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Recursive Copy and Paste GAN: Face
Hallucination from Shaded Thumbnails

Yang Zhang, Ivor W. Tsang, Senior Member, IEEE, Yawei Luo, Changhui Hu, Xiaobo Lu, and Xin Yu

Abstract—Existing face hallucination methods based on convolutional neural networks (CNNs) have achieved impressive performance
on low-resolution (LR) faces in a normal illumination condition. However, their performance degrades dramatically when LR faces are
captured in non-uniform illumination conditions. This paper proposes a Recursive Copy and Paste Generative Adversarial Network
(Re-CPGAN) to recover authentic high-resolution (HR) face images while compensating for non-uniform illumination. To this end, we
develop two key components in our Re-CPGAN: internal and recursive external Copy and Paste networks (CPnets). Our internal CPnet
exploits facial self-similarity information residing in the input image to enhance facial details; while our recursive external CPnet
leverages an external guided face for illumination compensation. Specifically, our recursive external CPnet stacks multiple external
Copy and Paste (EX-CP) units in a compact model to learn normal illumination and enhance facial details recursively. By doing so, our
method offsets illumination and upsamples facial details progressively in a coarse-to-fine fashion, thus alleviating the ambiguity of
correspondences between LR inputs and external guided inputs. Furthermore, a new illumination compensation loss is developed to
capture illumination from the external guided face image effectively. Extensive experiments demonstrate that our method achieves
authentic HR face images in a uniform illumination condition with a 16× magnification factor and outperforms state-of-the-art methods
qualitatively and quantitatively.

Index Terms—Face hallucination, super-resolution, illumination normalization, generative adversarial network.
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1 INTRODUCTION

F ACE hallucination, also known as face super-resolution (FSR),
refers to generating high-resolution (HR) face images from

their corresponding low-resolution (LR) inputs, has received sig-
nificant attention in recent years. Existing face hallucination meth-
ods mainly focus on super-resolving face images with uniform
illumination. However, due to the non-ideal imaging environ-
ments, the captured face images may be tiny and shaded. Hal-
lucinating such shaded LR faces requires either face illumination
normalization followed by face hallucination techniques, or face
hallucination methods followed by illumination normalization.
Note that in order to super-resolve shaded LR faces, existing
FSR methods often rely on the availability of illumination-specific
exemplar datasets. Nonetheless, both of these options are naturally
very challenging.
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Fig. 1: Motivation of Re-CPGAN. Internal and recursive external
CPnets are introduced to mimic the Clone Stamp Tool. Internal
CPnet copies well-illuminated facial details and then paste them
onto shadow regions. Recursive external CPnet further retouches
the face using an external guided face from the UI-HR face
database during the upsampling process to compensate for uneven
illumination in the final HR face.

The state-of-the-art face illumination processing methods [1]–
[3] usually fit the face region to a pre-aligned face template based
on facial landmarks and then normalize illumination. However,
these methods are unsuitable for tiny faces because accurate facial
landmark detection requires the input image with a sufficient
resolution. This leads to suboptimal illumination normalization
results (see Fig. 2(d)). Moreover, the produced errors cannot be
eliminated by the subsequent face hallucination process but are
exaggerated (see Fig. 2(e)). Similarly, as shown Fig. 2(f), for
shaded LR faces, applying illumination normalization followed
by face hallucination also produces degraded results with obvious
distortions and severe artifacts.
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(a) Input (b) Guided HR (c) GT (d) [3] (e) [3] + [4] (f) [4] + [3] (g) CPGAN (h) Re-CPGAN

Fig. 2: Comparison of our proposed Re-CPGAN with the state-of-the-art methods (16× 16, 8×)1. (a) Interpolated unaligned NI-LR
image. (b) Guided UI-HR image (128× 128 pixels). (c) Ground-truth UI-HR image (128× 128 pixels, not available in training).
(d) Illumination normalization result of (a) by applying [3]. (e) Face hallucination result of (d) by applying [4]. (f) Result of face
hallucination followed by illumination normalization by applying [4] and then [3] to the NI-LR face. (g) Result of our previous method
CPGAN [5]. (h) Result of Re-CPGAN (128×128 pixels).

In this paper, we aim to hallucinate LR inputs under non-
uniform illumination (NI-LR)2 while achieving HR faces under
uniform illumination (UI-HR)3 in a unified framework. In par-
ticular, these two tasks (i.e., face hallucination and illumination
compensation) will be addressed simultaneously and mutually
facilitate each other. To this end, we propose a Recursive Copy
and Paste Generative Adversarial Network (Re-CPGAN), which
adopts the internal and external guided illumination information
to normalize the input NI-LR face progressively during the up-
sampling procedure (as illustrated in Fig. 1).

Re-CPGAN: It consists of two components: a copy and
paste based transformative upsampling network (CPUN) which
embodies an internal CPnet, a recursive external CPnet and a face
reconstruction net, as well as a discriminative network. We first
design an internal CPnet to initially offset non-uniform illumi-
nation features and roughly enhance facial details by exploiting
facial self-similarity information within an input NI-LR face.
Then, we propose a recursive external CPnet to learn illumination
patterns from a guided UI-HR face and upsample facial features.
Our recursive external CPnet stacks External Copy and Paste
(EX-CP) units for normalizing illumination and enhancing facial
details alternatingly, and employs a global skip connection to pass
low-frequency facial information to the output while mitigating
the difficulty of training deep networks. Specifically, we employ
recursive learning for the Ex-CP unit to make our model deep
yet compact. In doing so, we normalize illumination and recover
diverse characteristics of NI-LR inputs progressively. Afterwards,
we transform the refined feature maps (multi-channel) back to the
original image space (RGB-channel) via the face reconstruction
net to generate the UI-HR face. Inspired by previous works [6]–
[8], we employ the discriminative network to enforce the UI-
HR output to resemble real human faces. Finally, we propose an
illumination compensation loss to capture the normal illumination
pattern and transfer the normal illumination to the inputs. As
shown in Fig. 2(h), our hallucinated UI-HR face is realistic, and
resembles the ground-truth with normal illumination.

Data Augmentation: Training a deep neural network requires

1. (16×16, 8×): 16×16 represents the resolution of the original input NI-
LR face; 8× represents the magnification factor.

2. NI-LR faces: low-resolution faces under non-uniform illumination.
3. UI-HR faces: high-resolution faces under uniform illumination.

very large datasets to prevent over-fitting. In our case, the existing
public face datasets [9], [10] do not provide a sufficient number
of NI/UI face pairs. For the training purpose, we propose a tailor-
made Random Adaptive Instance Normalization (RaIN) model as
our “illumination rendering engine”. The proposed RaIN model
adopts an encoder-decoder architecture and employs an Adaptive
Instance Normalization (AdaIN) [11] layer and a Variational Auto-
Encoder (VAE) [12] in the latent space. Specifically, we exploit
AdaIN to normalize the features of a UI face image and then
enforce the features to share the same channel-wise mean and
standard deviation as those of a selected NI face image features.
The VAE is inserted before the AdaIN layer to produce an
unlimited number of plausible hypotheses for the feature statistics
of the NI face image. Our RaIN model is able to transfer various il-
lumination conditions to face images and thus generates sufficient
NI face samples from UI-HR inputs. As a result, we construct a
large corpus of NI/UI face pairs for training our Re-CPGAN.

Extension: In our previous work [5], we propose CPGAN
which directly stacks multiple external CPnets and deconvolu-
tional layers to offset non-uniform illumination and upsample
facial details alternatingly. However, adding more convolutional
layers introduces more parameters, and handicaps the model
deployment in practice. As a notable extension of our previous
work, we inherit the copy and paste strategy and design a more
advanced network architecture from the perspective of recursive
learning, thereby constructing a deep yet compact model with
better hallucination performance. The major improvements lie
in four-folds: (1) We design a recursive external CPnet to learn
illumination and upsample facial details to improve the capability
of our face hallucination network while achieving a deep yet
compact model Re-CPGAN. (2) We provide analyses on our
model with increasing recursions in terms of qualitative and
quantitative performance as well as landmark estimation accuracy.
(3) We further adopt three evaluation metrics, i.e., face recognition
rate, expression classification rate and facial landmark localization
error, to evaluate our face hallucination performance and demon-
strate the advantage of Re-CPGAN. (4) We evaluate our model on
more challenging situations including the inputs under extremely
low resolutions, large poses and complex expressions, and confirm
that our Re-CPGAN outperforms the state-of-the-art in all cases.

