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Abstract

Frequent group activities of human beings have become an indispensable part of

human daily life. Group recommendation aims to recommend preferred items

to a group of users in recommender systems. The existing solutions on group

recommendation are to explore group modeling with or without the help of auxil-

iary information on social networks. However, we observe that the social factors

can be explored directly in the group without employing social information on

social networks. Towards this end, we study the social effect-based design guide-

line to drive group modeling. In this work, we propose a novel Social dual-Effect

driven Attentive Group Recommendation method (SEAGR) that well utilizes

social selection effect and social influence effect from sociology to explore group

representation learning for neural group recommendation. Specifically, we con-

struct the social selection-driven group inherent modeling from interaction-level

and user-level. To mimic interaction-based dynamic group decision-making, we

also design a social influence-driven attentive influence mining model in terms of

users’ influence distinction in different groups. Based on these two components,

an aggregative group representation is obtained. Moreover, neural recommenda-
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tion for groups and users could be intensified reciprocally considering the impact

of groups on users. The experimental results validate the effectiveness of the

proposed method on three real-world datasets, and demonstrate its advantages

over state-of-the-art methods in accuracy through extensive experiments.

Keywords: Group recommendation, Social analysis, Group modeling,

Representation learning, Neural networks
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1. Introduction

With the ever-growing volume of available online information, the infor-

mation overload problem is becoming increasingly serious and recommender

systems could mitigate this issue effectively. Many traditional recommender

systems focus on studying recommendations for individual users. However, the5

form of user groups is pervasive in human daily life, for example, social networks

platform (Meetup1) where users are organized as groups to participate in some

entertainment activities. There are some situations where items are recom-

mended for groups of users, such as watching movies with family, traveling with

friends, and dining with classmates. Therefore, group recommendation emerges10

as the times require and has gained increasing attention over the last years.

An effective group recommendation method not only facilitates group decision

making but also improves user participation in Web services (Yuan et al., 2014).

A major challenge in group recommendation is how to adapt to the group as

a whole, given information about the individual preferences of group members15

(Felfernig et al., 2018).

Prior works and limitations. Group recommendation task expands indi-

vidual users into groups, and how to trade-off the preferences of different group

members is a great challenge both academic and industry. Previous preference

aggregation strategies mainly rely on predefined static strategies, such as average20

1http://www.meetup.com/
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(Baltrunas et al., 2010), least misery (Amer-Yahia et al., 2009), and maximum

satisfaction (Boratto & Carta, 2009). However, these methods are hard to cap-

ture the complicated dynamic group decision-making process. Nowadays, the

studies (Tran et al., 2019; Cao et al., 2018; Zhenhua et al., 2020) are proposed to

alleviate this problem. Intuitively, we argue that these dynamic strategy-based25

studies lack sufficient design guideline study and inherent preference mining of

how to achieve group modeling. In other words, existing methods are mostly

patchworked models designed to improve accuracy. In essence, it may be sub-

jective and arbitrary without a driving guide to a certain extent. Moreover,

there are also some works (Yin et al., 2019; Cao et al., 2021) adding auxiliary30

information of social networks for group profile modeling. However, we observed

that social factors can be explored without auxiliary information of the social

networks. Based on this, we develop a novel dual social effects-driven group

representation method, in this way, not only can social factors be taken into

account without using social networks, but also group inherent preference can35

be discovered.

Motivations and rationales. In real life, group decision-making could

be impacted by miscellaneous social factors, and a group’s preference for one

item is often the result of multifaceted causes. Intuitively, there is otherness

(i.e. difference) as well as likeness (i.e. similarity) among group members.40

Clearly, people with likeness points fall into the same group, and people could

be influenced in terms of individual otherness. For one thing, people tend to form

relationships with others who are already similar to them, which is often termed

as social selection, which has a long history of study in sociology (Crandall

et al., 2008; Zhang & Pelechrinis, 2014). Analogously, people of a kind fall into45

the same group, and group members’ certain similar preferences or attributes

promote the formation of a group. For another, group members may have

different influences in different groups, which is often called social influence

(Zhang & Pelechrinis, 2014; Friedkin, 1998).

With the above intuitions, we probe into several social effects to assist group50

representation learning for group recommendation, namely social selection and
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Figure 1: A schematic of the two-fold social effects, i.e., social selection effect and social

influence effect. The two social effects jointly affect a group’s decision on one item for group

recommendation.

social influence. As illustrated in Fig. 1, users interact with items before forming

a group respectively, and the likeness could be exhibited among users from user-

to-item interaction and user-to-user interaction. Conventionally, the external

likeness of group members stays unchanged of contexts in the user-to-group55

selection, which is inherent preferences or attributes of a group (Wu et al.,

2019). Meanwhile, social influence contributes to internal otherness for group

member preference which may change in a dynamic way with specific contexts.

As shown in Fig. 1, there is an obvious interplay between the user-to-group

selection and user-to-user influence. Therefore, the two-fold social effects may60

jointly impact a group’s decision-making on one item, which motivates us to

explore such social effects to improve group representation performance.

Methodologies and contributions. To these ends, in this work, we pro-

pose a novel social dual-effect driven attentive group recommendation method

in the group decision-making process. Specifically, to improve group represen-65

tation, we first construct social selection-driven group inherent modeling that

capture likeness-based group inherent preferences or attributes. By this means,

we achieve interaction-level and user-level group modeling. Also, we develop a

social influence-driven attentive influence mining model that explores otherness-
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based on the expertise level of each group member. In our settings, we design a70

neural attention network to focus on or place a higher influence on representative

group members in the group while placing less importance on other members

who may be less influence dynamically. We then aggregate them to obtain more

effective group representation. Finally, to further consider the impact of groups

on users, neural recommendation for groups and users is intensified reciprocally.75

In summary, the main contributions of this work can be outlined as follows:

• To the best of our knowledge, this is the first attempt that leverages

social dual-effect from sociology to drive group modeling for neural group

recommendation.

• We propose a novel social dual-effect driven attentive group recommen-80

dation method (SEAGR), a socially-driven deep architecture to unify the

group inherent modeling and attentive structure to improve its perfor-

mance.

