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Abstract Attributed graph embedding aims to learn node representation
based on the graph topology and node attributes. The current mainstream
GNN-based methods learn the representation of the target node by aggregating
the attributes of its neighbor nodes. These methods still face two challenges: (1)
In the neighborhood aggregation procedure, the attributes of each node would
be propagated to its neighborhoods which may cause disturbance to the origi-
nal attributes of the target node and cause over-smoothing in GNN iteration.
(2)Because the representation of the target node is derived from the attributes
and topology of its neighbors, the attributes and topological information of
each neighbor have different effects on the representation of the target node.
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2 Yuchen Zhou et al.

However, this different contribution has not been considered by the existing
GNN-based methods. In this paper, we propose a novel GNN model named
API-GNN (Attribute Preserving Oriented Interactive Graph Neural Network).
API-GNN can not only reduce the disturbance of neighborhood aggregation
to the original attribute of target node, but also explicitly model the differ-
ent impacts of attribute and topology on node representation. We conduct
experiments on six public real-world datasets to validate API-GNN on node
classification and link prediction. Experimental results show that our model
outperforms several strong baselines over various graph datasets on multiple
graph analysis tasks.

Keywords Data Mining · Graph Neural Networks · Social Analysis ·
Representation Learning

1 Introduction

Attributed network in which nodes are usually associated with rich attributes
information is ubiquitous, such as social networks, citation networks, E-commerce
networks and so on. Attributed network embedding, which aims to learn low-
dimensional representations of nodes,is a basic task for attributed network
analysis. However, how to use the network topology information and node at-
tribute information effectively to generate the meaningful node representation
for various downstream tasks is a great challenge.

There has been many conventional graph embedding methods which en-
code topology structure information to learn node representation [14,17,4,21,
15]. However, those methods ignore the attribute information which is also
important to node representation. More recently, there has been a surge of
graph neural networks (GNNs) whose core is neighborhood aggregation. They
can combine both the topology structure information and node attribute in-
formation to learn meaningful node representation. Now, GNNs have shown
great popularity in tackling various graph analytics problems for attributed
networks such as node classification [28,22,25], link prediction [23,19] and
recommendation [8,16].

However, there are still some drawbacks in most of existing GNNs. On
one hand, iterative neighborhood aggregation in GNNs would disturb the at-
tributes of nodes. Especially when the attributes of target node and the at-
tributes of its neighbor node are extremely different, it will make the target
node’s attribute deviate significantly from the original one [26]. Furthermore,
as the neighborhood aggregation smoothens the attributes, iterative aggrega-
tion may make all nodes have the identical representation which reduces the
discriminability of nodes. We take a subgraph from the JD dataset for an ex-
ample. As elaborated in Figure 1(a), node Vj and node Vk are the neighbors
of node Vi. After several rounds of neighborhood aggregation in GNNs, we
observed that: (1) the missing attributes (two white boxes) of node Vi have
been filled with blue and green attributes; (2) the original orange attribute
value of node Vj has been significantly changed as shown in Figure 1(b); (3)
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(a) (b)

Fig. 1 Disturbance of GNNs neighborhood aggregation on node attribute. The vector of
each node in subgraph (a) represents its initial attributes and subgraph (b) represents the
attributes of nodes after GNNs neighborhood aggregation. After neighborhood aggregation,
the missing attributes (white boxes) in some nodes’ initial attributes are filled, while the
existing attributes (column height in histogram) in some nodes’ initial attributes are greatly
changed. This change of attribute is called disturbance to the original attribute of node.

the attributes of node Vi and node Vk becoming more similar. On the other
hand, neighborhood aggregation naturally fuses attribute and topology infor-
mation, making them jointly affect the representation of the target node. This
mechanism can’t distinguish the contributions of the attribute and topology
information. In fact, the impacts of neighbor node’s attribute and topology on
target node representation are different.

In order to improve the performances of GNNs in attributed graph embed-
ding, some researchers have made a breakthrough in eliminating the consis-
tency of node representations. CS-GNN [6] and ALaGCN [24] prevent repre-
sentations of nodes from becoming identical by designing an adaptive neigh-
borhood aggregation for each node, GResNet [27] keeps the diversity of node
representations by exploring various residual connections and DAGNN [10]
decouple the representation transformation and propagation in graph con-
volution operations for a deeper GNN. However, as far as we know, these
methods haven’t solve the node attribute disturbance problem and distin-
guish the impacts of attribute and topology on neighborhood aggregation. To
address these two issues, we propose a novel graph neural network named
Attribute Preserving Oriented Interactive Graph Neural Network (API-GNN).
API-GNN consists of three modules: original attribute aggregation module
(AGM), topology aggregation module (TAM) and interaction module (IM).
AGM models the original attributes of neighbor nodes on the target node
global representation and keeps the node original attribute representation un-
changed in GNNs iterations. TAM distills the neighbor topology information
from the a neighbor node global representation and models the topology in-
formation of neighbor nodes on the target node global representation. These
two factors interact in the IM to jointly determine the global representation
of the target one. In this way, API-GNN can not only weaken the disturbance
of attributes, but also take into account the correlation and different effects of
attribute and topology of neibourhood on node representation.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 Yuchen Zhou et al.