The contributions of our work are summarized as follows:
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• We present a novel framework, dubbed Re-CPGAN, to ad-
dress face hallucination and illumination compensation to-
gether in an end-to-end manner. Re-CPGAN is optimized
by not only the conventional face hallucination losses but
also a newly introduced illumination compensation loss.

• We design an internal CPnet to normalize illumination
and enhance facial details coarsely, aiding subsequent
illumination compensation and upsampling processes.

• We present a recursive external CPnet to learn illumination
features from an external guided face. In this fashion,
we are able to learn illumination explicitly rather than
over-fitting to a certain illumination condition. With the
recursive learning, the performance of our model can be
significantly improved without introducing new parame-
ters for additional layers.

• A tailor-made data augmentation model, namely RaIN,
is proposed to generate sufficient NI/UI face pairs. Our
constructed NI/UI face pair database will be publicly
available for reproducibility.

• Our experiments demonstrate that Re-CPGAN is able to
normalize and super-resolve (by a large upscaling factor
of 16×) NI-LR face images (e.g., 8×8 pixels) undergoing
large poses (e.g., 90o) and complex facial expressions
(e.g., “disgust”, “surprise”). Moreover, our Re-CPGAN
is capable of providing superior hallucinated face images
for downstream tasks, i.e., face recognition and expression
classification, in comparison to the state-of-the-art.

2 RELATED WORK

2.1 Face Hallucination
Face hallucination methods aim at establishing the intensity rela-
tionships between input LR and output HR face images. The prior
works can be categorized into three mainstreams: holistic-based,
part-based, and deep learning-based methods.

The basic principle of holistic-based techniques is to upsample
a whole LR face by a global face model. Wang et al. [13] formulate
a linear mapping between LR and HR images to achieve face
super-resolution based on an Eigen-transformation of LR faces.
Liu et al. [14] incorporate a bilateral filtering to mitigate the
ghosting artifacts. Kolouri and Rohde [15] morph HR faces from
aligned LR ones based on optimal transport and subspace learning.
However, they require LR inputs to be precisely aligned and
reference HR faces to exhibit similar canonical poses and natural
expressions.

To address pose and expression variations, part-based methods
are proposed to make use of exemplar facial patches to upsample
local facial regions instead of imposing global constraints. The
approaches [16]–[18] super-resolve local LR patches based on
a weighted sum of exemplar facial patches in reference HR
database. Liu et al. [19] develops a locality-constrained bi-layer
network to jointly super-resolve LR faces as well as eliminate
noise and outliers. Moreover, SIFT flow [20] and facial land-
marks [21] are introduced to locate facial components for further
super-resolution. Since these techniques need to localize facial
components in LR inputs preciously, they may fail to process very
LR faces.

Recently, deep learning based face hallucination methods
have been actively explored and achieved superior performance
compared to traditional methods. Yu et al. [22] exploit decon-
volutional layers to upsample LR faces and employ unsharp

filtering to enhance image sharpness [23]. Later, Yu et al. [24],
[25] develop GAN-based models to hallucinate very LR face
images. Huang et al. [26] incorporate the wavelet coefficients
into deep convolutional networks to super-resolve LR inputs with
multiple upscaling factors. Cao et al. [27] design an attention-
aware mechanism and a local enhancement network to alternately
enhance facial regions in super-resolution. Xu et al. [28] jointly
super-resolve and deblur face and text images with a multi-class
adversarial loss. Dahl et al. [29] present an autoregressive Pixel-
RNN [30] to hallucinate pre-aligned LR faces. Yu et al. [6] present
a multiscale transformative discriminative network to hallucinate
unaligned input LR face images with different resolutions. Menon
et al. [31] present a Photo Upsampling via Latent Space Explo-
ration (PULSE) algorithm to generate high-quality frontal face
images at large resolutions. Zhang et al. [32] develop a two-
branch super-resolution network to compensate and upsample
ill-illuminated LR face images. However, these methods focus
on super-resolving near-frontal LR faces. Consequently, they are
restricted to the inputs under small pose variations.

Several face hallucination techniques have been proposed to
super-resolve LR faces under large pose variations by introducing
facial prior information [4], [33], [34]. Chen et al. [33] incorporate
facial geometry priors into their hallucination model to super-
resolve LR faces. Bulat et al. [34] propose a method to learn
not only the mappings between LR and HR faces but also the
real-world degeneration process. Yu et al. [4] exploit the facial
component information from the intermediate upsampled features
to encourage the upsampling stream to produce photo-realistic
HR faces. However, these approaches only hallucinate tiny face
images with normal illumination.

2.2 Face Illumination Compensation

Face illumination compensation methods focus on compensating
for uneven illumination in face images. Conventional and emerg-
ing researches on face illumination compensation can be grouped
into two classes: illumination normalization and illumination syn-
thesis methods.

Illumination normalization methods usually obtain the normal
illumination face image by directly manipulating or modifying the
input face. Shashua et al. [35] propose a quotient image technique
for face illumination normalization, where an input face image is
normalized by multiplying it with the ratio of a reference uniform
illumination face and the input one. Quotient images have also
been used to transfer subtle shading effects caused by expression
variations [36] and match illumination for face swapping [37]. [38]
presents a novel image processing chain to calculate illumination-
insensitive features. Chen et al. [1] design detailed illumination
layers based on edge-preserving filters to modify non-uniform
illumination in input images. However, these methods require an
input face to be strict pre-aligned, which is impractical in serve
illumination and low-resolution cases.

Recently, image-to-image translation algorithms have been
proposed to tackle the face illumination transfer problem including
illumination normalization. Tran et al. [39] propose a GAN-
based model to learn disentangled representations of input faces,
and then generate label-assisted face images. Yang et al. [40]
design an IL-GAN model to produce face images with desired
illumination styles by injecting illumination codes. Zhu et al. [41]
propose a cycle consistent network to render a content image to
new images with different styles. However, these multi-domain
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Fig. 3: The pipeline of the copy and paste upsampling network (CPUN) in our proposed Re-CPGAN.

transfer techniques require explicit domain labels. FUNIT [42]
is proposed to generate the target domain images with only a
few examples. HiDT [43] is a recent advanced image-to-image
translation method that does not rely on domain labels during
either training or inference. It is able to re-render an image with
different illumination conditions in a continuous space. However,
without imposing facial priors to their framework, these methods
would reconstruct inferior facial details, especially when the
resolutions of input images are low.

Illumination synthesis methods infer intrinsic face properties,
material properties and illumination separately based on the physi-
cal lighting model [44]–[46]. Blanz et al. [47] first propose the 3D
Morphable Model (3DMM) to estimate and synthesize lighting
conditions by a linear combination of prototype models. Then,
Wang et al. [48] design a 3D spherical harmonic basis morphable
model (SHBMM), fusing 3DMM and spherical harmonic illumi-
nation representation. However, since existing 3DMMs are always
built with face images captured in controlled environments, these
3DMM-based methods only work well in under-controlled scenar-
ios. Then, Barron et al. [49] define a simple optimization problem
in which they recover the reasonable intrinsic scene properties
including shape, reflectance, and illumination under the guidance
of image priors. [50] enforces illumination representations to be
aware of face geometry by employing a generic three-dimensional
morphable face model, where the spherical harmonics coefficients
and the standard color histogram matching are used to model the
illumination. Saito et al. [51] synthesize a photo-realistic albedo
from a partial albedo based on traditional methods. Wang et
al. [46] decompose illumination into different channels, including
specular and shadows, and exploit a network to learn such decom-
position. However, those methods often resort to graphic rendering
and thus are very time-consuming to obtain a large number of
images. Recently, some deep learning approaches are proposed to
disentangle real-life face images. Zhou et al. [?] present a Label
Denoising Adversarial Network (LDAN) for lighting regression
on real face images. Shu et al. [52] propose a physically grounded
rendering-based disentangling network to render in-the-wild faces
with real and arbitrary backgrounds. SfSNet [3] is inspired by a
physical rendering model and disentangles normal and albedo into
separate subspaces.

2.3 Recursive Neural Network

Recursive neural network has been proposed to address vari-
ous tasks, such as semantic segmentation [53], object classifi-

cation [54], and image super-resolution [55] and image derain-
ing [56].

Socher et al. [57] propose a model based on a combination
of convolutional and recursive neural networks to learn features
from RGB-D data effectively for 3D object classification. Liang
et al. [54] propose a recurrent CNN for object recognition by
incorporating recurrent connections into each convolutional layer
of the feed-forward CNN. Kim et al. [58] present a very deep
recursive convolutional network using a chain structure, namely
DRCN, for image super-resolution. To mitigate the training dif-
ficulty, DRCN uses recursive-supervision and skip-connections
to promote gradient back-propagation, and adopts an ensemble
strategy to further improve the model performance. Similarly, Ying
et al. [55] design a recursive block consisting of several residual
units and construct a very deep CNN model with the recursive
blocks. Benefiting from the recursive fashion, models can achieve
better performance while maintaining the parameter sizes.