• Extensive experiments are conducted on three real-world datasets. Com-

parisons with state-of-the-art methods demonstrate the effectiveness of85

the proposed method.

The remainder of this paper is organized as follows. The existing works are

discussed related to our method in Section 2. The proposed method is shown

in Section 3. In Section 4, experiments are executed to demonstrate the perfor-

mance of our method. Finally, in Section 5, we draw conclusions and points to90

future work.

2. Related work

2.1. Group recommendation

In recent years, group recommendation has been widely concerned and de-

ployed in various fields, such as movies, tourism, restaurants, music, and so95

on. Existing group recommendation methods can be roughly categorized into
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memory-based and model-based methods (Felfernig et al., 2018). Memory-based

methods can be further divided into two categories, namely preference aggre-

gation and score aggregation. The preference aggregation strategy is to first

create a group profile by combining all users’ preferences, and then generate100

recommendations for groups (Yin et al., 2019; Li et al., 2018). On the contrary,

the score aggregation strategy first predicts the score of each group member for

the item and then combines the individual scores of group members to gener-

ate recommendation (Baltrunas et al., 2010). Both aggregation strategies are

based on predefined strategies (e.g., average, least misery, maximum satisfac-105

tion, etc.) and cannot simulate dynamic interactions of preferences between

group members.

Many model-based methods have also been proposed by learning the genera-

tive process of group decision-making (Zan et al., 2021). Probability models are

widely applied to group recommendation task, (Liu et al., 2012) proposed a PIT110

model and it assumed that the group members with the greatest influence play

an important role in group decision-making. Group modeling is implemented by

considering the personal preferences and influences of the group members. Be-

sides, (Yuan et al., 2014) proposed a COM model to simulate the group decision-

making process and generate recommendation results for groups. (Tran et al.,115

2019; Cao et al., 2018; Zhenhua et al., 2020; He et al., 2020; Zan et al., 2021) are

typical dynamic strategy-based group recommendation examples. (Tran et al.,

2019; Cao et al., 2018; He et al., 2020; Zan et al., 2021) are attention-based

methods. Similar to ours, they also do not consider social information on social

networks and we compare with these methods in our experiments. For example,120

(Tran et al., 2019) proposed AGREE model that utilizes attention network to

learn different weights among group members. Based on AGREE, (He et al.,

2020; Zan et al., 2021) explored the multi-view group modeling and the informa-

tion of comparisons respectively. Although existing methods are effective, they

pay less attention to group inherent modeling and lack sufficient design guide-125

line study. Therefore, in this work, our goal is to explore a socially-driven group

representation without the help of auxiliary information on social networks.

6



2.2. Recommendation using social analysis

Social analysis has made massive strides in many research presenting new

opportunities to recommender systems. In our work, it can be divided into two130

categories: one (Yin et al., 2019; Zhenhua et al., 2020; Cao et al., 2021) is an ap-

proach that utilizes information of social networks as an auxiliary, and the other

(Arazy et al., 2010) is a theory-driven modeling approach. In general individual

recommendation, (Li et al., 2017) employed the information of location-based

social networks to study point-of-interest recommendations. (Fan et al., 2019)135

designed the user-item and user-user social graph to achieve social recommen-

dation. (Zhu et al., 2021) exploited long-term and short-term social behaviors

by using attention mechanisms. In the group recommendation task, (Yin et al.,

2019; Zhenhua et al., 2020; Cao et al., 2021) utilize social influence to discover

social features of social networks for effective group recommendation. These140

studies add more available auxiliary information to improve the model.

In essence, we observed that we are freed to infer them when lacking social

features of social networks and so to focus on exploring social effects directly

without the help of auxiliary information. Therefore, in contrast to these exam-

ples, we aim to infer group inherent modeling without adding side information145

of social networks. Based on this, we develop a novel dual social effects-driven

group representation model, in this way, not only can social factors be taken

into account, but also interaction-level and user-level group modeling can be

learned without using social networks. In terms of socially-driven study, (Arazy

et al., 2010) proposed a framework to merge sociological behavioral theory and150

social recommender systems design. Inspired by the successful application of

sociology, we emphasize that group recommender systems should take into ac-

count design guideline studied to drive group modeling. Therefore, we consider

social dual-effect from sociology to drive group modeling in process of group

recommendation.155
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Figure 2: Illustration of the data representation for group recommendation task. If user u as

a member in group g shows his/her preference on item i, then the cell is assigned with “∗”,

on the contrary, the cell is empty.

3. The proposed method

3.1. Preliminaries

Assumed that there are a set of users U = {u1, u2, ..., uE}, a set of items

V = {v1, v2, ..., vF }, and a set of groups G = {g1, g2, ..., gR} in group recom-

mendation. Two kinds of interactions among these data are considered, namely160

user-item interaction P, group-item interaction Q. For real-world group-item

interaction data, we assume that there is a specific actor in process of group

decision-making, and when the user switches to the actor role, this actor will

execute the group’s decision. Fig. 3 (a) illustrates the input data of our group

recommendation task. Given a target group gl, our task is to generate the rec-165

ommended item scores for a group that may be interested in, and the problem

of group recommendation can be defined as follows:

Input: A set of users U , a set of items V, a set of group G, user-item

interactions P, group-item interactions Q.

Output: Two personalized ranking functions that maps an item to a ranking170

score for target group fg : V → R and each user fu : V → R.

Fig. 2 illustrates the data representation of a group recommendation task.

Assumed that each column denotes a user, each row indicates an item and each

matrix represents a group. In our recommendation task, each user belongs to
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Figure 3: Overview of social dual-effect driven attentive group recommendation. (a) Illustra-

tion of the input data for group recommendation task. (b) Social selection and social influence

driven aggregative group representation. The first part is SDG that achieves group inherent

modeling from two levels in terms of likeness among group members. The second part is

IAM that assigns different influence weights in terms of otherness among group members. (c)

Group recommendation generation with latent interaction learning.

at least one group. For instance, user 2 belongs to group 1 and group 3, while175

user 4 belongs to group 1, group 2, and group 3. In this paper, we aggregate

the preference of group members to model group representation and obtain

prediction scores.