Table 1 Table of main symbols.

Symbols Definitions

G input attributed network.
A, X, Y matrices of adjacency, attribute and node label.
N , M The number of nodes and node attributes.

C The labels set of nodes.
N (i) The neighbor nodes set of node Vi.
xit t-th original attribute vector of node Vi.

M
(l)
F ,M

(l)
T

layer-specific transformation matrix.

aF , aN attribute-level and node-level attention vector.
W∗, b∗ model trainable parameters.

h
(l)
i

global representation of node Vi in l-th layer.

of
(l)
i , tp

(l)
i

original attribute representation with low dimension and topology
information representation of node Vi in l-th layer

.

hf
(l)
i , ht

(l)
i

neighborhood attribute representation and neighborhood topol-
ogy representation of node Vi in l-th layer

.

N I (i) neighborhood information representation of node Vi in l-th layer .

YC ,Y+,Y−
labeled nodes set, postive instances link set and negative instances
link set

.

λ1, λ2, λ3 weight coefficients of loss function.

In general, the main contributions of our method are as follows:

– For the first time, we explore the problems of GNN methods in neighbor
aggregation, that is, the original attribute disturbance problem, and the
influence differences of attribute and topology information on node repre-
sentation.

– We propose a novel API-GNN to solve the above problems. In the process
of neighbor aggregation, it can not only ensure that the original attributes
are preserved as much as possible, but also consider the differences and
associations of attributes and topology to node representation through an
interactive way.

– We conduct extensive experiments on node classification and link predic-
tion tasks with six real-world attributed network datasets. The results
demonstrate that API-GNN outperforms all baseline models.

2 Preliminary

In this section, we first introduce the notions of attributed networks and for-
mally introduce the studied problem of attributed network embedding. Next,
we give an intuitive explanation of our proposed attribute embedding, which
is for better understanding of API-GNN. In this paper, we use calligraphic
fonts, bold lowercase letters, and bold uppercase letters to denote sets (e.g.,
G), vectors (e.g., x), and matrices(e.g., X), whereas others are scalars. For
convenience, some important notations are summarized in Table 1.
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2.1 Problem Definition

We assume an attributed network can be represented as G = (V, E ,A,X),
where V = {V1, V2, ..., VN} is the node set (N = |V|). E ⊆ V × V denotes the
edge set between nodes in V. A ∈ {0, 1}N×N denotes the adjacency matrix
of G, entry aij = 1 indicates that there is an edge between node Vi and
node Vj , otherwise, aij = 0. X = [X1,X2, ...,XM] ∈ RN×D represents the
matrix composed of all attribute vectors of all nodes (N and M represent the
number of nodes and attributes respectively, D is all attributes dimension
of X), where each attribute of each node is represented as a vector. Xi =
[x1i,x2i, ...,xNi]

T ∈ RN×Di is the i-th attribute matrix of all nodes, where Di

is the ith attribute dimension of Xi and D =
∑M

i=1Di. Specifically, in real-
world, each node always has many attributes, for instance, user has name,
gender, age and so on in social network, item has brand, price, category and
so on in e-commerce network.

Definition 1 Attributed Network Embedding: Given an attributed net-
work G = (V, E ,A,X), Attributed Network Embedding aims to learn an em-
bedding model f : V → Rd that embed each node V ∈ V to a vector in a
d-dimensional space Rd with A and X, d � |V|. The node embedding can be
applied to all kinds of downstream tasks.

In this paper, our goal is to make attribute network embedding meet the
following two conditions: (1) the original attributes of nodes should be kept
as much as possible in the embedding process. (2) The different influence of
neighbor node’s attribute and topology on the representation of target node
should be modeled.

2.2 Our solution

In order to make attribute network embedding meet the above definition and
conditions, we propose a new GNN aggregation mechanism which is shown in
Figure 2. To better illustrate our aggregation mechanism, we first give some
definitions.

Definition 2 Attribute Information: For node Vi (Vi ∈ V), the representa-
tion of attribute information of i is generated from the original attribute vector
of Vi itself, i.e. xi = [xi1, xi2, ..., xiM ] (xi ⊂ X), through linear or nonlinear
transform.

Definition 3 Neighborhood Information: For node Vi (Vi ∈ V), the neigh-
borhood information N I (i) is the information propogated to it by its neigh-
bors N (i), which includes the original attributes xj of neighbor node Vj (Vj ∈
N (i)) and the neighborhood information N I (j) propogated by neighbors of
neighbor node Vj. So neighborhood information is generated by an iterative
procedure.
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6 Yuchen Zhou et al.

(a) Message propagation of node V0 (b) Aggregation of node V0

Fig. 2 The aggregation method of API-GNN.

