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Abstract

Driver mental fatigue leads to thousands of traffic accidents. The increasing quality
and availability of low-cost electroencephalogram (EEG) systems offer possibilities for
practical fatigue monitoring. However, non-data-driven methods, designed for practi-
cal complex situations, usually rely on handcrafted data statistics of EEG signals. To
reduce human involvement, we introduce a data-driven methodology for online men-
tal fatigue detection, called Self-Weight Ordinal REgression (SWORE). Reaction Time
(RT), referring to the duration taken by humans in reaction to an emergency, is widely
considered as an objective behavioral measure for mental fatigue state. Since regres-
sion methods adopted in previous literature are sensitive to extreme RTs, we propose an
indirect RT estimation based on preferences to explore the relationship between EEG
and RT, which generalizes to any scenario when an objective fatigue indicator is avail-
able. In particular, SWORE evaluates the noisy EEG signals from multiple channels
in terms of two states: shaking-state and steady-state. Modeling the shaking-state can
discriminate the reliable channels from the non-informative ones; while modeling the
steady-state can suppress the task non-relevant fluctuation within each channel. In ad-
dition, an online generalized Bayesian moment matching (Online GBMM) algorithm
is proposed to online calibrate SWORE efficiently per participant. Experimental re-
sults on 40 participants show that SWORE can maximally achieve consistent with RT,
demonstrating the feasibility and adaptability of our proposed framework in practical
mental fatigue estimation.



1 Introduction
Mental fatigue is a common physiological phenomenon (Borghini et al., 2014), which
induces sub-optimal functioning, and may even lead to accidents with severe conse-
quences (Van Cutsem et al., 2017). The National Highway Traffic Safety Administra-
tion estimates that about 100,000 official reports of crashes are the direct result of driver
mental fatigue each year which results in an estimated 1,550 deaths, 71,000 injuries, and
12.5 billion in monetary losses. In response to these critical issues, several algorithms
have been developed to detect mental fatigue using electro-cardio signal (ECG) (Fal-
lahi et al., 2016), functional Near Infrared Spectroscopy (fNIRS), electrooculogram
(EOG) (Laurent et al., 2013), electroencephalographic (EEG) (Lin et al., 2013; Jagan-
nath and Balasubramanian, 2014; Sauvet et al., 2014; Wang et al., 2015), etc. Among
these signals, EEG signals are assumed to be most accurate and valid to fetch the in-
formation related to driver’s mental fatigue, owing to their high temporal resolution
and the availability of a vast variety of preprocessing methods (Graimann et al., 2009;
Sahayadhas et al., 2012; Palanivel Rajan and Dinesh, 2015).

Previous methods for developing automatic systems, to detect driver drowsiness
from EEG signals, can be broadly classified into two categories: non-data driven or
data driven. Non-data driven approaches, such as power spectrum based analysis (Jap
et al., 2009; Wang et al., 2018), entropy-based analysis (Kar et al., 2010), brain net-
works based analysis (Li et al., 2017), usually resort to handcrafted estimators, like
changes in power or statistically related features, to evaluate mental fatigue using EEG
signals from multiple channels (Gurudath and Riley, 2014; Gharagozlou et al., 2015).
However, these evaluation metrics require extra expert interpretation and complex cal-
culation processes. Meanwhile, EEG signals are known to be highly specific and vary
in great detail among individuals. Thus, non-data driven approaches relying on prede-
fined criteria are not robust enough to account for individual variability and dwindle
their applications in practical implementations.

In terms of data-driven mental fatigue evaluation, the reaction time (RT) to a certain
assigned task is widely adopted as supervision, to indicate the fatigue level. Some
linear (Lin et al., 2010; Resalat and Saba, 2015) and non-linear (Liu et al., 2016; Cui
and Wu, 2017; Pan et al., 2020) methods show that it is possible to detect mental fatigue
with high accuracy. It is impressive but rather blind to the wealth of the dynamics and
behavioral variability (Müller et al., 2008; Ratcliff et al., 2009; Yarkoni et al., 2009; Xu
et al., 2018). Although some recent work (Wei et al., 2018; Cui et al., 2019) suggested
addressing the concerns of inter- and intra-subject variability through transfer learning,
those techniques are available only to offline analysis methods with sufficient training
samples.

Previous offline analysis methods often result in poor fatigue detection performance
due to limited training data in practical implementation (See Fig.1). For example, ei-
ther deep learning (Goodfellow et al., 2016) methods, requiring massive training data,
or Riemannian methods (Barachant et al., 2012; Congedo et al., 2017), incurring high
computation cost, fail to meet the harsh requirement in practical scenario. In addi-
tion, the repercussion of mental fatigue, the decline of mental alertness, and bad driv-
ing performances, are the reflection of the whole brain among different areas. Recent
works demonstrate its efficacy by discriminating functional interactions between dif-
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ferent brain regions either based on heuristic metrics (Wang et al., 2018; Richer et al.,
2018) or complex analysis (Li et al., 2017). However, it cannot fully reveal functional
interactions between multiple channels in terms of mental fatigue since the analysis is
independent of the later mental fatigue evaluation.

To address the above concerns, we introduce a data-driven methodology, called Self-
Weight Ordinal REgression (SWORE), for online driver mental fatigue detection which
models the functional interactions between different brain regions. Instead of formulat-
ing our SWORE as a regression task with RT being the direct supervision, we consider
a more general problem setting, i.e., learning to rank. SWORE learns from brain dy-
namics preferences and aims to achieve consistency with RT indirectly in the sense of
ranking. The brain dynamics preferences can be constructed via some objective fatigue
indicator, such as RT if available, or some power spectral features (Wang et al., 2018;
Bose et al., 2019). Preferences-based indirectly mental fatigue evaluation is proved to
alleviate the overfitting issue of directly predicting RT in a regression task (Pan et al.,
2020). In particular, SWORE models the brain dynamic preferences in terms of two
states: shaking state and steady state. SWORE automatically discriminates the reliable
channels from the non-informative ones by modeling the shaking state and suppresses
the mental fatigue non-relevant fluctuation within each channel by modeling the steady
state. Moreover, an online generalized Bayesian moment matching (Online GBMM)
algorithm is proposed for Bayesian posterior update. Once a new sample (the reaction
time corresponding to the newly recorded EEG signals) is available, Online GBMM
would efficiently calibrate the SWORE model with the simple update rules. In sum-
mary, the main contributions of this paper are as follows:

• We propose an online mental fatigue monitoring system that can evaluate mental
fatigue momentarily with a high prediction performance.

• We propose a Self-Weight Ordinal REgression (SWORE) model to reliably ag-
gregates brain dynamics related preferences from multiple noisy channels in terms
of two states: shaking state and steady state.

• We propose an online generalized Bayesian moment matching (Online GBMM)
algorithm for online calibrating the SWORE model with the analytic update rules.

• We conduct comprehensive experimental results on 40 participants to verify the
reliability of our system in online mental fatigue monitoring scenarios. Further,
we explore the parameter sensitivity and model uncertainty of SWORE w.r.t. the
Online GBMM algorithm.

The sequel of this paper is organized as follows. Section 2 introduces the back-
ground of mental fatigue monitoring and motivates the practice of online mental fatigue
monitoring. In Section 3, an indirect mental fatigue monitoring model, Self-Weighted
Ordinal REgression (SWORE), is introduced to model the heterogeneous brain dynamic
preferences in terms of two states. Section 4 describes an analytic update strategy for
online calibrating the SWORE model. Section 5 discusses the details of mental fatigue
evaluation in the online scenario. Section 6 demonstrates the reliability of the proposed
SWORE model with EEG signals collected from forty participants. Section 7 concludes
the paper and envisions future work.
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2 Background and Problem Statement
In the following, we introduce the background of mental fatigue monitoring and then
discuss the deficiency of previous approaches in the online scenario. Further, several
sub-goals are listed which are necessary for achieving a robust online mental fatigue
evaluation model.

2.1 Mental Fatigue Monitoring
First of all, the reaction time (RT) to an emergence is generally accepted as the most
intuitive and resourceful metric to evaluate mental fatigue. Meanwhile, the EEG (Lin
et al., 2013; Wang et al., 2015) signals as the feature vector are adopted which is well
known to be most accurate and valid to fetch the information related to driver’s mental
fatigue (Graimann et al., 2009; Sahayadhas et al., 2012; Palanivel Rajan and Dinesh,
2015), compared to ECG, fNIRS) (Nguyen et al., 2017), etc.

Therefore, a common practice for mental fatigue monitoring is to build a learning
model that can predict humans’ reaction time to an emergency using the EEG signals
recorded beforehand (Lal et al., 2003; Kohlmorgen et al., 2007; Soon et al., 2008; Jap
et al., 2009).

2.2 Impaired Performance on Non-stationary Brain Dynamics
in Online Applications

Some of previous works derived from linear (Resalat and Saba, 2015; Lin et al., 2010)
and non-linear (Liu et al., 2016; Cui and Wu, 2017; Pan et al., 2020) methods show that
it is possible to detect mental fatigue with high accuracy. It is impressive but it would
rather go blind to the wealth of the dynamics and behavioral variability (Müller et al.,
2008; Ratcliff et al., 2009; Yarkoni et al., 2009; Wei et al., 2018; Cui et al., 2019). Par-
ticularly, brain dynamics are non-stationary, which is characterized by significant trial-
by-trial and subject-by-subject variability (Ratcliff et al., 2009; Yarkoni et al., 2009).
However, the above methods, designed for offline analysis with sufficient training sam-
ples, would result in poor generalization performance in real scenes without efficient
online calibration.

For better illustration, we trained three support vector machine regression (SVR)1

using 20, 40, 60 sequential trials and visualized their prediction performances on the
rest trials, respectively. From Fig.1, we can find that: (1) apart from few local mispre-
dictions, SVR can exactly predict the RT on the training trials and is insensitive to the
extreme values. It proves that SVR has sufficient fitting capability for mental fatigue
monitoring and has superior robustness to extreme values compared to deep regression
models (Pan et al., 2020). (2) All SVR models show bad prediction performance2 on
the remaining trials, respectively. This is consistent with our conjecture that previous

1We adopted SVR for showcase due to its nonlinear properties and superior generalization perfor-
mance on small training dataset (Schlkopf et al., 2018). SVR is implemented using the Libsvm with the
parameter option “-s 3 -t 2”.

