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SUMMARY

We perform an immunogenomics analysis utilizing whole-transcriptome sequencing of 657 

pediatric extra-cranial solid cancer samples representing 14 diagnoses, and additionally 

utilize transcriptomes of 131 pediatric cancer cell lines and 147 normal tissue samples for 

comparison. We describe patterns of infiltrating immune cells, T cell receptor (TCR) clonal 

expansion, and translationally relevant immune checkpoints. We find that tumor-infiltrating 

lymphocytes and TCR counts vary widely across cancer types and within each diagnosis, 

and notably are significantly predictive of survival in osteosarcoma patients. We identify 

potential cancer-specific immunotherapeutic targets for adoptive cell therapies including cell-

surface proteins, tumor germline antigens, and lineage-specific transcription factors. Using an 

orthogonal immunopeptidomics approach, we find several potential immunotherapeutic targets in 

osteosarcoma and Ewing sarcoma and validated PRAME as a bona fide multi-pediatric cancer 

target. Importantly, this work provides a critical framework for immune targeting of extracranial 

solid tumors using parallel immuno-transcriptomic and -peptidomic approaches.

Graphical Abstract
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In brief

Brohl et al. perform immunogenomics analysis of a cohort of 788 pediatric extracranial solid 

tumors and cell lines, representing 14 diagnoses, utilizing RNA sequencing. They broadly describe 

prognostically relevant immunophenotypes and provide proof of concept of a transcriptomics-

informed adoptive cellular therapy approach, validating PRAME as a multi-pediatric cancer 

immunotherapy target.

INTRODUCTION

Pediatric malignancies remain the leading cause of disease-related death in children in 

the United States. While advances in multidisciplinary treatment in the later parts of 

the 20th century resulted in significant improvements in survival from pediatric cancer, 

further progress over the last several decades has been modest (Howlader et al., 2014). For 

most pediatric malignancies, especially solid tumors, survival remains poor for those with 

relapsed or advanced disease.

Rarity and heterogeneity make pediatric cancers challenging to study and treat. Increasingly, 

there is a desire to apply high-throughput analytical techniques to better characterize tumor’s 

molecular composition for precision therapeutics. Recently, two large next-generation 

sequencing studies have helped to provide the landscape of the most common mutational 

drivers across a range of pediatric cancers (Gröbner et al., 2018; Ma et al., 2018). While 
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these studies form a foundation for our molecular understanding of these malignancies, 

further work is needed to enable translation to the clinic.

In recent years, immunotherapy has revolutionized the treatment approach for an increasing 

number of adult cancer types. These clinical breakthroughs have led to a heightened 

interest in understanding the molecular basis for immunotherapy response. To further our 

understanding of the immunogenomic landscape in pediatric malignancies, we performed 

an analysis of whole-transcriptome sequencing of 657 extracranial solid tumor specimens, 

representing 14 major cancer diagnoses. A comprehensive analysis of the immunogenomic 

features of these tumors was performed including tumor microenvironment and immune 

infiltration pattern with quantification, expression pattern of immune checkpoint genes, 

tumor-specific genes, and intratumoral T cell receptor (TCR) repertoire. We further 

provided orthogonal confirmation of transcriptomics findings of immunotherapeutic targets 

by evaluating the immunopeptidome of osteosarcoma and Ewing sarcoma and demonstrated 

proof-of-concept in vitro and in vivo cytotoxicity using a transcriptomics-informed adoptive 

cell therapy (ACT) approach.

RESULTS

Whole-transcriptome sequencing analysis was performed on 657 tumor samples from 623 

pediatric or young adult patients diagnosed with an extra-cranial solid malignancy. In 

parallel, RNA sequencing was performed on 131 commonly used cancer cell lines and 

147 normal tissues representing 21 organs (Table 1; Table S1A). Quality metrics of the 

sequencing data are summarized in Table S1B and S1C. Fourteen different diagnoses, 

including sub-categories of neuroblastoma (NB; MYCN amplified and not amplified) and 

rhabdomyosarcoma (RMS; fusion positive and negative) were represented (Table 1; Table 

S1A). Mirroring the relative disease incidence of extracranial pediatric solid malignancies 

seen at our sites, the majority of our cohort comprised one of four diagnoses: neuroblastoma, 

rhabdomyosarcoma, Ewing sarcoma, and osteosarcoma.

Tumor immune microenvironment

To characterize the immune microenvironment in pediatric solid tumors, we performed 

tumor profiling of infiltrating immune cells using predefined immune gene sets, including 

CIBERSORT, immune, and stromal signatures where enrichment scores for immune cell 

subtypes as well as a described overall “immune signature” in each tumor sample were 

calculated (Newman et al., 2015; Yoshihara et al., 2013). First, we assessed enrichment 

scores for immune cell types and gene signatures in each tumor in the context of its tumor 

type (Figure 1A) and observed diverse enrichment of immune signatures among different 

types of tumors. There was a strong correlation between immune signature score and 

enrichment for all immune cell subtypes (Figure 1A). Interestingly, there was a notable 

clustering of fusion-driven malignancies such as Ewing sarcoma (EWS), fusion-positive 

RMS, synovial sarcoma (SS), clear cell sarcoma of kidney (CCSK), and desmoplastic small 

round cell tumor (DSRCT) as having low median infiltrating immune cell enrichments 

relative to other tumor types in the analysis. A notable exception to this pattern is alveolar 

soft part sarcoma (ASPS), which had the highest median immune signature score among 
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tumor types in our cohort despite being a fusion driven malignancy. On the other hand, 

tumor types with the highest relative median immune cell enrichment include diseases 

reported to have “complex” genomes including osteosarcoma (OS), melanoma (ML), and 

undifferentiated sarcoma (UDS) (Figure 1A).

To compare pediatric tumors with adult malignancies, we performed a combined analysis 

of our cohort with publicly available data from The Cancer Genome Atlas (TCGA). For 

the overall immune signature scores, all pediatric tumor subtypes displayed modest or 

below median immune signature scores with corresponding modest CD8+ T cell enrichment 

relative to adult tumor counterparts, with the notable exception of ASPS, which was the 

only pediatric tumor to fall within the top quartile of median enrichment (Figure 1B; Figure 

S1). Remarkably, ASPS displayed the highest levels of human leukocyte antigen A (HLA-A) 

expression across all tumor types evaluated, including TCGA adult tumors (Figure S1). 

These results are notable in light of the recent clinical observation that ASPS is one of 

the most clinically responsive tumor types to checkpoint inhibitor therapy (Wilky et al., 

2019), and the association between expression of major histocompatibility complex (MHC) 

molecules and efficacy of checkpoint inhibitory therapies (Yuasa et al., 2017).

We next sought to evaluate the potential impact of tumor immune microenvironment on 

prognosis. For this analysis, we utilized the osteosarcoma patient cohort as outcomes data 

were available for this subgroup in our cohort (Table S1D). Of note, all tumor samples 

used for this analysis were taken from the primary tumor prior to any chemotherapy. 

Remarkably, similar to our previously reported association between high immune cell 

infiltrate enrichment and favorable prognosis in neuroblastoma (Wei et al., 2018), we found 

that increased expression of immune cell markers in the tumor microenvironment of these 

pre-treatment osteosarcoma tumors were significantly associated with a more favorable 

outcome (Figures 1C and 1D). The associations remain highly significant in cox-regression 

analysis to account for metastatic status, indicating that the presence of CD8+ T cells in 

pre-treatment primary tumors is an independent predictor for patient outcome (Figure S2).

