

Multi-beam Antenna Arrays for Base Stations in Cellular Communication Systems by Maral Ansari

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Prof. Y. Jay Guo, and Dr. Negin Shariati Moghaddam

University of Technology Sydney Faculty of Engineering and Information Technology

July 2021

STATEMENT OF ORIGINALITY

I, Maral Ansari, declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctoral Degree, in the School of Electrical and Data Engineering, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

To the best of my knowledge, this document has not previously been submitted for qualifications to any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature removed prior to publication.

Maral Ansari June 30, 2021

ACKNOWLEDGEMENTS

First, I would like to express my profound gratitude to my supervisor Prof. Yingjie Jay Guo for his continuous guidance and support throughout my PhD study with his patience and knowledge. Prof. Guo has provided me with an excellent research environment. I am greatly inspired by his deep insights into technical issues.

I am profoundly grateful to Prof. Bevan Jones for providing me with extensive and detailed guidance, and supervision. He though me how important thorough scientific understanding is in achieving practical outcomes. I am also highly indebted to Vecta Pty Ltd. for testing some of the prototypes of this work on their far-field antenna range.

My sincere thanks go to my co-supervisor, Dr. Negin Shariati, and my collaborator Dr. He Zhu for their encouragement and support during my PhD study. Dr. Shariati has introduced me to UTS for the first time, and helped me to apply for the doctoral study.

I would like to thank Prof. Richard W. Ziolkowski and Prof. Trevor Bird for valuable suggestions on work. Prof. Ziolkowski was always available and willing to assist. I would like to thank him for his immense contribution to this thesis and also all his advice on the aspects of my metamaterial research. Prof. Bird was dedicated and supportive. It is an honour for me to work with him during my studies. He has not been only a great advisor but also an encouraging and motivating friend. He is exceptionally kind and also knowledgeable in giving valuable and critical suggestions on my research.

Being a member of Global Big Data Technologies Center (GBDTC) at the University of Technology Sydney (UTS) was an excellent experience for me. Many of the ideas emerged from discussions and teamwork. My sincere thanks go to all the students and staff of GBDTC for their help in the whole process leading to the conceptualization of the project.

I like to thank all my friends (too many to list here, but you know who you are!) for providing support and friendship that I needed all these years, as well as happy distractions to rest my mind outside of my research.

Finally, I would like to express my forever thanks to my parents (Fariba and Majid) and my sister (Mercede) for their unconditional love, unreserved support, and encouragement throughout my life.

LIST OF PUBLICATIONS

Peer-reviewed Journal Papers

- J-1. Y.J. Guo, M. Ansari, R.W. Ziolkowski, and N.J.G. Fonesca "Quasi-optical multi-beam antenna technologies for B5G and 6G mmWave and THz networks: A review" *IEEE Open Journal of Antennas & propagation*, 2021, early access, DOI: 10.1109/OJAP.2021.3093622.
- J-2. Y.J. Guo, M. Ansari, and N.J.G. Fonesca "Review of circuit type multiple beamforming networks for 5G and beyond TN and NTN antenna array technology" *IEEE Journal of Microwaves*, 2021, early access, DOI: 10.1109/JMW.2021.3072873.
- J-3. M. Ansari, H. Zhu, N. Shariati, and Y.J. Guo, "Compact planar beamforming array with end-fire radiating elements for 5G applications" *IEEE Transactions on Antennas & Propagation*, vol. 67, no. 11, pp. 6859–6869, Nov. 2019.
- J-4. M. Ansari, B. Jones, H. Zhu, N. Shariati, and Y.J. Guo, "A highly efficient spherical Luneburg lens for low microwave frequencies realized with a metal-based artificial medium"*IEEE Transactions on Antennas & Propagation*, 2021, early access, DOI: 10.1109/TAP.2020.3044638.
- J-5. **M. Ansari**, B. Jones, and Y.J. Guo, "Layered structure in the design of spherical Luneburg lens with low anisotropy and low cost'*IEEE Transactions on Antennas & Propagation*. (under review)
- J-6. K. Lakomy, R. Madonski, B. Dai, J. Yang, P. Kicki, M. Ansari, Sh. Li, "Active disturbance rejection control with sensor noise suppressing observer for DC-DC buck power converters," *IEEE Transactions on Industrial Electronics*, 2021, early access, DOI:10.1109/TIE.2021.3055187. (NAWA Scholarship Joint Program)

Peer-reviewed Conference Papers

C-1. M. Ansari, B. Jones, N. Shariati, and Y.J. Guo, "3D Luneburg lens antenna with layered structure for high-gain communication systems" 15th European Conference on Antennas and Propagation (EuCAP), Winner of TICRA Travel Grant, 2021.