2The Y-axis is in log scale. And the prediction discrepancy would be more significant in normal scale.
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Figure 1: Bad prediction performance of SVR using 20, 40, 60 training trials, respec-
tively. EEG signals from multiple channels are simply concatenated into a long feature
vector and SVR is trained using this feature vector. For the sake of fair comparison, we
collect the mean absolute error (MAE) of three models on the remaining trials starting
from the 71st trial. We only present the result of the first participant for a showcase.

offline analysis will suffer from severe generalization issues in online scenarios. (3)
Increasing the training trials marginally improves the prediction accuracy. Particularly,
when the number of training trials increases from 20 to 60, the mean absolute error only
decreases by 0.34s.

2.3 Online Mental Fatigue Evaluation
In pursuit of online mental fatigue evaluation, a major concern behind previous methods
is the computational efficiency in terms of time and memory. Deep learning (Goodfel-
low et al., 2016) methods, although achieve superior performance (Pan et al., 2020), re-
quire massive training data. Meanwhile, Riemannian methods (Barachant et al., 2012;
Congedo et al., 2017) achieve good performance with a small amount of training trials,
but incur an overhead computational cost. Another important factor among existing
proposed methods is the lacking of efficient aggregation mechanism to distill reliable
predictions from multiple noisy channels. In particular, majority voting and concatena-
tion are all verified to suffer from overfitting and poor generalization performance (Pan
et al., 2020).

Based on the above analysis, we summarize three sub-problems, that will be ad-
dressed in this paper, to deduce a robust online mental fatigue evaluation model:

• How to reliably detect metal fatigue using the EEG signals as well as the corre-
sponding RTs?
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• How to automatically eliminate the non-informative channels during the learning
process?

• How to effectively calibrate the learning model with an EEG signal when its truth
RT is available?

We propose our SWORE mode in Sect. 3 to address the first two problems and
introduce efficient online calibration strategies in Sect. 4 to answer the third problem.

3 Self-weighted Ordinal Regression for Brain Dynamics
In this section, we evaluate mental fatigue indirectly with brain dynamics related pref-
erences to avoid overfitting to the extreme RTs, instead of modeling it as a regular
regression task (Resalat and Saba, 2015; Lin et al., 2010).

3.1 Brain Dynamic Preferences
As shown in Fig. 1, it is usually difficult for a learning model to get the exact estimation
of RT since the RT values are not smoothly changing, and the relationship between RT
values and fatigue levels are not exact but relative due to time and subject variations.
The performance would further worsen in the online setting as only a few training trials
are available. Meanwhile, a rough but reliable estimation is acceptable in real-world
situations of mental fatigue monitoring (Colosio et al., 2017). Therefore, in this paper,
we model the brain dynamics related preferences instead of the exact values of RT.

Remark 1 (From regression to ordinal regression). Let’s revisit the prediction of RT in
the perspective of ordinal regression. RT is actually defined in the complete ordered
field R which owns its structure meanings. The relative structure information is entirely
preserved among the pairwise comparisons of RTs. Therefore, if there exists a learn-
ing model which can maximally preserve the whole structure information, a new trial
can find its own position (a rough estimation of RT) by its comparisons with previous
recorded EEG signals. Please refer to Sect. 5.3 for more details.

Particularly, instead of modeling the global pattern of the brain dynamics within a
regression model, we consider the local discrepancy between the current and next brain
dynamic states. First, the difference between RTs is leveraged as the indicator for the
local discrepancy,

y =

{
up: 1 RTt < RTt+1

down: −1 RTt > RTt+1
, (1)

where RTt and RTt+1 denote the current and next reaction time, respectively. Further,
the brain dynamic preference3 (xn

t ,x
n
t+1) (typically a pair of d-dimensional feature vec-

tors) can be constructed with the corresponding pairwise EEG signals recorded from
each channel (∀n = 1,2, · · · ,N). Every EEG sensor used for recording is assumed to

3We used the term “preference” intentionally to show that brain dynamics keep changing w.r.t. human
behaviour and it happens because the human brain prefers one decision over others.
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Figure 2: Gradient flattening w.r.t. sigmoid function. The dash line represents the
original sigmoid function.

record independently from scalp without influencing other sensors (Homan et al., 1987;
Teplan et al., 2002), so the brain dynamic preferences are constructed for each channel
independently. Therefore, there are totally N brain dynamic preferences constructed for
each comparison.

Remark 2 (Indirect Mental Fatigue Monitoring). The word “indirect” is adopted for
comparing with the usage of RT as the direct supervision in the regression task. Mean-
while, the objective fatigue indicator used for constructing the brain dynamics pref-
erences is not limited to RT. Other well-studied and easily accessible power spectral
features (Borghini et al., 2014; Chai et al., 2016), such as dynamic time warping, en-
tropy, and functional connectivity, can also be adopted as fatigue supervision (Wang
et al., 2018; Bose et al., 2019) for constructing the brain dynamics preferences.

Meanwhile, due to individual variability, the mental fatigue criteria defined by a
specific RT value vary from person to person. Ranking-based criteria can avoid this
since it can capture the normal level by modeling the ordering connection of several
EEG signals.

3.2 Heterogeneous Brain Dynamic Preferences
The prediction of brain dynamic preferences can be formulated as a learning-to-rank
problem, in which our goal is to estimate the optimal classifier in Fig. 2. Many binary
classification models can be adopted to model this problem, e.g., the logistic ordinal
regression:

P(y|w,xn
t ,x

n
t+1) = σ(ywT

∆xn), where ∆xn = xn
t+1− xn

t and σ(z) = 1/(1+ e−z). (2)

However, the vanilla logistic classification model suffers from the reliability issue when
applied to brain dynamics, since a subtle discrepancy around classification boundary
P(y|x) = 0.5 leads to the steepest gradient (see Fig. 2). Note the subtle difference
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between the RTs may not be caused by the intrinsic difference between two brain dy-
namics but the unknown noise.

To improve the model stability, we introduce the “insensitive zone”, which flattens
the steepest gradient around the boundary and therefore enables the classification model
less sensitive to the subtle difference between the response times.

Accordingly, we categorize the brain dynamic preferences into two states, according
to the discrepancy between the RTs, namely, shaking state (Y1), where the discrepancy
between the brain dynamics is significant, and steady state (Y2), where the brain dy-
namics remain stable.

y ∈

Shaking State Y1 :

{
up RTt < RTt+1

down RTt > RTt+1
|RTt−RTt+1|> τ

Steady State Y2 |RTt−RTt+1| ≤ τ

, (3)

where τ is the predefined parameter controlling the model sensitivity.

Shaking State: In terms of the shaking state y ∈Y1, it has two cases: an up (RTt+1 >
RTt) and a down (RTt+1 < RTt), which can be formulated as the learning to rank prob-
lem.

However, considering the functions of different regions in the human brain, the
relative contributions of different channels to human reaction time may vary a lot. If
we simply aggregate the N brain dynamic preferences recorded in different channels
without making any distinctions about the channel reliability, the performance of the
learning model would inevitably degrade (Pan et al., 2020). Inspired by Raykar et al.
(2010), which aggregates the noisy annotations from multiple crowd workers while
considering the worker ability, we propose to estimate the reliability of each channel
explicitly during the aggregation process. In particular, we formulate a robust pairwise
learning to rank model as follows,

P(y|w,π1:N ,x1:N
0 ,x1:N

1 ) =
N

∏
n=1

[
πnσ(ywT

∆xn)+(1−πn)σ(−ywT
∆xn)

]
y ∈ Y1. (4)

Note that Eq.(4) actually models each brain dynamic preference as the weighted arith-
metic mean of two cases. The weight πn ∈ [0,1], estimated during the training pro-
cess, denotes the relative contribution of the n-th channel w.r.t. to the learning task,
∀n = 1,2, · · · ,N.

Remark 3 (Superiority over the regular weighted average). From the perspective of
EEG channel analysis, Eq.(4) provides us a new aggregation mechanism to combine the
information from different channels. Different from majority voting which simply cate-
gorizes the channels into reliable ones and noisy ones, Eq.(4) performs a fine-grained
analysis and further categorizes the noisy channels into non-relevant ones and negative
reliable ones. Therefore, three types of channels can be recognized with the chan-
nel reliability πn ∈ [0,1], namely positive reliable ones (πn→ 1−)4, non-relevant ones
(πn ≈ 0.5) and negative reliable ones (πn→ 0+), ∀n = 1,2, · · · ,N.

4πn→ 1− denotes πn is up to approximate 1, while πn→ 0+ denotes πn is down to approximate 0.
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Steady State: On the other hand, the steady state y ∈ Y2 denotes the brain dynamic
preferences with comparable RTs.

To improve the robustness of the learning model w.r.t. the easily corrupted brain
dynamics, a technique called gradient flattening is introduced to model the insensitive
zone in Fig. 2. Namely, it flattens the steepest gradient at the classification boundary
P(y|x) = 0.5, enabling the learning model to be less sensitive to subtle noise. In partic-
ular, we model the brain dynamic preferences at steady state as follows:

P(y|w,xn
0,x

n
1) =

√
σ(wT ∆xn)σ(−wT ∆xn) y ∈ Y2, (5)

which is the geometric mean of an up (RTt < RTt+1) and a down (RTt > RTt+1). Please
refer to learning-to-rank literature for other options (Zhou et al., 2008). Furthermore,
Eq.(5) can also be integrated to robust aggregation model (Eq.(4)) which considers the
channel reliability πn. Due to the symmetric of Eq.(5), we define

P(y|w,πn,xn
1,x

n
2)

∆
= P(y|w,xn

1,x
n
2) ∀y ∈ Y2.

Remark 4 (Gradient flattening enhances model robustness). The gradient flattening
used in Eq.(5) can be understood as a regularization. It enables our model to be robust
to the fluctuation between brain dynamics which is not relevant to RTs.