Immune checkpoint expression

Given the rapid development of checkpoint inhibitor therapy across many tumor types, 

expression of immunoinhibitory molecules (e.g., CD274 or PD-L1) is of translational 

interest. Similar to the immune cell infiltrate enrichment patterns, we observed heterogeneity 

in the expression of immune checkpoint genes both within and across tumor types (Figure 

2A; Figure S3). Consistent with its sensitivity to immune checkpoint blockade, ASPS 

demonstrated the highest median expression of PD-L1 suggesting a dependency on this 

immune checkpoint for immune evasion (Figure 2A). To further evaluate for immune 

checkpoints that might be the most clinically relevant in our cohort, we performed a 

correlation analysis between the expression of individual immune checkpoint genes and 

CD8+ T cell infiltrate enrichment within cancer types to look for the co-occurrence of 

these two features. Interestingly, we observed two patterns of immune checkpoint expression 

correlates to CD8+ T cell infiltrate enrichment (Figure 2B). First was a cluster of cancer 

types including NB, EWS, DSRCT, OS, and RMS in which the majority of checkpoint genes 

evaluated are significantly correlated with tumor-infiltrating CD8+ T cells (Spearman rank 
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correlation >0.3; adjusted p < 0.05). On the contrary, in the remaining tumor types including 

ASPS, a much narrower set of immune modulating genes are significantly associated with 

tumor-infiltrating CD8+ T cells (Figure 2B).

Expanding on our prior observations in neuroblastoma (Wei et al., 2018), we noted 

appreciable differences in TIL enrichment pattern (Figure 1A) and expressional levels of 

immune checkpoints between MYCN-not amplified (MYCN.NA) and MYCN-amplified 

(MYCN.A) tumors (Figure 2A). To validate these findings at the protein level, we performed 

immunoprofiling using multiplex NanoString digital spatial profiling technology on a 

neuroblastoma tissue array containing 33 independent neuroblastoma tumors of which 9 

were MYCN.A and 24 were MYCN.NA (Wei et al., 2018). Consistent with the RNA 

sequencing (RNA-seq) data, the protein-expression levels of TIL infiltrate markers and 

immune checkpoints are generally elevated in MYNC.NA tumors compared to MYCN.A 
tumors (Figure 2C).

Despite disappointing early trials with immune checkpoint inhibitors, osteosarcoma has 

been proposed as a potentially immune responsive tumor due to favorable immunogenomic 

characteristics, including relatively high immune cell infiltration when compared to other 

pediatric cancer types. We then selected osteosarcoma to further validate the presence 

of immune cell types and immune checkpoint expression as predicted by RNA-seq. 

Multiplexed immunohistochemistry was performed for a panel of immune markers in an 

independent cohort of 25 osteosarcoma tumors. Consistent with the RNA-seq prediction and 

the previous findings in a subset of TARGET osteosarcoma cohort (Wunder et al., 2020), 

there were robust infiltrating T cells (markers CD3, CD8) and M2 macrophages (CD163), 

with moderate PD-L1 expression in these osteosarcoma samples (Figure S4). On the other 

hand, relative to other pediatric solid tumor types, we observed osteosarcoma to exhibit 

pronounced expression of additional immunosuppressive molecules particularly TGFB1 and 

CSF1R, where median expression was the highest among all tumor types in the study cohort 

(Figure S3).

T cell receptor repertoire

To further characterize the immunologic landscape of pediatric solid tumors, we performed 

an analysis of the T cell receptor (TCR) repertoire utilizing a computational method for de 
novo assembly of hypervariable region sequences from complementary-determining region 

3 (CDR3) (Li et al., 2016). In total, we identified 35,897 unique T cell receptor beta-chain 

(TCR-β)-CDR3 sequences across our tumor cohort (Figure 3A; Table S2). Of note, MYCN-

not-amplified NB and ASPS had the highest median TCR-β counts among the tumor types 

studied, in keeping with their responsiveness to immune therapy. The CDR3 sequences had 

lengths ranging from 6 to 25 amino acids with a median length of 14 (Figure S5A). The 

sequence patterns for the most frequent 14-amino-acid CDR3 sequence were very similar 

to that previously reported across a large set of adult cancers (TCGA) as well as in the 

peripheral blood of healthy donors (Figure S5) (Li et al., 2016; Warren et al., 2011).

We next compared TCR sequences identified within our tumor cohort to those identified 

across the TCGA database (Li et al., 2016), to those identified in normal tissues from our 

study cohort, and to those reported in two healthy donor population databases (Shugay et 
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al., 2018; Warren et al., 2011) (Table S2; Figure S5F). Of the 35,897 total TCRs identified 

across our tumor cohort, 29,381 (84.7%) were unique to a single tumor and not present in 

the comparator databases, 5,327 (15.3%) overlapped with one of the healthy adult databases 

or normal tissues. Of note, out of 194 shared TCR sequences in 2 or more tumors, 165, 

represented by unique protein sequences, were shared in 2 or more patients within our 

cohort and not present in the comparator healthy population databases, which may represent 

tumor targeting TCRs (Table S2; Figure S5F).

We evaluated the potential impact of intra-tumoral TCR burden (measured as TCR counts) 

on outcome in the OS cohort where clinical data were available. Similar to our analysis of 

immune score and CD8+ T cell infiltrate enrichment, we found that patients with a high 

TCR clone burden in these pre-treatment samples were significantly associated with a more 

favorable prognosis (Figure 3B), which was independent of the metastatic status of the 

patient (Figure S2).

To evaluate for possible clonal expansion of TCRs, we determined the abundance of each 

CDR3 clone (counts/million) as well as the relative contribution of each TCR clone to 

the total TCR counts found in each tumor. Indeed, we noted several tumors that had 

evidence of high intra-tumoral TCR burden with varying degrees of TCR diversity (Figure 

3C). When quantifying expanded TCR clones as defined by both high expression (>99th 

percentile) and high relative contribution to total intra-tumoral TCR count in a given 

tumor (>1%), we observed 36/623 (5.8%) of patients (range 0%–26.7% per cancer type) 

having a tumor that met our criteria for intra-tumoral clonal T cell expansion (Figure 3D). 

Interestingly, ASPS and OS, which we also identified as having high relative enrichment of 

immune cell infiltrate and high median immune signature scores, were found to have the 

highest percentage of expanded intra-tumoral TCR clones, in 26.7% and 22.0% of patients, 

respectively. We did not find evidence of TCR clonal expansion in any tumor samples from 

MYCN-amplified NB, DSRCT, CCSK, ML, or WT in our cohort.

Expression of cell-surface proteins, transcription factors, and tumor germline antigens

To discover potential targets for immunotherapy, we performed differential gene-expression 

analysis comparing each cancer type to 147 normal tissue samples (excluding testis and 

ovary) using stringent criteria of p ≤ 0.00001 with a fold change ≥16 compared to normal. 

We first identified cancer-specific cell-surface genes that may be targets for Chimeric 

Antigen Receptor T cell (CART) or antibody-based therapies. This approach identified 107 

cell-surface genes (Figure 4A; Table S3A), with notable findings including GPC2, ALK, and 

FGFR4, which are being developed in preclinical or clinical studies as targets for CART 

therapies by our group and others (Richards et al., 2018). To identify other genes that may 

be a potential source of immunoreactivity for adoptive cellular therapy (ACT), we also 

performed a similar analysis for transcription factors and tumor germline antigens (TGAs) 

to identify those that are robustly expressed in tumors but show low or absent expression in 

normal tissues. We identified 88 transcription factors, many of which have been described 

previously as part of the core regulatory transcription factor circuitry in specific cancer 

types, such as PHOX2B, TWIST1, and ISL1 in neuroblastoma (Durbin et al., 2018; Selmi 

et al., 2015); MYOD1 and MYOG in rhabdomyosarcoma (Gryder et al., 2017); NR0B1 in 
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Ewing sarcoma (Kinsey et al., 2006) (Figure 4B; Table S3B). For TGAs, we identified 43 

genes, including those that are currently under clinical investigation as ACT targets such 

as NY-ESO-1 (CTAG1A) in synovial sarcoma (D’Angelo et al., 2018b), and PRAME in a 

number of histologic types (Gutzmer et al., 2016; Luk et al., 2018) (Figure 4C; Table S3C). 