- C-2. M. Ansari, B. Jones, N. Shariati, and Y.J. Guo, "A Lightweight efficient spherical Luneburg lens antenna for low-band 5G cellular systems" *17th Australian Symposium on Antennas*, Student Second Prize for Best Oral Presentation, 2021.
- C-3. **M. Ansari**, H. Zhu, N. Shariati, and Y.J. Guo, "Mm-wave multi-beam antenna array based on miniaturized Butler matrix for 5G applications *IEEE International Symposium on Antennas and Propagation (ISAP)*, Montréal, Canada, IEEE 2020.
- C-4. **M. Ansari**, H. Zhu, N. Shariati, and Y.J. Guo, "Mm-wave compact beamforming antenna array for 5G applications" *4th Australian Microwave Symposium (AMS)*, 2020. (Short Listed for the Best Student's Paper)
- C-5. **M. Ansari**, H. Zhu, N. Shariati, and Y.J. Guo, "Compact planar beamforming antenna array for 5G applications" *Electromagnetic Material and Technologies for Future (EM-MTF)*, 2019.

CONTENTS

Intro	oduction	1	1
1.1	Backgr	round and Motivation	1
1.2	Challer	nges	3
1.3	Contrib	oution and Novelty	4
1.4	Thesis	Organization	6
Lite	rature F	Review	9
2.1	Introdu	ction	9
2.2	Circuit	Type BFN	10
	2.2.1	General Definition	10
	2.2.2	The Blass Matrix	11
	2.2.3	The Butler Matrix	13
	2.2.4	The Nolen Matrix	14
2.3	Compa	rison of Circuit Type Beamforming Circuits	15
	2.3.1	Number of Components	15
	2.3.2	Losses	16
	2.3.3	Constraint on Excitation Law	17
	2.3.4	Frequency Behaviour	17
2.4	Metho	ds to Enhance the Characteristic Performance of Matrix-based Beamformers	18
	2.4.1	Lowering the SLL	19
	2.4.2	Miniaturizing the Circuit Layout	21
	2.4.3	Extending the Frequency Bandwidth	24
	2.4.4	Enabling Multi-Band Systems	27
	2.4.5	Enabling 2D Scanning	28
	Intro 1.1 1.2 1.3 1.4 Liter 2.1 2.2 2.3	Introduction 1.1 Backgr 1.2 Challer 1.3 Contrib 1.4 Thesis Lite-sture F 2.1 Introdu 2.2 Circuit 2.2.1 2.2.2 2.2.2 2.2.3 2.3 Compa 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.4.1 2.4.1 2.4.2 2.4.3 2.4.4 2.4.4 2.4.5	Introduction 1.1 Background and Motivation 1.2 Challenges 1.3 Contribution and Novelty 1.4 Thesis Organization 1.4 Thesis Organization Literature Review 2.1 Introduction 2.2 Circuit Type BFN 2.1.1 General Definition 2.2.2 The Blass Matrix 2.2.3 The Butler Matrix 2.2.4 The Nolen Matrix 2.2.5 Comparison of Circuit Type Beamforming Circuits 2.3.1 Number of Components 2.3.2 Losses 2.3.3 Constraint on Excitation Law 2.3.4 Frequency Behaviour 2.4 Methods to Enhance the Characteristic Performance of Matrix-based Beamformers 2.4.1 Lowering the SLL 2.4.2 Miniaturizing the Circuit Layout 2.4.3 Extending the Frequency Bandwidth 2.4.4 Enabling Multi-Band Systems 2.4.5 Enabling 2D Scanning