3 HALLUCINATION WITH “COPY” AND “PASTE”
To reduce the ambiguous mapping from NI-LR to UI-HR faces
caused by non-uniform illumination, we present an Re-CPGAN
framework that takes a NI-LR face as the input and an external
HR face with normal illumination as a guidance to hallucinate
a UI-HR one. Our Re-CPGAN consists of a copy and paste
upsampling network and a discriminative network. The copy and
paste upsampling network introduces external guided illumination
information into the hallucination process to normalize the lighting
conditions of input NI-LR faces. The discriminative network is
used to enforce the generated UI-HR faces to lie on the manifold
of real face images.

3.1 Copy and Paste Upsampling Network (CPUN)
Our CPUN is composed of three parts: an internal CPnet, a
recursive external CPnet and a face reconstruction net, as shown
in Fig. 3. First, we design the internal CPnet to enhance facial
details and normalize illumination coarsely for an input NI-LR
face by exploiting facial self-similarity information. Meanwhile,
we employ a convolutional layer to extract features of a guided
UI-HR face. Note that, our guided face is different from the
ground-truth of the NI-LR input. Second, we propose a recursive
external CPnet that resorts to the external guided features for
further illumination compensation during the upsampling process.
Finally, we use the face reconstruction net to transform the refined
features to the RGB image.
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Fig. 4: The architecture of the internal CPnet. Copy block here
treats the output features of CA module as the both content
features and guided features. Paste block here represents the
additive operation functionally. Here, we conduct the channel-wise
average operation on the feature maps.

3.1.1 Internal CPnet

Our internal CPnet consists of an input convolutional layer, an
internal copy block, a paste block and a skip-connection (see
Fig. 4(a)). Since an input NI-LR face often contains few facial
details, we design the internal copy block (see Fig. 4(b)), which
adopts a Channel-wise Attention (CA) module [59] and a copy
block, to enhance high-frequency facial details and normalize
illumination coarsely. The CA module [59] is employed to model
inter-dependencies among channels, and thus enhances channel-
wise high-frequency features. Meanwhile, the copy block (see
Fig. 6(a)) is designed to capture spatial dependencies between any
two positions within the input feature maps, and then enhances
spatial-wise high-frequency features. Note that, our copy block
here takes the output features of the CA module as both content
features (FC) and guided features (FG), as shown in Fig. 6(a). Then,
the high-frequency facial details can be effectively recovered by
the internal copy block.

To demonstrate the effect of our proposed internal copy block,
we visualize the changes between the input and output feature
maps (see Fig. 4(b)). Since the input NI-LR face does not contain
discriminative facial features, the input features FLR mainly reside
in the low-frequency band (in blue color). After our internal copy
block, the output features FEN spread in the direction of high-
frequency band (in red color), and span the whole band. Therefore,
we use the name “internal copy block” because its functionality
resembles an operation that “copies” the high-frequency features
to the low-frequency parts.

As shown in Fig. 7(c), the Re-CPGAN variant without the
internal CPnet produces inferior results. This also indicates that
our internal CPnet initially refines the input NI-LR face at the
feature level and thus benefits subsequent face hallucination and
illumination compensation processes.

3.1.2 Recursive External CPnet

Our recursive external CPnet is composed of two parts: cascaded
Ex-CP units that offset non-uniform illumination and enhance
facial details recursively, and a global skip connection that helps
gradient back-propagation during training (see Fig. 5(a)).
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Fig. 5: The architecture of the recursive external CPnet. Here,
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The Ex-CP unit consists of a spatial transformer network
(STN) [60], a residual block, a copy block, a paste block, a
heatmap estimation module (HEM) and an output convolutional
layer (see Fig. 5(b)). Since the input NI-LR faces may undergo
misalignment, such as in-plane rotations, translations and scale
changes, STN is employed to compensate for misalignment [8],
[61], as shown in the cyan blocks in Fig. 5(b). Meanwhile, inspired
by SRGAN [62], the residual block is adopted to recover photo-
realistic textures from LR features. Then, we design the copy block
(see Fig. 6(a)) to explicitly learn the illumination pattern from
the external guided UI-HR face. Afterwards, inspired by [63],
we employ the stacked hourglass networks [64] as our heatmap
estimation module. It estimates facial structure priors, i.e., facial
landmark heatmaps, from intermediate facial features to preserve
facial structure. Finally, we concatenate the estimated priors with
the refined facial features. In this fashion, we exploit not only low-
level information (i.e., intensity similarity) but also middle-level
information (i.e., facial structure) to achieve accurate hallucination
results. Therefore, the Ex-CP unit streamlines the process of
alignment, illumination normalization, structure estimation and
super-resolution on NI-LR faces.

Furthermore, we apply a recursive mechanism to the Ex-CP
unit to increase the depth of our model without introducing extra
parameters. In this way, we can progressively adjust alignment,
normalize illumination and recover facial characteristics for the
NI-LR inputs. This distinctive design also alleviates the ambiguity



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

ξ

FG

FC

Ψ

Θ

R

R

S

SR Softmax OperationMatrix Reshaping

Matrix Multiplication1×1 ConvsξΨ Θ

FCGFG

R

𝑭𝑮
𝟎

𝑭𝑪
𝟎

𝑭𝑪𝑮
𝟏𝟔

𝑭𝑪𝑮
𝟏 𝑭𝑪𝑮

𝟒 𝑭𝑪𝑮
𝟖 𝑭𝑪𝑮

𝟏𝟐 𝑭𝑪𝑮
𝟏𝟔

“
C

o
p

ie
d

”
  
  
 

F
ea

tu
re

s

O
u

tp
u

t

U
I-

H
R

Recursion=1 Recursion=4 Recursion=8 Recursion=12 Recursion=16

(a) The diagram of the copy block. 

(b) Impacts of recursion depths on the “copied” features. 

(a) Copy Block

ξ

FG

FC

Ψ

Θ

R

R

S

SR Softmax OperationMatrix Reshaping

Matrix Multiplication1×1 ConvsξΨ Θ

FCGFG

R

𝑭𝑮
𝟎

𝑭𝑪
𝟎

𝑭𝑪𝑮
𝟏𝟔

𝑭𝑪𝑮
𝟏 𝑭𝑪𝑮

𝟒 𝑭𝑪𝑮
𝟖 𝑭𝑪𝑮

𝟏𝟐 𝑭𝑪𝑮
𝟏𝟔

“
C

o
p

ie
d

”
  
  

 

F
ea

tu
re

s
O

u
tp

u
t

U
I-

H
R

Recursion=1 Recursion=4 Recursion=8 Recursion=12 Recursion=16

(a) The diagram of the copy block. 

(b) Impacts of recursion depths on the “copied” features. (b) Impacts of Recursion Depths on the “Copied” Features.

Fig. 6: The diagram of the copy block. The “copied” features FN
CG

represent the output features of the copy block in the Re-CPGAN
variant with N EX-CP units. Here, we conduct the channel-wise
average operation on the feature maps.

of correspondences between NI-LR inputs and external UI-HR
ones. As seen in Figs. 7(k) and (l)), our hallucinated faces become
more visually appealing as the recursion depth increases.

3.1.3 Copy Block
Fig. 6(a) depicts the “copy” procedure of our copy block. The
guided features F0

G and content features F0
C are extracted from

the external guided UI-HR image and the input NI-LR image
respectively. First, the guided features FG and content features
FC are normalized and transformed into a common feature space
by applying two mappings ψ and θ for feature similarity mea-
surement. Then, the “copied” features FCG can be formulated as
a weighted sum of the guided features FG that are similar to the
content features FC at different positions. The i-th output response
is expressed as:

FCGi =
1

M(F) ∑
∀ j

{
exp
(

W T
θ

(
FCi
)T FG jW ψ

)
FG jW ζ

}
, (1)

where M(F) = ∑∀ j exp
(

W T
θ

(
FCi
)T FG jW ψ

)
is the sum of all

output responses over all positions. F is a transform on F by
applying the mean-variance channel-wise normalization. Here,
the embedded transformations Wθ , Wψ and Wζ are learnt during
training.