Although the median expression of these potential immunotherapeutic targets was high in 

various cancer types, their expression was not uniform across all tumors (Figure 4D).

To evaluate whether currently available cell line models exhibit expression of cancer-specific 

potential immunotherapy targets congruent to that observed in patient tumors, we evaluated 

transcriptome sequencing of a panel of 131 commonly utilized cell lines. For top hits GPC2, 

FOXM1, and PRAME, cell line expression was similar to the corresponding tumors of the 

same histology (Figure S6A). More broadly, we report the expression data for commonly 

used cell lines representative of their respective cancers for ASPS, EWS, NB.MYCN.A, 

NB.MYCN.NA, OS, RMS.FP, RMS.FN, and SS, enabling researchers to identify suitable 

cell lines for further study based on gene-expression level of specific immune targets (Table 

S3; https://omicsoncogenomics.ccr.cancer.gov/cgi-bin/JK).

Of tumor germline antigens, we identified PRAME as a potential multi-pediatric cancer 

target, expressed in many of the tumor types but showing minimal to no expression in all 

normal organs except testes and ovaries (Figures 4C and 4D). High protein expression of 

PRAME in neuroblastoma (Oberthuer et al., 2004) and osteosarcoma (Tan et al., 2012) have 

previously been reported. To validate expression in additional tumor types, we performed 

immunohistochemistry (IHC) of PRAME on an independent panel of pediatric solid tumors 

and patient derived xenografts (PDXs), which confirmed its robust expression in 7/12 (58%) 

samples (Figure S6D). Representative images are shown for OS, EWS, fusion-negative 

RMS, and control tissues (Figure 4E; Figure S6).

Identification of targetable tumor antigens in OS and EWS using immunopeptidome

To further validate our RNA-seq findings of cancer-specific antigens and understand 

how these antigens might be presented by MHC class I complexes, we performed 

immunopeptidome (HLA-Ligandome) analysis using MHC class I immunoprecipitation 

(IP), peptide elution, and identification using LC-MS/MS on HLA*A2:01 positive cell lines 

(Figure S7). We focused on OS and EWS as these are among the most common pediatric 

sarcomas and remain a significant therapeutic challenge for metastatic disease. Integration of 

our transcriptomic and immunopeptidomic analyses revealed high-affinity peptides derived 

from tumor-associated genes such as PRAME, PBK, and several MAGE gene family genes 

(Table 2). Several of these MHC class I peptides were also observed in immune-responsive 

adult malignancies and have been successfully targeted using engineered T cells with 

adoptive cell transfer (Table 2; Table S4).

Among the peptides identified, we identified two HLA*A2:01 restricted peptides 

(ALLPSLSHC, SLLQHLIGL) derived from the PRAME protein (Table 2; Table S4). As 

a proof of concept for targeting PRAME, we tested a previously reported TCR targeting 

the PRAME HLA*A2:01 peptide SLLQHLIGL (Amir et al., 2011). Healthy donor T cells 

expressing the PRAME TCR showed cytotoxicity and cytokine production when co-cultured 

with U2OS (Figure S7), an osteosarcoma cell line that we found to present SLLQHLIGL 
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on HLA*A2:01. To improve activity and specificity, we modified the PRAME TCR by 

swapping the TCR constant domains with the murine equivalent and adding cysteine linkers 

to improve exogenous TCR-α-TCR-β pairing (Cohen et al., 2006, 2007) (herein called 

murPRAME-TCR). We next engineered SAOS2 (OS) and TC32 (EWS) cells expressing 

a reporter luciferase:mCherry (negative control) or luciferase:PRAME (positive control) 

(Figure 5A). SAOS2 and TC32 cell lines were selected for their high expression of 

HLA*A2:01 (Figure S7A) and lack of endogenous PRAME expression, allowing us to test 

the specificity of the murPRAME-TCR. Co-culture of these lines with the murPRAME-TCR 

cells had no significant effect on either control cell line expressing luciferase:mCherry 

(Figure 5B, top). However, we observed significant cytotoxicity against SAOS2 and TC32 

expressing PRAME from murPRAME-TCR T cells (Figure 5B, bottom).

Last, we tested whether murPRAME-TCR T cells could have therapeutic potential as an 

adoptive cell therapy in vivo using an aggressive metastatic EWS mouse model with 

intravenous delivery of PRAME-expressing TC32 cells (Figure 5C). After engraftment, 

mice were randomized and treated with vehicle (Hank’s balanced salt solution [HBSS]), 

untransduced T cells (UTD), or murPRAME-TCR-transduced T cells (Figure 5C). Saline 

and UTD-treated mice displayed rapid, disseminated tumor growth, whereas mice treated 

with murPRAME-TCR T cells had a significant and durable regression of their tumors and 

prolonged survival (Figures 5D–5F). Altogether, these data demonstrate that PRAME can be 

effectively targeted as an adoptive TCR cell therapy in these in vitro and in vivo models.

DISCUSSION

Here, we report one of the largest and most comprehensive immune-transcriptomic 

landscape of extracranial pediatric solid tumors, with data derived from 788 malignant 

samples including 657 solid tumor samples across 14 diagnoses from 623 pediatric and 

young adult patients and 131 commonly used cancer cell lines. Success with checkpoint 

inhibitor therapy in many cancer types has led to an increased desire to understand 

the tumor-immune microenvironment interactions. Toward this end, we describe the 

immunogenomic landscape of our cohort of pediatric solid malignancies including tumor-

infiltrating lymphocyte composition, cancer germline antigen and cell-surface protein 

expression, immune checkpoint expression, and T cell receptor repertoire. Notably, we 

observed a substantial degree of intra-histologic variance in all immunogenomic features 

evaluated, suggesting that histology alone may be insufficient for immunotherapeutic 

selection or trial design in these diseases. Broadly, we note a generally lower level of 

immune cell infiltration in most pediatric solid tumors compared to common adult tumors, 

with a notable exception of ASPS.

A high tumor mutation burden (TMB) has been associated with clinical response to 

checkpoint inhibition (Chan et al., 2019). Pediatric cancers typically have a low somatic 

mutation burden relative to common adult cancers (Gröbner et al., 2018; Ma et al., 2018); 

however, we have previously reported that the TMB in relapsed samples can increase 

two to three times compared to their primary tumors (Chang et al., 2016; Eleveld et al., 

2015). Nonetheless, some cancers with low TMB such as clear cell renal cell carcinoma 

show a strong intratumor immune-related cytolytic activity and prominent immune infiltrate, 
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findings that may be related to their clinical responsiveness to immune checkpoint inhibitors 

(Miao et al., 2018). These results emphasize that TMB may not be the only source of 

immunogenic triggers. Notably, ASPS, a disease recently found to be highly responsive 

to immune checkpoint inhibition (Wilky et al., 2019), was observed in our study to 

be among the highest degree of baseline TIL infiltrate despite being a low-TMB fusion-

driven malignancy. Intra-tumoral T cell receptor clonality has been associated with clinical 

outcomes in metastatic cancers (Tumeh et al., 2014) and in the setting of immunotherapies 

(Zhang et al., 2020). Utilizing TCR prediction methodology to assess intra-tumoral 

clonotypes, we were able to demonstrate cases of robust expansion of TCR clones in 5.8% 

of patients, occurring at the highest frequency in ASPS and OS tumors, which suggests that 

a subset of pediatric solid tumors are more primed for immunotherapeutic interventions.