The overview of our SEAGR is shown in Fig. 3. As mentioned before, the

multifaceted social effects contribute to group decision-making. In our SEAGR,180

we first model interaction-level (gAl BERTbase) and user-level (gBl SDAEbase)

group representation respectively. We then conduct concatenation operation to

obtain social selection-driven group inherent modeling (SDG), including SDG-A

features and SDG-B features. SDG-A and SDG-B achieve interaction-level and

user-level group high-order feature coding respectively. We then develop a social185

influence-driven attentive influence mining model (IAM) to explore the expertise

level of each group member dynamically. On this basis, we aggregate them

to model group representation using a simple addition operation. Lastly, we

suggest the group recommendation items in the general neural recommendation

framework.190
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3.2. Social selection-driven group inherent modeling

Driven by social selection, people tend to form a group with others who

are already similar to them (Crandall et al., 2008; Zhang & Pelechrinis, 2014).

When similar people gather together, they will present a global feature that

enables to reflect group inherent preferences as introduced in Section 1. There-195

fore, a social selection-based group inherent modeling (SDG) module is designed

to model group inherent preferences or attributes. Considering the similarity

of interaction among group members in the same group, we learn the group

representation from two aspects. SDG-A and SDG-B achieve interaction-level

and user-level group modeling separately. SDG integrates SDG-A features and200

SDG-B features. This design conforms to the intuition that the social selection

effect contributes to group modeling with intrinsic preferences mining, so we

term it as a static inherent preference factor. Fig. 4 provides an overview of

our SDG and we refine group inherent modeling as follows:

gSDG
l = {gAl , gBl } = Concat{

∏
BERT

(gemb1
l ),

∏
SDAE

(gemb2
l )}. (1)

where gAl and gBl denote group representation based on SDG-A and SDG-B205

separately. gSDG
l contains gAl and gBl .

∏
is the implementation way (BERT and

SDAE). Concat denotes concatenation operation. gAl and gBl are combined to

construct social selection-driven group inherent modeling using concatenation

operation. After that, we apply an element-wise mean-pooling operation to

obtain final group representation. Next, the implementation of SDG-A and210

SDG-B is introduced in detail.

3.2.1. Interaction-level group modeling

Generally, a group has several users (i.e. group members) and historical

user-item interactions exist within the group. Therefore, the modeling of a

group is the high-order interaction coding of intra group. As introduced before,215

SDG-A aims to achieve interaction-level group modeling. We argue that the

modeling of a group can be regarded as an interaction model among internal

group members, and it is analogous to the language model. Thus, we construct a
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Figure 4: Illustration of social selection-driven group inherent modeling (SDG). It contains

the two-fold features with SDG-A features and SDG-B features. SDG-A adopts the idea of

deep bidirectional BERT model to learn interaction-level group modeling. SDG-B employs

five-layer SDAE to achieve user-level group modeling.

deep bidirectional interaction model to achieve interaction-level group modeling.

Inspired by the success of BERT (Devlin et al., 2019), BERT4Rec (Sun et al.,220

2019) is proposed to model user behavior sequences. Analogously, in our SDG-A

part, we adopt the idea of BERT to obtain group representation. The encoder

is based on BERTbase, an interaction-level group modeling as follows:

gAl = BERTbase(g
emb1
l ). (2)

As illustrated in the purple block of Fig. 4, we make the resemblance analysis

between group and sentence and regard the group as a sentence and a sentence225

is composed of words. It contains the features of words, then just as the features

of group members are included in a group. What is worth mentioning, a word

is not a group member, and the contextual interaction of a group is consistent

regardless of the order. Different from other linguistic models, BERT could

consider the context well and obtain directly a unique vector representation of230

an entire sentence. Also, it can get the better bidirectional context information

and avoid the information loss caused by global pooling in each layer. Hence we

use BERT to model the deep bidirectional interaction as the group vectors. By

this means, it reflects likeness-based group inherent preferences from interaction-
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level adequately.235

3.2.2. User-level group modeling

As we all know, there is an inclusion relationship between users and groups.

It is crucial to account for the user-level group modeling, especially in an un-

supervised learning way. Thus, we investigate how to employ an unsupervised

learning model called stacked denoising auto-encoder (SDAE)(Vincent et al.,240

2010) to obtain user-level group modeling. SDAE is a feedback neural network

that learns clean representations from corrupted input data. It is worth men-

tioning that since the interactions between users and items are undirected, the

proposed user-level group modeling in this section also applies to the item-level

to a certain extent. We develop a novel SDG-B part by using five-layer SDAE245

to achieve user-level group modeling for group inherent modeling as follows:

gBl = SDAEbase(g
emb2
l ). (3)

As illustrated in the pale yellow block of Fig. 4, we obtain one-hot vectors

for each group members and then concatenate these vectors for constructing a

group feature training sample. On this basis, SDG-B trains a five-layer SDAE

to achieve user-level group modeling. The following loss function is defined:250

L = θ
∑
i∈K

(Z1[i]− Z5[i])
2
+ η

∑
i/∈K

(Z1[i]− Z5[i])
2
. (4)

where Z1 − Z3 act as the encoder and Z3 − Z5 act as the decoder respectively.

The embedding vector in the middle layer Z3 is the final group user-level feature

vector. θ and η are two hyper-parameters, and K is the set of indexes of entries

that are corrupted. The pale yellow block of Fig. 4 shows the neural network

structure with five-layer SDAE and we employ a stochastic gradient descent255

algorithm to minimize the loss function. Equation (4) is the pre-training process

and once the training of SDG-B is finished, the feature vectors are fixed.

