with an existing CNN. We 

explained the inspiration from the neurophysiological 
perspective and detailed the network structure. By experiments, 
we showed the better results achieved by the proposed model 
compared with solely using the CNN and illustrated the 
characteristics of learned features. In future work, inspirations 
from additional neural structures, such as mutually inhibition 
networks, will be considered to enhance the learning capability 
of the corresponding articulated memory network.   
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