A striking finding from this study is the identification of high median T cell infiltration in 

OS relative to other pediatric solid tumors and a significant correlation between immune 

cell infiltrate and patient survival. We further show that CD8+ T cell infiltration is 

independent of metastasis, a known predictor of poor outcomes. Prior reports have also 

demonstrated robust immune cell infiltrate and PD-L1 expression in a subset of OS, though 

studies have conflicted results regarding the correlation between these immunologic features 

and patient outcomes (Thanindratarn et al., 2019; Wunder et al., 2020). In contrast to 

these immunologically favorable observations, we also observed pronounced expression of 

many additional immune inhibitory signaling molecules in osteosarcoma tumors, including 

TGFB1 and CSF1R. Our findings are congruent with a previous analysis in osteosarcoma 

that utilizes a partially overlapping osteosarcoma cohort in the Therapeutically Applicable 

Research to Generate Effective Treatments (TARGET) dataset (Wu et al., 2020), which 

reported OS to be near the 50th percentile compared to adult TCGA tumor types based 

on the rank order of tumors by median immune score, and multiple immune inhibitory 

pathways were also noted to be active. Given the limited efficacy of immune checkpoint 

inhibitor monotherapy for OS in clinical trials to date (D’Angelo et al., 2018a; Merchant et 

al., 2016; Tawbi et al., 2017), these results suggest potential co-inhibitory pathways in this 

disease that would make rationale targets for combination immunotherapies. (Song et al., 

2021; Wu et al., 2020).

In addition to checkpoint blockade, directed immune targeting of tumor expressed antigens 

is another broad strategy for cancer immunotherapy. Toward this goal, we provide an 

overview of the expressed antigens in our cohort that are predicted to be the most 

translationally relevant due to differential expression from normal tissues. Our results 

confirm many of the tumor germline antigens that are in current clinical development, 

as well as a broad landscape of additional targets. As proof of concept of utilizing 

transcriptomics and immunopeptidomic approaches, we identified PRAME as an immune 

target, a highly differentially expressed protein with its peptide presented on the cell 

surface in the context of HLA-A2, the most frequent HLA allele in humans. Despite 

minor nonspecific cytotoxicity, which is commonly observed with infusion of UTD, our 

modified PRAME TCR-transduced T cells showed significantly higher in vitro activity in 

both OS and EWS cell line models, as well as significant potency in vivo in a metastatic 

EWS mouse model. Importantly, our data suggest that PRAME may be a broad, multi-

cancer immunotherapy target in pediatric extracranial solid malignancies, similar to efforts 
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in hematologic malignancies where clinical trials are underway (e.g., NCT02494167 and 

NCT02203903).

In summary, we describe here, one of the largest to date, transcriptomics-derived 

immunogenomics surveys of extracranial pediatric solid malignancies. We find significant 

correlations between immunogenomic features, such as immune cell infiltration, especially 

intra-tumoral clonal T cell infiltration, with patient survival. We provide a landscape 

of expressed tumor antigens that are most likely to be amenable to immunotherapeutic 

targeting. We further provide orthogonal confirmation of transcriptomic findings by 

evaluating the immunopeptidome of osteosarcoma and demonstrate proof of concept in vitro 
cytotoxicity using a transcriptomics-informed ACT approach. This work provides a critical 

framework for immune targeting of low mutational burden extracranial solid tumors using 

transcriptome profiling data. Furthermore, a companion gene-expression database (https://

omics-oncogenomics.ccr.cancer.gov/cgi-bin/JK) derived from this study with outcome data 

including overall and event-free survival for osteosarcoma and neuroblastoma allows further 

exploration of this rich dataset. Finally, we report on an engineered TCR against PRAME 

can be developed for ACT immunotherapy for patients with pediatric solid tumors with 

HLA-A*02.

Limitations of the study

A limitation of our study is the availability of clinical outcomes data in only two (NB and 

OS) tumor types studied. Despite this, we have reported a consistent association between 

high immune infiltrate and immune signatures score and favorable prognosis in both 

osteosarcoma and neuroblastoma (Wei et al., 2018), a result that remains significant even 

when accounting for metastatic disease status. Despite the consistency observed in these two 

tumor types, we cannot evaluate whether this is a universal finding among pediatric solid 

tumor types or specific to these two diseases.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Javed Khan (khanjav@mail.nih.gov).

Material availability—All stable reagents generated in this study will be made available 

from the lead contact on request after a completed materials transfer agreement if there is 

potential for commercial application.

Data and code availability

• The raw RNA-seq data analyzed in this study are available from the public 

databases such as Gene Expression Omnibus (GEO; GSE89413 and GSE84629 

for NBL cell lines and RD cell line respectively) or the database of Genotypes 

and Phenotypes (dbGaP; phs000466 for CCSK; phs000467 for NBL; phs000468 

for OS; phs000720 for RMS, phs000768 for EWS; phs001052 for Omics study; 

and phs001928 for the remainder). The mass spectrometry proteomics data have 
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been deposited to the ProteomeXchange Consortium via the PRIDE partner 

repository (https://www.ebi.ac.uk/pride) with the dataset identifier PXD017130. 

Accession numbers are listed in the key resources table. The expression data 

for this study are available at the Oncogenomics Expression Database (https://

omics-oncogenomics.ccr.cancer.gov/cgi-bin/JK).

• Code of a custom bioinformatic pipeline to analyze RNA-seq data in this study 

is deposited at Zenodo (https://zenodo.org/record/5608456)). An R package for 

Kaplan Meier optimization is available from https://zenodo.org/record/5610858.

• Any additional information required to reanalyze the data reported in this study 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects—All human specimens for sequencing were obtained from patients 

with appropriate consent approved by the Institutional Review Board of the participating 

facilities and were deemed exempt by the Office of Human Subject Research. Tumors 

were classified by local pathological review using standard histologic techniques. For 

PRAME immunohistochemistry validation experiments, PDXs from diagnostic biopsies 

or surgical excisions were generated following written informed consent to participate in 

an institutional oncology specimen repository program; approval of these consents was 

obtained by the internal review board from Cincinnati Children’s Hospital Medical Center 

(CCHMC IRB approved protocol number 2008–0021). Samples in this study were all 

de-identified, therefore the age and gender of patients is not collected in this study. We 

performed RNA-seq on 935 samples in this study representing 657 pediatric extracranial 

solid tumors from 623 patients across 14 diagnoses and 147 normal human tissues.

Cell lines—We performed RNA-seq on 131 commonly used human pediatric cancer cell 

lines (Table S1). All cell lines used in this study have been authenticated by either STR 

profiling or genotyping by sequencing.

Mouse xenograft model—Female 6–8 weeks old NSG (NOD.Cg-Prkdcscid 

Il2Rgtm1Wjl/SzJ) mice were used in Ewing sarcoma xenograft model to test antitumor 

activities for T cells expressing a modified TCR. Animal studies were approved by the NCI 

Animal Research Advisory Committee and conducted in accordance with Animal Welfare 

Regulations.

METHOD DETAILS

RNA sequencing—Total RNAs was isolated from freshly frozen tumors using RNeasy 

mini kits or AllPrep DNA/RNA mini kits (QIAGEN, Germantown, MD). PolyA-selected 

or Ribozero-selected RNA libraries were prepared for RNA sequencing on Illumina 

HiSeq2000, 2500, and NextSeq500 according to the manufactures protocol (Illumina, San 

Diego, CA). Sequencer-generated bcl files were converted to fastq files using the bcl2fastq 

tool in CASAVA (Illumina, San Diego, CA) suite. Paired-end reads (100 bp for HiSeq2000, 

125 bp for HiSeq2500, and 80 bp for NextSeq500) were assessed for quality using FastQC 

and the average mapped unique reads in this study is > 85 million for each sample (Table 
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S1B). Fastq files were then mapped to GRCH37 reference genome using the STAR/2.5.3a 
alignment algorithm (Dobin et al., 2013) and subsequently quantified by RSEM program (Li 

and Dewey, 2011) based upon Ensembl GRCh37.75 gene annotation.