3.3 Self-Weighted Ordinal Regression Model
In summary, our Self-Weighted Ordinal REgression (SWORE) for heterogeneous brain
dynamic preferences can be formulated as follows,

P(y|w,π1:N ,x1:N
0 ,x1:N

1 ) =

{
∏

N
n=1
[
πnσ(ywT ∆xn)+(1−πn)σ(−ywT ∆xn)

]
y ∈ Y1,

∏
N
n=1

√
σ(wT ∆xn)σ(−wT ∆xn) y ∈ Y2.

(6)

Remark 5 (Reliability of the SWORE model). (1) Inter-channel Reliability: SWORE
only trusts the brain dynamic preferences from (positive and negative) reliable chan-
nels. Since SWORE trains a mixture of two complementary classifiers with shared
parameter w, it categorizes the channels into positive channels (πn → 1−), negative
channels (πn→ 0+) and non-relevant channels (πn ≈ 0.5). Based on channel reliability
π , SWORE can automatically choose the suitable classifier to extract the correct in-
formation from the positive and negative channels and update the shared parameter w
accordingly. Further, SWORE ignores the information from the non-relevant channels
by assigning a constant likelihood (i.e. 0.5) to each brain dynamic preference from the
non-relevant channels.

(2) Intra-channel Reliability: SWORE only extracts task-related information from
each brain dynamic preference. Since the probability of the steady state y ∈Y2 (Eq.(5))
does not depend on the channel reliability πn, gradient flattening actually performs as
a regularization on the regression weight w and enables SWORE being robust to the
random fluctuations which are widely-existing in brain dynamics.
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4 Efficient Online Updating Strategy
As we discussed in Sect. 2.2, brain dynamics are non-stationary. If the SWORE model
cannot be updated to date, it would suffer from low generalization performance. There-
fore, in this section, we introduce an efficient online updating strategy for the SWORE
model. It can update SWORE in good approximation while introducing marginal com-
putation cost.

4.1 Bayesian Moment Matching
Bayesian moment matching (BMM) is a Bayesian approach used to estimate the model
parameters. Specifically, it estimates the parameters of the approximated posterior by
matching a set of sufficient moments of the exact complex posterior. Moreover, BMM
can be naturally extended to the sequential update paradigm for large-scale or streaming
datasets, e.g. OnlineBMM (Jaini et al., 2017). That is, the approximated posterior is
updated with each sample each time instead of the whole dataset.

First, SWORE is extended to its Bayesian version. Specifically, a Gaussian prior
is introduced for weight vector w, i.e. w ∼ N(µ,Σ), while a Beta prior is introduced
for each channel reliability πn, namely, p0(π) = ∏

N
n=1 Beta(πn|αn,βn). Given a brain

dynamic preference (xn
t ,x

n
t+1) recorded in the n-th channel with its ordinal supervision

y, the posterior of the model parameters can be represented as:

P(w,π|y,∆xn) =
P(y|w,π,∆xn)p0(w)p0(π)

P(y|∆xn)
. (7)

Note that we only consider the posterior distribution w.r.t. brain dynamic preferences
from one channel. Since different channels are modeled independently, the following
equations can be easily extended to the posterior distribution w.r.t. the brain dynamic
preferences from all channels.

The main issue with Eq.(7) is that the joint posterior distribution P(w,π|y,∆xn) is
complicated or even intractable. To keep the computation tractable, we adopt the mean-
filed assumption and project the posterior into the same form with the prior (product of a
Normal with Betas, i.e. P(w,π|y,∆xn)≈ q(w)q(π) = N(w|µ,Σ)∏

N
n=1 Beta(πn|αn,βn)).

Then the posterior parameters are estimated by matching a set of sufficient moments of
the approximate posterior with the exact posterior:

• Match the moments between q(w) and P(w|y,∆xn) :
∫

wq(w)dw =
∫

wP(w|y,∆xn)dw
and

∫
wwT q(w)dw =

∫
wwT P(w|y,∆xn)dw. Due to the non-conjugation between

the marginalized likelihood P(y|w,∆xn)
5 and the normal prior N(w|µ,Σ), the pos-

terior P(w|y,∆xn) is complex. Therefore, the posterior parameters (µnew,Σnew)
cannot be computed analytically because of the intractability of the integrals in
the moment constraints.

• Match the moments between q(π) and P(π|y,∆xn) :
∫

πnq(π)dπ =
∫

πnP(π|y,∆xn)dπ

and
∫

π2
n q(π)dπ =

∫
π2

n P(π|y,∆xn)dπ , n = 1,2, · · · ,N . Fortunately, we can solve
the moment constraints with closed-form integrals, and get the posterior parame-
ters (αnew

n ,β new
n ),∀n = 1,2, · · · ,N accordingly.

5P(y|w,∆xn) = EBeta(π|α,β )[P(y|w,π,∆xn)].
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4.2 Generalized Bayesian Moment Matching
Inspired by the Bayesian approximation method proposed by Weng and Lin (2011),
which extended the Stein’s Lemma (Woodroofe, 1989), we propose to estimate the
posterior parameters (µnew,Σnew) of the approximate posterior q(w) by differential op-
erations instead of integral operations. Therefore, the BMM algorithm is extended to a
general situation where the likelihood function is twice differentiable.

Theorem 1. Assume f (w) is the marginalized likelihood of one brain dynamic pref-
erence and almost twice differentiable. Upon updating this preference, the posterior
parameters (µnew,Σnew) of weight w can be estimated as:

µ
new ≈ µ +Σ× d log f (w)

dw

∣∣∣
w=µ

, (8a)

Σ
new ≈ Σ+Σ× d2 log f (w)

dwdwT

∣∣∣
w=µ
×Σ. (8b)

We set w = µ as we expect that the posterior density of w to be concentrated on
µ (Weng and Lin, 2011). Refer to the appendix for the detailed proof of Theorem 1.

In the following, we resort to Generalized Bayesian Moment Matching (GBMM)
method to estimate the posterior parameters. We take the brain dynamic preference
(xn

t ,x
n
t+1) at the shaking state y ∈ Y1 as an example. The equations can be easily ex-

tended to the brain dynamic preference at the steady state.
In the following, we first update the hyperparameters (µ,Σ) of w, then update the

hyperparameter (αn,βn) of πn ∀n = 1,2, · · · ,N. To update w, we integrate out πn to
obtain the marginalized likelihood function f (w):

f (w) =
∫

P(y|w,π,∆xn)Beta(π|α,β )dπ =
αn

αn +βn
σ(ywT

∆xn)+
βn

αn +βn
σ(−ywT

∆xn).

According to Eq.(8a) in Theorem 1, we can update µ as follows:

µ
new ≈ µ +Σ× d log f (w)

dw

∣∣∣
w=µ

= µ +(A−a)×Σ×∆xn. (9)

where A = αn

αn+βne−µT ∆xn
and a = 1

1+e−µT ∆xn
. According to Eq.(8b) in Theorem 1, we can

update Σ as follows:

Σ
new ≈ Σ+Σ× d2 log f (w)

dwdwT

∣∣∣
w=µ
×Σ≈ Σ+κI+[A(1−A)−a(1−a)]×Σ×∆xn∆xT

n ×Σ.

(10)

where κ is a small positive value to ensure a positive definite variance matrix. I is an
identity matrix.

Similarly, to update π , we first integrate out w to obtain the marginalized likelihood
f (πn), ∀n = 1,2, . . . ,N for each preference:

f (πn) =
∫

P(y|w,πn,∆xn)N(w|µ,Σ)dw (11)

= πn×EN(w|µ,Σ)[σ(ywT
∆xn)]+(1−πn)×EN(w|µ,Σ)[σ(−ywT

∆xn)].
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Let R1 = EN(w|µ,Σ)[σ(ywT ∆xn)], we calculate R1 by the second order Taylor approx-
imation of σ(ywT ∆xn) at µ . Then we have R2 = EN(w|µ,Σ)[σ(−ywT ∆xn)] = 1−R1, and
the normalization constant P(y|∆xn) can be represented as follows,

R = P(y|∆xn) =
∫

f (πn)Beta(πn|αn,βn)dπ =
αnR1 +βnR2

αn +βn
. (12)

According to Bayesian theorem, the posterior distribution of πn is P(πn|y,∆xn) =
f (πn)Beta(πn|αn,βn)

R , the moments E[πn] and E[π2
n ] w.r.t. to P(πn|y,∆xn) can be computed

as follows:

EP(πn|y,∆xn)[πn] =
R1(αn +1)αn +R2αnβn

R(αn +βn +1)(αn +βn)
, (13a)

EP(πn|y,∆xn)[π
2
n ] =

αn(αn +1)[R1(αn +2)+R2βn]

R(αn +βn +2)(αn +βn +1)(αn +βn)
, (13b)

where n = 1,2, · · · ,N. See appendix for detailed derivations. Then we can update the
hyperparameter (αn,βn) of πn as follows:

α
new
n =

(E[πn]−E[π2
n ])E[πn]

E[π2
n ]− (E[πn])2 , (14a)

β
new
n =

(E[πn]−E[π2
n ])(1−E[πn])

E[π2
n ]− (E[πn])2 . (14b)

where we omit the subscript P(πn|y,∆xn) of the expectation operator for simplicity.

4.3 Online GBMM for the Calibration of SWORE
According to the above analysis, we summarize an Online GBMM for SWORE in Al-
gorithm 1. It is notable that both the weight update and channel reliability update can
be completed following analytic rules (Eq.(9), (10),(14a), (14b)). As a result of the effi-
cient posterior updating procedure, Online GBMM enables SWORE naturally to handle
streaming preferences.

Algorithm 1 Online Generalized Bayesian Moment Matching for SWORE
1: Sequential Input: Brain Dynamic Preference ∆xn = xn

t+1− xn
t and y.