As shown in Figure 2, each node independently propagates its original
attributes to its neighbors. In our GNN aggregation procedure, each node’s
representation (global representation) is composed of two kinds of information,
namely attribute information of the node itself (Definition 2) and neighbor-
hood information (Definition 3). Taking node V0 as an example (Figure 2(b)),
its global representation is obtained by aggregating attribute information and
neighborhood information of V0. The neighborhood information of V0 is ob-
tained by aggregating the neighborhood information and original attributes of
neighbors V1 and V2, and the neighborhood information of V1 is obtained by
aggregating the neighborhood information and original attributes of neighbors
V3 and V4.

Definition 4 Topology Information: According to the iterative character-
istics of neighborhood information, the essence of neighborhood information is
that the original attributes propogation through hierarchical topology. There-
fore, the neighborhood information can be obtained from the original attribute
information and topology information. It should be noted that the topology
information here is not the first-order neighbor relationship, it refers to the
overall influence of hierarchical topology in message propagation,so it cannot
be obtained directly.

Based on this intuitive idea, we innovatively propose an attributed embed-
ding model named Attribute Preserving Oriented Interactive Graph Neural
Network. Next, we will introduce our model in detail.

3 The Proposed Model

This section introduces our approach API-GNN in details. As shown in Fig-
ure 3, API-GNN contains three modules: the original attribute aggregation
module, topology aggregation module and interaction module. The first two
modules model the influence of the neighbors’ attribute and topology on node
representation independently, and obtain attribute representation and topol-
ogy representation of the neighbourhood. The third module models the corre-
lation between attribute representation and topology representation of neigh-
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API-GNN: Attribute Preserving Oriented Interactive Graph Neural Network 7

Fig. 3 The overall framework of the proposed API-GNN.

bourhood on target node representation, and obtains target node global rep-
resentation. We utilize original attribute aggregation module to eliminate the
attribute disturbance caused by neighborhood aggregation and keep the orig-
inal attribute of nodes as unchanged as possible.

3.1 Original Attribute Aggregation Module

The purpose of the original attribute aggregation module is to model the dif-
ferent influences of the neighbor nodes’ original attributes on the target node
global representation in the GNN iteration process. The output of the module
is the neighborhood attribute representation of target node. In GNN aggrega-
tion, the attributes of each neighbor has different influence on the target node
neighborhood attribute representation. Moreover, in attributed network, each
neighbor node has multiple attributes, and each attribute also has different
influence on the target node neighborhood attribute representation. Based on
the above, in this module, we design two levels of attention (attribute-level
attention and node-level attention) to model these two effects separately.

3.1.1 Attribute-level Attention.

This step models the influences of different original attributes of a neighbor
node on the target node global representation. We define the layer-specific

attribute transformation matrix M
(l)
F to project the each original attribute

vector of a neighbor node into the semantic space of the target node global
representation. The projection process can be shown as:

x
(l)
jt = M

(l)
F · xjt (1)
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8 Yuchen Zhou et al.

we define node Vj is a neighbor node of node Vi, xjt is the t-th original

attribute vector of node Vj and x
(l)
jt is the projected attribute vector. After

projecting, we leverage attention mechanism in GAT [20] to learn the weight

between target node global representation in the l-th layer h
(l)
i and each pro-

jected attribute vector x
(l)
jt . It can be formulated as follows:

e
(l)
ijt = LeakyReLU(aT

F · [W
(l)
1 h

(l)
i ||W

(l)
1 x

(l)
jt ) (2)

α
(l)
ijt = softmax(e

(l)
ijt) =

exp(e
(l)
ijt)∑M

t=1 exp(e
(l)
ijt)

(3)

where aF is the attribute-level attention vector, W
(l)
1 is attribute-level

weight matrix in layer l, M is the attribute number of node and || denotes the

concatenate operation. α
(l)
ijt is the attention weight which reflects the important

of t-th attribute of node Vj for node Vi. The influence of all the original
attributes of node Vj on the neighborhood attribute representation of target

node Vi in the l-th layer is denoted as z
(l)
ij , here σ is the activation function.

z
(l)
ij = σ(

∑M

t=1
α
(l)
ijt · x

(l)
jt ) (4)

3.1.2 Node-level Attention.

This step models the influences of different neighbors’ attributes on the target
node global representation. We adopt the similar attention mechanism similar
to attribute-level attention.

e
(l)
ij = LeakyReLU(aT

N · [W
(l)
2 h

(l)
i ||W

(l)
2 z

(l)
ij ]) (5)

α
(l)
ij = softmax(e

(l)
ij ) =

exp(e
(l)
ij )∑

j∈N (i) exp(e
(l)
ij )

(6)

where aN is the node-level attention vector, W
(l)
2 is node-level trainable

weight matrix and Ni is the neighbor set of node Vi. α
(l)
ij is the attention

weight which indicates the importance of attributes of neighbor node Vj to
target node Vi. We use above attention weights to acquire the target node
neighborhood attribute representation:

hf
(l)
i = σ(

∑
j∈N (i)

α
(l)
ij · z

(l)
ij ) (7)

It should be noted that hf
(l)
i only depends on the aggregation of neighbor

nodes’ original attributes, and does not use the topology information of neigh-
bors. Therefore, the disturbance of topology to the original attributes of node
is avoided.
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API-GNN: Attribute Preserving Oriented Interactive Graph Neural Network 9

3.2 Topology Aggregation Module

The purpose of topology aggregation module is to model the influence of neigh-
bor topology on target node global representation, and the output of this
module is the neighborhood topology representation of the target node. This
module includes two steps: Topology Distilling and Topology Aggregation.