Single sample gene set enrichment analysis (ssGSEA)—Read counts for each 

gene between samples was normalized using TMM method implemented in edgeR 

(Robinson et al., 2010) and then transformed to FPKM. This expression data was used 

to predict enrichment scores of twenty-four immune signatures obtained from CIBERSORT 

(Newman et al., 2015) and ESTIMATE (Yoshihara et al., 2013) packages using single-

sample GSEA (ssGSEA) from GenePattern (https://www.genepattern.org/modules/docs/

ssGSEAProjection/4).

Kaplan Meier optimization—We used a KM optimization procedure, a computational 

technique for performing optimized Kaplan-Meier survival analysis on gene expression-

derived signatures (Wei et al., 2018). Briefly, for a given gene signature, this procedure 

finds an optimal cutoff for stratifying patients into low-and high-risk groups that results 

in the maximal separation of the Kaplan-Meier survival curves and then estimates the 

statistical significance of this cutoff by means of the permutation test. This technique 

was implemented as an R package available from https://github.com/ibkstore/kmcut. We 

performed the KM optimization on the osteosarcoma patient cohort where outcome data 

were available.

Cancer-specific antigen analysis—Within each cancer diagnosis, gene expression of 

cell surface molecules, and cancer-specific transcription factors, tumor germline antigens, 

were compared against normal tissue samples with the matching library prep using edgeR 

(Robinson et al., 2010) package. The following criteria were used to select cancer-specific 

differentially expressed genes:

a. Differential gene expression P value (compare to all normal except testis & 

Ovary) ≤ 0.00001

b. Differential gene expression LogFC (compare to All normal except testis & 

Ovary) ≥ 4 (i.e., FC ≥ 16-fold)

c. Expression in vital organs (Heart and Brain) < 1 FPKM

d. Expression in Tumor ≥ 5 FPKM

T cell receptor analysis—Transcriptome sequencing reads from tumor samples were 

aligned to V, D, J and C genes of T cell receptors and subsequently assembled to extract 

TCR sequences using MiXCR 3.0.10 (Bolotin et al., 2015). Post processing of the later 

repertoire data was performed using VDJtools1.2.1 (Shugay et al., 2015). For downstream 

analysis, we considered only TRB-CDR3 amino acid sequences.

Multiplexed protein analysis—We validated our RNA-seq findings on an independent 

neuroblastoma tissue array (Saletta et al., 2017) using a multiplex protein detection 

assay (Nanostring). After deparaffinized and rehydrated, Formalin-fixed paraffin-embedded 

(FFPE) tissue cores were incubated with a cocktail of 61 primary antibodies which have 
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their own unique and UV photocleavable indexing oligo, and 2 fluorescent markers (CD45 

and Tyrosine). After overnight incubation, the slides were stained with Syto83 (nuclear DNA 

stain) for 15 mins before image processing using Nanostring GeoMx Digital Spatial Profiler. 

Slides were loaded onto the stage of an inverted microscope and wide field fluorescence 

imaging was performed with epi-illumination from visible LED light engine. 20× images 

from all the cores on the TMA were stitched together to yield a high-resolution image of 

the tissue area of interest. Regions of interest (ROIs) within 650μM diameter circle were 

selected based on the fluorescent image, and UV LED light was collimated to be reflected 

from the digital micromirror device (DMD) surface into the microscope objective and 

cleaved the oligoes from these primary antibodies. A microcapillary tip collected cleaved 

oligoes into the paired wells in a 96-well plate. 2 μL of these cleaved oligoes were further 

hybridized with Nanostring designed Tag-set. After overnight hybridization at 65°C in a 

thermocycler, samples were pooled by column and processed using the nCounter Prep 

Station and Digital Analyzer as per manufacturer instructions (Nanostring). Digital counts 

from tags corresponding to protein probes were analyzed using IgG isotype background 

subtraction and z-scored normalized.

Immunohistochemistry analysis—Formalin-fixed paraffin-embedded (FFPE) tissue 

blocks from primary bone osteosarcoma specimens were properly annotated by pathologist, 

cut into 5μm sections, and mounted onto plus-charge glass slides. For each specimen 

staining with CD3 (clone PS1; Leica Biosystems), CD8 (clone C8144B; Cell Marque), and 

CD163 (clone Novacastra10D6; Leica Biosystems) were performed according to standard 

protocols. IHC for PD-L1 (Spring Bioscience, clone SP142) at 0.096 mg/mL and isotype 

control (Spring Bioscience, clone SP137) at 1μg/mL were utilized(Sunshine et al., 2017). 

Whole slides scanning used Scanscope XT and digital pictures were taken via the Indica 

Labs HALO digital image analysis platform.

MHC class I flow cytometry—Five osteosarcoma cell lines were stained with antibodies 

which is pan-reactive for MHC class I (clone W6/32, BioLegend Cat. 311405) or specific for 

HLA*A2 (clone BB7.2, BioLegend, Cat. 343308). Flow cytometry was performed using BD 

LSRFortessa cell analyzer (BD Biosciences).

Peptide sequencing by tandem mass spectrometry—Osteosarcoma MHC class I 

bound peptides were isolated as described previously. Due to poor HLA*A2 IP efficiency 

using the serotype specific antibody (clone BB7.2), we synthesized a 3×FLAG-HLA*A2:01 

lentiviral plasmid for HLA*A2:01 peptide identification. Briefly, 2–5×108 cells were 

washed with ice-cold PBS and lysed in a mild lysis buffer (20mM Tris-HCL pH = 8.5, 

100mM NaCl, 1 mM EDTA, 1% Triton X-100, 1:80 Halt Protease Inhibitor). Lysates were 

sonicated, clarified by centrifugation for 1 hour at 20,000 g at 4°C, and immunoprecipitated 

with anti-panMHC class I (clone W6/32, BioXcell, Cat. BE0079) or anti-FLAG (clone 

L5, BioXcell, Cat. 637304) coupled protein G agarose (ThermoFisher, Cat. 22851). MHC 

complexes were washed and eluted in 0.15% trifluoroacetic acid in water. MHC bound 

peptides were isolated using C18 solid phase extraction columns (Sigma, Cat. 52601-U) and 

further purified by C18 spin tips (ThermoFisher, Cat. 84850) according to the manufacturer’s 

instructions.
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Purified HLA-associated peptides were sequenced by tandem mass spectrometry (MS) 

using an Orbitrap Q-Exactive HF mass spectrometer (Thermo Scientific, Waltham, MA). 

Briefly, peptides were separated on a reverse phase C18 Nano column (75μm × 250mm, 

2 μm particle) using a 90-minute effective gradient with 4%–35% phase B (0.1% formic 

acid in acetonitrile) on an Ultimate 3000 Nano liquid chromatography (Thermo Scientific, 

Waltham, MA). Data dependent acquisition mode was used to profile the HLA peptidome. 