Although our copy block shares a similar network architecture
to the existing non-local module [65], it differs from non-local
module since our copy block focuses on addressing the fusion
of the guided and content features. As a consequence, the copy
block can integrate the illumination of guided features into content
features as well as enhance high-frequency facial details (see
F16

CG in Fig. 6(a)). Furthermore, as shown in Fig. 6(b), the facial

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 7: Impacts of different components and losses on face super-
resolution (16×16, 8×). (a) Interpolated unaligned NI-LR image.
(b) Ground-truth UI-HR image (128× 128 pixels). (c) Result
without using the internal CPnet but a simple input convolutional
layer instead. (d) Result without using the recursive external
CPnet. (e) Result of Re-CPGAN without adopting Lic. Note that
specular appears in the left side of the forehead. (f) Result of
Re-CPGAN trained by Lmse. (g) Result of Re-CPGAN trained by
Lmse and Lid . (h) Result of CPUN (Re-CPGAN without employing
Ladv). (i) Result without using an external guided face. Content
features (FC) replace guided features (FG) in the copy block.
(j) Result without data augmentation. (k) Result of Re-CPGAN
with 8 Ex-CP units. (l) Result of Re-CPGAN. Note that, in this
experiment 16 Ex-CP units are used for all the cases except (k).

details in the generated “copied” features FCG become much
clearer as recursions increase. This indicates that the recursive
structure helps the “copy” operation in a coarse-to-fine manner
and enhances facial details progressively.

3.2 Discriminative Network
Inspired by [6], [7], we employ a discriminative network to force
the generated UI-HR faces to lie on the same manifold as real
UI-HR ones. Our discriminative network consists of convolutional
layers, max-pooling layers, dropout layers, and fully-connected
layers. It is designed to determine whether an image is sampled
from real face images or the hallucinated ones. As shown in
Figs. 7(h) and (l), it can be clearly seen that the results of Re-
CPGAN (see Fig. 7(l)) are more photo-realistic.

3.3 Training Procedure
We construct NI-LR/UI-HR face pairs {li, hi} for our training
purpose, where hi represents the aligned UI-HR face images (only
eyes are aligned), and li represents the synthesized unaligned NI-
LR face images. More details are provided in Sec. 4. Note that,
our guided faces gi are randomly selected from hi and different
from the ground-truth of li.

Our Re-CPGAN is trained in an end-to-end fashion. To com-
pensate for the uneven illumination in output images, we develop
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an illumination compensation loss Lic. To minimize discrepancies
between output images and their ground-truth counterparts, we
employ two losses. The first one is an intensity similarity loss
Lmse to maintain the pixel-wise intensity similarity and the second
one is an identity similarity loss Lid to enforce the feature-wise
similarity. To preserve the structural integrity of generated faces,
we introduce the structure similarity loss Lh [7]. To enforce the
output faces to resemble real ones, an adversarial loss Ladv [66] is
also employed.

Illumination compensation loss: Inspired by the style loss
in [11], we propose the illumination compensation loss Lic. Lic
constrains the illumination characteristics of the reconstructed UI-
HR face to be close to those of the guided UI-HR face in the latent
subspace:

Lic =E(ĥi,gi)∼p(ĥ,g){
L

∑
j=1

∥∥µ
(
ϕ j(ĥi)

)
−µ (ϕ j(gi))

∥∥
2

+
L

∑
j=1

∥∥σ
(
ϕ j(ĥi)

)
−σ (ϕ j(gi))

∥∥
2},

(2)

where gi represents the guided UI-HR image, ĥi represents the
generated UI-HR image, and p(ĥ,g) represents their joint distri-
bution. ϕ j(·) denote the outputs of relu1 1, relu2 1, relu3 1 and
relu4 1 layers in a pre-trained VGG-19 model [67]. Here, µ and σ

are the mean and variance of each feature channel. Fig. 7(e) shows
that without employing Lic, the upsampled face suffers from severe
artifacts. This demonstrates that our Lic significantly mitigates the
illumination ambiguity in the upsampled results.

Intensity similarity loss: To enforce a generated UI-HR
image ĥi to be similar to its ground-truth image hi in terms of
intensities, an intensity similarity loss Lmse is employed:

Lmse = E(ĥi,hi)∼p(ĥ,h)

∥∥ĥi−hi
∥∥2

F

= E(li,hi)∼p(l,h) ‖Ct (li)−hi‖2
F ,

(3)

where t and C are the parameters and the output of CPUN. li
represents the input NI-LR face image. p(ĥ,h) represents the joint
distribution of the generated UI-HR images ĥi and the corre-
sponding ground-truths hi. Similarly, p(l,h) represents the joint
distribution of the input NI-LR images li and the corresponding
ground-truths hi.

As mention in [22], [62], only employing the intensity similar-
ity loss Lmse in training often leads to overly smoothed results and
the network may fail to generate high-frequency facial features
(see Fig. 7(f)). Therefore, we incorporate an identity similarity
loss to enhance our hallucinated results.

Identity similarity loss: Identity preservation is one of the
most important goals in face hallucination [68]. Therefore, we
adopt the identity similarity loss Lid to minimize the Euclidean
distance between the high-level features of a hallucinated face and
its ground-truth, thus endowing our Re-CPGAN with the identity
preserving ability. The identity similarity loss Lid is expressed as:

Lid = E(ĥi,hi)∼p(ĥ,h)

∥∥Φ
(
ĥi
)
−Φ(hi)

∥∥2
F

= E(li,hi)∼p(l,h) ‖Φ(Ct (li))−Φ(hi)‖2
F ,

(4)

where Φ(·) represents a feature representation of an input image
extracted from the average pooling layer of the pre-trained Arc-
Face model [69]. As shown in Fig. 7(g), employing Lid indeed
improves the generated results while producing more authentic
facial details.

Structure similarity loss: To facilitate face alignment as well
as constrain the structural consistency between the generated UI-
HR image and the ground-truth one, the structure similarity loss
Lh [7] is employed in training our heatmap estimation module
(HEM), written as:

Lh = E(li,hi)∼p(l,h)
1
P

P

∑
k=1

∥∥∥Hk ( fi)−Hk (hi)
∥∥∥2

2

= E(li,hi)∼p(l,h)
1
P

P

∑
k=1

∥∥∥Hk (C̃t (li)
)
−Hk (hi)

∥∥∥2

2
,

(5)

where Hk ( fi) represents the k-th predicted facial landmark
heatmap estimated from the intermediate facial features fi by a
stacked hourglass module [64]. Hk (hi) denotes the k-th facial
landmark heatmap generated by FAN [70] on the ground-truth
image hi. Here, we use 68 point facial landmarks to produce the
ground-truth heatmaps.

Adversarial loss: Aiming at generating photo-realistic re-
sults, we infuse the discriminative information into our CPUN
by adopting a discriminative network. Our goal is to make the
discriminative network fail to distinguish hallucinated faces from
ground-truth ones. The objective function LD for the discrimina-
tive network is defined as follows:

LD =−E(ĥi,hi)∼p(ĥ,h)

[
logDd (hi)+ log

(
1−Dd

(
ĥi
))]

, (6)

where D and d represent the discriminative network and its
parameters. During training, we update the parameters of the
discriminative network by minimizing the loss LD.

On the contrary, our CPUN is designed to produce realistic
face images, which would be classified as real faces by the
discriminative network. Thus, the corresponding adversarial loss
Ladv is represented as:

Ladv =−Eĥi∼p(ĥ) log
(
Dd
(
ĥi
))

=−Eli∼p(l) log(Dd (Ct (li))) .
(7)

To optimize the CPUN, we minimize the loss Ladv.
Total loss function: The objective function to hallucinate UI-

HR face ĥ is expressed as:

LG = Lmse +αLid +βLh +Lic +ψLadv. (8)

Since we intend to hallucinate UI-HR faces rather than gen-
erating random faces, we put lower weights on Lid , Lh and Ladv.
Therefore, α,β and ψ in Eq. (8) are set to 0.01.

4 DATA AUGMENTATION

4.1 Illumination Rendering Engine: RaIN
Training a deep neural network often requires a large number
of data to prevent over-fitting. However, existing public face
datasets [9], [10] do not provide a sufficient number of NI/UI
face pairs. To achieve enough training samples and improve the
generalization ability of our network, we propose a tailor-made
Random Adaptive Instance Normalization (RaIN) model as an
illumination rendering engine for data augmentation.