2: if the first iteration then
3: Initialization: initialize hyperparameters (µ,Σ) and {αn,βn}N

n=1.
4: end if
5: Mean-field Assumption: define q(w)q(π) in the same form as the prior.
6: GBMM for q(w): update the posterior parameters (µ,Σ) using Eq.(9),(10).
7: GBMM for q(π): update the posterior parameters (αn,βn) using Eq.(14a), (14b).
8: Replacement: replace the prior P(w)P(π) with the approximate posterior

q(w)q(π).
9: Sequential Output: Weight w= µ , Channel reliability πn =

αn
αn+βn

, n= 1,2, . . . ,N.
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5 Online Mental Fatigue Evaluation
In this section, we apply the SWORE model (Eq.(6)) to perform online mental fatigue
monitoring. First, we introduce the data augmentation tricks to address the low data
volume in the online scenario. Then, we propose to maintain a Brain Dynamic Ta-
ble (BDtable), which sequentially stores the representative EEG signals. Finally, we
summarize the whole framework for online mental fatigue evaluation.

5.1 Blank-out Noise Model for Data Augmentation
Due to the limited size of available trials, the learning model is prone to be overfitting
during the training process. Therefore, we adopt the data augmentation trick in this
paper. Data augmentation trick6 replaces the original EEG signals with T corrupted
versions from the predefined corrupting distribution P(∆x̃|∆xn). For simplicity, we are
going to focus on the blank-out noise model (a.k.a dropout) as the corrupting distribu-
tion, which randomly omits subsets of neurons (or features). More precisely,

P(∆x̃l|∆xl;θ) =

{
θ ∆x̃l = 0

1−θ ∆x̃l = ∆xl
, (15)

where ∆x̃l ∈ {0,∆xl} ∀l = 1,2, · · · ,d and d is the feature dimension.
Note that each dimension of the input ∆xn is corrupted independently. Eq.(15) is

also a promising technique to break up the complex co-adaptations, caused by high
correlation among different dimensions of the EEG signals (either in time domain or
frequency domain). Since the presence of any particular dimension is unreliable, each
dimension cannot rely on other specific dimensions to correct its mistakes. It must
perform well in a wide variety of different contexts provided by the other dimensions.

Therefore, adding data augmentation (i.e., Eq.(15)) before the line 5 of Algorithm 1
can improve the generalization of our SWORE in more complex situations (See Fig. 10).

5.2 Online Reservoir Sampling for BDtable
Our SWORE model requires brain dynamics related preferences, which are constructed
using the current EEG signals and previously observed ones, for an update. Accord-
ingly, Brain Dynamic table (BDtable) is introduced to store the EEG signals, which can
help to calibrate our evaluations and guide the model update process. Considering the
requirement of the high computational efficiency in online applications, BDtable should
be a good summarization of previous seen EEG signals.

Since no prior knowledge about each subject is available, we propose to build
BDtable with random sampling, namely each element of the BDtable is uniformly sam-
pled from the EEG signals seen so far. Particularly, reservoir sampling is proven to
meet the requirement on BDtable (Vitter, 1985). It is then carried out to sequentially
maintain the BDtable following Algorithm 2, where S denotes the number of BDtable.

6Although the data augmentation procedure generates a corrupted dataset with a larger size, the final
computational cost (scaling linearly with T ) is acceptable benefiting from the efficient updating rules.
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Algorithm 2 Online Reservoir Sampling
while t < S do

1) store the t-th EEG signal to the BDtable.
end while
for t > S to +∞ do

2) save the t-th EEG signal to the BDtable with probability S/t, else discard it.
3) use it to replace one EEG signal randomly sampled from the BDtable.

end for

Figure 3: Online Mental Fatigue Evaluation.

5.3 Whole Framework for Online Mental Fatigue Evaluation

Assume the SWORE model {w,π1:N}7 and the BDtable {x1:N
i ,RTi}i=1:S are both up-

dated to time t-1 following Algorithm 1 and Algorithm 2, respectively. Then, the
online mental fatigue monitoring refers to predicting RTt with the EEG signals x1:N

t ,
extracted at time t, using the up-to-date SWORE model and BDtable.

As stated in Section 3.1, the relative ordinal structure of RT is revealed through
the brain dynamic related preferences, which are maximally preserved by our SWORE
model {w,π1:N}. Particularly, the relative ordinal structure of RT is consistent with that
of wT x according to the definition of the SWORE model, namely

RTi > RTj⇐⇒

{
wT xn

i > wT xn
j πn > 0.5,

wT xn
i < wT xn

j πn < 0.5.

or, we can simply formulate it as

RTi > RTj⇐⇒ sgn(πn−0.5)wT xn
i > sgn(πn−0.5)wT xn

j , (16)

where i, j denote the index of different trials, and n represents the index of channels.
Then, we compare the newly collected EEG signals x1:N

t to the reference EEG sig-
nals stored in the BDtable following Eq.(16) and derive N full ranking lists over S+1
trials regarding each channel, respectively.

sgn(π1−0.5)wT ×{x1
t ,x

1
1,x

1
2, . . . ,x

1
S} n = 1,

sgn(π2−0.5)wT ×{x2
t ,x

2
1,x

2
2, . . . ,x

2
S} n = 2,

. . .

sgn(πN−0.5)wT ×{xN
t ,x

N
1 ,x

N
2 , . . . ,x

N
S } n = N.

(17)

7The parameters {w,π1:N} are used to represent the SWORE model, since Eq.(6) is fully determined
by {w,π1:N}. Meanwhile, we omit the subscript t-1 for convenience.
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Let Sort(xn
t ) output the ranking position of the estimated RTt for the EEG signals

xn
t in terms of the n-th channel, compared to EEG signals stored in the BDtable. The

ranking position of the estimated RTt over all N channels can be derived by aggregating
the results from all channels while considering the channel reliability. Namely,

Sort(x1:N
t ) =

N

∑
n=1

|2πn−1|×Sort(xn
t )

∑
N
k=1 |2πk−1|

. (18)

Correspondingly, we sort the S reaction times {RTi}i=1:S stored in the BDtable and
derive the full ranking list. Following the consistency of the relative ordinal structure
between RTs and brain dynamics related preferences (Eq.(16)), the corresponding RTt
for the newly recorded EEG signals x1:N

t can be estimated by the average of the RTs
with the ranking position being close to Sort(x1:N

t ).
Overall, the whole framework of online mental fatigue evaluation are summarized in

the following (See Fig. 3). In the first S trials, we build the BDtable with the S EEG sig-
nals and their corresponding RTs and then initialize the SWORE. For a newly collected
EEG signal x1:N

t , the SWORE model conducts the indirect mental fatigue evaluation by
giving a coarse estimation of RTt following Eq.(18). When the real reaction time RTt is
available, we calibrate the SWORE model following Algorithm 1 and online update the
BDtable following Algorithm 2.

5.4 Complexity Analysis of the Whole Framework
In this section, we analyze the space complexity and computational complexity of our
framework. In particular, let d, S, and N denote the dimension of the feature vector,
the size of BDtable, and the number of channels, respectively. Meanwhile, we use T
to denote the number of data augmentation in Eq.15 and M to denote the number of
sequential trials.

Space Complexity: the storage of the online system consists of two parts: O(d +N)

for the model parameters (µ,Σ,{αn,βn}N
n=1)

8 and O(SNd) for the BDtable {x1:N
i ,RTi}i=1:S.

Therefore, the overall space complexity is O(SNd).

Computational Complexity: we analyze the complexity of the online system from
the aspects of prediction and calibration, respectively.

• Prediction Complexity. The predication consists of two steps, i.e., Eq(17) and
Eq.(18). The computational complexity is O(SNd) for Eq(17) and O(SN logS)
for Eq(18). Therefore, the overall computational complexity of predication for M
sequential trials is O(MSN(d + logS)).

• Calibration Complexity. According to Algorithm 1, the most time-consuming
step is the matrix multiplication in Eq.(10) with O(d3) time complexity. There-
fore, the overall time complexity for M calibration steps is O(MT SNd3). It would
further decrease to O(MT SNd) if a diagonal covariance matrix is adopted.

8Σ is simplified to be a diagonal matrix in the experiment for the sake of simplicity.
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Figure 4: Event-related lane-departure driving paradigm

According to our analysis, the proposed online fatigue monitoring system is both
space- and time-efficient since they are both linear related to each factor.

6 Numerical Experiments
In this section, we first introduced the experimental setup of mental fatigue monitor-
ing. Then, we explored the reliability of our SWORE model in online mental fatigue
evaluation tasks. Furthermore, we analyzed the parameter sensitivity and the model
uncertainty of SWORE w.r.t. the proposed Online GBMM algorithm.

6.1 Experiment Setup
Data Collection: This paper uses the EEG data introduced in Huang et al. (2009).
Forty healthy male adults aged 20-30 years were recruited to participate in the sustained-
attention driving experiment in a virtual driving simulating environment (Fig. 4). All
subjects participated in the sustained-attention driving experiment for 1.5h in the after-
noon (13:00–14:00) after lunch. At the beginning of the experiment, a 5 min pre-test
was performed to ensure that every subject understood the instructions and they did not
suffer from simulator-induced nausea. During this 90 min sustained attention driving
task, the experimental paradigm simulated a nighttime driving situation on a four-lane
highway and lane-departure events were randomly triggered to make the car drift away
from the original cruising lane toward the left side or the right side. Each participant
was instructed to quickly compensate for this perturbation by steering the wheel. A
complete trial in this study, including 1s baseline, deviation onset, response onset, and
response offset, is shown in Fig. 4. EEG signals were recorded simultaneously. The
next trial occurs within an interval of 5-10s after the completion of the current trial in
which the subject has to drive back to the centerline of the third car lane. If a subject fell
asleep during the experiment, there was no feedback to alert him up. For each trial t, the
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10s EEG signals {xn,t}N
n=1 from N(=33) 9 different EEG channels before the deviation

onset were recorded simultaneously and the corresponding reaction time RTt was also
collected afterward.

A wired EEG cap with 33 Ag/AgCl electrodes, including 30 EEG electrodes, two
reference electrodes (A1 and A2), and one vehicle position channel (VP), was used to
record the electrical activity of the brain from the scalp during the driving task. The
EEG electrodes were placed according to a modified international 10-20 system. The
contact impedance between all electrodes and the skin was kept < 5k. The EEG record-
ings amplified by Scan SynAmps2 Express system (Compumedics Ltd., VIC, Australia)
were digitized at 500Hz (resolution: 16bits). Before data analysis, the raw EEG data
were prepossessed by the following steps: first, we used a digital band-pass (1-50 Hz)
zero-phase FIR filter (the eegfilt.m routine from the EEGLAB toolbox) to remove the
power line noise and low-frequency drift. Second, the signals are downsampled to
250Hz to reduce the volume of data. Finally, we did a manual removal of some arti-
facts such as random and persistent disturbance from body motion, eye movement, eye
blinking, muscle activity, EEG channel malfunction, and environmental noise.