		2.4.6	Transmission Line Technologies	30
	2.5	Lens-b	ased Multi-beam Antennas	32
		2.5.1	Ruze Lens	33
		2.5.2	Rotman Lens	35
		2.5.3	Luneburg Lens	38
	2.6	Reflect	tor Based Multi-Beam Antennas	42
		2.6.1	Single Reflectors	43
		2.6.2	Dual Reflectors	46
		2.6.3	Reflectarrays	47
	2.7	Conclu	nsion	48
3	Min	iaturize	ed Multi-beam Antenna Array Realized by Butler Matrix	49
	3.1	Introdu	action	49
	3.2	Simpli	fied 4×6 Butler Matrix Analysis	51
		3.2.1	Design Consideration of the 4×6 Butler Matrix $\ldots \ldots \ldots \ldots$	52
		3.2.2	Microstrip-to-slotline Transition	54
		3.2.3	Hybrid Coupler	56
		3.2.4	Phase Shifters and Power Dividers	57
		3.2.5	Crossover	58
	3.3	Dipole	Array Integrated with Butler Matrix	60
		3.3.1	Element Design and Performance	60
		3.3.2	Butler Matrix Based Multi-beam Antenna Array	62
	3.4	Experi	ment and Measurement Results	65
		3.4.1	Reflection and Isolation Coefficients	66
		3.4.2	Radiation Pattern, Gain and Efficiency	66
	3.5	Compa	arison	69
	3.6	Summ	ary	70
4	Red	uced SL	L Multi-beam Antenna Array Realized by Butler Matrix	71
	4.1	Introdu	uction	71
	4.2	Six-wa	y Butler Matrix	72
		4.2.1	90° Hybrid Design	73

		4.2.2	90° Phase Shifter Design	74
		4.2.3	60° Phase Shifter Design	75
		4.2.4	180° Hybrid Design	76
		4.2.5	Three-way Butler Matrix Design	76
		4.2.6	Wilkinson Divider Design	80
	4.3	Desigr	n Principle of SLL Reduction in the Six-way Butler Matrix	80
		4.3.1	Extending the Outputs	82
		4.3.2	Reducing the Crossover Level	83
	4.4	Four-v	vay Butler matrix	85
		4.4.1	Extending the Outputs	85
		4.4.2	Realization of Multi-beam Antenna Array Based 4×8 Butler matrix \therefore	88
		4.4.3	Comparison	89
	4.5	Conclu	usion	90
5	Desi base	gn Con ed Artifi	nsideration of Spherical Luneburg Lens Antenna Realized with Meta	մ- 91
	5.1	Introdu	uction	91
	5.2	Theory	y of Conventional Multi-shell Luneburg Lens	92
	5.3	Optica	I Analysis and Layered Design of the Luneburg Lens	93
		5.3.1	Ray Tracing and Position of Focus	93
		5.3.2	Artificial Dielectric	97
		5.3.3	Refractive Index Extraction	97
		5.3.4	Analysis of Anisotropy at Oblique Incidence	100
		5.3.5	Validation of Refractive Index Extraction Method	102
	5.4	Summ	ary and Future Work	106
6	Dua	l-Polari	ized Efficient Multi-beam Spherical Luneburg Lens Antenna with La	y-
	ered	Constr	ruction	107
	6.1	Introdu	uction	107
	6.2	Constr	ruction and Detailed Analysis of Lens Performance	110
		6.2.1	Artificial Dielectric and Lens Geometry	110
		6.2.2	Dual-Polarized Feed	112
		6.2.3	Lens Performance with Multiple Feeds	113

