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ABSTRACT
Collaborative filtering is a central task in a broad range of recom-

mender systems. As traditional methods train latent variables for

user/item individuals under a transductive setting, it requires re-

training for out-of-sample inferences. Inductive matrix completion

(IMC) solves this problem by learning transformation functions

upon engineered features, but it sacrifices model expressiveness

and highly depends on feature qualities. In this paper, we propose

Geometric Inductive Matrix Completion (GIMC) by introducing hy-

perbolic geometry and a unified message passing scheme into this

generic task. The proposed method is the earliest attempt utiliz-

ing capacious hyperbolic space to enhance the capacity of IMC. It

is the first work defining continuous explicit feedback prediction

within non-Euclidean space by introducing hyperbolic regression

for vertex interactions. This is also the first to provide compre-

hensive evidence that edge semantics can significantly improve

recommendations, which is ignored by previous works. The pro-

posed method outperforms the state-of-the-art algorithms with

less than 1% parameters compared to its transductive counterparts.

Extensive analysis and ablation studies are conducted to reveal the

design considerations and practicability for a positive impact to the

research community.

1 INTRODUCTION
Accurately capturing users’ preferences and products’ target clients

is a key task in designing successful recommender systems [1, 39].

Collaborative filtering approaches utilize the user-item historical

interactions to predict possible future interests. Among extensive

literature, low-rank matrix factorization [21, 43, 56] demonstrates

its simplicity but effectiveness while its deep learning extensions

[2, 18] enhance the capacity of factorization models to a new level.

However, as most existing methods parameterize individuals
directly under the transductive setting, (i.e. train a latent variable

for each instance), it becomes an open discussion on how to better

deal with out-of-sample individuals without the re-training pro-

cess. To generalize the model to an inductive setting, researchers
introduce Inductive Matrix Completion methods that preserve the

generalization ability to predict unseen instances directly. Never-

theless, since inductive methods cannot explicitly parameterize

individuals otherwise it requires re-training during out-of-sample

inferences, most existing works resort to representation learning

on side information for inductive capabilities, such as using profiles

or demographics [9, 20, 38, 55]. By transferring the learning task

onto user/item profiles is interesting, but these tasks highly depend

on the assumption that the estimated low-rank matrix lies in the

subspace spanned by the side information latent variables [20]. As

this is a strong assumption, these methods are constrained by the

quality of side information and they struggle to model complicated

relational data. Recently, efforts have been made to conduct more

advanced feature engineering directly with the rating matrix under

inductive settings [15, 54]. However, since inductive methods have

much fewer parameters (do not parameterize instances directly),

they may still suffer from a lack of expressiveness for complex

network structure and unique preferences. The dilemma still exists

regarding the trade-off between inductive ability and model capac-

ity. More advanced techniques are imperatively needed to better

capture unique preferences even for out-of-sample instances.

Recently, GNNs are widely utilized for building recommender

systems [17, 42, 47, 51] as user-item ratings can be naturally repre-

sented as bipartite graphs. However, existing graph-based methods

mainly focus on modeling implicit feedback where edges are binary

links, while explicit feedback is addressed with multiple sets of

GNNs in parallel (i.e. each type of rating with one set of weights)

[36, 39, 42, 47]. As vanilla approaches mainly concern propagating

node representations along edges, conventional methods endure

the same drawback that user-item interactions are sorely utilized as

propagation channels between nodes, where edges’ semantics are

neglected. To solve similar problems, there are attempts to utilize

edge embeddings in other fields. For instance, in bioinformatics,

chemical bond embeddings are expressly included for molecular

analysis since bond features are comparably easier to obtain [3, 50].

However, this type of method hasn’t been broadly discussed in the

context of recommender systems, especially under the inductive

setting where model capacity is crucially needed for improvement.

Thus, it opens a direction worth discussing whether edge embed-

dings can benefit recommendation tasks where explicit feedback is

available.

Conventional Euclidean methods suffer from a limitation that

model capacity is inherently bounded by dimensionality. How-

ever, relational data often contains a complex hierarchical structure

where the volume of embedding space requires exponential growth

like layers of trees [14, 31]. Recently, representation learning on

non-Euclidean space gains substantial attention in neural networks

research. For instance, people introduce continuous hyperbolic

space embedding to learn the geometric structure of relational

data with promising outcomes [13, 31, 32, 37]. In the recommender

system field, due to the difficulty of defining the complex relation-

ships between manifold vertices, previous works predominantly

target the link prediction tasks with the style of “push and pull"

loss functions where the predictions are binary [12, 29, 39, 46]. In

terms of explicit feedback with multi-relational data, the gap of

how to correctly regress manifold vertices interactions is still open

to discussion.

In this paper, we tackle the aforementioned dilemmas under the

inductive setting by (1) conducting a cooperative learning task that

trains edge embeddings and node embeddings jointly, unifying their

collective information for message passing; (2) further enhancing

model expressiveness by integrating the hierarchical structure of

sparse graphs with hyperbolic space, extending inductive methods

into the geometric domain with an end-to-end learning process;
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(3) extending existing hyperbolic link prediction practices into

a generic matrix completion method by introducing multi-view

node embeddings, allowing a robust and transferable hyperbolic

regression task.