Data Preprocessing and Preferences Construction: following Huang et al. (2015);
Pan et al. (2020), we preprocessed the EEG signals as follows. Considering the time de-
lay among the channels in the time domain, Fourier transforms (Welch, 1967) has been
applied to EEG signals to transform time-series into the frequency domain. Further,
to avoid overhead computation, EEG power within 0-30Hz has been selected, which is
considered to be the most relevant to the RTs (Huang et al., 2015).

Two types of preferences were constructed following Pan et al. (2020). The shaking
state preferences Y1 were constructed with RT comparisons (RT0,RT1), namely (RT0 <
RT1), where RT0 < min(RT0 + τ1,τ2 ∗RT0) < RT1, and vice versa for RT0 > RT1. The
steady state preferences Y2 were constructed with RT comparisons (RT0,RT1), namely
(RT0 < RT1), where satisfies RT0 < RT1 < min(RT0 +τ3,τ4 ∗RT0), and vice versa when
RT0 >RT1. It is notable that τ1 > τ3 > 0 and τ2 > τ4 > 1 control the sensitivity of mental
fatigue evaluation. And we empirically set τ1 = 0.15;τ2 = 1.2;τ3 = 0.1;τ4 = 1.1 for all
participants in our experiment.

In terms of the scenarios where RT is not available, other well-studied power spec-
tral features can also be adopted as fatigue indicators. For example, dynamic time
warping used in (Wang et al., 2018; Bose et al., 2019), proved to be consistent with RT,
can also be adopted for constructing the brain dynamics preferences.

Evaluation Metric: Since mental fatigue monitoring is formulated as an ordinal re-
gression task, the efficacy of SWORE can be evaluated via the consistency between
its prediction and RTs in terms of order maintenance. In particular, we adopted the
Wilcoxon-Mann-Whitney statistics (Yan et al., 2003) and calculated the prediction ac-

9It consists of 30 EEG channels, two reference channels, and one vehicle position channel. We did
not eliminate the three non-EEG channel beforehand to demonstrate that our SWORE can automatically
remove this kind of non-informative EEG channel during the training.
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curacy of each trial as follows:

ACC =
1
S

S

∑
s=1

I(ys = ŷs), ŷs = sgn
( N

∑
n=1

ŷ(n)s
[
I(πn > κ)− I(πn < 1−κ)

])
,

where S is the number of EEG signals stored in the BDtable and N is the number
of channels. I() is an indicator that returns one if the argument is valid and returns
zero otherwise. ys is the ground truth order between the new trial and the s-th EEG
signal in BDtable (See Eq.(3)), which is derived from RT or other fatigue indicators.
ŷ(n)s = 2σ(wT ∆xs,n)−1 is the predicted order for the brain dynamic preference (xn

0,x
n
1)s

from the n-th channel: 1 denotes an up and −1 denotes a down. Then, we derive the
final order over by aggregating the predictions of all N channels via majority voting. We
only consider the prediction from reliable channels only, where a channel is recognized
as a reliable channel if it satisfies πn > κ or πn < 1−κ . κ is set to 0.85 in this paper.

ACC ∈ [0,1] denotes the consistency between the prediction and the ordering of
the response time, the higher the better. ACC = 1 means the learning model can cor-
rectly capture the level of current mental fatigue based on the reference EEG signals.
ACC = 0.5 means the learning model can capture nothing about the level of current
mental fatigue. ACC = 0 means the learning model can capture the level of current
mental fatigue based on the reference EEG signals but in the reverse order. Ranking-
based metric ACC is a relaxation of Mean Absolute Error (MAE). ACC is more robust
to extreme RTs and local perturbation around RT compared to MAE. The optima sta-
tus derived by MAE is also the optima for ACC, while it does not valid vice verse.
Therefore, achieving the optima of ACC should be much easier than that of MAE.

Baselines: we only consider the data-driven mental fatigue evaluation approaches in
previous literature. Among the regression methods, Support Vector Regression (SVR)
(Bose et al., 2019) and neural network-based regression (Pan et al., 2020) are verified
to achieve superior performance. Since neural network-based regression requires con-
siderable large samples for training, we consider the SVR (Bose et al., 2019) where a
small amount of samples is sufficient for training. In terms of classification methods,
CArank (Pan et al., 2020), which requires large training samples, is not suitable for our
online scenario. Alternatively, we consider Support Vector Machine (SVM), Random
Forest, and Logistics Ordinal Regression (LOR). LOR is a special case of SWORE
which only models the shaking state (Y1).

All baselines, i.e., SVR, SVM, Random Forest, LOR, and our SWORE were im-
plemented with Matlab. In particular, we adopt the RBF kernel for SVR and SVM
following (Bose et al., 2019). Since SVR SVM, Random Forest, and LOR have no
mechanism to evaluate the channel state beforehand, we simply concatenate the EEG
signals from all channels as the feature vector. It is proved to achieve superior perfor-
mance than aggregating the output from different channels using majority voting. For
all the methods, we use the first 20 trials for pretraining. In terms of SVR, SVM, and
Random Forest, we fixed these models after pretraining since no efficient online cal-
ibration methods are available. In terms of LOR and SWORE, they can be efficient
online calibrated with the update strategy introduced in Sect. 4. The size of BDtable
is set to 10 for LOR and SWORE, i.e., S = 10, in Algorithm 2. For the sake of fair
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comparison, we calculate the prediction accuracy of all methods regarding each trial
using the same dynamic updated BDtable, respectively. Note two kinds of LOR, i.e.,
LOR, denoting LOR without online calibration, and Online LOR, denoting LOR with
online calibration, are considered for better comparison.

6.2 Comparison with Offline Regression/Classification Methods
Following the online mental fatigue evaluation framework proposed in Fig. 3, we ex-
plored the reliability of SWORE in the online monitoring scenario. Specifically, we
leveraged the pre-recorded 20 trials to pre-train the embryonic SVR, SVM, Random
Forest, LOR, and SWORE, respectively. In terms of SWORE, we randomly initialized
µ in [−10−2,10−2], Σ in [0,10−4× I] and set αn = βn = 5 according to our parame-
ter sensitivity analysis in Section 6.5. The data augmentation size T is set to 1 during
pretraining and 3 during online updating according to Fig. 10 since we encountered a
sufficient and insufficient scenario, respectively. The brain dynamics table size is fixed
to 10. Therefore, we sequentially get the coarse estimation of RT for each new trial,
collect the prediction accuracy, and update the SWORE model when the truth RT is
available. We ran our SWORE model following the procedure in Fig. 3 for 100 times
and recorded the prediction accuracy for each EEG signal accordingly.

Table 1: Comparison of average prediction accuracy (with 95% confidence interval)
over 100 independent running.

Method Average Prediction Accuracy
Offline Regression SVR 69.1±0.36%

Offline Classification
SVM 67.4±0.26%

Random Forest 67.7±0.39%
LOR 63.1±0.35%

Online Classification
LOR 72.6±0.33%

SWORE 76.0±0.30%

From Table 1, we can find that: (1) Offline Regression method, i.e., SVR, achieves
higher prediction accuracy than Offline Regression methods, i.e., SVR, Random For-
est, and LOR. It is consistent with the result in Sec. 6.4, which makes sense since a
classification task is easier to overfit on a small dataset than a regression task. (2) On-
line calibration is necessary for reliable mental fatigue evaluation. Both online meth-
ods, i.e., SWORE and LOR, achieve significant improvement over the offline regres-
sion/classification tasks. (3) Our SWORE achieves the highest prediction performance
than all baselines.

6.3 Online Mental Fatigue Evaluation on One Participant
According to the experiment results in Sect. 6.2, the offline regression method, i.e.,
SVR, achieves superior prediction accuracy than offline classification methods, i.e.,
SVM, Random Forest, and offline LOR. In the following, we will only consider the
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Figure 5: The PDF & CDF of online prediction accuracy with regards to each trial. We
only collected the result of the first participant for a showcase.

comparison between the offline regression method SVR and online classification meth-
ods, i.e., Online LOR and SWORE. In particular, we conducted more detailed compar-
isons following the experiment setting in Sect. 6.2.

PDF & CDF of online prediction accuracy: we estimated the probability density
function (PDF) and cumulative distribution function (CDF) regarding the prediction
accuracy of each EEG signal (See Fig. 5).

From Fig. 5, we can observe that: (1) SWORE gives the most reliable evaluation
(76% average prediction accuracy) with the lowest variance for any new EEG signal,
comparing to LOR (72.6%) and SVR (69.1%). (2) In terms of half of the samples
(y = 0.5), SWORE gives the prediction accuracy of more than 77%, while it is 75%
for LOR and 68% for SVR, respectively. (3) SWORE gives the prediction accuracy
of more than x = 70% for 65% (1− y3) of samples. SVR and LOR are much worse,
where only 60% (1− y2) and 48% (1− y1) of samples can be predicted respectively
when requiring the prediction accuracy of more than x = 70%.

To further demonstrate our claim, we conducted the two-sample t-Test under the
assumption of equal means without assuming equal variances using the ttest2 function
in Matlab. In particular, we conducted the testing between any two of SWORE, LOR,
and SVR at the 5% significance level. The comparison results are listed in Table 2.

Equal means without assuming equal variances Test decision P-value

SWORE VS. LOR Reject 2.38e-42
SWORE VS. SVR Reject 1.039e-153

LOR VS. SVR Reject 1.03e-37

Table 2: t-Test between at the 5% significance level
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Figure 6: Online Mental Fatigue Evaluation. We used the Online prediction accuracy
of LOR as the base, and ploted the improvement of SVR and SWORE over LOR for
each trial, respectively. Note the first 25 trials are used to pre-train each model. We
only collected the result of the first participant for a showcase.