	6.3	Lens A	Antenna Fabrication and Results	115
		6.3.1	Luneburg Lens Fabrication	115
		6.3.2	Reflection and Isolation Coefficients	118
		6.3.3	Radiation Pattern, Gain, and Efficiency	118
	6.4	Compa	arison	124
	6.5	Summ	ary	125
7	Broa	ad-Ang	le Scanning Luneburg Lens Antenna with Layered Structure and In	n-
	prov	ed Anis	sotropy	127
	7.1	Introdu	uction	127
	7.2	Artific	ial Dielectrics for Parallel Layer Lens Designs	129
		7.2.1	Conducting or Dielectric Inserts	129
		7.2.2	Characterizing Planar Layered Arrays of Conducting Inserts	130
		7.2.3	Determining Diameter/Height Relationship of Cylindrical Inserts	133
	7.3	Calcu	lated Anisotropy of Cubic and Hexagonal Grids	133
		7.3.1	Calculated RI Variation with Incident Angle and Frequency	133
	7.4	Broad-	Band Lens Performance	139
	7.5	Multi-	beam Lens Antenna Performance	139
	7.6	Fabric	ation and Results	141
		7.6.1	Feed Fabrication	141
		7.6.2	Lens Fabrication	141
		7.6.3	Test Configuration	142
		7.6.4	Results	143
		7.6.5	Comparison and Discussion	146
8	Con	clusion	and Future Work	149
	8.1	Conclu	usion	149
		8.1.1	Butler Matrix Fed Array	149
		8.1.2	Planar Layered Spherical Luneburg Lens	150
	8.2	Future	Work	151
	Bibli	iograph	y	154

LIST OF FIGURES

1.1	The beam layout of 120° -sectorized multi-beam systems with two beams \ldots	2
1.2	General Layout of multi-beam cellular antenna.	2
2.1	(a) Functional schematic representation of the <i>M</i> -entry Blass matrix (b) Details of a node [19]	11
2.2	Schematic representation of the conventional 4×4 Butler matrix [24]	14
2.3	(a) Functional schematic representation of the <i>M</i> -entry Nolen matrix (b) Details of a node [47]	14
2.4	Schematic representation of 32×32 Butler matrix with hybrid couplers [49].	16
2.5	Schematic representation of modified Butler matrix utilized power dividers for tapered amplitude law [63]	20
2.6	Circuit controlling the SLLs with Butler matrix. The values of the amplitude and phase distribution at the output ports are indicated on the right. ϕ_c stands for the phase of the cross coupler [70].	20
2.7	(a) Architecture of the symmetrical 3×3 Nolen matrix (b) Photograph of the fabricated the 3×3 Nolen matrix [55].	22
2.8	Simulated model of the dual-layer 8×8 Butler matrix [83]	22
2.9	(a) Photograph of the coupler prototype. (b) Prototype of the 4×4 Butler matrix realized by lumped-element coupler connected to a monopole array [85].	23
2.10	3×3 Nolen matrix with lumped-element couplers and phase shifters (a) Simulated layout. (b) Fabricated photograph [54].	23
2.11	(a) 3D model of constructed stripline components used in the design (b) Layout of the three-beam Butler matrix (c) Prototype of the overall structure [93]	25
2.12	(a) Topology of the H-plane short-slot coupler. (b) Topology of unequal with unequal length phase shifter. (c) Manufactured 4×4 Nolen matrix at 77 GHz [53].	26
2.13	Layout of a circular mm-wave Blass matrix [101].	26

2.14	(a) Proposed dual-band branch line coupler. (b) Basic connections for designing a dual-band butler matrix [106].	27
2.15	Photograph of the fabricated proposed dual-band 4×4 Butler matrix [107]	28
2.16	2D antenna feeding network using six 3×3 Nolen matrices with nine input ports 1–9. (a) Photograph of the fabricated 3×3 Nolen matrix and 2D beamforming phased array. (b) Simulation results of the proposed 2D beamforming phased array, generating nine unique radiation beams with special values on elevation and azimuth (θ, ϕ) when input ports 1–9 are excited [56].	28
2.17	 (a) Configuration of the 2D scanning multi-beam array antenna. (b) Details of the basic components. (c) Photographs of the fabricated multi-beam array antenna [112]. 	29
2.18	(a) Topology of conventional 16×16 BFN. (b) Proposed topology of uniplanar 16×16 BFN. (c) Proposed topology of 16×16 BFN with eight-port crossover [115].	30
2.19	(a) Exploded view of the proposed Butler matrix. (b) Test setup of the proposed Butler matrix. The two halves of the matrix are connected via four phase matched SMA cables [124].	31
2.20	(a) CAD view of the connecting network generating a triangular lattice of beams from a 2D Butler matrix. (b) Modified 2D Butler matrix under test [130]	32
2.21	Continuous PPW lens-like beamformer. (a) 3D view. (b) Cross-sectional view in the $x0z$ cut plane. (c) Zoomed-in view of the transversal cavity (the red line highlights the propagation path inside the transversal cavity) [140].	33
2.22	Antenna prototype. (a) Transversal blade part. (b) Transversal cavity part. (c) Measured H-plane normalized radiation patterns of the final PPW beamformer design at 30 GHz for all the feeds (continuous line) and for the same beamformer considering the 180° rotation around RLi (dashed line) [142].	34
2.23	Dual-layer Rotman lens with ridged delay lines [167].	36
2.24	SIW-based Rotman lens [169].	36
2.25	SIW-based dual-layer Rotman lens with reduced SLLs that delivers non-uniform amplitudes to the elements of a multi-beam slot array for SLL suppression [171].	37
2.26	Conformal SIW-based dual-layer Rotman lens [172]	38
2.27	Luneburg lens shapes with the darker colour representing an increasing permittiv- ity. (a) Spherical. (b) Half spherical. (c) Cylindrical [180].	39
2.28	Luneburg lens based multi-beam antenna with multiple ME-dipole feeds. (a) Geometry. (b) Radiation patterns of the multi-beam antenna at 32 GHz. (c) Photo of the prototype of the multi-beam antenna developed in [134] with its connection	
	adapters and waveguide loads.	40