3.2.1 Topology Distilling.

Due to the integration of topology information and attribute information in
the iterative aggregation of existing GNNs, it is difficult to obtain pure topol-
ogy information. In this paper, we use the node global representation minus
node original attributes vector in each API-GNN layer to obtain the topology
information. Because the node has many dimensional attributes, the node orig-
inal attributes vector dimension is high, so we use a two layers auto-encoder to
obtain low-dimensional original attributes vector in the first API-GNN layer,
and make the dimension consistent with the node global representation in
API-GNN iteration. The encoder of the auto-encoder can be represented as:

xi = xi1||xi2|| · · · ||xiM (8)

of
(1)
i = σ(W4 · σ(W3 · xi + b1) + b2) (9)

where xi is the concatenation of all original attribute vectors of node Vi,

W3,W4,b1,b2 are the trainable parameters of encoder and of
(1)
i is the low-

dimensional original attributes vector of the node Vi in the first API-GNN
layer. The decoder and loss function of auto-encoder can be defined as follow:

x
′

i = σ(W6 · σ(W5 · of
(1)
i + b3) + b4) (10)

Lauto =
1

N

∑N

i=1
||x
′

i − xi||2 (11)

By solving the above objective function, we can obtain of
(1)
i and use it

to initialize the node global representation h
(1)
i in the first API-GNN layer.

With the iteration of API-GNN, the global representation of node is constantly
changing and the original attributes vector of node is also changing. We define

a layer-specific transformation matrix M
(l−1)
T , and it transforms the original

attributes vector of a node in previous layer into original attributes vector in
current layer.

of
(l)
i = M

(l−1)
T · of

(l−1)
i (12)

After obtaining the original attributes vector of a node, we distill its topol-

ogy information tp
(l)
i in the l-th layer as:

tp
(l)
i = h

(l)
i − of

(l)
i (13)

It should be noted that in the first API-GNN layer, we set tp
(1)
i to the

zero vector.
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10 Yuchen Zhou et al.

3.2.2 Topology Aggregation.

Because the contribution of topology information of different neighbor nodes
to the target node global representation is different, we define an attention
mechanism to model the difference. It is similar to the attention mechanism
in original attribute aggregation module. We formulate it as follow:

r
(l)
ij = LeakyReLU(aT

T · [W
(l)
7 h

(l)
i ||W

(l)
7 tp

(l)
j ]) (14)

β
(l)
ij = softmax(r

(l)
ij ) =

exp(r
(l)
ij )∑

j∈N (i) exp(r
(l)
ij )

(15)

ht
(l)
i = σ(

∑
j∈N (i)

β
(l)
ij · tp

(l)
j ) (16)

where aN and W
(l)
7 are the topology specific attention vector and train-

able weight matrix respectively, β
(l)
ij defines the attention weight score which

indicates the importance of neighbor node Vj and ht
(l)
i is the neighbourhood

topology representation of target node Vi in the l-th layer.

3.3 Interaction module

In the above two modules, we consider the different contributions of attribute
and topology of neighbourhood to the target node representation, and indepen-
dently learn the neighbourhood attribute representation and neighbourhood
topology representation of the target node. In this section, we explore the
interaction and correlation between the two kinds of representations of the
target node in current layer to obtain the global representation of the next
layer. It can be formulated as follows:

h
(l+1)
i = W

(l)
8 · hf

(l)
i + W

(l)
9 · ht

(l)
i + M

(l)
T · h

(l)
i (17)

where W
(l)
8 ,W

(l)
9 are two type-specific weight matrices, M

(l)
T is the layer-

specific transformation matrix introduced in topology aggreagtion module and

h
(l+1)
i is the l + 1 layer global representation of node Vi. After several API-

GNN iterations, the node global representation HL ∈ RN×d of the L-th layer
is used as node final representation.