RaIN adopts an encoder-decoder architecture. The encoder is
a pre-trained VGG-19 network [67] and the first few layers (up to
relu4 1) in the encoder are fixed during training. Moreover, RaIN
employs an Adaptive Instance Normalization (AdaIN) [11] layer
and a Variational Auto-Encoder (VAE) [12] in the latent space.
To be specific, AdaIN normalizes the features of a UI face image
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Fig. 8: The framework of our proposed RaIN model.
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Fig. 9: The testing stage of our RaIN model. RAIN enables us to
generate sufficient NI faces with random illumination conditions
from some sampled vectors z.

and then enforces the features to share the same channel-wise
mean and standard deviation as those of a selected NI face image
features. The VAE, as shown in Fig. 8, is inserted before the AdaIN
layer to produce a large number of plausible hypotheses for the
feature statistics of the NI face image. Our RaIN model transfers
illumination styles of face images in real-time and generates
sufficient NI face samples from UI inputs (Fig. 8).

Fig. 8 illustrates that RaIN learns to render NI face images.
First, given an input content image Ic (UI face) and a style image
Is (NI face), the VGG encoder encodes them into a common
latent space, producing fc and fs. Then, the VAE first encodes
µ( fs)⊕σ( fs) (⊕ denotes “concatenation”) to a Gaussian distri-
bution, and then decodes a sampled latent code z from the dis-
tribution to reconstruct of the style feature statistics. Afterwards,
AdaIN adaptively normalizes fc as follows:

t = AdaIN( fc, fs) = σ̃( fs)

(
fc−µ( fc)

σ( fc)

)
+ µ̃( fs), (9)

where µ (.) and σ (.) denote the channel-wise mean and standard
deviation. We simply scale the normalized content features fc with
σ̃( fs), and shift it with µ̃( fs).

Finally, a randomly initialized decoder W is trained to map t
back to the image space, generating a NI face image Ics:

Ics =W (t). (10)

4.2 Training Settings
We first train our RaIN model using the MS-COCO4 [71] and
WikiArt5 [72] databases as content and style images, respectively.
Each database contains approximately 80,000 images. Then, we
fine-tune the trained RaIN model on the Multi-PIE database [9].
Similar to [11], we employ a content loss and a style loss [11]
to train the decoder D, and employ a MSE loss and a Kullback-
Leibler divergence loss [12] to train the VAE.

4.3 Data Generation
We employ a pre-trained RaIN model as our “illumination render-
ing engine” and perform data augmentation. As shown in Fig. 9,
we feed the UI face along with a random noise into the trained
RaIN model. As a result, we can generate sufficient NI face
images with random illumination conditions from an input UI
one (see Fig. 10). We resize the synthesized NI face samples
to 128× 128 pixels and then apply 2D transforms, including
rotations, translations, scaling and downsampling, to generate the
NI-LR images. Meanwhile, we resize the corresponding UI ones
to 128× 128 pixels, and use them as our UI-HR images. Since
illumination rendering would lead to hue shifts, the color tone of
the generated samples is slightly different from the face images
in Multi-PIE. However, when we downsample the generated NI
faces to form the NI-LR ones, this color jittering can be largely
reduced. As a result, we construct a large corpus of NI-LR/UI-HR
face pairs. We will release the synthesized face pairs for academic
and commercial applications.

In our work, the constructed NI-LR/UI-HR face pairs by RaIN
are used to augment our training set. According to the comparison
experiments, with data augmentation, our Re-CPGAN is able to
hallucinate NI-LR faces even better (see Figs. 7(j) and (l)).

5 EXPERIMENTS

5.1 Databases
Re-CPGAN is trained and tested on the Multi-PIE database [9]
(indoor) and the Celebrity Face Attribute (CelebA) database [10]
(in-the-wild).

The Multi-PIE database [9] is a large face database with
750K+ images of 337 subjects under various poses, illumination
conditions and expressions. We choose 16K NI/UI face pairs of
all the subjects spanning across various illumination conditions,
poses (0o,±15◦,±30◦,±45◦,±60◦,±75◦,±90◦) and expressions
(“smile”, “disgust”, “squint”, “scream”, “surprise”, and “neutral”),
for our experiments.

The CelebA database [10] only provides in-the-wild faces
rather than NI/UI face pairs. Therefore, for the training purpose,
we opt to synthesize NI faces for the UI ones. We first randomly
select 18K cropped UI-HR faces from CelebA, resize them to
128× 128 pixels, and use them as our ground-truth images.
Then, similar to [73], the Adobe Photoshop Lightroom is adopted
to render illumination on these UI-HR faces. Afterwards, we
generate the unaligned NI-LR faces (8× 8 / 16× 16 pixels) by
transforming and downsampling the rendered ones. As a result,
we generate 18K NI-LR/UI-HR CelebA face pairs.

For each database, we choose 80 percent of the face pairs for
training and 20 percent of the face pairs for testing, respectively. In
this way, the training and testing sets do not overlap. Specifically,

4. http://cocodataset.org/home
5. https://www.wikiart.org/
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(a) UI-HR

(b) NI-HR face samples

(c) Interpolated unaligned NI-LR face samples

Fig. 10: Illustration of the generated NI faces. (a) The UI face (original UI-HR face in Multi-PIE). (b) The generated NI face samples
of (a). (c) The spatially transformed and downsampled versions of (b).

(a) NI-LR

(c) SfSNet

(d) HiDT

(g) FHC

(e) SfSNet+FHC

(f) HiDT+FHC

(h) FHC+SfSNet

(i) FHC+HiDT

(b) UI-HR

FH

IN FH

FH

IN

IN

IN

IN+FH

FH+IN

Fig. 11: Results of different combinations of face hallucination
and illumination compensation methods. (a) Unaligned NI-LR
inputs (16×16 pixels). (b) Ground-truth UI-HR images (128×128
pixels). (c) Bicubic interpolation + SfSNet [3]. (d) Bicubic inter-
polation + HiDT [43]. (e) SfSNet [3] + FHC [4]. (f) HiDT [43] +
FHC [4]. (g) FHC [4]. (h) FHC [4] + SfSNet [3]. (i) FHC [4] +
HiDT [43].

RaIN is adopted to perform data augmentation on the training set
10 times. During the training and testing processes, the external
guided UI-HR images are randomly selected from the UI-HR ones.
Our large-scale NI and UI face pair dataset, and the code will be
available on https://github.com/SEU-yang.

5.2 Compared Methods
We conduct comparative experiments in the following four sce-
narios:

• FH: face hallucination methods (SRGAN [62], FSR-
net [33], FHC [4]);

• IN+FH: illumination normalization techniques
(HiDT [43]) followed by face hallucination methods
(SRGAN [62], FSRnet [33] or FHC [4]) (we first
upsample the NI-LR face images by bicubic interpolation,

then apply [43], and downsample the normalized results
for face hallucination);

• FH+IN: face hallucination methods (SRGAN [62], FSR-
net [33] or FHC [4]) followed by illumination normaliza-
tion techniques (SfSNet [3]);

• Joint FH+IN: CPGAN [5] and our Re-CPGAN with 16
Ex-CP units.

In the first fashion (FH), we hallucinate the NI-LR faces by
state-of-the-art face hallucination methods directly. In the second
fashion (IN+FH), we first normalize the NI-LR faces by popular
illumination normalization techniques, and then hallucinate the
normalized faces by state-of-the-art face hallucination methods.
In the third fashion (FH+IN), we first hallucinate the NI-LR faces
to achieve the NI-HR ones, and then normalize the hallucinated
results. In the fourth fashion (Joint FH+IN), both CPGAN [5]
and Re-CPGAN jointly tackle face hallucination and illumination
normalization in a unified framework. As illustrated in Fig. 11, to
achieve the best visual performance among various combinations,
we employ HiDT [43] as the face illumination normalization tech-
nique in our IN+FH methods. Meanwhile, we employ SfSNet [3]
as the face illumination normalization technique in our FH+IN
methods.

For a fair comparison, we retrain these methods on our
training sets. Since SRGAN [62] and FSRnet [33] cannot achieve
face alignment during their upsampling procedure, we train an
STN [60] to align the input unaligned LR faces to the upright
position firstly. In contrast, FHC [4], CPGAN [5] and our Re-
CPGAN super-resolve LR faces while aligning them.

5.3 Qualitative Comparisons with the SOTA

Fig. 12 illustrates the qualitative results of the compared methods.
The hallucinated results obtained by Re-CPGAN are more photo-
realistic and identity-preserving. As illustrated in Fig. 12(b),
the combination of bicubic interpolation and face illumination
compensation techniques [3] fails to generate photo-realistic facial
details. Since bicubic upsampling only interpolates new pixels
from neighboring pixels without generating new contents, the pro-
duced NI-HR images lack details. Consequently, the illumination
compensation method fails to detect facial landmarks and thus
outputs faces with severe artifacts and distorted contours.