3.3. Social influence-driven attentive influence mining

Since social influence among group members often impacts on group’s deci-

sion on one item, for example, a cinephile may provide some insightful decisions260
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Figure 5: Illustration of social influence-driven attentive influence mining(IAM). Group mem-

bers of group are assigned different weights by designing neural attention network.

in the choosing process of a movie, but may not have any contributions in terms

of choosing a restaurant. We develop social influence-driven attentive influence

mining (IAM) to explore fully the expertise level of each group member. As

illustrated in Fig. 3(b), we provide an example from our experimental cases

and use different numerical values to show the influence weight differences of265

different members in the group. Generally, a group’s embedding is generated

by aggregating the embeddings of group members as follows:

gIAM
l =

∑
j∈ol

Υtjuj . (5)

Technically speaking, inspired by the success of the attention mechanism (He

et al., 2020; Xu et al., 2021), we design a neural attention network to learn the

weight Υ of group members, and it is different from the general way of weighting.270

During its interaction process, each group member is assigned different weights

in this dynamic way. Furthermore, it can simulate the complex process of group

decision-making.

In IAM part, uj , vt are the encoders of the user’s historical preference and

target item’s property respectively, A is a weight vector. Specifically, we use the275

softmax activation function to obtain the final attention weights and it makes

the neural attention network have a probabilistic interpretation. We compute

13



the attention score as:

Υ̃tj = ATReLU(v, u),

Υtj = softmax(Υ̃tj) =
exp(Υ̃tj)∑

j′∈ol

exp(Υ̃tj′ )
.

(6)

As shown in Fig. 3(b) and Fig. 5, with the attention neural networks, each

group member contributes to the group decision making and we can capture the280

influence distinction of members in different groups. Through our model, group

members’ different influences can also reflect clearly.

3.4. Social dual-effect driven aggregative group representation

As have mentioned before, SDG captures group inherent preferences or at-

tributes, and IAM explores the expertise level of each group member by con-285

sidering the different influences of group members. In this subsection, we fur-

ther aggregate the attention-based representation and group inherent modeling.

With the aggregative representation learning, the final group representation

captures group inherent preferences and places the higher influence weight in

representative group members of the group. In the general group modeling task,290

it obtains an embedding vector for each group to predict its preference on items.

We learn the dynamic aggregation strategy from data in our work, which can

be defined as follows.

gl(t) = AF (vt, {uj}j∈ol). (7)

where gl(t) denotes the embedding of group gl , ol contains the group member

indexes of group gl and AF presents the aggregation function.295

As shown in Fig. 3(b), we aggregate the SDG features and IAM features to

achieve the final group representation. Our final group representation modeling

consists of two components, namely social influence-driven attentive represen-

tation and social selection-driven group inherent modeling, which can be shown

as:300

gl(t) =
∑
j∈ol

Υtjuj + gSDG
l . (8)

14



3.5. Model prediction and optimization

In the previous section, we perform the group modeling based on dual social

effects by aggregating the attention-based representation (IAM) and group in-

herent modeling (SDG). Based on our proposed group representation, we next

describe how to generate the final group recommendation.305

From the work (He et al., 2017), neural collaborative filtering (NCF) is

a general multi-layer neural network for item recommendation and has been

successfully extended to group recommendation (Cao et al., 2018; He et al.,

2020). As shown in Fig. 3(c), we feed the obtained group representation, item

representation, and user representation into a dedicated neural network to learn310

group-item interaction and user-item interaction. First, given group-item pair

(gl, vt) or user-item (uj , vt), the representation can be obtained by our above

representation learning. And then the embeddings vectors are fed into a pooling

layer and shared hidden layers and the prediction results are obtained at last.

We elaborate on each layer and model optimization in our framework below.315

3.5.1. Pooling layer

We take group-item pair (gl, vt) as a input instance, and pooling layer first

makes element-wise product gl(t) ⊙ vt. To avoid information loss, we then

concatenate them to the original embedding and form a matrix:

h0 = ξ pooling(gl(t), vt) = concat(gl(t)⊙ vt, gl(t), vt). (9)

3.5.2. Hidden layer320

The hidden layer is a stack of fully connected layers, which can capture

nonlinear and high order dependencies among users, groups, and items. f is

activation function ReLU. Dε , bε and hε denote the weight matrix, bias vector

and output neurons of the ε-th hidden layer respectively.

hε = f(hε−1) = ReLU(Dεhε−1 + bε). (10)

15



3.5.3. Prediction layer325

The output of last hidden layer hε is transformed to the prediction layer.

The prediction score of group gl on item vt can be computed as:

ŷlt = fscore(hε) = dThε, when ho = ξ pooling(gl(t), vt). (11)

where d represents the weights of the prediction layer. (gl, vt) denotes group-

item pair. Similarly, the prediction score of user uj on item vt is as follows:

r̂jt = fscore(hε) = dThε, when ho = ξ pooling(uj , vt). (12)

where (uj , vt) denotes user-item pair. It’s worth pointing out that we specif-330

ically designed the prediction to share the same hidden layer for both tasks.

Since group embedding is aggregated from user embedding, this puts them in

essentially the same semantic space. In addition, the user-item interaction data

can also be used to increase the training of group-item interaction function, and

vice versa, to facilitate the mutual reinforcement of the two tasks.335

3.5.4. Model optimization

Following the previous work (Cao et al., 2018; He et al., 2020), pair learn-

ing is used to optimize model parameters and we opt for the regression-based

pairwise loss in our recommendation task, which is a general approach for item

recommendation (Wang et al., 2017). Because of the sparsity of group-item340

interactive data, we adopt a two-stage training strategy. In the first stage, the

preferences of users are learned by minimizing the pair loss function of user-item

interaction instances in Equation (13) :

Γu =
∑

(j,t,z)∈O

(r̂jt − r̂jz − 1)
2
. (13)

where O denotes the user training set. (j, t, z) indicates that user uj has inter-

acted with item vt but does not interact with vz before. Similarly, in the second345

stage, the pair loss function of the group-item interaction instance in Equation

(14) is minimized:

Γg =
∑

(l,t,z)∈O′

(ŷlt − ŷlz − 1)
2
. (14)
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where O′ represents the group training set for group recommendation task.

(l, t, z) denotes that group gl has interacted with item vt, but has not interacted

with vz before. These two functions are optimized by Adam optimizer (Kingma350

& Ba, 2015).

4. Experiments

In what follows, we first introduce the experimental setup, including datasets,

evaluation metrics, and comparison methods. We conduct extensive experi-

ments on three datasets with the aim of answering the following research ques-355

tions. The codes are ready for public download.