Specifically, we propose Geometric Inductive Matrix Completion
(namely GIMC) based on advanced graph neural networks (GNNs)

and hyperbolic geometry. Firstly, we introduce edge embeddings

to model the semantic properties of different types of explicit feed-

back. Instead of treating edges as propagation channels within a

conventional message passing scheme, edges are explicitly modeled

as information sources and passed along with node embeddings

for their cooperative effects. We empirically validate the effective-

ness of this method and regard it as a promising technique for

future explicit feedback prediction tasks. Secondly, as inductive

methods inevitably deal with brand-new instances to very expe-

rienced/popular ones, a long tail and power-law distribution are

naturally inherited. To further enhance the model capacity regard-

ing such complex structures, we introduce hyperbolic geometry as

the vertex level embedding space. Though the continuous tree-like

structure of hyperbolic geometry serves as a more natural choice

compared to its Euclidean counterparts, directly utilizing hyper-

bolic geometry brings up the question that existing methods only

target link prediction tasks whereas our context is to predict explicit

feedback that are either ordinal or continuous. To this end, in this

paper we propose hyperbolic regression for interactions, extending

existing hyperbolic recommender systems into a continuous setting

where the target can be estimated as a continuous value. We vali-

date the proposed method with extensive experiments including

comparisons to the state-of-the-art methods and various ablation

studies. We provide sufficient evidence and comprehensive analysis

on the practicability of the proposed methods for a greater impact

in the research community.

The main contributions of this paper are summarized as follows:

•We introduce GIMC, a novel method that improves inductive

matrix completion (IMC).

• GIMC introduces new techniques to enhance the expressiveness

of IMC for modeling complex network structure, extending IMC

into non-Euclidean space and revealing novel insights to improve

graph representation learning for explicit feedback prediction.

• To the best of our knowledge, this is the first work that bridges

hyperbolic geometry and IMC by proposing hyperbolic regres-

sion for vertex interactions, achieving significant inductive and

transfer learning ability.

• Extensive experimental results and theoretical analysis demon-

strate the effectiveness and practicability of the proposed method.

2 RELATEDWORKS AND PRELIMINARIES
Inductive Matrix Completion. Considering a sparse rating ma-

trix with observations denoted as 𝑹𝑢,𝑣, (𝑢, 𝑣) ∈ Ω, a continuous

collaborative filtering task aims to estimate a recovered interac-

tion matrix:
ˆ𝑹∗ = argmin

ˆ𝑹

∑
(𝑢,𝑣) ∈Ω ∥𝑟𝑢,𝑣 − 𝑟𝑢,𝑣 ∥2. Conventional

matrix factorization method considers user/item interactions as

dot products between transductive parameters [24] while neural

networks methods consider similar approaches with deeper layers

[18, 42, 47]. Though transductive methods are extensively studied

in recent literature, Inductive Matrix Completion is less approached

due to the difficulty of predicting out-of-sample instances. Jain

and Dhillon [20] studied this generic problem by incorporating

side information, such as users’ age or movies’ genre. With the

assumption that the estimated low-rank matrix lies in the subspace

spanned by the side information, they proved theoretical bounds so

that the alternating minimization method can recover the underly-

ing matrix. On top of [20], Chiang et al. [9] quantify the quality of

side features and introduces an approach under the noisy condition

while Si et al. [38] uses a feature transformation method that learns

a mapping function in a supervised manner. In recent years, theo-

retical recovery guarantees for neural networks-based methods are

discussed [55], which pushes the relevant research into the neural

network domain. Hereby, the latest approaches for inductive ma-

trix completion are based on GNNs. For instance, Zhang and Chen

[54] demonstrates the predictive power of shallow-hop subgraph

structure of rating matrix without side information. Wu et al. [49]

conducts two separate steps as a hybrid method to reinforce person-

alized recommendations via pre-training ID-specific parameters,

and querying pre-trained parameters for relational inference.

Hyperbolic Embeddings in Recommender Systems. Since re-
lational data contains continuous tree-like structures which Eu-

clidean space struggles to capture, researchers propose geometric

representation learning within non-Euclidean spaces. Nickel and

Kiela [31, 32] first introduce hyperbolic space for shallow network

embeddings in the context of Poincaré and Lorentz model. Then,

people extend hyperbolic geometry into deep neural networks by

introducing hyperbolic neural networks (HNNs) [13, 37]. HNNs are

utilized for various tasks, such as knowledge graphs [7, 40], image

embeddings [22, 28], and natural language processing [41, 52]. In

recent years, the community brings forward HNNs’ graph exten-

sion by conducting message passing on tangent space for graph

learning tasks and achieved promising results [8, 27]. In the field

of recommender systems, Feng et al. [12], Vinh Tran et al. [46]

study metric learning in hyperbolic space for user-item embed-

dings, Mirvakhabova et al. [29] conduct single layer auto-encoders

while Sun et al. [39] interpret user-item embeddings as hyperbolic

graph signals and conducts message passing on the tangent space

for downstream tasks. Our proposed method is related to the afore-

mentioned methods as it also utilizes hyperbolic geometry. The

key difference is that our approach is particularly designed for

inductive settings where out-of-sample instances can be directly

predicted. Meanwhile, to best of our knowledge this is also the first

work defining continuous regression for hyperbolic vertex interac-

tions. Specifically, as non-Euclidean distances are normally used in

the context of a push-and-pull based loss function such as margin

ranking loss [39] or binary cross-entropy loss [29], previous meth-

ods cast hyperbolic collaborative filtering as a link prediction task

where edges are binary. Differently, this paper proposes inductive

matrix completion in a continuous setting where the target can be

estimated as a continuous value.

Hyperbolic Geometry.Hyperbolic space is a special type of man-

ifold where its curvature is negatively constant. It can be defined

within the context of a Riemannian manifold and various equiva-

lent models exist, including Poincaré, Lorentz, and Klein, etc [5]. In

this paper, we define the proposed method on the most interpretive

model as Poincaré ball. However, it is a trivial task to switch it into
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Figure 1: Our proposed Geometric Inductive Matrix Completion consisting of three subsequent stages.

the other models interchangeably. Considering 𝑔𝐸 as the Euclidean

metric tensor, the Poincaré ball model is defined as a Riemannian

manifold with a set B𝑑𝑐 and a metric tensor 𝑔𝑃 :