3.4 Optimization Objective

The final prediction result Ŷ of API-GNN for various downstream tasks can
be derived from node final representation HL via a single layer nonlinear
projection. Specifically, we select node classification and link prediction as
downstream tasks to evaluate model performance in our paper, the model
predictions of this two tasks Ŷnc, Ŷlp can be formulated as follow:
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Ŷnc = softmax(σ(HLWnc)) (18)

Ŷlp = softmax(σ((HL
src||HL

dst)Wlp)) (19)

where Ŷnc and Ŷlp are the model prediction results for node classification
and link prediction respectively. Wnc ∈ Rd×|C|, Wlp ∈ R2d×2 are the param-
eters of the single layer nonlinear projection. HL

src, HL
dst are the node final

representation matrices of edge endpoints.
After obtaining the model prediction, the supervised loss functions of API-

GNN for node classification task and link prediction task can be defined as:

Lnc = − 1

|YC |
∑
i∈YC

|C|∑
c

yiclnŷic (20)

Llp =
1

|Y+||Y−|
∑

i,j∈Y+∪Y−

(yij lnŷij + (1− yij)ln(1− ŷij)) (21)

For node classification task, we randomly select some labeled nodes to
construct the training set YC and C is the set of node label. For link predic-
tion task, we randomly select some real-edges and some non-existent edges to
construct the postive instances link set Y+ and negative instances link set Y−.

Then the total loss function of node classification or link prediction task
based on API-GNN is as follows:

Lall = λ1Lsup + λ2Lauto + λ3Lreg (22)

It can be divided into three parts: Lsup is the loss of supervised downstream
task such as Lnc, Llp in this paper. Lauto is the auto-encoder loss in topology
aggregation module and Lreg is the l2-normalization regularization loss to
prevent overfitting. λ1, λ2, λ3 are the corresponding weight coefficients.

4 Experiments

4.1 Experiment Setups

4.1.1 Datasets.

In order to verify the effect of API-GNN, we conduct extensive experiments
on six real-world attributed network datasets. Two citation networks ACM,
DBLP [18], two social networks Facebook, Google+ [12], and two e-commerce
networks Amazon [13], JD [2]. Their statistical information is summarized in
Table 2. It is noticeable that we encode node features and use 0 as padding
value to obtain the original attribute vectors with the same dimensional.
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12 Yuchen Zhou et al.

– ACM: In this dataset, we select papers as nodes and use metapath paper-
author-paper to construct edges. Paper features correspond to elements of
a bag-of-words represented of keywords.

– DBLP: Different from ACM, the node in DBLP network represents author
and edge exists when the two authors publish their paper at the same
conference. Author features are the elements of a bag-of-words represented
of keywords.

– Facebook: We regard following relationship as the edge and transform it into
undirection relation. Notice that all of node attributes are anonymized. We
select birthday, education, name, language, locale, hometown, location and
work as node features.

– Google+: This dataset is similar to Facebook, but the attributes are not
anonymized. For node features, we select place, name, institution, univer-
sity and job.

– Amazon: We build the subgraph of clothing items in Amazon.com and use
co-rating relation as edge. The rank, price, brand, title, description, dimen-
sion and weight are selected as item features.

– JD: For JD dataset, we also select clothing items as nodes and construct
edges by co-click and co-order relation. The features of item include class-
id, brand, price, description.

4.1.2 Baselines.

We compare our method with three kinds of strong baselines: conventional
graph embedding, conventional GNN-based graph embedding and improved
GNN-based graph embedding. Futhermore, we also design three variants of
API-GNN to demonstrate the ability of different modules of our method.

– Conventional Graph Embedding: we select three methods based on random
walk: Deepwalk [14], Node2vec [4] and GraphRNA [7]. We also select
three graph embedding methods based on exploiting proximity: LINE [17],
SDNE [21], DANE [3]. Struc2Vec [15] which considers the spatial struc-
ture similarity is another baseline.

– Conventional GNN-based Graph Embedding: we use two average aggrega-
tion models: GCN [9] and GraphSAGE [5]. GAT [20] is also selected as
baseline which introduces attention mechanism to neighborhood aggrega-
tion .

– Improved GNN-based Graph Embedding: CS-GNN [6] designs a new mech-
anism to aggregate information from dissimilar neighbors. GResNet [27]
explores variations of residual connections and ALaGCN [24] uses an
adaptive layer to achieve a better aggregation effect. DAGNN [10] decou-
pling representation transformation and propagation in graph convolution
operation.

– Variants of API-GNN: we design three variants A-GNN, T-GNN and
AP-GNN of API-GNN. Different from API-GNN, A-GNN only consid-
ers the original attribute aggregation module and ignores the topology
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aggregation module; while T-GNN contains both the original attribute
aggregation module and the topology aggregation module, but its original
attribute aggregation module only has node-level attention; the original at-
tribute aggregation module and topology aggregation module are retained
in AP-GNN, but the iteraction module of each iteration is ignored, and
the interaction is only carried out in the last iteration.

4.1.3 Smoothness Metrics

In order to quantify the attribute disturbance in neighborhood aggregation of
graph neural networks, we calculate Smoothness Metric Value (SMV) to for
our model and other GNN-based baselines. SMV is proposed by [10] and it is
a smoothness metric which reflects the similarity of node representations with
Euclidean distance. The larger the distance (the larger the SMV value), the
lower the smoothness (the lower the similarity).