RQ1: How does our proposed SEAGR perform as compared with state-of-

the-art group recommendation methods?

RQ2: Do the key components (i,e., SDG and IAM) of SEAGR contribute

to group recommendation performance?360

RQ3: How is the convergence of our SEAGR?

RQ4: Can the attentive influence of group members in different groups be

mined?

4.1. Experimental setup

Datasets. In reality, there are two types of groups. One is the persis-365

tent group (or similar group), the other is the occasional (or random) group

(Baltrunas et al., 2010; Tran et al., 2019). Hence, to better simulate different

group types in the real world, random groups and groups with high inner group

similarity are distinguished. Our experiments are conducted on three real-world

datasets. Table 1 denotes the basic statistics of the three datasets. The detailed370

descriptions of the dataset are as follows.

The first dataset is CAMRa20112, which is a public dataset containing the

movie rating records of individual users and households (persistent group). Fol-

lowing the work (Cao et al., 2018, 2021), each household is treated as a group

2http://2011.camrachallenge.com/2011
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Table 1: Basic statistics of the datasets.

Dataset #Groups #Users #Items Avg.Group Size

CAMRa2011 290 602 7710 2.08

Yelp2018 24,103 34,504 22,611 4.45

MovieLens 30,426 5,987 2,795 5.00

and movies are recommended for each household. The users without group375

information are filtered and users who have joined a group are kept.

The second dataset is Yelp20183. It allows users to share their check-ins

about the local businesses, such as restaurants, bars, and so on. Following the

work(Yin et al., 2019), we focus on the restaurants located in the Los Angles

area. If a set of users visit a restaurant or participate in the same event at the380

same time, they are considered group members of a group (random group) and

the common activity they participate in is the corresponding group activity.

This dataset is used in recent group recommendation tasks (Yin et al., 2019;

Sankar et al., 2020).

The third dataset is MovieLens4 and following existing work (Yuan et al.,385

2014; Tran et al., 2019), users in our MovieLens dataset are assigned into the

same group when they have high inner group similarity. Thus, it contains groups

(similar group) with high similarity between user-user. The similarity is calcu-

lated with the Pearson correlation coefficient and the top 33% of all possible

pairs are selected to form groups.390

Evaluation metrics. Our final goal is to obtain the item scores. To match the

recommendation better, we use the evaluation index generated by item lists to

evaluate the performance of our proposed method for group recommendation.

The performance of the top-N recommendation is evaluated in our experiment395

by the widely used metric, namely Hit Ratio (HR) and Normalized Discounted

3http://www.yelp.com/dataset/challenge
4http://grouplens.org/datasets/movielens/
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Cumulative Gain (NDCG). HR measures whether the test item is in the top-

N list (1 for yes, 0 for No), while NDCG measures the hit position by giving

a high score. Here N is the number of recommendations and we evaluate the

performance with N = {5, 10, 20}. NDCG and HR metrics are used in (Yuan400

et al., 2014; Yin et al., 2019; Cao et al., 2018, 2021). The higher value is, the

better performance is.

Comparison methods. As mentioned before, the general aggregation meth-

ods include the least misery (LM) strategy, maximum satisfaction (MS) strategy,405

and average(AVG) strategy. Existing social recommendations focus on social

networks and regard social information as an auxiliary to better recommenda-

tion quality. Distinct from these studies, we observe that the social factor can

be explored without auxiliary information of social networks. Based on this, our

method does not take into account auxiliary information from social networks410

but explores social dual-effect driven group modeling. Therefore, the proposed

method does not compare against social recommendations based on social net-

works (Yin et al., 2019; Zhenhua et al., 2020). NCF has superior performance

compared to the traditional recommendation model such as factorization ma-

chines, which has been adopted by some advanced work (Cao et al., 2018; Sankar415

et al., 2020; Cao et al., 2021), and we compare the NCF with static LM and AVG

strategies. AGREE, MoSAN, GAME and UDA are similar to our method in

terms of attention mechanism, however, we employ the more effective aggrega-

tion representation to model the group profile. PIT and COM are probabilistic

models and the comparison to show the effectiveness of our attentive weights.420

The comparison methods are described in detail below.

• LM (Amer-Yahia et al., 2009): We take the minimum score of all group

members as the group’s score in the framework of neural collaborative fil-

tering. This method assumes that the least satisfied members have a high

influence on group decision-making.425

• AVG (Baltrunas et al., 2010): We average the preference scores of all
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group members as the group’s score in the framework of neural collaborative

filtering. This method assumes that the influence of group members is equal.

• PIT (Liu et al., 2012): Personal Impact Topic (PIT) is an author-topic

model and it assumes that each group member has an influence weight. PIT430

regards the relatively high influence member as the representatives of a group.

This representative user selects a topic based on her (his) preference, and the

topic generates a recommendation result for the group.

• COM (Yuan et al., 2014): COM is the state-of-the-art group recommen-

dation method and it is a probabilistic model that models the group activity435

generation process for a group.

• NCF (He et al., 2017): This method regards a group as a virtual user and

it does not consider the information of group members. And then users and

virtual users are embedded into the NCF 5 framework.

• AGREE (Cao et al., 2018): AGREE 6 employs attention mechanism to440

learn the group-item interaction and user-item interaction. Besides, in (Cao

et al., 2021), AGREE is presented without considering social information.

However, this model ignores group inherent modeling.

• MoSAN (Tran et al., 2019): MoSAN designs sub-attention module for

each group members to model users’ preference. However, it is insufficient to445

explore latent interaction for group representation.

• GAME (He et al., 2020): It mainly targets the occasional group recom-

mendation and learns graphical and attentive multi-view embeddings of users,

items, and groups. GAME is implemented based on AGREE.

• UDA (Zan et al., 2021): UDA 7 is short for user-difference attention model450

for group recommendation. This model uses user-difference attention to cap-

5https://github.com/hexiangnan/neural collaborative filtering
6https://github.com/LianHaiMiao/Attentive-Group-Recommendation
7https://github.com/zanshuxun/User-Difference-Attention
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ture the comparisons between group members. UDA is also implemented

based on AGREE.