B𝑑𝑐 = {x ∈ R𝑑 : ∥x∥ < 1}; 𝑔𝑃 (x) = ( 2

1 − ∥x∥2
)2𝑔𝐸 ,

Then, the distance can be derived as:

dist
B𝑑𝑐 (x, y) = arcCosh(1 + 2

∥x − y∥2

(1 − ∥x∥2) (1 − ∥y∥2)
). (1)

3 METHODOLOGY
3.1 Inductive Feature Engineering
As inductive methods aim to conduct recommendation tasks for out-

of-sample instances without the re-training process, the method

should be able to extract initial features regarding new user/item

during the inference stage. To achieve the aforementioned require-

ment, a natural attempt would be using side information, such as

profiles or demographics. However, directly using the collected side

information is a trivial task for neural network-based methods and

the performance is highly dependent on the quality of available side

information. Instead, this paper intends to explore the boundaries

of feature engineering only from user-item interactions. In this

subsection, we introduce Subgraph extraction and Identity-specific
vertex embedding to generate initial features solely from the sparse

rating matrix. The proposed method can be utilized exclusively

with only rating matrices, but it preserves the ability to be extended

for the scenario where high-quality side information is available.

Subgraph Extraction. Considering a user-item bipartite graph G
with observed ratings denoted as 𝑹𝑢,𝑣, (𝑢, 𝑣) ∈ Ω, the process of
message passing in the graph is similar to a diffusion process where

direct/shallow hop neighbors carry more information compared

to distant ones. To utilize this unique property for an inductive

representation learning task, we first follow previous prosper prac-

tices [19, 53, 54] by applying breadth-first search (BFS) to extract an

ℎ-hop enclosing subgraph around (𝑢, 𝑣) asS𝑢,𝑣 =
{
𝑽𝑢,𝑣, 𝑬𝑢,𝑣,𝑾𝑢,𝑣

}
,

where 𝑽𝑢,𝑣 is the vertices with h-hop interactions, 𝑬𝑢,𝑣 is the edges
between 𝑽𝑢,𝑣 , and𝑾𝑢,𝑣 is the corresponding edge type. For instance,

as shown in the first stage of Fig. 1, to generate the subgraph for the

queried entry (𝑈 -6,𝑉 -3), BFS traverses its 1-hop neighbourhood

and extract {𝑈 -6,𝑉 -3,𝑉 -2,𝑉 -6,𝑈 -2,𝑈 -4} as 𝑽𝑢,𝑣 along with their

edges correspondingly. Notably, this feature engineering method

is inductive and can be used for completely new users/items. Take

the previous example, consider if 𝑈 -6 has no existing interactions,

then the subgraph is generated sorely around the target item 𝑉 -3

with 𝑽𝑢,𝑣 = {𝑈 -6,𝑉 -3,𝑈 -2,𝑈 -4}. It is worth noting that, in terms

of rating matrices with very sparse interactions, the extracted sub-

graphs normally inherit a hierarchical structure where the queried

user-item can be considered as roots while the other vertices as

their child nodes. Meanwhile, user-item data in recommender sys-

tems are naturally skewed since trending items undeniably gain

more exposures and experienced customers indisputably give more

ratings. Consequently, the subgraphs also acquire a power-law dis-

tribution [4, 6]. To target and fully exploit these properties for an

easier upcoming learning task, we propose a fresh vertex embed-

ding method in the following paragraph.

Identity-Specific Vertex Embedding.Commonmodel-based col-

laborative filtering methods, including matrix factorization and

factorization machines [35], take user/item IDs as initial features

and use one hot encoder along with an embedding layer to param-

eterize them. For instance, consider𝑚 users, 𝑛 items and 𝑑 is the

embedding size, typically at least (𝑚 + 𝑛) × 𝑑 parameters shall be

trained regarding IDs only. However, since new users or items re-

sults in new parameter vectors, this conventional parameterization

approach is transductive because re-training is inevitable for new

inferences. Instead, we initialize graph signals by using degree
effect: 𝒒

deg
∈ R𝑑 and a common parameter group: 𝑸 ∈ R |𝑸 |×𝑑

,

where each row of 𝑸 is a representation for a unique identity. In

particular, the design of this parameter group shall (1) distinguish
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the nature of different instances, (2) reflect the power-law struc-

ture of the extracted subgraphs, and (3) most importantly, have

to be inductive. Namely, to achieve the aforementioned require-

ments, we consider each node as an aggregation of the following

unique identities, including (a) entity nature (Is the current node a
user or item?); (b) hop identity (On which hop this node is located
within the subgraph around the queried entry?); and (c) quantile
identity (How experienced/popular this user/item is and in which
quantile this user/item locates?). In terms of quantile identity, we

bin users/items into 𝑞 quantile groups according to their number

of interactions within the subgraph and set an embedding for each

group. Specifically, denoting vertex-𝑖 with a sparse binary feature

vector 𝒗𝑖 ∈ {0, 1} |𝑸 |
and its number of interactions in subgraph as

degree: deg𝑖 , the corresponding graph signals of vertex-𝑖 is initial-

ized as the summation of identity embeddings and degree effects:

𝒙 (0)
𝑖

=

|𝑸 |∑
𝑘=1

𝒗𝑖𝑘 · 𝒒𝑘 + deg𝑖 𝒒deg,where 𝒒𝑘 ∈ 𝑸 . (2)

Noted that we point out the differences between quantile embed-

dings and degree effect: (1) Degree effect is a parameter proportional

to the experience/popularity of each user/item, i.e. items with more

exposure and users with more experience carry more effects; (2)

Quantile embedding is a group-specificmethod where each group

carries the same amount of unique semantics; (3) Quantile embed-

dings are learned in parallel in terms of groups but degree effect

is a sole parameter. According to the general convergence bound

of matrix factorization with group effects as in Corollary 1 in [4],

methods ignoring group parameters lead to a larger loss in general.

In terms of inductive matrix completion with sparse subgraphs, we

use quantile groups and degree effects to encode the hierarchical

and long-tail structure as initial graph signals and empirically verify

its best performance compared to the other methods [42, 47, 54].