It is defined as follow:

D(hi, hj) =
1

2
‖ hi
‖hi‖

− hj
‖hj‖

‖ (23)

SMVi =
1

n− 1

∑
j∈V,j 6=i

D(hi, hj) (24)

SMVG =
1

n

∑
i∈V

SMVi (25)

where hi is the node global representation learned by graph neural network
of node Vi and ‖·‖ is the Euclidean norm. We use SMVG to measure the overall
smoothness of an attributed graph G, because SMVG represents the distance
between all the node representations of G. Therefore, the larger the SMVG ,
the more dissimilar the node representations of G, the smaller the overall
smoothness of G, i.e., the smaller the disturbance to the original attribute. On
the contrary, the smaller the SMVG , the greater the overall smoothness of G,
and the greater the disturbance to the original attributes.

4.1.4 Parameters.

We use the same set of hyper-parameters for API-GNN and GAT. The node
representation dimension is set to 32 and the weight coefficients λ1, λ2, λ3
are set to 0.5, 0.3, 0.2 respectively. We set the learning rate to 0.001 and
select Adam as optimizer. For other models, we use their reported default
parameters. All models are trained for 2000 epochs with an early stopping
strategy based on both convergence behavior and accuracy of the validation
set.
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14 Yuchen Zhou et al.

Table 2 Statistics of datasets used in this paper.

Datasets Nodes Features Links d Labels

ACM 3025 1870 6454 4.27 3
DBLP 3890 334 2347227 1206.80 4
Facebook 3401 1024 71254 41.90 2
Google+ 5807 640 885285 304.90 2
Amazon 5004 354 27313 10.92 5
JD 5289 3496 551825 208.67 4

Table 3 Accuracy on the six datasets for node classification.

Methods ACM DBLP Facebook Google+ Amazon JD

DeepWalk 0.713 0.920 0.633 0.826 0.457 0.416
Node2vec 0.723 0.864 0.630 0.830 0.465 0.431
GraphRNA 0.934 0.884 0.654 0.826 0.475 0.493
LINE 0.908 0.918 0.648 0.835 0.449 0.410
SDNE 0.901 0.918 0.628 0.821 0.459 0.403
Struc2vec 0.686 0.812 0.584 0.802 0.449 0.374
DANE 0.799 0.794 0.663 0.804 0.477 0.342

GCN 0.888 0.900 0.666 0.804 0.477 0.363
GraphSAGE 0.875 0.905 0.657 0.790 0.461 0.482
GAT 0.911 0.920 0.689 0.804 0.477 0.461

GresNet 0.861 0.910 0.657 0.790 0.479 0.533
CS-GNN 0.901 0.918 0.669 0.793 0.479 0.509
ALaGCN 0.927 0.923 0.704 0.814 0.487 0.535
DAGNN 0.927 0.906 0.666 0.828 0.487 0.488

A-GNN 0.917 0.925 0.692 0.818 0.487 0.505
T-GNN 0.931 0.928 0.710 0.833 0.491 0.522
AP-GNN 0.924 0.920 0.704 0.826 0.477 0.520
API-GNN 0.944 0.933 0.716 0.845 0.495 0.548

4.2 Node Classification

For the node classification task, we select research area, gender and price as
the node labels of citation network, social network and e-commerce network
respectively. In all datasets, 80% nodes are used as the training set, 10% nodes
are used as the validation set and the rest as the test set. The accuracies on
test sets are shown in Table 3.

Compared with the conventional graph embedding, conventional GNN-
based graph embedding and improved GNN-based graph embedding meth-
ods, our method API-GNN improves the accuracy by 2.8%, 3.3% and 1.5%
respectively on six datasets. This shows that API-GNN can learn better node
representation by solving the problems of attribute disturbance and the in-
fluence differences of attribute and topology on node representation in GNN
aggregation. In order to further verify the performance of API-GNN, we com-
pare the performances of three variants of API-GNN (A-GNN, T-GNN and
AP-GNN) with improved GNN-based methods. A-GNN is superior to the im-
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Table 4 AUC on the six datasets for link prediction.

Methods ACM DBLP Facebook Google+ Amazon JD

DeepWalk 0.555 0.537 0.574 0.584 0.586 0.559
Node2vec 0.552 0.543 0.572 0.577 0.590 0.555
GraphRNA 0.687 0.547 0.693 0.764 0.774 0.746
LINE 0.559 0.542 0.573 0.566 0.596 0.553
SDNE 0.531 0.525 0.546 0.557 0.570 0.537
Struc2vec 0.547 0.543 0.579 0.593 0.607 0.566
DANE 0.640 0.606 0.651 0.651 0.606 0.635

GCN 0.734 0.574 0.724 0.760 0.756 0.736
GraphSAGE 0.726 0.564 0.713 0.813 0.730 0.706
GAT 0.697 0.536 0.671 0.820 0.778 0.694

GresNet 0.658 0.641 0.746 0.832 0.802 0.774
CS-GNN 0.706 0.675 0.777 0.882 0.787 0.777
ALaGCN 0.737 0.666 0.755 0.885 0.814 0.788
DAGNN 0.744 0.689 0.775 0.894 0.822 0.797

A-GNN 0.712 0.645 0.733 0.838 0.796 0.754
T-GNN 0.739 0.686 0.762 0.883 0.816 0.788
AP-GNN 0.726 0.636 0.751 0.868 0.787 0.766
API-GNN 0.756 0.707 0.786 0.894 0.836 0.804

proved GNN-based methods in most datasets, which shows that it is very
important to consider both attribute-level attention and node-level attention
for attributed networks. T-GNN is better than A-GNN, which indicates that it
is better to consider the influences of topology and attribute on node represen-
tation than to consider attribute only. However, the performance of AP-GNN
is not better than that of A-GNN and T-GNN, which indicates that the in-
teraction of attribute and topology information in each interation is also very
important for node representation.