All test results in Table 2 indicate that t-Test rejects all three null hypotheses at the
5% significance level event without assuming equal variances. Namely, there exists a
significant difference between the results of any two of SWORE, LOR, and SVR.

Showcase of online mental fatigue evaluation: To give an intuitive comparison, we
calculated the prediction accuracy of each trail for one random experiment with three
methods and then plotted performance improvement of SWORE and SVR compared to
LOR (See Fig. 6).

Figure 7: Topoplot visu-
alization of the channels’
relative contribution.

Fig. 6 shows that (1) SWORE consistently achieves
superior or at least comparable performance compared to
LOR and SVR, which demonstrates our claim that chan-
nel reliability indeed affects the efficacy of the learning
model. (2) In terms of (regression-based) SVR, it suf-
fers from high generalization errors for new EEG signals
compared to (classification-based) SWORE and LOR. (3)
SWORE achieves an average prediction accuracy of 80.6%
for each trial in one random experiment, which is higher
than that of LOR (75%) and SVR (70.5%).

Channel reliability estimation: Following our analysis
in Remark 3, the model parameter πn reveals the reliability of the n-th channel,
n = 1,2, . . . ,N. Therefore, we visualize the estimated πn for each channel in Fig. 8.
Note the 33-channel EEG data in our experiment consists of 30 EEG channels, two
reference channels, i.e., A1 and A2, and the vehicle position channel, i.e., VP. We
also visualized the relative contribution of each channel via the 30-channel layout of
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Figure 8: Channel Reliability Estimation and Non-relevant Channel Detection. The
color bar denotes the estimated channel reliability. A channel with comparable values
in the two rows is considered as a task non-relevant channel. See Remark 3 for more
details. We only collect the result of the first participant for a showcase.

Topoplot in Fig. 7. Accordingly to our analysis in Remark 5, both positive and nega-
tive channels are all considered as informative and contribute equally to SWORE. We
introduce a new metric R (R = 2∗ |π−0.5|) to denote the contribution of each channel
w.r.t. the SWORE model. Similar to π , R ranges between 0 and 1, but a higher value
(i.e.,↗ 1) indicates the corresponding EEG channel is more informative.

From Fig. 7 and Fig. 8, we find that (1) the relative contributions of different chan-
nels are different, which is consistent with our motivation that different regions of the
human brain perform different functions. (2) The majority of channels (29/33) are con-
sidered as reliable channels. All the three known nonrelevant channels, i.e., A1, A2,
and VP, can be automatically detected and removed during the learning process (Pan
et al., 2020).

Model Reliability with fewer Channels: Fewer EEG channels is always preferred
in the online scenario, which means less computation cost, small storage, and mini-
mal impact on the drivers. Therefore, we explored the reliability of SWORE when
fewer channels are available. According to Fig. 8, we retrained SWORE with 5,10,20
randomly selected reliable channels respectively, and compared them with the original
SWORE model using all channels in Fig. 9. We collected the prediction accuracy of all
variants of SWORE using the same dynamic updated BDtable for a fair comparison.

Fig. 9 shows that all SWORE variants achieve comparable prediction accuracy in
terms of overall average or each trial. It proves that: (1) the superior performance of our
SWORE model is hardly affected when fewer EEG channels are used. (2) The reliable
channels detected by SWORE are trustworthy.

6.4 Ablation study for exploring the efficacy of our contributions
In this paper, we have made contributions, i.e., C1-C4, from different perspectives. To
be specific, C1 denotes the robust multi-channel aggregation method in Eq. 4; C2 de-
notes the gradient flattening in Eq. 5; C3 denotes the efficient online updating strategy
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Figure 9: Performance Comparison with Reduced Number of Channels. SWORE-K
denotes we retrain SWORE with only K randomly selected reliable channels following
the estimated channel reliability shown in Fig. 8. SWORE-all denotes SWORE trained
with all channels. We only collect the result of the first participant for a showcase.

(i.e., Online GBMM) in Sect. 4; C4 denotes the blank-out noise mode for data augmen-
tation in Eq. 15.

To explore the efficacy of the listed four contributions, we introduce five new base-
lines, namely, LOR w/o C3: LOR without online calibration; SWORE w/o C3: SWORE
without online calibration; SWORE w/o C2&C4: SWORE without modeling steady-
state and using data augmentation; SWORE w/o C2: SWORE without modeling steady-
state; SWORE w/o C4: SWORE without using data augmentation. We ran all methods
for 100 times on the first participant and calculated the mean and standard deviation in
Table 3.

Table 3: Comparison of average prediction accuracy (with 95% confidence interval)
for different SWORE variants over 100 independent running.

Method Calibration Option Average Prediction Accuracy

LOR
w/o C3 63.1±0.35%

Full 72.6±0.33%
w/o C3 64.5±0.33%
w/o C2 75.7±0.30%

SWORE w/o C4 74.6±0.32%
w/o C2 & C4 74.1±0.32%

Full 76.0±0.30%

From Table 3, we can find that: (1) Online calibration (C3) is necessary for reliable
mental fatigue evaluation. SWORE and LOR achieve significant improvement (around
10%) over their offline versions via adopting efficient online calibration, respectively.
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(2) Comparing SWORE w/o C2&C4 to LOR, the robust multi-channel aggregation
strategy (C1) enables higher predication accuracy by automatically eliminating the task-
nonrelevant channels. (3) The data augmentation (C4) and the gradient flattening (C2)
are all useful for further improving the model performance, comparing SWORE w/o C2
and SWORE w/o C4 to SWORE w/o C2&C4. (4) The importance ranking of all four
contributions on the first participant is C3>C1>C4>C2.

6.5 Offline Analysis of Parameter Sensitivity and Model Uncertainty
In this section, we explored the parameter sensitivity of SWORE w.r.t. the hyperpa-
rameters (µ,Σ) and (α,β ), respectively. In particular, we generated the offline brain
dynamic preferences as follows: (1) the trials of each participant were randomly di-
vided into two parts: 50% for training and 50% for test; (2) Offline Brain dynamic
preferences were constructed according to the pairwise comparisons between the RTs
regardless of their sequential property.

Sensitivity analysis w.r.t. hyperparameters (µ,Σ) For the sake of simplicity, we
considered diagonal covariance matrix here. Specifically, we randomly initialized µ

in [−10−a,10−a] and Σ in [0,10−bI]. The value of a and b are set within {0,2,4},
respectively. Further, we adopted a non-informative prior for πn, namely αn = βn = 5
to eliminate the effects of noisy channels. The data augmentation size T is set to 1
since the training data is sufficient. The testing performance of SWORE under different
parameter setting are presented in Table 4.

Table. 4 shows that: (1) SWORE consistently performs very well with testing ac-
curacy greater than 70% on all participants under small initialization (2 < a,b < 4)
for (µ,Σ). Because SWORE model suffers from spurious overflow/underflow prob-
lems with large initialization at each updating step, due to the high dimension feature
(L = 492) and the exponential operator (within the sigmoid function). (2) Although
the performance of SWORE has minor differences for different participants, SWORE
is robust to the small initialization and shows comparable performance for the same
participant under different initialization.

Sensitivity analysis w.r.t. hyperparameters (α,β ) To explore the effects of hyper-
parameter (αn,βn) w.r.t. SWORE model, we randomly initialized αn,βn in {1,3,5},
respectively. We randomly initialized µ in [−10−2,10−2] and Σ in [0,10−4× I]. The
corrupting size T was set to 1 as previous. The performance of SWORE on the testing
data are reported in Table. 4.

It is worth to note that SWORE is insensitive to the initialization of hyperparameters
(α,β ). Particularly, SWORE achieves comparable performance for each participant
under different initialization of (α,β ). SWORE consistently performs very well on all
forty participants, regardless of different initialization for (α,β ).

Sensitivity analysis w.r.t. data augmentation size T According to Table. 4, we ran-
domly initialized µ in [−10−2,10−2], Σ in [0,10−4×I], and initialized hyperparameters
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Table 4: Test accuracy (in %, the larger the better) w.r.t. hyperparameter (µ,Σ) and
(α,β ) with dropout rate θ = 0.5, data augmentation number T = 1. The best parameter
settings are marked in gray. Some parameter settings do not consistently perform very
well and may fail on some participants (marked in bold).

Test

ACC

(a,b) with µ = 10−a and Σ = 10−bI. (α,β ) fixed to (5,5) (α,β ) with (µ,Σ) fixed to (10−2,10−4)

(0,0) (2,0) (4,0) (0,2) (2,2) (4,2) (0,4) (2,4) (4,4) (1,1) (1,3) (1,5) (3,1) (3,3) (3,5) (5,1) (5,3) (5,5)