The aforementioned subgraph extraction and node initialization

methods are inductive since both subgraphs and subgraph sig-

nals can be extracted for new users without the retraining process.

Meanwhile, as the initialization only includes parameters for spe-

cific identities, the total number of parameters has been greatly

reduced compared to its transductive counterparts. To embed such

a small amount of unique identities, we choose vanilla Euclidean ge-

ometry since there is no extra capacity required for the embedding

space at this stage. However, after the initialization step, a more geo-

metric structure is expected in the constructed subgraphs. As the

result, to realize the natural long tail distribution [6] of user-item

interactions, we choose hyperbolic manifold for the vertex level rep-

resentations since the constant negative curvature stereo-typically

enable the hierarchical power-law distribution to be incorporated

for the downstream tasks.

3.2 Unified Message Passing: explicit feedback
as messages

As the proposed method targets explicit feedback where interac-

tions are ordinal ratings instead of binary links, we point out that

user-item interactions should also be considered as messages in-

stead of mere connections through graph convolutional layers.

Specifically, to obtain a predictive representation for the interac-

tions between user-𝑢 and item-𝑣 from the generated subgraph

S𝑢,𝑣 =
{
𝑽𝑢,𝑣, 𝑬𝑢,𝑣,𝑾𝑢,𝑣

}
, we introduce unified message passing

scheme to convolute node and edge embeddings jointly.

In detail, after initializing {𝒙 (0)
𝑖

}, 𝑖 ∈ 𝑽𝑢,𝑣 as the inceptive graph
signals via equation 2, we further define edge embedding param-

eters regarding different explicit feedback types. For instance, for

a heterogeneous subgraph where ratings range from 1 to 5, we

define 𝒆𝑡 , 𝑡 ∈ {1, 2, 3, 4, 5} as edge embeddings to explicitly model

the user-item interactions. Then, for each node-𝑖: {𝒙 (𝑙)
𝑖

}, 𝑖 ∈ 𝑽𝑢,𝑣
at convolution layer-𝑙 , we aggregate the information from 𝑖’s node

neighbours: 𝑗 ∈ N (𝑖) along with the semantics of their in-between

interactions 𝒆𝑖 𝑗 as:

𝒙 (𝑙+1)
𝑖

= MLP
(𝑙)
𝑡 (𝒙 (𝑙)

𝑖
) +Message(N (𝑖)), (3)

where the passed messages are defined by:

Message(N (𝑖)) =
∑

𝑗 ∈N(𝑖)
𝛼
(𝑙)
𝑖 𝑗

(
MLP

(𝑙)
𝑠 (𝒙 (𝑙)

𝑗
) + 𝒆𝑖 𝑗

)
. (4)

Notably, 𝛼
(𝑙)
𝑖 𝑗

is the aggregation weights that can be determined

with different methods and two multilayer perceptron (MLP) layers

are learned to map the target node and source node respectively.

Themajor difference between unifiedmessage passing and the other

graph convolutional networks (GCNs) is that: (1) GCNs treat edges

as propagation channels to bridge information among vertices, (2)

unified message passing not only uses edges as channels but also

as information sources for convolution.

Edge embeddings have been utilized for graphs with edge fea-

tures in other fields, such as chemical bonds of molecules [3, 50].

However, such type of methods hasn’t gained much attention in

the recommender system area. Conventionally, regarding implicit

feedback tasks, people use GCNs where edges determine aggrega-

tion weights via its Laplacian matrix [39, 47, 54]. On top of this,

people introduce graph attention networks (GATs) [45] to learn

an importance coefficient for aggregation. However, GATs is still

similar to GCNs where edges only indicate connections. In terms of

explicit feedback, existing graph methods only consider each rating

type as a standalone graph and learn multiple sets of GCNs weights

separately, such as R-GCNS [36], GCMC [42] and IGMC [54]. The

major drawback of these methods is that different ratings should

not only be utilized as channels but also as information sources. We

provide empirical evidence and comprehensive analysis to validate

the superiority of the unified message passing scheme in Sec. 4.

Lastly, to define the aggregation weights as 𝛼
(𝑙)
𝑖 𝑗

, one could utilize

any weighted averaging method while for our case we use the self-

attention mechanism to calculate a contextual coefficient for each

node-edge-node pair. Specifically, for 𝑗 ∈ N (𝑖) we compute its

attention weight 𝛼𝑖 𝑗 via the defined query and key as:

𝑞
(𝑙)
𝑖

=𝑾 (𝑙)
𝑞 𝒙 (𝑙)

𝑖
+ 𝑏 (𝑙)𝑞 , 𝑘

(𝑙)
𝑗

=𝑾 (𝑙)
𝑘

𝒙 (𝑙)
𝑗

+ 𝑏 (𝑙)
𝑘

.

Then, the coefficient are calculated by:

𝛼
(𝑙)
𝑖 𝑗

=

〈
𝑞
(𝑙)
𝑖

, 𝑘
(𝑙)
𝑗

+ 𝒆𝑖 𝑗
〉

∑
𝑢∈N(𝑖)

〈
𝑞
(𝑙)
𝑖

, 𝑘
(𝑙)
𝑢 + 𝒆𝑖𝑢

〉 . (5)

Compared to other heuristics weighted averaging methods, we find

self-attention consistently performs the best under the inductive

setting either from convergence speed or converged result. We

conclude the major reason as self-attention mechanism broadens

the expressiveness of the model for complex relationships as it
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models the aggregation weight with contextual meaning. In de-

tail, since the original graph signals are initialized inductively with

identity-specific embeddings, the number of initial parameters of

our model is greatly reduced compared to transductive methods

(around 1 : 400). As a result, to compensate the capacity of the

model for unique preferences while still maintaining the inductive

property, it is essential to introduce a more comprehensive contex-

tual meaning for various combinations between message sources,

targets, and interactions.