4.3 Link prediction

For link prediction task, we randomly hide 10% edges for validating, 10% edges
for testing and train node representation on the rest network. We regard the
real-edges as positive instances and randomly select 10 non-existent edges as
negative instances for each positive instance. We use the concatenating of
node pair representations as input and construct the Multilayer Perception
(MLP) to predict the edges of test set. Area Under Curve (AUC) is adopted
to quantify the performance and the experiment results are shown in Table 4.

It is the same as the performance on the node classification task, API-
GNN performs consistently much better than all baselines on all datasets.
On average, compared with the conventional graph embedding and conven-
tional GNN-based graph embedding and improved GNN-based graph embed-
ding methods, our method API-GNN improves the accuracy by 9.5%, 7.0%
and 1.8% respectively on six datasets. It validates the effectiveness of our
proposed model architecture once more. Moreover, we compare A-GNN with
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(a) ACM (b) Facebook

Fig. 4 Attribute Disturbance analysis of different methods

conventional GNN-based graph embedding methods and find that the former
outperform the latter. It indicates that modeling the different node attributes
influence in neighborhood aggregation improves link prediction ability. T-GNN
achieve the similar performance comparing with improved GNN-based meth-
ods, which indicates that the importance of topology aggregation in link pre-
diction task. The performance of API-GNN decreases severely without inter-
action module, it proves once again the important role and irreplaceable of
interaction module of API-GNN.

4.4 Attribute Disturbance Analysis

As mentioned in Section 5.1, because the smoothness of node representations
is caused by attribute disturbance, the smaller the SMVG , the bigger the
attribute disturbance in neighborhood aggregation.

As shown in Figure 4, our API-GNN is superior to all baselines in the as-
pect of eliminating attribute disturbance. Conventional graph neural networks
such as GCN, GraphSAGE and GAT don’t consider the attribute disturbance
problem in neighborhood aggregation, so the SMVG of these methods is very
small, which means that the node representation obtained by these methods
is easy to oversmooth. Improved graph neural networks such as GresNet and
DAGNN alleviate the attribute disturbance problem by designing a sophisti-
cated neighborhood aggregation. Therefore, their SMVGs are larger than that
of the conventional GNN method. Our method is superior to the improved
GNN, which proves that our proposed strategy, i.e. original attribute aggre-
gation strategy, is better than the sophisticated neighborhood aggregation
methods.

It can also be seen from Figure 4 that with the increase of GNN iteration
layers, the decrease of SMVG is very small, which can be almost ignored. This
proves the robustness of the proposed strategy in avoiding attribute distur-
bance.
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(a) (b)

Fig. 5 Influence difference of neighbor attribute and topology on global representation of
target node.

(a) Original (b) Deepwalk (c) GCN (d) GAT (e) API-GNN

Fig. 6 2D visualization of node representation on DBLP using t-SNE. The different colors
represent different classes.

4.5 Impact Difference Analysis

In order to intuitively show the influence of neighbor topology and attributes
on the global representation of the target node in API-GNN, we randomly
sample an item B01B756BAE as the target node and extract its ego-network
(Figure 5 (a)) from Amazon dataset. In Figure 5 (b), we use the hot-map to
show the attention distribution (obtained from API-GNN) of different neigh-
bors’ attribute and topology on the target node representation. The lighter
the color in the hot-map, the higher the attention of the neighbor node on the
attribute or topology. In Figure 5 (b), the colors of node 0 (B01EO2P1C6) and
node 4 (B01B74YXH8) in the attribute block of hot-map are very light, which
indicates that the attribute information dominates the information that these
two nodes propagate to the target node in the aggregation process. As we can
see that in Figure 5 (a), node 0 and node 4 have more similar attributes to the
target node. Conversely, in Figure 5 (b), the colors of node 1 (B018RMQV2S)
and node 5 (B00YWSWGCQ) in the topology block of hot-map are very light,
which indicates that the topology information of two nodes is more important
to the target node in the aggregation process. As we can see that in Figure 5
(a), there are more neighbor nodes to share among those nodes.
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(a) Original (b) Deepwalk (c) GCN (d) GAT (e) API-GNN

Fig. 7 2D visualization of node representation on ACM using t-SNE. The different colors
represent different classes.