MS full scan range was 375–1650 m/z at resolution 120,000, and the top 15 most abundant 

peaks with assigned charge state 1–4 were selected for MS/MS fragmentation using high 

collision dissociation (HCD) at resolution 30,000 and maximum injection time was 200 ms, 

isolation window was 1.4 m/z, and dynamic exclusion was set to 20 s. The peptide sequence 

alignment was mapped by PEKAS studio (Tran et al., 2019) (Version 8.5, Bioinformatics 

Solutions Inc.) using UniProtKB human proteome sequence database (released on Feb 7th 

2017). In the PEAKS searching engine, no enzyme digestion (for natural peptides), the Orbi-

Orbi HCD fragmentation, no variable modification, and de novo sequencing (library free 

search) were selected. The precursor mass tolerance was 15ppm and fragment ion tolerance 

was 0.5Da. The false discovery rate (FDR) was estimated by decoy-fusion database and was 

set to 5%. Selected peptides tandem mass spectrum was visualized and manually inspected 

to assure the data quality.

Modification of TCR against PRAME—We modified a TCR which recognizes the 

HLA*A2-restricted SLLQHLIGL peptide (Amir et al., 2011) by exchanging the constant 

domains of the TRAV and TRBV alleles with the murine equivalent TCR constant domains 

as previously described (Cohen et al., 2006). In addition, to increase the pairing between 

exogenous TCRα and TCRβ, cysteine substitutions were included in the murine constant 

domains of both the TRAV (T→C) and TRBV (S→C) positions 47 and 57 of the 

mouse constant domains, respectively (Cohen et al., 2007). After design, codon-optimized 

sequences were synthesized (Genscript) and cloned downstream of the EF1a promoter. 

Cleavable 2A peptide sequences were used for co-expression of TRAV, TRBV and truncated 

EGFR.

Generation of reporter cell lines—Stable expression of firefly luciferase and mCherry 

or PRAME was performed by lentiviral transduction of cells with pLenti_luciferase-p2a-

mCherry or pLenti_luciferase-p2a-PRAMEv5tag lentivirus. In brief, lentiviral packaging 

was performed in LentiX-293T (Takara Clontech) cells by co-transfection with a luciferase 

transfer plasmid along with psPax2 (Addgene #12260) and pMD2.G (Addgene #12259). 

HLA*A2:01 positive, PRAME negative cell lines SAOS2 and TC32 were transduced with 

diluted lentiviral supernatant supplemented with polybrene. Stable expression was achieved 

by selection for geneticin for at least 7 days.

Generation of transduced T cells—Leukapheresis samples from two healthy donors 

were purchased from the NIH Blood Bank (Bethesda, MD). Peripheral blood mononuclear 

cells (PBMC) were isolated using Histopaque (Sigma, Cat. 10771). T cells were stimulated 

using CD3/CD8 Dynabeads (Invitrogen, Cat. 11131D) in the presence of IL-2 (40IU, 

PeproTech, Cat. 200–02). After 48 hours of stimulation, T cells were transduced with a 

lentiviral vector containing truncated EGFR and murPRAME-TCR. Transduction efficiency 
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was determined 4 days after transduction by flow cytometry using a tEGFR antibody 

(BioLegend, Cat. 352903).

In vitro T cell cytotoxicity assays and cytokine quantification—T cells (day 

9 post stimulation) were co-cultured with 5,000 target cells in 96-well plates. T cell to 

target cell ratio (E:T) was determined based on transduction efficiency. After 24 hours, 

luciferase activity was measured using Steady-Glo Luciferase Assay (Promega, Cat. E2520). 

Experiment was performed in triplicate. For U2OS cytotoxicity assays, U2OS cells were 

seeded in 96 well plates and allowed to attach for 6 hours. Relative cell confluency was 

quantified using the xCELLigence RTCA MP instrument (ACEA biosciences, Inc.). Media 

or T cells were then added to wells at an effector:tumor ratio of 3:1. Data were acquired at 

15-minute increments for 30 hours and an unpaired t test at the final time point was used for 

statistical analysis. For cytokine analyses, effector and target cells were co-cultured at a 3:1 

ratio for 18 hours. Supernatants were collected and IFNγ was quantified using the V-PLEX 

human cytokine assay (Meso Scale Diagnostics, Cat. K151AOH-2).

Ewing Sarcoma xenograft model with adoptive T cell transfer—Animal studies 

were approved by the NCI Animal Research Advisory Committee and conducted in 

accordance with Animal Welfare Regulations. For xenograft studies, 2 × 106 human Ewing 

sarcoma cell line TC32 expressing luciferase and PRAME were injected via tail vein into 

NSG mice. Tumor burden was monitored by bioluminescence imaging using the Perkin 

Xenogen IVIS Imaging System with 150mg/kg D-Luciferin (PerkinElmer, Cat. 122799–5). 

Mice were imaged 3 hours after TC32 injection to acquire baseline luminescence and then 

randomized into 3 groups treated with saline (n = 8), untransduced T cells (n = 8), or 

murPRAME-TCR T cells (n = 8). A total of 106 UTD or murPRAME-TCR T cells were 

injected via tail vein for the T cell treatment groups. Unpaired t tests were performed at each 

time point comparing bioluminescence between UTD and murPRAME-TCR T cell treated 

mice. Kaplan Meier analysis was performed using GraphPad PRISM using a three-way 

log-rank test.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistical analyses used in this study is described in detail in the 

previous section. Differential gene expression was quantified using edgeR (Robinson et 

al., 2010) package. Log-rank tests were performed in survival analyses using GraphPad 

PRISM. One-factor and two factor Cox regression analysis of overall survival was used 

to examine if immunological features derived from RNA-seq data are independent of 

tumor metastasis, a known outcome predictor. Cell viability or growth was measured using 

Steady-Glo Luciferase Assay (Promega, Cat. E2520) or relative cell confluency using the 

xCELLigence RTCA MP instrument (ACEA biosciences, Inc.) respectively. Tumor burden 

in mice was quantified by bioluminescence imaging using the Xenogen IVIS Imaging 

System (PerkinElmer). Unpaired Student’s t test was used in T cell cytotoxicity, cytokine 

release, and monitoring tumor burden experiments.
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ADDITIONAL RESOURCES

Accompanying this analysis, we provide a companion Oncogenomics expression database 

(https://omics-oncogenomics.ccr.cancer.gov/cgi-bin/JK) for all tumors, normal tissues, and 

commonly utilized cell lines in the research community. The data include gene expression 

derived from the RNA-seq together with outcome data for osteosarcoma and neuroblastoma 

with capabilities for Kaplan–Meier survival analysis and further data exploration.

Three databases are displayed:

1. Landscape - NCI; contains all RNA-seq data across all tumors, cell lines, and 

normal organs.

2. Landscape Neuroblastoma TARGET; Contains RNA-seq data for all 

Neuroblastoma tumors and cell lines.

3. Landscape Osteosarcoma TARGET; Contains RNA-seq data for all 

Osteosarcoma tumors and cell lines.

It allows users to search for individual genes of interest. The query results include heat-map 

and bar chart representations as well as link-outs to more detailed annotations. As all 

datasets can be visualized as raw log2 (FPKM-TMM normalized) or pre-normalized using 

Z-score or median centering. All query results can be downloaded as text files. Gene set 

enrichment analyses (GSEA) against lists of both curated and custom gene sets can be 

done at 1) Individual Sample where genes are ranged by the expression of all genes in 

that sample, or 2) genes ranked by correlation with that gene. Landscape Neuroblastoma 

TARGET and Landscape Osteosarcoma TARGET databases contain event-free and overall 

survival where the user can perform Kaplan-Meier analysis using median expression level 

for that gene or through a KM optimization process to identify the optimal threshold for 

gene expression as described above.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We describe the immunogenomics landscape of 14 pediatric extracranial solid 

tumors

• Immunophenotype is prognostic of survival in neuroblastoma and 

osteosarcoma

• We identify multiple targets for immune therapy

• Immune targeting of PRAME demonstrates in vitro and in vivo cytotoxicity
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Figure 1. Tumor immune microenvironment of pediatric solid tumors
(A) Global pattern of enrichment of various immune signatures across cancer types. Tumor 

types with a sample size of >5 are shown. The heatmap corresponds to the percentage of 

tumors with a positive enrichment score for the immune cell subtype by ssGSEA.