P1 50.00 50.00 79.89 77.23 78.29 78.75 50.00 78.71 79.28 78.48 78.26 78.29 78.71 78.52 78.37 78.64 78.83 78.71

P2 50.00 50.00 50.00 79.55 81.48 83.00 50.00 82.03 81.85 81.62 82.13 82.09 82.03 81.75 82.17 82.04 81.98 82.03

P3 50.00 50.00 50.00 85.32 84.54 84.29 70.07 82.89 83.14 83.47 83.47 83.47 82.89 83.02 83.55 83.55 83.72 82.89

P4 50.00 50.00 50.00 72.16 76.45 75.72 50.00 73.26 73.26 73.34 73.65 73.68 73.26 73.42 73.65 73.38 73.46 73.26

P5 50.00 50.00 50.00 85.34 85.52 85.21 50.00 85.07 85.00 85.17 85.14 85.13 85.07 85.06 85.17 85.06 85.07 85.07

P6 50.00 50.00 50.00 86.76 83.25 84.76 50.00 84.56 84.31 84.23 84.31 84.31 84.56 84.64 84.40 85.13 85.05 84.56

P7 50.00 50.00 50.00 75.44 75.21 75.10 50.00 75.18 75.31 75.19 75.12 75.19 75.18 75.22 75.10 75.19 75.23 75.18

P8 50.00 50.00 50.00 84.38 84.06 84.10 50.00 84.70 84.62 84.30 84.54 84.5 84.70 84.66 84.46 84.61 84.53 84.70

P9 50.00 50.00 50.00 83.12 83.01 83.12 50.00 83.26 83.46 83.25 82.86 82.87 83.26 83.22 83.00 82.85 83.14 83.26

P10 50.00 50.00 50.00 79.17 88.00 88.51 50.00 89.50 89.47 89.14 88.56 88.56 89.50 89.21 88.44 88.43 88.41 89.50

P11 50.00 50.00 50.00 80.45 75.99 76.39 50.00 77.49 77.42 77.06 76.14 76.14 77.49 77.29 76.26 77.11 77.09 77.49

P12 50.00 50.00 50.00 79.97 80.18 80.28 50.00 80.09 80.09 80.13 80.09 80.13 80.09 80.13 80.09 79.94 79.94 80.09

P13 50.00 50.00 50.00 81.09 80.75 80.75 50.00 81.52 81.52 81.33 81.23 81.23 81.52 81.33 81.14 81.04 81.18 81.52

P14 50.00 50.00 50.00 50.00 78.58 78.65 50.00 80.03 80.07 79.70 80.00 80.03 80.03 79.70 80.03 79.46 79.49 80.03

P15 50.00 50.00 50.00 89.58 89.92 89.86 50.00 89.93 89.97 89.95 89.95 89.95 89.93 89.90 89.95 90.04 89.97 89.93

P16 50.00 50.00 50.00 73.02 72.75 72.59 50.00 72.41 72.17 72.44 72.37 72.37 72.41 72.42 72.33 72.50 72.42 72.41

P17 50.00 50.00 50.00 50.00 76.99 77.63 50.00 78.05 78.09 78.09 77.94 77.79 78.05 78.24 77.45 77.86 77.75 78.05

P18 50.00 50.00 50.00 50.00 78.03 85.38 50.00 89.36 93.52 88.38 87.82 87.79 89.36 88.88 88.00 87.31 87.92 89.36

P19 50.00 50.00 50.00 77.97 77.94 77.80 50.00 77.92 77.89 77.69 77.62 77.61 77.92 77.92 77.83 77.68 77.89 77.92

P20 50.00 50.00 50.00 80.78 79.96 79.80 50.00 80.32 80.48 80.29 80.29 80.28 80.32 80.29 80.30 80.33 80.34 80.32

P21 50.00 50.00 50.00 50.00 69.92 73.51 50.00 75.74 78.23 79.13 78.89 78.90 75.74 74.38 79.05 79.29 79.37 75.74

P22 50.00 50.00 50.00 78.42 77.96 78.08 50.00 78.05 78.22 77.96 77.95 77.96 78.05 77.99 77.98 77.95 77.96 78.05

P23 50.00 50.00 50.00 84.72 84.34 84.47 50.00 84.66 84.58 84.55 84.55 84.55 84.66 84.64 84.55 84.80 84.69 84.66

P24 50.00 50.00 50.00 80.08 80.12 80.11 50.00 80.04 80.09 79.98 79.99 79.99 80.04 80.01 79.98 80.12 80.09 80.04

P25 50.00 50.00 50.00 82.12 82.18 82.26 50.00 82.17 82.39 82.18 82.20 82.21 82.17 82.31 81.99 82.18 81.99 82.17

P26 50.00 50.00 50.00 86.71 86.52 86.55 50.00 86.61 86.63 86.61 86.61 86.61 86.61 86.60 86.61 86.59 86.60 86.61

P27 50.00 50.00 50.00 81.17 77.35 82.60 50.00 82.71 83.20 82.79 82.94 82.93 82.71 82.77 82.86 82.97 83.00 82.71

P28 50.00 50.00 50.00 85.36 64.69 85.40 50.00 85.34 83.73 85.37 85.34 85.29 85.34 85.31 85.33 85.23 85.32 85.34

P29 50.00 50.00 50.00 84.12 84.06 84.13 50.00 83.87 83.86 83.83 83.85 83.85 83.87 83.85 83.86 83.85 83.84 83.87

P30 50.00 50.00 50.00 50.00 82.30 84.32 50.00 84.27 84.40 84.07 84.08 84.14 84.27 84.19 84.03 84.08 84.08 84.27

P31 50.00 50.00 50.00 82.28 83.80 83.33 50.00 83.55 83.60 83.55 83.53 83.52 83.55 83.57 83.52 83.51 83.53 83.55

P32 50.00 50.00 50.00 84.54 86.02 85.19 50.00 85.69 86.69 85.66 86.62 86.56 85.69 85.65 86.54 86.46 86.51 85.69

P33 50.00 65.27 50.00 80.05 80.59 80.62 50.00 80.90 81.34 80.83 81.00 80.98 80.90 80.83 80.79 81.26 81.18 80.90

P34 50.00 50.00 69.92 87.27 86.98 87.37 50.00 87.65 87.65 87.47 87.65 87.65 87.65 87.59 87.62 87.40 87.47 87.65

P35 50.00 50.00 50.00 74.24 75.32 74.28 50.00 74.77 74.95 74.81 74.77 74.74 74.77 74.76 74.69 74.90 74.82 74.77

P36 50.00 50.00 50.00 86.17 85.58 85.42 50.00 85.55 85.58 85.50 85.55 85.55 85.55 85.52 85.50 85.47 85.52 85.55

P37 50.00 50.00 50.00 90.96 89.81 90.25 50.00 90.20 90.64 89.81 89.43 89.43 90.20 90.03 89.49 89.98 89.92 90.20

P38 50.00 50.00 50.00 90.30 90.06 90.14 50.00 90.52 90.40 90.48 90.28 90.28 90.52 90.52 90.28 90.44 90.48 90.52

P39 50.00 50.00 50.00 85.09 84.65 84.65 50.00 84.90 84.98 84.94 84.90 84.90 84.90 84.98 84.98 84.68 84.79 84.90

P40 50.00 50.00 50.00 75.80 75.90 75.86 50.00 75.93 75.96 75.93 75.93 75.92 75.93 75.92 75.91 75.86 75.89 75.93
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Figure 10: The negative Log-likelihood of brain dynamic preferences on training and
test dataset w.r.t. different level of data augmentation size. Note that “Aug-N” denotes
the data augmentation size T is set to N.

(α,β ) to (5,5). Then, we collected the negative Log-likelihood of brain dynamic pref-
erences on training and test dataset (See Fig. 10) with data augmentation size T being
set to {0,1,3,5}, respectively. Note that we only showed the results of the first partici-
pant due to space concern.

From Fig. 10, we can observe that: (1) the SWORE model is prone to be overfitting
on the original EEG signal, since the dimensions in the EEG signals (either in time
domain or frequency domain) are closely related to each other. See Section 5.1 for
more details explanation. (2) The feature corruption trick (T = 1) achieves the best
performance comparing to other setting, including the data augmentation methods (T >
1). The larger the data augmentation size T , the worse the generalization performance
of SWORE is. (3) It is interesting to note that SWORE with data augmentation methods
(T > 1) performs extremely good with only a few samples (less than 20% training data),
but SWORE starts to overfitting when updated with more samples.

Here, we empirically analyzed the stability of Online GBMM algorithm. According
to our sensitivity analysis w.r.t. hyperparameters (µ,Σ) (Table. 4) and (α,β ) (Table. 4),
we randomly initialized µ in [−10−2,10−2], Σ in [0,10−4× I]. Further, we initialized
hyperparameters (α,β ) to (5,5). The corrupting size T is set to 1. Then, we repeated
the Online GBMM algorithm on the training data for 20 times and summarized the
prediction accuracy on the test data Fig. 11.

Stability analysis of Online GBMM algorithm It can be observed from Fig. 11
that: (1) the test accuracies of each participant are quite stable in different runnings. (2)
SWORE consistently achieves high generalization performance (test accuracy above
80%) on 26 over forty participants with 95% confidence. Note that the performance
of each specific participant can be further improved by tailor-designed brain dynamic
preferences for each participant.

6.6 Online Mental Fatigue Evaluation on Forty Participants
Following the online experiment setting in Sect.6.3, we explored the reliability of SWORE
on forty participants in the online monitoring scenario. Similarly, we leveraged the
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Figure 11: Box plot of the prediction accuracy on the test dataset. The symbol “+”
denotes the outliers.

Table 5: Comparison of average prediction accuracy (in %) with 95% confidence in-
terval: for all baselines on forty participants over 100 independent running. Best results
are marked in gray.

ACC P1 P2 P3 P4 P5 P6 P7 P8
SVR 69.1±0.36 76.9±0.30 74.0±0.31 70.4±0.35 72.7±0.34 70.6±0.39 51.5±0.47 76.6±0.31
LOR 72.6±0.33 78.3±0.31 73.1±0.37 73.8±0.33 73.7±0.36 74.5±0.32 75.1±0.33 74.8±0.32

SWORE 76.0±0.30 79.9±0.29 76.5±0.31 75.9±0.31 76.7±0.31 74.6±0.33 78.3±0.32 76.9±0.30
ACC P9 P10 P11 P12 P13 P14 P15 P16
SVR 69.7±0.36 71.0±0.37 73.7±0.37 74.4±0.33 73.7±0.32 72.0±0.35 74.2±0.36 45.8±0.44
LOR 73.2±0.35 73.3±0.36 76.5±0.32 78.3±0.30 74.3±0.34 72.6±0.35 72.5±0.35 76.3±0.32

SWORE 75.7±0.33 75.2±0.32 78.2±0.30 78.4±0.31 74.1±0.36 74.0±0.32 74.0±0.36 79.9±0.31
ACC P17 P18 P19 P20 P21 P22 P23 P24
SVR 63.3±0.41 65.6±0.43 67.0±0.38 68.8±0.36 47.4±0.45 63.7±0.40 50.9±0.38 75.3±0.35
LOR 79.8±0.29 74.4±0.34 77.6±0.32 73.7±0.36 76.6±0.34 73.1±0.34 84.2±0.27 84.6±0.24

SWORE 80.0±0.29 76.7±0.31 79.0±0.31 76.7±0.35 76.4±0.32 75.2±0.35 84.0±0.29 84.2±0.25
ACC P25 P26 P27 P28 P29 P30 P31 P32
SVR 71.7±0.34 72.8±0.32 75.2±0.33 69.3±0.39 72.6±0.36 79.0±0.32 70.1±0.39 39.1±0.41
LOR 71.1±0.37 76.8±0.31 72.3±0.35 76.3±0.33 79.7±0.30 78.9±0.30 77.1±0.33 80.8±0.31

SWORE 75.2±0.32 77.8±0.29 74.0±0.32 76.9±0.31 80.0±0.29 79.5±0.28 77.5±0.30 81.1±0.28
ACC P33 P34 P35 P36 P37 P38 P39 P40
SVR 72.6±0.35 59.3±0.41 70.8±0.35 75.5±0.30 78.9±0.29 74.0±0.32 74.1±0.35 56.1±0.43
LOR 74.5±0.33 80.2±0.28 77.1±0.31 74.9±0.31 79.1±0.28 79.4±0.29 79.5±0.29 76.5±0.33

SWORE 77.7±0.31 80.9±0.29 77.3±0.31 76.3±0.31 79.8±0.28 81.0±0.28 80.6±0.28 78.3±0.32
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pre-recorded 25 trials to pre-train the embryonic SWORE, LOR, and SVR model, re-
spectively. Then, we ran SWORE and other baselines independently for 100 times and
calculated the average prediction accuracy for all forty participants in Table 5.