(a) Dimension d (b) Coefficient λ1, λ2, λ3

Fig. 8 The impacts of parameters the node representation dimension d and loss weight
coefficients λ1, λ2, λ3

4.6 Visualization

For a more intuitive comparison and to further show the effectiveness of our
proposed model, we conduct the task of visualization on ACM and DBLP
dataset. Specifically, we learn the node representations based on API-GNN
and other baselines, then we utilize t-SNE [11] to project the learned node
representations into a 2-dimensional space. The results in Figure 6 and Figure
7 are colored by real labels. From the visualization, we can see that API-GNN
performs best as the learned node representations have the hightest intra-class
similarity and the clearest distinct boundaries among different classes.

4.7 Parameter Sensitivity Analysis

In this section, we investigate the parameter sensitivity(Figure 8). More specif-
ically, we evaluate how different numbers of the node representation dimension
d and different values of loss weight coefficients λ1, λ2, λ3 can affect the results.
We report accuracy of node classification on the dataset of ACM, similar re-
sults are observed on other datasets and other tasks as we omit them. From the
results in Figure 8, we can find that the performance of API-GNN increases as
d increases from 8 to 32 and API-GNN achieve the best performance as d = 32.
When d continues to increase, the performance of API-GNN will decrease, be-
cause too large d will lead to over fitting problem. For loss weight coefficients,
the optimal settings of λ1, λ2, λ3 are 0.5,0.3,0.2 respectively. It demonstrates
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that the supervised loss is the most important loss and the regularized loss
has the least effect on the model.

5 Related Work

Our model aims at learning node representation on attributed network. At
present, the mainly graph embedding methods are conventional graph embed-
ding and GNN-based graph embedding. For convolutional GNN-based graph
embedding, there are some problems ignored such as over-smoothing and some
researches have been proposed to address those problem. Therefore, we can
divide GNN-based graph embedding into two categories: conventional GNN-
based graph embedding and improved GNN-based graph embedding.

5.1 Conventional Graph Embedding.

Early researches on graph embedding merely focus on finding node similarity
with graph structure. Perozzi et al. propose DeepWalk [14] which deploys
truncated random walks on nodes to learn node representation. Node2vec [4]
extends DeepWalk with more sophisticated random walk and breadth-first
research schema. Different from the random walk model, LINE [17] separately
exploits the first-order proximity and second-order proximity to capture both
the local and global network structure. SDNE [21] follows and extends LINE,
it designs an AutoEncoder and jointly optimizes first-order proximity and
second-order proximity to learn graph embedding. Struc2Vec [15] consider
that there is a high similarity between nodes that are not neighbor nodes. It
adopts spatial structure similarity to learn graph node representation. Most of
conventional graph embedding methods only use graph topology information
and ignore node attribute information, However, node attribute information
is important auxiliary information for graph embedding task and ignoring it
will damage model performance. There are also some works use both node
attribute information and graph structure information such as GraphRNA [7]
and DANE [3] and so on. GraphRNA explores the random walk in attribute
graph and topology graph, DANE preserves various proximities in topological
structure and node attributes. However, those methods can’t make full use of
the attribute information of neighbor nodes.

5.2 Conventional GNN-based Graph Embedding.

Recently, more attention are paid to applying Graph Neural Networks to learn
node representation due to their amazing performances. Bruna et al. [1] first
designs the graph convolution operation in Fourier domain by the graph Lapla-
cian. Kipf and Welling [9] simplify previous methods via first-order approxima-
tion of localized spectral filters on graphs to reduce the complexity of convolu-
tion. In order to improve the generalization ability of GNNs, GraphSAGE [5]
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proposes to sample and aggregate attributes from a node’s local neighborhood
with mean/max/LSTM. GAT [20] considers the influence of different neighbor
nodes in neighborhood aggregation and introduces the attention mechanism
to aggregate node attributes with the learned weights. Although these con-
ventional GNNs can use both attribute information and topology structure
information, they suffer from the deviation of original attribute and the de-
crease of node discriminability during neighborhood aggregation.

5.3 Improved GNN-based Graph Embedding.

In order to address the problems of conventional GNN-based methods, some
researches have been proposed to improve the neighborhood aggregation in
conventional GNNs. CS-GNN [6] focuses on aggregating information from dis-
similar neighbors and Xie et al. [24] designs a intricate neighborhood aggrega-
tion which drops some noise nodes to avoid that all nodes learn the identical
node representation. Meanwhile, GResNet [27] explores variations of residual
connections and DAGNN [10] decouple the representation transformation and
propagation in graph convolution operations for increasing the depth of GNN
model. However, none of these models explicitly takes into account the at-
tribute disturbance and different effects of attribute and topology on node
representation.

6 Conclusion

In this paper, we analyse ubiquitous problems in most existing GNN-based
models: the original attribute deviation and the influence differences of at-
tribute and topology on node representation. To overcome this vital issue, we
proposed a novel API-GNN model. Extensive experiments on six real-world
datasets demonstrate the rationality and effectiveness of API-GNN.

In the future work, an potential direction is to extend the API-GNN to
heterogeneous network which contains different types of nodes and edges.
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