(B) Distribution of immune signature enrichment scores across cancer types included in this 

study (colored) as compared to adult tumor samples in the TCGA project (gray).

(C and D) Kaplan-Meier (KM) plots of overall survival demonstrate that patients with 

tumors of high immune score (C) or high CD8+ T cell score (D) are significantly associated 

with a favorable prognosis in the osteosarcoma cohort where outcome data are available.
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Figure 2. Immune checkpoint expression in pediatric solid tumors
(A) Expression of selected immune checkpoint genes across tumor types. Dots represent the 

median expression for each cancer type.

(B) Correlation of immunomodulatory gene expression and CD8+ T cell infiltrate. Fill 

indicates significant association (Spearman rank correlation >0.3; adjusted p < 0.05) within 

that cancer type. Highlighted genes in the blue font represent targets of antibody therapies 

approved by FDA or currently in clinical trial.

(C) Protein expression of an immune gene panel on an independent neuroblastoma tissue 

array (Wei et al., 2018) using a multiplex protein detection assay reveal consistent 

findings of differential expression of immune cell markers between MYCN-amplified 

(MYCN.A) and MYCN-not amplified (MYCN.NA) tumors. The scale bar represents Z-

scored standardized protein-expression level.

Brohl et al. Page 25

Cell Rep. Author manuscript; available in PMC 2021 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Intra-tumoral T cell receptor β (TCR-β) repertoire identified using RNA-seq data in 
pediatric solid tumors
(A) Number of unique complementary-determining region 3 (CDR3) detected in each tumor. 

Red bars represent median for each cancer type.

(B) Kaplan-Meier analysis of available outcome data in the osteosarcoma cohort 

demonstrates that patients with a high TCR-β count are significantly associated with 

favorable outcome (p < 0.01).

(C) In order to investigate T cell clone expansion in individual tumors, TCR-β clones are 

ranked by their abundance on the x axis and the normalized clone count is plotted on the 

y axis. Each line represents all TCR-β clones detected in a single tumor and clearly shows 

evidence of high clonal expansion of some TCRs.

(D) Clonal expansion of TCR-βs. Each dot represents a TCR-β clone in a tumor sample. The 

highlighted region depicts expanded TCR-β clones as evidenced by high normalized clone 

count (>99th percentile) and high relative contribution to the total intra-tumoral TCR-β count 

(>1%). The accompanying table details the percentage of tumors with ≥1 clonally expanded 

TCR-β. *Total tumor/patient count and calculated percentages include all patients in the 

study cohort.
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Figure 4. Tumor-specific gene expression
(A–C) Tumor-specific gene expression including (A) cell-surface proteins, (B) transcription 

factors, and (C) tumor germline antigens. Fill indicates that the gene is overexpressed in 

the corresponding cancer type relative to normal tissues and has minimal expression in vital 

organs.

(D) mRNA expression of top genes for each category in each cancer type, vital organs, 

testes, ovary, and other normal tissues. Dots represent the median expression for each cancer 

type.

(E) Representative PRAME immunohistochemistry in Ewing sarcoma and osteosarcoma 

demonstrates a robust expression of PRAME protein in tumor cells. H&E, hematoxylin and 

eosin stain.
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Figure 5. Specific anti-tumor activity of engineered T cells targeting a PRAME MHC class 1 
peptide
(A) Structure of engineered PRAME TCR and schema for testing the specificity and efficacy 

of murPRAME-TCR T cells.

(B) In vitro co-culture of T cells with reporter cell lines at different effector:tumor (E:T) 

ratios. Luminescence was measured after 24 h of co-culture and reported as mean ± SEM (n 

= 3); **p < 0.01, ***p < 0.001.

(C) Schema for treating metastatic EWS xenograft model with murPRAME-TCR T cells.

(D) Bioluminescence images of TC32-Luc:PRAME cells after IV injection and treatment 

with vehicle or T cells.

(E) Quantification of bioluminescence imagining reported as mean ± SEM (n = 8 per group). 

p values of UTD versus murPRAME-TCR mice displayed as *p < 0.05, **p < 0.01.

(F) Kaplan-Meier analysis of mouse survival using log-rank test (n = 8 per group).
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KEY RESOURCES TABLE

Reagent or resource Source Identifier

Antibodies

Anti-CD3 Leica Biosystems Clone PS1

Anti-CD8 Cell Marque Clone C8144B

Anti-CD163 Leica Biosystems Clone Novasasta10D6

Anti-PD-L1 Spring Bioscience Clone SP142

Anti-PD-L1 isotype control Spring Bioscience Clone SP137

Pan-reactive for MHC class I, clone W6/32 BioLegend Cat. 311405

Anti-HLA*A2, clone BB7.2 BioLegend Cat. 343308

Anti-FLAG, clone L5 BioXcell Cat. 637304

Anti-tEGFR BioLegend Cat. 352903

Anti-PRAME Abcam Cat. ab219650

Chemicals, peptides, and recombinant proteins

TruSeq Stranded mRNA library Prep kits Illumina https://www.illumina.com/products/by-type/
sequencing-kits/library-prep-kits/truseq-stranded-
mrna.html

TruSeq Stranded Total RNA Illumina https://www.illumina.com/products/by-type/
sequencing-kits/library-prep-kits/truseq-stranded-
total-rna.html

XenoLight D-Luciferin Potassium Salt Perkin Elmer Cat. 122799–5

Critical commercial assays

Nanostring GeoMx Digital Spatial Profiler 
(DSP)

Nanostring https://www.nanostring.com/products/geomx-
digital-spatial-profiler/geomx-dsp-overview/

V-PLEX human cytokine assay Meso Scale Diagnostics Cat. K151AOH-2

Steady-Glo® Luciferase Assay System Promega E2520

Deposited data

dbGAP phs001928 for pediatric cancers This study https://www.ncbi.nlm.nih.gov/gap/

dbGaP phs000466 for CCSK (Gooskens et al., 2015) https://www.ncbi.nlm.nih.gov/gap/

dbGaP phs000467 for NBL (Wei et al., 2018) https://www.ncbi.nlm.nih.gov/gap/

dbGaP phs000468 for OS https://ocg.cancer.gov/programs/target/
projects/osteosarcoma

https://www.ncbi.nlm.nih.gov/gap/

dbGaP phs000720 for RMS (Shern et al., 2014) https://www.ncbi.nlm.nih.gov/gap/

dbGaP phs000768 for EWS (Brohl et al., 2014) https://www.ncbi.nlm.nih.gov/gap/

dbGaP phs001052 for Omics study (Chang et al., 2016) https://www.ncbi.nlm.nih.gov/gap/

Gene expression of neuroblastoma cell 
lines; GEO GSE89413

(Harenza et al., 2017) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE89413

Immunopeptidomes data osteosarcoma cell 
lines

https://www.ebi.ac.uk/pride Accession: PXD017130

Experimental models: Cell lines

ASPS4c159 This study N/A

CC-A This study N/A

FUUR1 This study N/A

NCIEWS5000 This study N/A

6647 This study N/A

Cell Rep. Author manuscript; available in PMC 2021 December 04.

https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/truseq-stranded-mrna.html
https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/truseq-stranded-mrna.html
https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/truseq-stranded-mrna.html
https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/truseq-stranded-total-rna.html
https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/truseq-stranded-total-rna.html
https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/truseq-stranded-total-rna.html
https://www.nanostring.com/products/geomx-digital-spatial-profiler/geomx-dsp-overview/
https://www.nanostring.com/products/geomx-digital-spatial-profiler/geomx-dsp-overview/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://ocg.cancer.gov/programs/target/projects/osteosarcoma
https://ocg.cancer.gov/programs/target/projects/osteosarcoma
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89413
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89413
https://www.ebi.ac.uk/pride