Implementation and setting details. Our SEAGR is implemented on Py-

Torch 8. Each dataset is randomly split into training and testing sets with the455

ratio of 80% and 20% respectively. Each setting is repeated 5 times and the av-

erage result is reported. We perform mini-batch training, and each mini-batch

includes user-to-item interaction and group-to-item interaction. We test the

mini-batch size of [128, 256, 512] and the learning rate of [0.001, 0.005, 0.01,

0.05, 0.1]. Moreover, we employ the “masking noise” corruption strategy in the460

SDAE training process, and SDAE consists of five fully connected layers with

ReLU activation. Besides, we adopt dropout on the hidden layer of the neural

attention network and the NCF interaction learning component. Note that the

results of baselines take the best values of the existing results and the results we

implemented. For efficiency, we have recorded the running time of SEAGR and465

AGREE in our equipment (2080Ti, 64G). When K=10, epoch=30, the running

time (including training and testing) interval of AGREE was 870 to 880 seconds,

and our SEAGR was 880 to 890 seconds.

4.2. Overall performance comparison: RQ1

Since we propose the innovations in group representation learning, we com-470

pare the performance of our SEAGR with the relevant state-of-the-art meth-

ods in the group recommendation task. Note that since PIT, COM, MoSAN,

GAME, UDA, and score aggregation methods are specially designed for group

recommendation, they don’t consider the recommendation for individual users.

Table 2 to Table 4 show the results of different methods on the three datasets475

receptively. We have the following observations:

(1) Generally, our SEAGR achieves the best performance over baseline meth-

ods. UDA and GAME are better than MoSAN and AGREE, and most of the

8https://pytorch.org
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Table 2: Top-N overall performance comparison for users and groups on CAMRa2011 Dataset.
N=5 N=10 N=20

User Group User Group User Group

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

LM (Amer-Yahia et al., 2009) - - 0.5593 0.3788 - - 0.7648 0.4455 - - 0.8874 0.4729

AVG (Baltrunas et al., 2010) - - 0.5683 0.3819 - - 0.7641 0.4452 - - 0.8845 0.4718

PIT (Liu et al., 2012) - - 0.4987 0.2878 - - 0.6488 0.3325 - - 0.7829 0.3956

COM (Yuan et al., 2014) - - 0.5798 0.3785 - - 0.7695 0.4385 - - 0.8746 0.4612

NCF (He et al., 2017) 0.6119 0.4018 0.5803 0.3896 0.7894 0.4535 0.7693 0.4448 0.8894 0.4807 0.8895 0.4725

AGREE (Cao et al., 2018) 0.6223 0.4118 0.5883 0.3955 0.7967 0.4687 0.7807 0.4575 0.8951 0.4856 0.8926 0.4792

MoSAN (Tran et al., 2019) - - 0.5894 0.3971 - - 0.7823 0.4591 - - 0.8947 0.4836

GAME (He et al., 2020) - - 0.5914 0.3963 - - 0.7851 0.4606 - - 0.8963 0.4872

UDA (Zan et al., 2021) - - 0.5922 0.4027 - - 0.7848 0.4598 - - 0.8959 0.4866

SEAGR-M 0.6184 0.4120 0.5803 0.3950 0.7923 0.4668 0.7792 0.4569 0.8930 0.4815 0.8921 0.4762

SEAGR-DA 0.6233 0.4176 0.5888 0.3940 0.7987 0.4727 0.7952 0.4610 0.9076 0.4972 0.9014 0.4843

SEAGR-DB 0.6237 0.4152 0.5849 0.3961 0.7979 0.4710 0.7918 0.4579 0.9092 0.4932 0.9045 0.4875

SEAGR-D 0.6427 0.4215 0.5944 0.3981 0.8066 0.4723 0.7968 0.4612 0.9095 0.5093 0.9100 0.4902

SEAGR (ours) 0.6452 0.4221 0.5956 0.3997 0.8107 0.4796 0.7992 0.4615 0.9139 0.5101 0.9126 0.4951

*Note that empty results with “-” because some methods are designed specifically for group recommendation. The best results are bold.

results show that our SEAGR achieves the improvement of performance com-

pared with all baselines.480

(2) More specifically, the optimal improvement over AGREE is 17.55% for

HR and 12% for NDCG on the Yelp2018 dataset. Besides, compared to MoSAN,

the proposed SEAGR gains 5.88% and 8.32% improvement maximally for HR

and NDCG respectively.

(3) For maximum improvement, our SEAGR improves 4.61% than GAME485

on Yelp2018 dataset in terms of HR@10 and 6.16% than UDA on Yelp2018

dataset in terms of NDCG@10.

As mentioned before, our SEAGR for neural group recommendation is simi-

lar to AGREE, MoSAN, GAME, and UDA at a technological level. AGREE just

uses an attention network to get the representation of a group, while MoSAN490

designs a sub-attention module for each group member. GAME and UDA are

implemented based on AGREE. Distinct from them, our SEAGR models the

group inherent preferences. On the one hand, we adopt a deep bidirectional

model to obtain interaction-level group modeling. On the other hand, a deep

SDAE model is employed to achieve user-level group modeling. Therefore, our495

method is better than UDA, AGREE, and MoSAN on three datasets.