3.3 Hyperbolic Regression for Interactions
Similar to conventional ‘cold start’ problems, the number of in-

teractions for new users/items is relatively low as inductive ma-

trix completion is normally conducted for out-of-sample instances.

Meanwhile, implicit feedback also plays a vital role in recommender

systems since trending items with more exposures can generally

have higher ratings while a curmudgeon user may give compara-

tively low ratings [4]. Consequently, the observed rating matrices

are normally sparse and long-tail distributed [10, 48].

To tackle the aforementioned obstacles, we embed graph signals

into the hyperbolic space to capture the power-law distribution.

More precisely, consider a 1-hop subgraph where the number of

edges is low due to sparsity and skewness, it is of less probability

to observe cycles in the subgraph compared to densely connected

ones. As the result, the graph is more similar to an n-ary tree
structure (or forest). For an 𝑛-ary tree, the number of nodes with

distances: 𝑑𝑖𝑠𝑡 (𝑟𝑜𝑜𝑡, 𝑛𝑜𝑑𝑒) = 𝑟 grows exponentially as 𝑛𝑟 . Simi-

larly, consider a two-dimensional hyperbolic space with a constant

negative curvature: −𝑐 , the area of the disc of radius 𝑟 also grows ex-
ponentially as: 2𝜋 (cosh(

√
𝑐𝑟 ) −1) [25, 26], which makes hyperbolic

space particularly suitable for the subgraphs as we extracted.

In order to utilize the geometric property of hyperbolic space for

node embeddings, we cast Euclidean hidden state 𝒙 (𝑙)
𝑖

computed

from equation 3 as a hyperbolic tangent vector around origin in

a Poincaré hyperbolic manifold with curvature −𝑐 , i.e. ∀𝒙 (𝑙)
𝑖

∈
T𝒙B𝑑𝑐 .Then, by taking the exponential map around the origin, 𝒙 (𝑙)

𝑖
can be projected to the surface of Poincaré ball as a hyperbolic

vertex embedding with its geometric properties reflected in the

new hyperbolic coordinates:

�̃� (𝑙)
𝑖

= exp
𝑐
0 (𝒙

(𝑙)
𝑖

) = 0 ⊕𝑐
©«tanh

©«
√
𝑐
_𝑐0∥𝒙

(𝑙)
𝑖

∥
2

ª®¬
𝒙 (𝑙)
𝑖

√
𝑐 ∥𝒙 (𝑙)

𝑖
∥

ª®®¬ . (6)

In view of the trade-off between simplicity and generalization

ability of the model, we embed results of multiple message passing

layers as a group of hyperbolic nodes, i.e. {�̃� (𝑙)
𝑖

}, 𝑙 ∈ {1, · · · , 𝐿}.
This design aims to overcome the large variance problems regarding

the densities between different subgraphs without introducing
extra hyperparameters. Obviously, more complicated pooling

methods can be naturally incorporated within our pipeline but it is

beyond the main phase of this paper.

Then, to make the final prediction for the queried entry on the

curved space, vertex embeddings are further mapped via a hyper-

bolic linear layers as {�̃� (𝑙)
𝑖

} ↦→ {�̂� (𝑙)
𝑖

}, 𝑙 ∈ {1, · · · , 𝐿} by:

�̂� (𝑙)
𝑖

= MLP
𝑐 (�̃� (𝑙)

𝑖
) := 𝒘

(
1 +

√
1 + 𝑐 ∥𝒘 ∥2

)−1
, (7)

where 𝒘 := 𝑐−
1

2 sinh

(√
𝑐𝑣 (�̃� (𝑙)

𝑖
)
)
, 𝑣 () is the linear function to the

Poincaré ball model defined in [37], and 𝐿 is the number of convo-

lutional layers.

To regress the magnitude of the paired interaction between user-

𝑢 and item-𝑣 , we obtain 𝐿 pairs hyperbolic vertex embeddings(
�̂� (𝑙)
𝑢 , �̂� (𝑙)

𝑣

)
, 𝑙 ∈ {1, · · · , 𝐿} for a multi-view interaction learning

task. We utilize hyperbolic distance function on Poincaré manifold

B𝑑𝑐 (equation 1) to compute 𝐿 pairwise distances and concatenate

the results as the final representation for the queried entry:

𝒚 (𝑢,𝑣) =
𝑙 ∈{1, · · · ,𝐿}

distB𝑑𝑐 (�̂� (𝑙)
𝑢 , �̂� (𝑙)

𝑣 ). (8)

As the information is gathered from 𝐿-hops respectively, the above

equation can be interpreted as amulti-view embedding for the

interaction between user-𝑢 and item-𝑣 . Lastly, we use 𝒚 (𝑢,𝑖) for the
final regression task:

𝑙𝑜𝑠𝑠 =
1

|Ω |
∑

(𝑢,𝑣) ∈Ω

(
𝑹 (𝑢,𝑣) − Linear(𝒚 (𝑢,𝑖) )

)
, (9)

where Linear(𝒚 (𝑢,𝑖) ) is a vanilla Euclidean linear layer.

Transferable Graph Reasoning Layers. Remarkably, the pro-

posed multi-view embeddings for hyperbolic regression not only

boost the robustness by tackling subgraphs with different densities,

but also reinforce the transferability of the proposed method. As

illustrated in Fig. 1, the first two stages of the proposed methods aim

to extract information from subgraphs while the last stage selects

appropriate node embeddings frommultiple message passing layers

for regression tasks. Since the first two stages of the model, i.e. the

graph reasoning layers, only target information on different hops

without a dedicated selection, their effectiveness is certainly trans-

ferable for datasets with completely different observation densities.

We demonstrate this idea in Sec. 4.4 by transferring the trained

model weights to different datasets but only re-train the final stage

with astonishing results.