SRGAN [62] is a generic super-resolution method and em-
ploys the framework of GAN [66] to improve the visual quality.
Since non-uniform illumination induces more ambiguous map-
pings between NI-LR and UI-HR face images, SRGAN may not

https://github.com/SEU-yang.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 12: Comparison with state-of-the-art methods (16× 16, 8×). Columns: (a) Interpolated unaligned NI-LR inputs. (b) Bicubic
interpolation + SfSNet [3]. (c) SRGAN [62]. (d) FSRnet [33]. (e) FHC [4]. (f) HiDT [43] + FHC [4]. (g) FHC [4] + SfSNet [3].
(h) CPGAN [5]. (i) Re-CPGAN. (j) Ground-truth UI-HR images (128× 128 pixels). The first four columns: testing samples from
Multi-PIE. The last four columns: testing samples from CelebA.

fully address those ambiguities. Hence, the super-resolved faces
by SRGAN suffer blurriness and artifacts, as shown in Fig. 12(c).

FSRnet [33] incorporates facial geometry priors into the super-
resolution of LR faces. FHC [4] exploits facial component infor-
mation to encourage the upsampling stream to produce photo-
realistic HR faces. These face hallucination methods hallucinate
high-frequency facial details with the help of facial structure pri-
ors. However, uneven illumination of input faces would degenerate
the performance of facial prior estimation, and inaccurate facial
priors may provide misleading information in face hallucination.
As shown in Figs. 12(d) and (e), those methods produce blurry
face structures and deteriorated facial details.

As aforementioned, simply combining existing face hallucina-
tion and illumination normalization methods cannot address this
challenging issue. This is verified by the results of the strategy
IN+FH (see Fig. 12(f)), where upsampled face regions suffer
severe distortions and ghosting artifacts. Similarly, the strategy
FH+IN also fails to recover authentic facial details, as visible in
Fig. 12(g).

CPGAN [5] is the first attempt to jointly address face hallu-
cination and illumination compensation in a whole framework. In
this manner, two tasks facilitate each other mutually. Therefore,
CPGAN generates satisfying results, as shown in Fig. 12(h).
However, due to the limited network capacity of CPGAN, its
performance is restricted. Motivated by this, we improve the
network capacity by introducing recursive learning into CPGAN
without increasing network parameters, known as Re-CPGAN.
Our Re-CPGAN generates visually more appealing UI-HR faces
from very LR inputs with uneven illumination. As visible in

Fig. 12(i), the facial parts covered by shading artifacts in the
third and fourth rows, such as the mouth and jaw, are better
reconstructed compared to CPGAN.

5.4 Quantitative Comparisons with the SOTA

To evaluate the super-resolution performance quantitatively, we
report the average Peak Single-to-Noise Ratio (PSNR), Structural
SIMilarity (SSIM) values as well as average Facial Landmark
Localization Error (FLLE) on the entire testing set in Tab. 1.
FLLE measures the Euclidean distance between the estimated
facial landmarks and the ground-truth ones. We employ a state-of-
the-art face alignment method, i.e., FAN [70], to detect 68 point
facial landmarks.

As shown in Tab. 1, our Re-CPGAN achieves remarkably
better quantitative results than other state-of-the-art methods on
both indoor and in-the-wild databases. Specifically, on the Multi-
PIE testing set, Re-CPGAN outperforms the second best method
CPGAN with a large margin of 0.57 dB in PSNR. This is
mainly because our external CPnet progressively improves super-
resolution results via a recursive fashion. As a result, the hal-
lucinated faces by Re-CPGAN are more similar to the ground-
truths. Furthermore, Tab. 1 also demonstrates that both IN+FH
and FH+IN methods fail to achieve satisfying quantitative perfor-
mance. This implies that jointly addressing face hallucination and
illumination compensation is more suitable and effective for this
challenging task.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Testing samples in very low-resolutions (8×8, 16×)

Testing samples under large poses (16×16, 8×)

Testing samples under complex expressions (16×16, 8×)

Fig. 13: Comparison with state-of-the-art methods on very challenging situations. Columns: (a) Interpolated unaligned NI-LR inputs.
(b) Bicubic interpolation + SfSNet [3]. (c) SRGAN [62]. (d) FSRnet [33]. (e) FHC [4]. (f) HiDT [43] + FHC [4]. (g) FHC [4] +
SfSNet [3]. (h) CPGAN [5]. (i) Re-CPGAN. (j) Ground-truth UI-HR images (128×128 pixels).

5.5 Comparisons of Upsampling Very LR Faces

We evaluate our method qualitatively on very low-resolution face
images (8× 8 pixels) with a 16× magnification factor, compared
with other state-of-the-art methods. This is a very challenging case
for face hallucination because 16× 16 pixels will be recovered
from a single pixel and an input NI-LR image only has 8× 8
pixels.

As shown in Fig. 13, our Re-CPGAN achieves pleasant hal-
lucination performance on such challenging images (see the first
two lines in Fig. 13(i)). However, the results of the state-of-the-art
methods deviate from the ground-truth appearance severely. On
the contrary, our Re-CPGAN recovers authentic global structures
and local details. Moreover, the joint face hallucination and
illumination compensation mechanism performed in Re-CPGAN
significantly reduces artifacts.

5.6 Robustness Towards Poses and Expressions

We also evaluate our method qualitatively on the NI-LR faces
under large poses and complex expressions. Since these input faces
are accompanied by not only non-uniform illumination but also
self-occlusions, it is challenging to normalize and super-resolve
them.

Fig. 13 shows that the state-of-the-art methods fail to recon-
struct plausible UI-HR faces, where the edges are blurry and
the structures are distorted. In contrast, our Re-CPGAN achieves
superior performance when the input LR faces undergo large poses
(e.g., 90o) and complex facial expressions (e.g., “smile”, “dis-
gust”). This demonstrates the robustness of our method towards
pose and facial expression variations. Since recursive learning
is applied to the Ex-CP unit, our Re-CPGAN is able to recover
diverse characteristics of NI-LR inputs progressively.

5.7 Ablation Study

5.7.1 Impact of Increasing Recursion Depths

To study the effect of recursion depths, Re-CPGAN variants with
different numbers of recursions (e.g., 1, 4, 8, 12, 16) are compared.

Facial landmarks estimation: Here, we study the impacts of
recursion depths on our heatmap estimation module. Fig. 14 shows
that the estimated facial landmarks are more precise as the recur-
sion depth increases. We attribute such better performance to the
deeper model structure introduced by more recursion operations.

Face hallucination: We also investigate the effect of recursion
depths on face hallucination performance qualitatively and quan-
titatively. As shown in Fig. 6(b), hallucinated faces become more
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TABLE 1: Average PSNR [dB], SSIM and FLLE results of
compared methods on the testing sets (16×16, 8×).

Method
Multi-PIE CelebA

FH
PSNR SSIM FLLE PSNR SSIM FLLE

Bicubic 12.838 0.385 21.312 12.794 0.377 22.156
SRGAN 16.769 0.546 10.361 17.951 0.506 10.083
FSRnet 19.342 0.611 7.972 19.854 0.587 8.926
FHC 20.680 0.634 6.709 21.130 0.652 7.841

Method
Multi-PIE CelebA

IN [43]+FH
PSNR SSIM FLLE PSNR SSIM FLLE

Bicubic 13.315 0.399 20.891 13.018 0.404 21.074
SRGAN 15.044 0.486 13.102 16.512 0.491 11.277
FSRnet 15.810 0.497 13.336 18.124 0.518 9.902
FHC 18.263 0.595 8.409 19.508 0.579 8.947

Method
Multi-PIE CelebA

FH+IN [3]
PSNR SSIM FLLE PSNR SSIM FLLE

Bicubic 12.960 0.387 19.405 12.945 0.392 21.898
SRGAN 14.252 0.448 14.126 15.237 0.448 12.055
FSRnet 15.449 0.491 13.228 15.825 0.453 12.953
FHC 17.554 0.582 8.977 16.459 0.490 11.280

Method
Multi-PIE CelebA

Joint FH+IN
PSNR SSIM FLLE PSNR SSIM FLLE

CPGAN 24.639 0.778 3.654 23.972 0.723 3.991
Re-CPGAN 25.211 0.794 2.762 24.348 0.759 2.934

(a) (b) (c) (d) (e)

Fig. 14: Facial landmark estimation by Re-CPGAN variants on
CelebA and Multi-PIE faces. (a) Re-CPGAN-r1. (b) Re-CPGAN-
r4. (c) Re-CPGAN-r8. (d) Re-CPGAN-r12. (e) Re-CPGAN-r16.
Here, Re-CPGAN-rN means the Re-CPGAN variant with N EX-
CP units. Please zoom in to see the improvements.

photo-realistic when we apply more recursions to Re-CPGAN.
It indicates that increasing recursion depths not only leads to a
deep yet compact model but also boosts performance. Moreover,
Fig. 15 demonstrates that the quantitative results improve as more
recursions are performed. It is noteworthy that the performance
gains become negligible when continuing to increase the recursion
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Fig. 15: Impacts of recursion depths on CelebA and Multi-PIE
testing sets.