Although SEAGR is 0.75% lower than GAME on the CAMRa2011 dataset
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Table 3: Top-N overall performance comparison for users and groups on Yelp2018 Dataset.
N=5 N=10 N=20

User Group User Group User Group

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

LM (Amer-Yahia et al., 2009) - - 0.1052 0.1994 - - 0.1594 0.2051 - - 0.2362 0.2220

AVG (Baltrunas et al., 2010) - - 0.1064 0.2035 - - 0.1663 0.2090 - - 0.2402 0.2249

PIT (Liu et al., 2012) - - 0.0981 0.1530 - - 0.1494 0.1620 - - 0.2387 0.1730

COM (Yuan et al., 2014) - - 0.1090 0.2040 - - 0.1630 0.2120 - - 0.2512 0.2260

NCF (He et al., 2017) 0.1389 0.2052 0.1264 0.1987 0.2016 0.2253 0.1959 0.2094 0.2454 0.2539 0.2084 0.2295

AGREE (Cao et al., 2018) 0.1914 0.2206 0.1583 0.2183 0.2712 0.2415 0.2125 0.2342 0.3105 0.2636 0.2735 0.2621

MOSAN (Tran et al., 2019) - - 0.1698 0.2257 - - 0.2376 0.2438 - - 0.2843 0.2603

GAME (He et al., 2020) - - 0.1718 0.2357 - - 0.2388 0.2498 - - 0.2893 0.2799

UDA (Zan et al., 2021) - - 0.1703 0.2341 - - 0.2379 0.2451 - - 0.2888 0.2770

SEAGR-M 0.1824 0.2186 0.1579 0.2141 0.2694 0.2351 0.2101 0.2294 0.3024 0.2620 0.2680 0.2589

SEAGR-DA 0.1957 0.2239 0.1586 0.2188 0.2774 0.2485 0.2235 0.2451 0.3175 0.2701 0.2770 0.2634

SEAGR-DB 0.1928 0.2264 0.1621 0.2251 0.2693 0.2468 0.2252 0.2390 0.3140 0.2692 0.2782 0.2597

SEAGR-D 0.2011 0.2321 0.1724 0.2310 0.2798 0.2518 0.2401 0.2499 0.3251 0.2850 0.2901 0.2711

SEAGR (ours) 0.2114 0.2405 0.1798 0.2445 0.2842 0.2647 0.2498 0.2602 0.3362 0.2908 0.2990 0.2819

*Note that empty results with “-” because some methods are designed specifically for group recommendation. The best results are bold.

at NDCG@5, SEAGR beats GAME on the other evaluations. The possible

reason is that the characteristics of CAMRa2011 dataset are small in scale and

there is less learning interaction information, the useful information is directly500

and simply obtained through multi-view embedding of GAME. Besides, if we

don’t consider the impact of groups on users and lack mutual reinforcement,

NCF has unsatisfactory results. As an upstream task, the effectiveness of our

SEAGR in group preference modeling is justified. Meanwhile, our SEAGR

compares the performance with the COM, AVG, and LM, the results have a505

better improvement.

AGREE, MoSAN, GAME, UDA, and our SEAGR employ dynamic aggre-

gation strategies based on attention mechanisms and can simulate the group’s

dynamic decision-making. Thus, it has better results than others. More im-

portantly, in contrast to AGREE, MoSAN, GAME and UDA, SEAGR learns510

jointly interaction-level and user-level group modeling to capture group inherent

preferences and it has more accuracy for group recommendation. Moreover, we

can see that our SEAGR outperforms obviously other comparison methods on

the Yelp2018 and MovieLens. They have a larger average group size compared

with CAMRa2011 and our proposed method has more accuracy in the larger515

group. The deep latent interaction among group members in the larger groups is
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Table 4: Top-N overall performance comparison for users and groups on MovieLens Dataset.
N=5 N=10 N=20

User Group User Group User Group

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

LM (Amer-Yahia et al., 2009) - - 0.1158 0.2355 - - 0.1394 0.2684 - - 0.2301 0.2834

AVG (Baltrunas et al., 2010) - - 0.1204 0.2476 - - 0.1401 0.2761 - - 0.2339 0.2876

PIT (Liu et al., 2012) - - 0.1134 0.0781 - - 0.1595 0.0843 - - 0.2481 0.0918

COM (Yuan et al., 2014) - - 0.1262 0.1297 - - 0.1695 0.1687 - - 0.2574 0.2071

NCF (He et al., 2017) 0.1628 0.3495 0.1297 0.2586 0.1824 0.3254 0.1448 0.2847 0.2584 0.3412 0.2375 0.2950

AGREE (Cao et al., 2018) 0.1748 0.3621 0.1376 0.2648 0.1904 0.3492 0.1542 0.2975 0.2734 0.3571 0.2476 0.3140

MoSAN (Tran et al., 2019) - - 0.1459 0.2735 - - 0.1667 0.3083 - - 0.2539 0.3252

GAME (He et al., 2020) - - 0.1479 0.2782 - - 0.1689 0.3106 - - 0.2579 0.3299

UDA (Zan et al., 2021) - - .01485 0.2768 - - 0.1677 0.3099 - - 0.2564 0.3286

SEAGR-M 0.1704 0.3458 0.1303 0.2143 0.1834 0.3352 0.1441 0.2570 0.2574 0.3389 0.2314 0.3083

SEAGR-DA 0.1789 0.3710 0.1416 0.2714 0.2011 0.3537 0.1641 0.3018 0.2831 0.3642 0.2526 0.3217

SEAGR-DB 0.1792 0.3691 0.1431 0.2730 0.1999 0.3541 0.1612 0.3046 0.2793 0.3655 0.2520 0.3197

SEAGR-D 0.1801 0.3733 0.1498 0.2800 0.2053 0.3611 0.1664 0.3073 0.2813 0.3695 0.2612 0.3215

SEAGR (ours) 0.1821 0.3735 0.1506 0.2861 0.2100 0.3663 0.1693 0.3130 0.2897 0.3699 0.2622 0.3306

*Note that empty results with “-” because some methods are designed specifically for group recommendation. The best results are bold.

obvious, and it reflects the advancement of our method for group representation.

4.3. Ablation study: RQ2

To further understand the importance of aggregation the group inherent520

modeling and attention-based representation, the ablation study is conducted.

SEAGR-D represents the social selection-driven group inherent modeling, SEAGR-

M denotes the social influence-driven attention-based representation, and SEAGR

is our attentive aggregation representation. In SEAGR-D, SEAGR-DA only

achieves interaction-level group modeling, and SEAGR-DB only achieves user-525

level group modeling. Table 2 to Table 4 show the results of four simplified

components and our SEAGR on three datasets.