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brohl et al. Page 33

Reagent or resource Source Identifier

A673 This study N/A

CHLA258 This study N/A

CHLA352 This study N/A

CHP100L This study N/A

SKES1 This study N/A

SKNLO This study N/A

SKNMC This study N/A

TC106 This study N/A

TC138 This study N/A

TC167 This study N/A

TC177 This study N/A

TC215 This study N/A

TC233 This study N/A

TC244 This study N/A

TC248 This study N/A

TC253 This study N/A

TC32 This study N/A

TC487 This study N/A

TC4C This study N/A

TTC466 This study N/A

TTC475 This study N/A

TTC547 This study N/A

CHP134 This study N/A

GILIN This study N/A

IMR32 This study N/A

IMR5 This study N/A

KCNR This study N/A

LAN1 This study N/A

LAN5 This study N/A

NB1691 This study N/A

SKNBE2 This study N/A

SKNDZ This study N/A

NBEB This study N/A

SHSY5Y This study N/A

SKNAS This study N/A

SKNFI This study N/A

SKNSH This study N/A

BIRCH This study N/A

CT-10 This study N/A

CTR This study N/A

RD This study N/A

RH1 This study N/A
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Reagent or resource Source Identifier

RH18 This study N/A

RMS559 This study N/A

TTC-442 This study N/A

TTC-516 This study N/A

CW9109 This study N/A

JR This study N/A

MP4 This study N/A

NCI-ARMS1 This study N/A

NCI-RMS-052 This study N/A

RH28 This study N/A

RH30 This study N/A

RH4 This study N/A

RH41 This study N/A

RH5 This study N/A

ASPS1 This study N/A

CHLA10 This study N/A

CHLA25 This study N/A

CHLA32 This study N/A

CHLA9 This study N/A

ES8 This study N/A

RDES This study N/A

TC71 This study N/A

HOS This study N/A

SAOS2 This study N/A

SJSA1 This study N/A

U2OS This study N/A

Hs729 This study N/A

RH36 This study N/A

SKNEP1 This study N/A

SKPNETLI This study N/A

TC240 This study N/A

7556 This study N/A

JR1 This study N/A

RH2 This study N/A

RH3 This study N/A

RMS-YM This study N/A

RUCH2 This study N/A

RUCH3 This study N/A

SCMC This study N/A

T91–95 This study N/A

TE617 This study N/A

H170 This study N/A
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Reagent or resource Source Identifier

HR (Linardic et al., 2007) N/A

COGE352 (Teicher et al., 2015) N/A

ES1 (Teicher et al., 2015) N/A

ES2 (Teicher et al., 2015) N/A

ES3 (Teicher et al., 2015) N/A

ES4 (Teicher et al., 2015) N/A

ES6 (Teicher et al., 2015) N/A

ES7 (Teicher et al., 2015) N/A

EW8 (Teicher et al., 2015) N/A

CHA59 (Teicher et al., 2015) N/A

KHOS240S (Teicher et al., 2015) N/A

KHOS312H (Teicher et al., 2015) N/A

KHOSNP (Teicher et al., 2015) N/A

OHS (Teicher et al., 2015) N/A

HSSY11 (Teicher et al., 2015) N/A

SW982 (Teicher et al., 2015) N/A

SYO1 (Teicher et al., 2015) N/A

CHP-212 (Harenza et al., 2017) N/A

COGN415 (Harenza et al., 2017) N/A

COGN440 (Harenza et al., 2017) N/A

COGN453 (Harenza et al., 2017) N/A

COGN471 (Harenza et al., 2017) N/A

COGN496 (Harenza et al., 2017) N/A

COGN519 (Harenza et al., 2017) N/A

COGN561 (Harenza et al., 2017) N/A

COGN573 (Harenza et al., 2017) N/A

KELLY (Harenza et al., 2017) N/A

NB1 (Harenza et al., 2017) N/A

NB1643 (Harenza et al., 2017) N/A

NBSD (Harenza et al., 2017) N/A

NGP (Harenza et al., 2017) N/A

NLF (Harenza et al., 2017) N/A

NMB (Harenza et al., 2017) N/A

SMSKAN (Harenza et al., 2017) N/A

SMSSAN (Harenza et al., 2017) N/A

COGN534 (Harenza et al., 2017) N/A

COGN549 (Harenza et al., 2017) N/A

FELIX (Harenza et al., 2017) N/A

LAN6 (Harenza et al., 2017) N/A

NB16 (Harenza et al., 2017) N/A

NB69 (Harenza et al., 2017) N/A

NBLS (Harenza et al., 2017) N/A
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Reagent or resource Source Identifier

Experimental models: Organisms/strains

NOD.Cg-Prkdcscid Il2Rgtm1Wjl/SzJ (“NSG”) 
mice

https://www.jax.org/strain/005557 Stock No: 005557

Recombinant DNA

Lentiviral expression construct of a TCR 
which recognizes the HLA*A2-restricted 
SLLQHLIGL peptide corresponding to 
PRAME

(Amir et al., 2011) N/A

Lentiviral expression construct of 
luciferase and mCherry

This study N/A

Lentiviral expression construct of 
luciferase and PRAME cDNA with C-term 
V5 tag

This study N/A

Software and algorithms

NGS bioinformatic pipeline This study https://zenodo.org/record/5608456

R (3.3.1) https://www.r-project.org/

CASAVA Illumina RRID:SCR_001802; 
https://support.illumina.com/sequencing/
sequencing_software/bcl2fastqconversion-
software.html

STAR (2.5.3a) (Dobin et al., 2013) https://github.com/alexdobin/STAR

GATK (3.8–1) (McKenna et al., 2010) https://gatk.broadinstitute.org

Tophat-Fusion (2.0.13) (Kim and Salzberg, 2011) https://ccb.jhu.edu/software/tophat/
fusion_index.shtml

FusionCatcher (1) (Nicorici et al., 2014) https://github.com/ndaniel/fusioncatcher

Star Fusion (1.3.1) (Haas et al., 2017) N/A

ssGSEA (Barbie et al., 2009) https://www.genepattern.org/modules/docs/
ssGSEAProjection/4

IntegrateNeo (1.2.0) (Zhang et al., 2017) https://github.com/ChrisMaherLab/INTEGRATE-
Neo

EdgeR (3.7) (Robinson et al., 2010) https://bioconductor.org/packages/release/bioc/html/
edgeR.html

MiXCR (3.0.10) (Bolotin et al., 2015) https://mixcr.readthedocs.io/en/latest/

vdjTools (1.2.1) (Shugay et al., 2015) https://vdjtools-doc.readthedocs.io/en/master/

pVACTools (1.5.4) (Hundal et al., 2020) https://pvactools.readthedocs.io/en/latest/index.html

Superheatmap (0.1.0) (Barter and Yu, 2018) https://cran.r-project.org/web/packages/superheat/
index.html

KM optimization (Wei et al., 2018) https://zenodo.org/record/5610858

PEAKS Studio Bioinformatics Solutions Inc. N/A

Other

cBioPortal Memorial Sloan Kettering Cancer 
Center, New York, NY

http://www.cbioportal.org/

VDJdb web browser (Shugay et al., 2015) https://vdjdb.cdr3.net/

TCRb2010 (Warren et al., 2011) ftp://ftp.bcgsc.ca/supplementary/TCRb2010/

Oncogenomics Expression Database This study https://omics-oncogenomics.ccr.cancer.gov/cgi-
bin/JK
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