It can be observed from Table 5 that: (1) SWORE can give the most reliable evalu-
ation with the lowest variance for the new EEG signal, comparing to LOR and SVR. In
particular, SWORE achieves the highest average prediction accuracy on 34/40 partici-
pants and comparable results on the rest participants. (2) SWORE achieves consistent
reliable evaluations on different participants. There are 35 participants for SWORE
whose average prediction accuracy is above 75%, while there are 7 participants for
SVR and 22 participants for LOR, respectively. (3) The non-online method, i.e., SVR,
is not trustworthy, since it does not consider the non-stationary properties of brain dy-
namics. There are 7 participants, i.e., P7, P16, P21, P23, P32, P34, and P40, on which
SVR achieves an average prediction accuracy below 60%. On the contrary, LOR and
SWORE, equipped with efficient online calibration strategies, can consistently achieve
an average prediction accuracy above 75% on the same participants.

7 Concluding Remarks
This paper takes an initial step to calibrate prediction models on non-stationary brain
dynamics. We proposed a Self-Weight Ordinal REgression (SWORE) model with Brain
Dynamics table (BDtable) for online mental fatigue monitoring. SWORE can aggregate
the information from multiple noisy channels based on the brain dynamic preferences;
while BDtable is used to online calibrate the SWORE model utilizing a generalized
Bayesian moment matching algorithm. Empirical results demonstrate that the proposed
framework achieves significantly better performance than baseline approaches like SVR
and LOR. As a direction for future research, we are committed to assess the feasibility
of performing the online mental-fatigue monitoring system with EEG signals and other
mental fatigue indicators.

A Proof for Therorem 1
Assume f (w) is the marginalized likelihood of preference y and almost twice differen-
tiable. Upon updating this preference, the posterior parameters (µnew,Σnew) of weight
w can be estimated as:

µ
new ≈ µ +Σ× d log f (w)

dw

∣∣∣
w=µ

, (19a)

Σ
new ≈ Σ+Σ× d2 log f (w)

dwdwT

∣∣∣
w=µ
×Σ. (19b)

Proof. Before introducing our proof, we first introduce the lemma 1 as a building block.

Lemma 1. ((Weng and Lin, 2011)) Let z be a random vector, where each entry is inde-
pendent and zi ∼N (0,1), i = 1,2, · · · ,L. Suppose that f (z) is the likelihood function
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and almost twice differentiable. Then the first and second order moments of the poste-
rior distribution can be estimated as

E[z] = E[
∇ f (z)

f (z)
], (20a)

E[ziz j] = Ii j +E[
∇2 f (z)

f (z)
]i j, i, j = 1, · · · ,L (20b)

where Ii j = 1 if i = j and 0 otherwise, and
[
.
]

i j indicates the (i, j) component of a
matrix.

Based on the Lemma 1, we give the detailed proof in the following. In terms of the
posterior parameter µnew, we have

µ
new = Ew[w] = µ +

√
Σ×Ez[z]

1
= µ +

√
Σ×Ez

[
∇ f (µ +

√
Σz)

f (µ +
√

Σz)

]
2
≈ µ +

√
Σ× d log f (µ +

√
Σz)

dz

∣∣∣
z=0

3
= µ +

√
Σ× dw

dz
× d log f (µ +

√
Σz)

dw

∣∣∣
w=µ

= µ +Σ× d log f (w)
dw

∣∣∣
w=µ

.

where 1 follows the Eq.(20a) of Lemma 1. 2 sets z = 0. Such a substitution is
reasonable as we expect that the posterior density of z to be concentrated on 0. 3
follows the chain rule.

In terms of the posterior parameter Σnew, we have

Σ
new = Var(w) =

√
Σ× (Ez[zzT ]−Ez[z]ET

z [z])×
√

Σ

1
=
√

Σ×
(

I+Ez
[∇2 f (µ +

√
Σz)

f (µ +
√

Σz)

]
−Ez

[d log f (µ +
√

Σz)
dz

d log f (µ +
√

Σz)
dzT

])
×
√

Σ

2
≈
√

Σ×
(

I+
∇2 f (µ +

√
Σz)

f (µ +
√

Σz)

∣∣∣
z=0
− d log f (µ +

√
Σz)

dz

∣∣∣
z=0

d log f (µ +
√

Σz)
dzT

∣∣∣
z=0

)
×
√

Σ

3
= Σ+

√
Σ× d2 log f (µ +

√
Σz)

dzdzT

∣∣∣
z=0
×
√

Σ

4
= Σ+

√
Σ× dw

dz
× d2 log f (µ +

√
Σz)

dwdwT

∣∣∣
w=µ
× dwT

dzT ×
√

Σ

= Σ+Σ× d2 log f (w)
dwdwT

∣∣∣
w=µ
×Σ.

where 1 follows the Eq.(20b) of Lemma (1). 2 sets z = 0. Such a substitution is
reasonable as we expect that the posterior density of z to be concentrated on 0. 4

29



follows the chain rule. We give the proof for 3 as follows,[d2 log f (µ +
√

Σz)
dzdzT

]
i j
=

∂

∂ z j

(∂ f (µ +
√

Σz)/∂ zi

f (µ +
√

Σz)

)

=

∂ 2 f (µ+
√

Σz)
∂ zi∂ z j

f (µ +
√

Σz)− ∂ f (µ+
√

Σz)
∂ zi

× ∂ f (µ+
√

Σz)
∂ z j

f 2(µ +
√

Σz)

=
[

∇2 f (µ +
√

Σz)
f (µ +

√
Σz)

]
i j
− ∂ log f (µ +

√
Σz)

∂ zi
× ∂ log f (µ +

√
Σz)

∂ z j

=
[

∇2 f (µ +
√

Σz)
f (µ +

√
Σz)

]
i j
−
[d log f (µ +

√
Σz)

dz

]
i
×
[d log f (µ +

√
Σz)

dzT

]
j
.

B Second-order Taylor approximation for EN (w|µ,Σ)[σ(wT ∆xn)]

Suppose R1 = EN (w|µ,Σ)σ(wT ∆xn), the second-order Taylor approximation of R1 at µ

can be represented as follows:

R1 = EN (w|µ,Σ)σ(wT
∆xn) = σ(µT

∆xn)
[
1+

1
2
[1−σ(µT

∆xn)][1−2σ(µT
∆xn)]∆xT

n Σ∆xn

]
.

Then we set R1 =max(R1,κ2), where κ2 is a small positive value to ensure a positive R1.

C Posterior Moments of Beta distribution

E[πn] =
∫

πnP(πn|y,∆xn)dπn =
∫

πn
P(y|πn,∆xn)Beta(πn|αn,βn)

R
dπn

=
1
R

∫
πn[πnR1 +(1−πn)R2]Beta(πn|αn,βn)dπn

=
R1−R2

R

∫
π

2
n Beta(πn|αn,βn)dπn +

R2

R

∫
πnBeta(πn|αn,βn)dπn

=
R1−R2

R
(αn +1)αn

(αn +βn +1)(αn +βn)
+

R2

R
αn

αn +βn

=
R1(αn +1)αn +R2αnβn

R(αn +βn +1)(αn +βn)
.
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E[π2
n ] =

∫
π

2
n P(πn|y,∆xn)dπn =

∫
π

2
n

P(y|πn,∆xn)Beta(πn|αn,βn)

R
dπn

=
1
R

∫
π

2
n [πnR1 +(1−πn)R2]Beta(πn|αn,βn)dπn

=
R1−R2

R

∫
π

3
n Beta(πn|αn,βn)dπn +

R2

R

∫
π

2
n Beta(πn|αn,βn)dπn

=
R1−R2

R
(αn +2)(αn +1)αn

(αn +βn +2)(αn +βn +1)(αn +βn)
+

R2

R
(αn +1)αn

(αn +βn +1)(αn +βn)

=
αn(αn +1)[R1(αn +2)+R2βn]

R(αn +βn +2)(αn +βn +1)(αn +βn)
.

D The updating rules for hyperparameter (αnew
n ,β new

n )
In terms of the sufficient moments with regard to the posterior distribution q(πn|αnew

n ,β new
n ),

we have

E[πn] =
∫

πnq(πn|αnew
n ,β new

n )dπn =
αnew

n
αnew

n +β new
n

,

E[π2
n ] =

∫
π

2
n q(πn|αnew

n ,β new
n )dπn =

αnew
n (αnew

n +1)
(αnew

n +β new
n +1)(αnew

n +β new
n )

.

According to the above equations, we have

E[πn]−E[π2
n ] =

αnew
n β new

n
(αnew

n +β new
n +1)(αnew

n +β new
n )

,

E[π2
n ]− (E[πn])

2 =
αnew

n β new
n

(αnew
n +β new

n +1)(αnew
n +β new

n )2 .

Then we have

α
new
n =

(E[πn]−E[π2
n ])E[πn]

E[π2
n ]− (E[πn])2 ,

β
new
n =

(E[πn]−E[π2
n ])(1−E[πn])

E[π2
n ]− (E[πn])2 .
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