As shown in Table 2 to Table 4, SEAGR-D has more accuracy than SEAGR-

M on the three datasets. Technically speaking, the key difference between

SEAGR-D and SEAGR-M is the way of group representation. Specifically,530

SEAGR-D obtains the group representation by combining interaction-level model

and user-level model to obtain group representation. SEAGR-M is to learn

group representation based on attention mechanism and it is similar to AGREE

(Cao et al., 2018, 2021) at a technical level. Moreover, SEAGR-DA has bet-
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(a) Training Loss (b) HR@10 (c) NDCG@10

Figure 6: Training loss and group recommendation performance of SEAGR w.r.t. the num-

ber of epochs on CAMRa2011. (a) Training Loss. (b) HR@10 with different epochs on

CAMRa2011 dataset. (c) NDCG@10 with different epochs on CAMRa2011 dataset.

ter results than SEAGR-B on both datasets. The experimental results show535

that our group representation has a better performance than attention-based

representation. Above all, our SEAGR aggregates the SEAGR-D (SDG fea-

tures) and SEAGR-M (IAM features) as the representation for group modeling,

which considers the influence difference of group members and the group inher-

ent modeling of two levels. Therefore, the performance of our SEAGR is better540

than the two components, and SEAGR demonstrates significant improvements

over SEAGR-D and SEAGR-M.

4.4. Convergence analysis: RQ3

The training loss is shown in Fig. 6(a). We can see clearly that SEAGR

converges fast and it reaches optimal results when the epoch is about 14. Be-545

sides, as shown in Fig. 6(b) and 6(c), we also present the value of HR@10 and

NDCG@10 with the increasing number of epochs on the CAMRa2011 dataset.

Through our experiments, the convergence on Yelp2018 and Movielens dataset

is similar to the CAMRa2011 dataset, so to save space, we only report conver-

gence on the CAMRa2011 dataset.550

As we all know, deep neural networks are with great representation learning

ability. However, it is easy to overfit the trained model. In order to prevent

SEAGR from overfitting, a dropout strategy is adopted to alleviate effectively

the overfitting and achieve regularization to a certain extent. Fig. 7 exhibits
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(a) CAMRa2011 — HR@10 (b) MovieLens — HR@10 (c) Yelp2018 — HR@10

(d) CAMRa2011 — NDCG@10 (e) MovieLens — NDCG@10 (f) Yelp2018 — NDCG@10

Figure 7: Performance of SEAGR w.r.t. the dropout ratio. (a) HR@10 with different dropout

ratio on CAMRa2011 dataset. (b) HR@10 with different dropout ratio on MovieLens dataset.

(c) HR@10 with different dropout ratio on Yelp2018 dataset. (d) NDCG@10 with different

dropout ratio on CAMRa2011 dataset. (e) HR@10 with different dropout ratio on MovieLens

dataset. (f) NDCG@10 with different dropout ratio on Yelp2018 dataset.

the performance of SEAGR w.r.t and the dropout ratio on the CAMRa2011,555

Yelp2018, and MovieLens datasets when N=10. As illustrated in Fig. 7, the

optimal settings for the dropout ratio are 0.4 to 0.6 on both datasets.

4.5. Effect of attentive influence mining: RQ4

To visualize the validity of the attention mechanism in our attentive influ-

ence mining model, we show some sample groups in Fig. 8. These samples were560

randomly selected from our datasets. The darker the color is, the more influen-

tial group members have. As shown in Fig. 8, users 1 and 12 have the largest

attention weights or the largest influence as representative group members in

group 6, which are indicated by their darkest cells.

As noted previously, group members have different influences on the group565

decision making and representative group members of the group have a higher

influence. Our idea is similar to PIT in this view, whereas we adopt a different

technology. So we choose PIT as a comparison method to verify the effectiveness
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Figure 8: Visualization for the sampled 10 groups w.r.t. attention weights, where x-axis

denotes the group member-ID and the y-axis denotes the group-ID.

of our method in this section. Fig. 9 visualizes that the influence weight using

PIT and SEAGR in randomly-chosen groups from our datasets. We can see570

clearly that the two methods learn both the influence weight for each group

member.

As shown in Fig. 9, in Group A, user-332 of four users has a large weight

and is the representative group member of group A. However, PIT continues

to consider that user-332 has a large weight in group B. In fact, user-119 has575

a large weight in group B and SEAGR can determine the representative group

member of the group effectively for group decision-making. Since PIT’s influence

parameter cannot differentiate the roles of one user in different groups and it

may fail to identify representative group members of the group. Therefore, our

attentive influence mining model based on attention mechanism can capture the580

dynamic influence weight in the process of group decision-making.

4.6. Discussion

Overall, the advantages and limitations of the proposed method in this paper

are summarized as follows.

Advantages: The proposed SEAGR has the following two advantages. (1)585

Our method is driven by social dual-effect from sociology and provides sufficient

design guideline study. Meanwhile, the social effects can be explored without

the help of side information on social networks. (2) Our group representation

modeling captures group inherent preferences or attributes by aggregating fea-
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Figure 9: Visualization for the influence weight by PIT and SEAGR. (a) Group A. The user-

332 of four users has a large weight and as the expert of group A. (b) Group B. The user-119

has a large weight in group B and as the expert of group B.

tures of two levels and the optimal improvement over AGREE is 17.55% in590

accuracy.

Limitations: We identify two limitations of our work. (1) Our model takes

10 to 20 seconds longer to run compared to the main baselines in efficiency. We

plan to explore a lightweight model to reduce time costs. (2) In real life, there are

some heterogeneous groups, and it is difficult for people to reach a consensus in595

such situations. Therefore, they are less likely to participate in group activities

together. The proposed method follows the principle of homophily and is not

applicable to heterogeneous groups to some extent.

5. Conclusion and future work

In this work, we focus on the issue of group modeling with social effects. To600

the best of our knowledge, this is the first work to adopt social selection and so-

cial influence simultaneously for group aggregation representation. We propose a

novel social dual-effect driven attentive group modeling for neural group recom-

mendation, which aggregates the group inherent modeling and attention-based

representation for group representation. Our proposed method demonstrates605

impressive performance in the experimental results than the comparison meth-

ods. In the future, we would like to explore more social effects in recommender

systems or extend them to other downstream tasks.
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