TABLE 2: Ablation study of different sub-networks on CelebA
and Multi-PIE databases (16×16, 8×).

w/o CPnet Multi-PIE CelebA
PSNR SSIM PSNR SSIM

w/o IN 23.215 0.752 22.679 0.715
w/o EX 22.890 0.733 22.151 0.709
w/o D 23.287 0.756 22.908 0.722

Re-CPGAN 25.211 0.794 24.348 0.759

depth more than 10.

5.7.2 Impacts of Internal CPnet
As indicated by the quantitative results of the IN+FH and FH+IN
combination methods in Tab. 1, simply combining existing face
hallucination and illumination compensation methods leads to
sub-optimal hallucination performance. Our Re-CPGAN embeds
an internal CPnet to initially offset non-uniform illumination by
exploiting the internal guidance, and it is able to reduce the
ambiguous mapping caused by shading artifacts in CPUN, thus
facilitating the latter upsampling operations.

To evaluate the impact of the internal CPnet, we replace it
with a convolutional layer and use this convolutional layer to
encode NI-LR faces. As shown in Tab. 2, the performance of
only using the input convolutional layer, marked by w/o IN,
degrades almost 2 dB in terms of PSNR on Multi-PIE. Moreover,
as shown in Fig. 7(c), the Re-CPGAN variant without the internal
CPnet produces flawed results with obvious distortions and blurred
artifacts. It implies that the internal CPnet recovers high-frequency
facial details from non-uniform illumination and thus improves
face hallucination performance.

5.7.3 Impacts of Recursive External CPnet
Compared to our previous work [5], Re-CPGAN does not require
more network parameters or wider architectures for better perfor-
mance. As illustrated in Fig. 3, we design the recursive external
CPNet to normalize illumination and enhance facial details at the
feature level. Benefiting from the recursive learning, we improve
the face hallucination performance significantly in Re-CPGAN
compared to CPGAN and do not introduce new parameters for
additional layers.
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TABLE 3: Ablation study of different losses (16×16, 8×)

Multi-PIE CelebA

PSNR SSIM PSNR SSIM

w/o
Lic

L−G 22.013 0.704 21.174 0.652
L†

G 22.732 0.729 21.755 0.698
L‡

G 23.148 0.743 22.108 0.707
LG 23.759 0.780 22.855 0.720

w/
Lic

L−G 22.640 0.717 22.043 0.705
L†

G 23.287 0.756 22.908 0.722
L‡

G 23.944 0.782 23.276 0.738
LG 25.211 0.794 24.348 0.759

We remove the recursive external CPNet and then feed the
output of the internal CPnet to the face reconstruction net directly,
and this variant is marked as w/o EX, in Tab. 2. As demonstrated in
Tab. 2, the performance of w/o EX degrades 2.32 dB compared to
our Re-CPGAN on Multi-PIE. It implies that the recursive external
CPnet recovers facial details authentically. Furthermore, without
using the recursive external CPnet, the reconstructed results suffer
ghosting artifacts, such as blurry edges, as seen Fig. 7(d). It also
demonstrates that the recursive external CPnet plays a crucial role
in our model.

5.7.4 Impacts of Different Losses

We report the performance of Re-CPGAN variants that are trained
with different loss combinations on Multi-PIE and CelebA (see
Tab. 3 and Fig. 7). We denote the compared loss combinations as
follows: (i) L−G : Lmse and Lh; (ii) L†

G: Lmse, Lid and Lh; (iii) L‡
G:

Lmse, Lid and Ladv; (iv) LG: Lmse, Lid , Lh and Ladv. Note that Lh is a
prerequisite objective in training our heatmap estimation module.

As demonstrated in Tab. 3, using our illumination compen-
sation loss (Lic) leads to better quantitative results. Because Lic
constrains the illumination characteristics of the reconstructed UI-
HR faces to be close to the guided UI-HR ones in the latent
subspace, the hallucinated faces will achieve uniform illumination,
thus being similar to their UI-HR ground-truths. Only employing
the intensity similarity loss Lmse leads to unpleasant results (L−G
in Tab. 3). The identity similarity loss (Lid) not only improves
the visual quality as seen in Fig. 7(g)), but also increases the
quantitative performance (L†

G as indicated in Tab. 3). This ex-
periment demonstrates that Lid forces the high-level features of
the hallucinated faces, i.e., identity information, to be similar to
their ground-truth counterparts and thus improves hallucination
performance. In addition, we also verify the effectiveness of the
structure similarity loss (Lh). As indicated in Tab. 3 (L‡

G), removing
Lh leads to degraded quantitative performance since Lh enforces
the structure of hallucinated faces to resemble their ground-truths.
The adversarial loss is used to enforce upsampled faces not only
to be realistic but also to exhibit in a well-illuminated condition.
Hence, with the help of the adversarial loss (Ladv), Re-CPGAN
achieves photo-realistic face images (see Fig. 7(l)) and the highest
quantitative results (i.e., LG in Tab. 3).

5.7.5 Impacts of Guided Faces

Our method employs an external guided UI-HR face for illu-
mination compensation. We design the external CPnet to learn
illumination features from a guided face, and propose an illumina-
tion compensation loss to enforce the illumination characteristics
of the reconstructed UI-HR face to be similar to those of the
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Fig. 16: The hallucinated results of our Re-CPGAN with different
guided faces.

guided face in the latent subspace. In this fashion, we offset non-
uniform illuminations of input NI-LR faces under the guidance
of external lighting information rather than only depending on
internal information. As shown in Fig. 7(i), the face hallucination
performance of Re-CPGAN degrades without using the guided
face. Note that we remove the guided face branch and retrain the
entire network.

Then, we explore the impact of different guided faces on our
method. As seen in Fig. 16, by using guided faces with different
facial attributes (e.g., “gender”, “age”, “makeup”, and “glasses”),
we still obtain photo-realistic results and the hallucinated faces
are not affected by different facial attributes of guided faces. The
is mainly because we employ guided faces including different
variations in training Re-CPGAN and it learns to focus on the
illumination style rather than other attributes.

Furthermore, Fig. 16 also implies that our method can generate
identity-preserving results regardless of the identities of guided
faces. The reasons are as follows: (1) Since our copy block is
designed to explicitly learn the illumination pattern from an exter-
nal guided UI-HR face under the supervision of the illumination
compensation loss, it only adopts illumination features from the
guided images rather than the facial contents. (2) We apply the
identity similarity loss to hallucinated faces, thus enabling our Re-
CPGAN to preserve identity information.

6 DISCUSSION

6.1 Comparisons with SOTA on UI Faces

As shown in Fig. 2(d), the illumination processing method [3]
is not suitable to remove illuminations of NI-LR faces and lead
to artifacts in normalized results. Then, the produced artifacts
would affect the performance of face hallucination methods (see
Fig. 2(e)). In contrast, we jointly remove illuminations and halluci-
nate faces instead of treating these two task separately. Therefore,
we significantly alleviate side-effects caused by either of these two
processes.

Furthermore, we conduct experiments to evaluate Re-CPGAN
and the state-of-the-art face hallucination methods on the LR
faces with normal illumination. In this case, the illumination
normalization methods are not necessary and thus not employed.
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Fig. 17: Comparison with state-of-the-art methods. Columns: (a) UI-LR inputs (16× 16 pixels). (b) Bicubic interpolation. (c)
FSRnet [33]. (d) SRGAN [62]. (e) WaveletSRnet [26]. (f) FHC [4]. (g) CPGAN [5]. (h) Re-CPGAN. (i) Ground-truth UI-HR images
(128×128 pixels).

(a) (b) (c) (d) (e)

Fig. 18: Results of super-resolving NI-LR face images on CelebA
(16× 16, 8×). First row: real NI-HR images. Second row: un-
aligned NI-LR images. Third row: guided UI-HR images. Fourth
row: our normalized and hallucinated results.

As shown in Fig. 17, Re-CPGAN still outperforms the state-of-
the-art methods. Note that, our previous method CPGAN [5] in-
tends to increase the network depth to achieve better hallucination
performance but is limited by the GPU memory. In this work,
we employ a recursive external CPnet in Re-CPGAN and thus
achieve a deep yet compact model. This also demonstrates that
the effectiveness of our recursive learning for the external CPnet.