4 EXPERIMENTS
In this section, the proposed method is applied to several recom-

mendation datasets to evaluate its effectiveness via (1) benchmark

comparison with the latest state-of-the-art, and (2) ablation studies,

including Sparsity Test, Transfer Learning, and visualizations.

4.1 Experiment Setup
We evaluate the proposed methods on five common recommender

system datasets, including MovieLens-100K (ML-100K), MovieLens-

1M (ML-1M), Douban, Flixster, and YahooMusic. A Data statistics

summary has been included in Table 2. We follow previous works

[49, 54] by splitting ML-1M, Douban, Flixster, and YahooMusic into

90% and 10%, ML-100K into 80% and 20% train/test sets. Notably, due

to the low observation density, the test sets include out-of-sample
instances. Hyperparameters are tuned based on Douban dataset

and the best ones are used across all experiments, including weight
decay: 0, edge dropout: 0, hidden state dimension: 32, and learning
rate: 0.001. The learning rate is scheduled to decrease to 1𝑒 − 5

till training ends. In terms of batch size, we use 50 for all datasets

except for YahooMusic, for which we set batch size as 16 otherwise

we find it hard to converge. To bring the advantages of hyperbolic

space for modeling tree structure, we use 1-hop subgraphs for all
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Table 1: RMSE test results on Flixster, Douban, YahooMusic, MovieLens-100K, and MovieLens-1M.

Model Content Flixster Douban YahooMusic ML-100K ML-1M

Tranductive

GRALS Yes 1.245 0.833 38.0 0.945 0.831

sRGCNN Yes 0.926 0.801 22.4 0.929 0.829
GC-MC Yes 0.917 0.734 20.5 0.905 0.832

Hybrid

IDCF-NN No - 0.738 - 0.931 0.844

IDCF-GC No - 0.733 - 0.905 0.839

Pure Inductive

IGC-MC Yes 0.999 ± 0.062 0.990 ± 0.082 21.3 ± 0.989 1.142 1.259

F-EAE No 0.908 0.738 20.0 0.920 0.860

PinSage Yes 0.954 ± 0.005 0.739 ± 0.002 22.91 ± 0.629 0.951 0.906

IGMC No 0.872 ± 0.001 0.721 ± 0.001 19.1 ± 0.138 0.905 0.857

gcn

GIMC𝑐=0 No 0.861 ± 0.016 0.730 ± 0.007 20.0 ± 1.128 0.911 ± 0.001 0.860

GIMC𝑐=−1 No 0.853 ± 0.001 0.723 ± 0.001 20.0 ± 0.510 0.911 ± 0.001 0.860

unified

GIMC𝑐=0 No 0.830 ± 0.001 0.710 ± 0.002 19.0 ± 0.500 0.895 ± 0.001 0.853
GIMC𝑐=−1 No 0.824 ± 0.001 0.710 ± 0.001 18.4 ± 0.200 0.895 ± 0.001 0.855

*
The best results of transductive and hybrid methods are highlighted with underlined bold blue font as: 1.0. The best results of pure inductive methods are

highlighted with bold black font as: 1.0.
*
Estimated parameter size on ML-1M: (1) transductive, GC-MC: 312k; (2) hybrid, IDCF-GC: 250k; (3) pure inductive, GIMC: 1.6k.

*
The transferability of inductive methods are compared in Tab. 3.

datasets with at most 100 nodes for each graph (the redundant nodes

have been excluded randomly). The model is trained with Adam

optimizer [23] where the validity of Riemannian points is ensured

among the forward path. All implementations are conducted with

PyTorch framework [33] with 32GB RAM and one NVIDIA V100

graphics card.
1

Table 2: Dataset statistics summary.
Dataset #Users/#Items Ratings RatingTypes Density %Training/Test
ML-1M 6040/3706 1,000,000 1, 2, · · · , 5 0.0447 90%/10%

Douban 3000/3000 136,891 1, 2, · · · , 5 0.0152 90%/10%

ML-100K 943/1682 100,000 1, 2, · · · , 5 0.0630 80%/20%

Flixster 3000/3000 26,173 0.5, 1, · · · , 5 0.0029 90%/10%

YahooMusic 3000/3000 5,335 1, 2, · · · , 100 0.0006 90%/10%

4.2 Benchmark Evaluation
Since we target recommendation tasks with explicit feedback where

the goal is to predict missing values in user-item rating matrix, we

evaluate our methods by calculating RMSE to count the overall

𝑙2 distances between predicted ratings and testing observations.

We follow [54] to store the model parameters and use the last 4

models for every 5 epochs (e.g. models at epoch 45, 50, 55, and 60

if train 60 epochs) to predict an ensemble results. The proposed

method are compared to the lastest state-of-the-art (1) transductive

models, including GRALS [34], sRGCNN [30], and GC-MC [42], (2)

inductive models: IGC-MC [42], F-EAE [16], PinSage [51], IGMC

[54], and (3) hybrid methods
2
: IDCF-NN and IDCF-GC [49].

We split the proposed methods as 4 subsequent variants to
validate the effectiveness of different considerations. Firstly, we

use vanilla GCNs within a Euclidean context. The message passing

uses normalized edge weights via Laplacian for aggregation and the

layer-wise node embeddings are averaged for the final user-item dot

1
Our code link will be available after the review process complying with the double-

blind policy.

2
Hybrid methods (IDCF-NN and IDCF-GC) conduct two separate steps as (1) pretrain

transductive ID-specific embeddings via conventional matrix factorization method; (2)

relational inference by querying embeddings from step (1).

product similarity measure (gcn GIMC(𝑐=0) ). Secondly, we embed

the GCNs approach within the hyperbolic geometry by project-

ing user-item embeddings into Poincaré ball model for hyperbolic

MLPs. The final predictions are made with the pair-wise distances

for regression (gcn GIMC(𝑐=−1) ). Then, instead of conducting mes-

sage passing with vanilla GCNs, we bin edges into 5 types and

cast each type as one embedding parameter. We conduct unified

message passing according to equation 3 on both Euclidean space

(unified GIMC(𝑐=0) ) and hyperbolic space (unified GIMC(𝑐=−1) ).
Comparisons of 4 variants with baselines are reported in Table 1.