2.29	Ray tracing results for spherical, (a) and (c), and flattened, (b) and (d), Luneburg lenses. (a) Strong focusing of the rays. (b) Radiation patterns of the corresponding multi-beam antenna at 32 GHz. (c) Rays at oblique incidence are focused onto a spherical surface. (d) Rays at extreme angles are focused onto the image plane	41
2.30	[203]	41
2.31	SIW-based offset-fed parabolic reflector lens reported in [219] based on the parabolic reflector principle. (a) System configuration which consists of a SIW-based parabolic reflector, a SIW slot array antenna, and its feed lines. (b) Photograph of the fabricated SIW multi-beam antenna.	43
2.32	SIW-based offset-fed parabolic reflector lens that realizes full azimuth coverage [220]. (a) Overall configuration of the reported antenna. (b) Configuration of its feed network.	44
2.33	SIW-based pillbox-configured multi-beam slot array realized with the split aper- ture decoupling method [228].	45
2.34	SIW-based modified pillbox reflector-fed multi-beam slot array with reduced SLLs [229]. (a) Perspective view. (b) Top view.	45
2.35	Multi-beam slot array fed by a dual offset Gregorian reflector system [230]. (a) Perspective view. (b) Top view.	46
2.36	SIW-based Cassegrain lens BFN for a multi-beam array [231]. (The symbols "D." and "C." represent a dielectric and a conductor, respectively)	46
2.37	Comparison of the measured radiation patterns in both the E- and H-planes of the fabricated antenna reported in [233] that had a zero-feed offset with the one that had 1.5 mm offset.	47
2.38	Illustration of a (a) reflectarray antenna and (b) a transmitarray [237]	48
3.1	Schematic diagram of the 4×6 Butler matrix. (a) conventional 4×6 Butler matrix. (b) Proposed 4×6 Butler matrix.	51
3.2	Comparison of the structure of the conventional 4×6 Butler matrix with the proposed design.	52
3.3	Geometries of the proposed 4×6 Butler matrix with the schematic of cross section. (a) Top view. (b) Bottom view and zoomed out of the microstrip transition part. (c) Side view and schematic of cross section.	53
3.4	Equivalent circuits of (a) the microstrip-to-slotline transition; (b) the microstrip- slotline-microstrip transition.	55