6.2 Performance on Real NI-LR Faces
Although our model is trained on the synthesized NI/UI CelebA
face pairs, our method can effectively hallucinate the faces under
real illumination conditions. To demonstrate this, we randomly se-
lect face images with real non-uniform illumination from CelebA
excluding the faces used for generating our training dataset.
Then, we obtain the NI-LR face samples (16× 16 pixels) by
transforming and downsampling these images. These NI-LR faces
do not share illumination styles with the examples in the training
dataset, and thus these samples are much more challenging. As
shown in Fig. 18, our Re-CPGAN achieves superior normalization

and hallucination performance on such randomly chosen images.
Therefore, our Re-CPGAN is not restricted to certain illumination
styles.

Moreover, we also evaluate our model on real-world NI-LR
faces. To do so, we randomly choose face images from the
Widerface database [74] for testing. Widerface contains in-the-
wild faces which are affected by various degradation, illumination
and noise types. Here, our Re-CPGAN model is trained on the
CelebA training set. As seen in Fig. 19, our Re-CPGAN not only
hallucinates the visually appealing HR faces but also reduces the
shading artifacts.

6.3 Comparisons with the SOTA on Face Recognition

We demonstrate that our Re-CPGAN boosts the performance of
low-resolution face recognition. We adopt the “recognition via
hallucination” framework to conduct face recognition experiments
on the Multi-PIE [9] database. Concretely, aggressively down-
sampled faces are first hallucinated by face hallucination methods
and then used for recognition.

Experimental Settings: First, we partition the Multi-PIE
database [9] into subject disjoint training and testing sets. Then,
we train the compared face hallucination methods on the training
set and then conduct face recognition experiments on the testing
set. The testing set includes the NI-LR/UI-HR Multi-PIE face pairs
of 50 testing individuals under 10 illumination conditions. Here,
for all the testing images, we crop the aligned face regions, resize
them to 128×128 pixels, and thus generate our HR face images.
We generate the NI-LR faces (16× 16 pixels) by transforming
and downsampling the NI-HR ones. Then, the NI-LR and UI-
HR face images construct the probe and gallery sets respectively.
Afterwards, we employ a state-of-the-art pre-trained face recog-
nition model (SphereFaceNet [75]) to conduct face recognition
experiments on LR faces and hallucinated HR faces from LR ones
by different methods. Finally, we compute the cosine distance of
the extracted deep features for face recognition. In particular, we
train a CycleGAN [41] to alleviate the domain gap between gallery
faces and hallucinated ones.

Evaluation: The performance comparisons of Re-CPGAN
and other face hallucination methods are shown in Tab. 4. Here,
we compare the performance of face hallucination methods as
well as the combinations of face hallucination and illumination
compensation. As indicated by Tab. 4, the face recognition rates
of our hallucinated UI-HR faces are superior to those of the
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(a) (b) (c) (d) (e)

Fig. 19: Results of upsampling NI-LR face images on Widerface
(16×16, 8×). First row: real NI-LR images. Second row: guided
UI-HR images. Third row: our normalized and hallucinated re-
sults.

TABLE 4: Face recognition performance comparison on the Multi-
PIE database.

FH method
Accuracy

FH IN+FH FH+IN

Bicubic 59.60% 49.84% 48.12%
SRGAN [62] 62.04% 52.31% 51.79%
FSRnet [33] 63.15% 53.62% 52.83%

FHC [4] 65.29% 54.47% 53.06%

CPGAN [5] 84.36%

NI-LR 61.21%

UI-HR 98.13%

Re-CPGAN 87.45%

NI-LR faces and other methods’ results. This demonstrates that
our Re-CPGAN achieves remarkable identity preservation ability,
which substantially satisfies the need of the downstream face
recognition task. Moreover, we can see that direct combinations of
face hallucination and illumination compensation achieve inferior
performance compared to face hallucination methods. This also
implies that it is more reasonable to take these two tasks in a
unified framework.

6.4 Comparisons with the SOTA on Face Expression
Classification

Furthermore, we manifest that our Re-CPGAN also benefits low-
resolution face expression classification tasks.

Experimental Settings: We perform a standard 10-fold
subject-independent cross-validation on the Multi-PIE expres-
sion dataset [9]. First, the NI-LR/UI-HR Multi-PIE face pairs
with complex expressions, i.e., “smile”, “disgust”, “squint”,
“scream”, “surprise”, and “neutral”, are split into 10 subsets
according to the identity information and the individuals in any
two subsets are mutually exclusive. In each experiment, 9 subsets
are used for training and the remaining one for testing. We
train all the compared hallucination models on the same training
database and employ a state-of-the-art expression classification
model, VGG-VD-16 [67], to identify the facial expressions of
UI-HR faces hallucinated from NI-LR ones. Here, state-of-the-art

TABLE 5: Face expression classification results for different
methods on the Multi-PIE expression dataset.

FH method
Accuracy

FH IN+FH FH+IN

Bicubic 60.94% 51.26% 50.35%
SRGAN [62] 64.32% 55.14% 54.49%
FSRnet [33] 66.55% 57.60% 56.72%

FHC [4] 70.61% 60.08% 58.17%

CPGAN [5] 88.13%

NI-LR 62.64%

UI-HR 97.92%

Re-CPGAN 93.57%

2 4 6 8 10 12
Number of Parameters (K)

16

18

20

22

24

26

PS
N

R
 (

dB
)

x 10(4)

SRGAN

FSRnet

FHC

CPGAN

Re-CPGAN-r4

Re-CPGAN-r8

Re-CPGAN-r16

Re-CPGAN-u4

Fig. 20: PSNR values and parameter numbers of compared models
on Multi-PIE (16× 16, 8×). Here, Re-CPGAN-rN represents the
Re-CPGAN variant with N Ex-CP units, and Re-CPGAN-uN
represents the Re-CPGAN variant which directly stacks N Ex-CP
units without using recursive learning.

face hallucination methods are used to upsample the testing faces,
while the classification results of the NI-LR faces upsampled
by bicubic interpolation and the ground-truth UI-HR faces are
also provided as baselines. At last, the expression classification
performance for each method is obtained by averaging the results
of the 10 folds, as indicated in Tab. 5.

Evaluation: As indicated in Tab. 5, the upsampled faces of
our method achieves superior face expression classification rates.
This also demonstrates that the hallucinated face images of our
Re-CPGAN are more authentic to the ground-truth UI-HR faces in
comparison to the state-of-the-art. Particularly, the face expression
classification rate of our hallucinated faces exceeds that of the NI-
LR ones by a large margin of 30.93%. Hence, Re-CPGAN indeed
facilitates the low-resolution face expression classification task.

6.5 Model Size Analyses
As indicated in Fig. 20, the parameters of Re-CPGAN are much
smaller than CPGAN [5]. Meanwhile, we achieve improvements
on the quantitative performance, as indicated by Fig. 20. Since
recursive learning is employed to construct a very deep network,
we effectively reuse network parameters and boost the model
performance. Note that, increasing the recursion depths, our model
parameters do not increase. In contrast, simply stacking the CPnet
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will increase parameters dramatically but does not necessarily lead
to superior performance.

6.6 Limitations

Since our work uses the bilinear downsampling to generate NI-
LR faces artificially, we do not contain real-world degradation
types (e.g., motion blur, compression artefacts, sensor noise) in
the training dataset. Therefore, we produce relative blurry results
when applied to real-world NI-LR images (see Fig. 19). This
deterioration is mainly caused by the significant domain shift
between LR face data. We will address the domain shift caused
by different image degradation factors in face hallucination as our
future work.

7 CONCLUSION

In this paper, we presented a recursive copy and paste generative
adversarial network (Re-CPGAN) to jointly hallucinate the NI-
LR face images and compensate for the non-uniform illumination.
With the internal and recursive external CPNets, our method pro-
gressively upsample and refine facial features based on the spatial
distribution of facial structure up to a magnification factor of 16×.
In particular, Re-CPGAN offsets non-uniform illumination and
upsamples facial details alternatingly. Meanwhile, the RaIN model
is presented to generate sufficient face pairs under diverse illumi-
nation conditions. Our RaIN model not only significantly enriches
our training dataset but also improves the generalization of our
Re-CPGAN. Extensive results demonstrate that our Re-CPGAN
produces HR identity-preserving face images and substantially
boosts the performance of downstream tasks, i.e., face recognition
and expression classification. This makes our Re-CPGAN more
desirable in practice.
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