As shown in Table 1, the proposed method achieves the best

results compared to the latest pure inductive benchmarks. On the

other hand, our model also outperforms all transductive and hy-

brid methods on four datasets but does not beat transductive and

hybrid methods on ML-1M. We conclude this is due to the huge

difference regarding parameter sizes on a densely connected graph.

For instance, for ML-1M with the same hidden size, inductive meth-

ods have only around 0.4% parameters compared to transductive

ones and around 0.5% compared to hybrid ones. Meanwhile, the

proposed inductive method obtains the transferability since it

focuses on the relational structure while hybrid or transductive

methods can only be used for the same dataset. Furthermore, as

we demonstrate the superiority of the proposed pure inductive

approach, our model can also be hybridized with its transductive

counterparts similar to IDCF-NN and IDCF-GC. In addition, the

capacity of the proposed method can also be further extended by

considering multi-head attention regarding equation 5 [44]. As this

is not the main phase of the paper we leave this discussion for

future work.

In terms of 4 variants, we observe that methods defined in hyper-

bolic geometry perform better for most circumstances, especially on

datasets with low densities. For denser datasets such as ML-100K

and ML-1M, hyperbolic geometry does not reveal performance

gains. This validates our hypothesis that hyperbolic geometry
has its superiority on modeling sparse graphs with hierar-
chical structure. In detail, regarding a low-density interaction
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Figure 2: Sparsity test on Flixster, YahooMusic and Douban dataset.
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Figure 3: Ratio of acyclic subgraphs: orange. Approximated total number of cycles within four hops (purple).

matrix, the extracted 1-hop sparse subgraphs have a high chance

of degenerating into an 𝑁 -ary tree which implies a power-law

distribution. We conduct further ablation studies on this in Sec. 4.3.

Secondly, it is obvious to notice that methods with the unified

message passing scheme comprehensively outperform conventional

graph neural networks. It demonstrates the fact that, for recom-

mendation tasks with explicit feedback, ratings carry more in-
formation compared to its implicit counterparts. Meanwhile,

conventional GCNs can not fully realize the benefits of explicit

feedback as these methods only incorporate ratings as aggregation

weights. Instead, the unified message passing scheme that explicitly

defines edge embeddings is effective to expand GCNs’ capacity for

modeling complex interactions.

4.3 Sparsity Test
To validate the hypothesis that hyperbolic geometries can handle

data sparsity and new users with few interactions. We conduct spar-

sity tests on low observation density datasets: Douban, Flixster, and

YahooMusic with 4 variants of the proposed method. We construct

train-test sets by defining random mask matrices with different ra-

tios. For efficiency, models are trained with 30 epochs with a higher

starting learning rate for ablation study (𝑙𝑟 = 0.01, compared to

𝑙𝑟 = 0.001 in Table 1, both scheduled to decrease till 1e-5), and

edge parameters are defined as direct embeddings of rating types.

Line plots of testing RMSEs have been reported in Fig. 2. As shown,

when datasets become sparser, RMSEs of all models increase due

to a performance drop. However, there are differences regarding

the three plots. We summarize them as below:

1. Methods with unified message passing outperform all
their vanilla GCNs counterparts if the number of edge types
is small.As can be noticed in Fig. 2a and Fig. 2b, trends of 4 variants

on these two datasets are very similar where methods with unified

message passing achieve better performance consistently. However,

in Fig. 2c for YahooMusic, the method with unified message pass-

ing has very similar results with GCNs under Euclidean geometry

(𝑐 = 0) while it suffers under the hyperbolic geometry. We conclude

the reasons as follows: (a) As shown in Table 2, Douban and Flixster

have only 5 and 10 different types of ratings, which means we de-

fine 5 and 10 different edge embeddings. However, YahooMusic

has 100 different types of ratings with the smallest observation

density. As the result, it becomes a hard task to train them given

the limited samples, especially under hyperbolic geometry where

more exponential functions are included in the computation path

(e.g. cosh and sinh). Clearly, since the current approach does not

reflect the magnitude of the original edge weights, e.g. embeddings

between ratings 1 and 2 should be closer compared to embeddings

between 1 and 10, one could experiment with more complicated

parameterization or regularization methods in the future. We leave

this discussion for future work.

2. Hyperbolic Geometry works at least on par with Eu-
clidean Geometry but it performs better under the sparse
scenario. As shown in Fig. 2, methods defined in hyperbolic geom-

etry have very similar performance with their Euclidean counter-

parts when the data density is high, i.e. “> 0.3” for Douban, “> 0.4”

for Flixster and “> 0.6” for YahooMusic. However, while the data

becomes sparser, the long tail distribution can be better incorpo-

rated in hyperbolic geometry. We conclude this as: when a graph is

very sparse with no cycles in it, it degenerates into an acyclic graph

or N-𝑎𝑟𝑦 tree structure where the hierarchical structure is clearer.

Since hyperbolic geometry preserves special relativity between

coordinates and the distance function, it captures such tree-like

structure and embeds it as geometric information.
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To further validate this hypothesis, we conduct an ablation study

to demonstrate the relationship between sparsity and the hierar-

chical structure of datasets. We define two metrics to measure the

graph structure as (a) the ratio of acyclic subgraphs, and (b) the total

number of cycles. Firstly, we apply random mask matrices on three

datasets with different sparsity levels. Then we conduct BFS search

to extract ℎ-hop subgraphs. For each subgraph, we determine if it

is acyclic by:

Proposition 4.1. Consider subgraph S𝑢,𝑣 =
{
𝑽𝑢,𝑣, 𝑬𝑢,𝑣

}
with

binarized adjacency matrix 𝑨 and Laplacian 𝑳 = 𝑫 −𝑨, where 𝑫 is
the degree matrix, S𝑢,𝑣 is acyclic iff trace(𝑳) = 2 ∗ rank(𝑳).

Proof. Assume 𝑺𝑢,𝑣 has Z components, if it is an acyclic graph

then each component is a tree. Define 𝑽𝑛 as vertices within 𝑛-

th components with |𝑽𝑛 | edges in it. Hence the total number of

edges in 𝑺𝑢,𝑣 is:
��𝑬𝑢,𝑣 �� = ∑Z

𝑛=1
(|𝑽𝑛 | − 1) =

��𝑽𝑢,𝑣 �� − Z . On the other

hand, since the total number of zero eigenvalue of 𝑳 is the num-

ber of connected components of 𝑺𝑢,𝑣 , i.e.
��𝑽𝑢,𝑣 �� − rank(𝑳) = Z ,

we have

��𝑬𝑢,𝑣 �� = rank(𝑳). Lastly, with Handshaking Lemma [11],

we have

∑
𝑖∈𝑽𝑢,𝑣 deg(𝑖) = 2

��𝑬𝑢,𝑣 ��, i.e. ��𝑬𝑢,𝑣 �� = 1

2
trace(𝑳). As the

result, trace(𝑳) = 2 ∗ rank(𝑳), and 𝑺𝑢,𝑣 has at least a cycle iff

trace(𝑳) >= 2 ∗ (rank(𝑳) + 1). □

Secondly, to approximate the number of cycles in the large graph,

we count the total number of paths where one can reach its root

within 4 steps as

∑
4

𝑠=1 diag(𝑨𝑠 ). We choose the number of steps as

4 since the unified message passing is generally conducted within 4

hops. Though this approach will count paths with repeated nodes,

it is much more efficient compared to tree traversals and we only

need an approximation for comparison.

As one can see from Fig. 3, the ratio of acyclic subgraphs de-

creases while the total number of cycles increases when the graph

becomes denser, which validates our hypothesis. Another interest-

ing observation is that the performance of hyperbolic and Euclidean

geometry (in Fig. 2) deviates roughly from (0.2, 0.3) in Douban, (0.2,

0.4) in Flixster and (0.4, 0.6) in YahooMusic. These positions align

with the “elbows" of the acyclic subgraph ratio in Fig. 3. Thus, the

elbow method in clustering analysis may also be used as a data-

driven heuristic to determine whether one needs to embed the

graph into hyperbolic geometry in future tasks.

Table 3: RMSE: Transfer the model trained on ML-100K.

Model Flixster Douban YahooMusic
Transfer / Re-train

IGC-MC 1.290 / 0.999 1.144 / 0.990 25.7 / 21.3

F-EAE 0.987 / 0.908 0.766 / 0.738 23.3 / 20.0

IGMC 0.906 / 0.872 0.759 / 0.721 20.1 / 19.1

GIMC𝑐=−1 0.859 0.722 19.0
*
We list two results from [54] as baselines: (1) transferring the model of

ML-100K; and (2) Re-train target data from scratch.

4.4 Multi-view Node Embeddings
To demonstrate the intuition of multi-view node embeddings for

hyperbolic regression, we conduct two ablation studies.

Embedding visualization. We train the model on ML-100K

dataset with batch size 128. By setting the number of unified mes-

sage passing layers as 4 and the final hidden state dimension as 2,

we record the user-item embeddings of one testing batch when the

model converges. The user-item embeddings after different unified

message passing layers are visualized in Fig. 4. As shown in Fig.

4, the graph signals become smoother after passing through more

unified message passing layers. As the result, the relative locations

of user-item pairs also change. Notably, since the embeddings are

obtained only via the subgraph structure, each specific user/item

has one group of unique embeddings learned from each subgraph.

For instance, if user-𝑢 has ` interactions and we use 𝐿 message

passing layers, so that we generate 𝐿 ∗ ` embeddings for user-𝑢

in total. As the result, though the proposed method has a much

smaller number of parameters compared to transductive models,

its representation ability can also handle unique preferences.

users
items

Figure 4: Multi-view Embeddings of user-item pairs after
message passing layer 1 - 4 (left to right).

Transferable Graph Reasoning Layers. To validate the trans-

ferability of the proposed method, we conduct a transfer learning

experiment. Firstly, we train the model with ML-100K dataset until

the model converges. Then, we apply the trained model to Douban,

Flixster, and YahooMusic datasets with the weights of the first two

stages fixed but leave the final embedding layer trainable. Since

Flixster and YahooMusic have different rating types, we bin their

ratings into 5 quantiles to match the edge embeddings from ML-

100K. Notably, our model achieves astonishing performance and

converges at a much faster rate (1-2 epochs) as it only needs to

update the weights of the final prediction layer. We list the results

from [54] in Table 3 for comparison with the other inductive models.

As shown, the proposed methods achieve excellent performance

compared to baselines and even on par with baselines retraining on

the target dataset over begin. We conclude this as the benefits of

multi-view node embeddings since the proposed unified message

passing layers accumulate information regarding different hops

and the final prediction layer merges information from different

hops selectively. Though unrelated datasets have completely dif-

ferent densities, the unified message passing layers still preserve

the ability to summarize its geometrical meaning and pass it to the

final prediction layer for a dedicated selection.

5 CONCLUSION
In this paper, we introduce Geometric Inductive Matrix Completion

(GIMC). GIMC bridges the generic sparse graph structure with hy-

perbolic space by introducing identity-specific vertex embeddings

and hyperbolic regression for interactions. It also empirically vali-

dated the effectiveness of edge embeddings for explicit feedback,

which was predominantly ignored in the recommender system

community. We corroborate our findings with comprehensive ex-

periments and theoretical analysis, revealing intuitive and novel

insights for future research.
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