3.5	Configuration of the designed crossover using a microstrip-slotline-microstrip	56
2.6		50
3.6	Simulated performance of the microstrip-to-slotline transition.	56
3.7	Configuration of the hybrid coupler.	56
3.8	Simulated performance the coupler. (a) Magnitude of Port 1. (b) Output phase difference when Port 1 excited. (The numbers in blue indicate the center frequency results.)	57
3.9	Simulated configuration of the Wilkinson power divider.	57
3.10	Simulated magnitude of the reflection coefficients, insertion and isolation of Wilkinson power divider. (The numbers in blue indicate the center frequency results.)	58
3.11	Simulated performance the crossover. (a) Configuration. (b) Simulated magnitude of the reflection coefficients and isolation of Port1.	58
3.12	Simulated S-parameters of the 4×6 Butler matrix. (a) Magnitude of reflection coefficients of inputs versus frequency. (b) Magnitude of reflection coefficients of outputs versus frequency.	59
3.13	Simulated S-parameters of the 4×6 Butler matrix versus frequency. (a) Magnitude of the outputs power when port 1 is fed. (b) Magnitude of the outputs power when port 2 is fed.	59
3.14	Simulated S-parameters of the 4×6 Butler matrix. (a) Isolation of inputs versus frequency. (b) Isolation of outputs versus frequency.	60
3.15	Simulated phase difference at the output ports of the BFN versus frequency with respect to that of port 1, 2, 3, 4 being fed.	60
3.16	Geometry of the proposed single element antenna design. (a) Top view. (b) Middle layer view (Butler matrix ground layer).	61
3.17	Simulated results of the proposed single element antenna. (a) Co-polarization (co-pol) and cross-polarization (x-pol) at E-plane. (b) Co-polarization and cross-polarization at H-plane. (c) Reflection coefficient.	62
3.18	Geometry of the overall circuit including BFN cascaded with the antenna array.	63
3.19	Linear antenna array	63
3.20	Simulated radiation patterns of the multi-beam antenna corresponding to three sce- narios including ideal array with point sources, linear array with ideal amplitude and phase, antenna array integrated with Butler matrix at 28 GHz. (a) Port 1 is fed. (b) Port 2 is fed. (c) Port 3 is fed. (d) Port 4 is fed	64
3.21	Photographs of the fabricated multi-beam antenna array. (a) Top view. (b) Bottom	
	view	66

3.22	Simulated and measurement results for all 4 input ports. (a) Reflection coefficients. (b) Isolation coefficients. The solid lines represent the simulated results and the dashed ones show the measured outcomes. (Port numbers are given in Fig. 3.2 (a).)	66
3.23	Simulated and measured E-plane patterns of the six-element linear antenna array with incorporated Butler matrix corresponding to the four input ports (from left to right when port 2, 1, 4, 3 are fed, respectively) (a) $f = 27.5$ GHz. (b) $f = 28$ GHz. (c) $f = 28.5$ GHz	67
3.24	Simulated and measured results when input ports 1 and 2 are excited. (a) Gain versus frequency. (b) Radiation efficiency versus frequency	68
4.1	6×6 Butler matrix	72
4.2	90° hybrid circuit (a) Structure. (b) Simulated layout.	73
4.3	Simulated results of 90° hybrid circuit (a) Magnitude of reflection coefficients, port isolation, and output ports powers when port 1 excited. (b) Outputs phases.	73
4.4	90° phase shifter (a) Model. (b) Circuit diagram.	74
4.5	Simulated model of 90° phase shifter	74
4.6	Simulated results of 90° phase shifter (a) Magnitude of reflection coefficients and isolation. (b) Outputs phase.	75
4.7	(a) Simulated model of 60° phase shifter. (b) Simulated output phase of 60° phase shifter.	75
4.8	180° hybrid layout.	76
4.9	Configuration of the 3×3 Butler matrix.	77
4.10	Simulated model of 90° unequal hybrid	77
4.11	Diagram for the three-way Butler matrix without any phase shifter	78
4.12	Simulated layout of phase shifters. (a) -558.8° (b) -285.2°	78
4.13	3×3 Butler matrix layout.	79
4.14	Simulated results of three-way Butler matrix (a) Magnitude of reflection coefficients and isolation. (b) Magnitude of output power.	79
4.15	Schematic of 6×8 Butler matrix	80
4.16	Fabricated prototype of wilkinson dividers [255].	80
4.17	Fabricated prototype of six-way Butler matrix [255]	81
4.18	6×6 Butler matrix feeding six radiating elements [255]	81
4.19	Azimuth pattern of beams obtained from a six column array fed from a 6×6 Butler matrix.	81
		01

4.20	Eight radiating elements fed from a 6×6 Butler matrix with two additional splitters	82
4.21	Beams for the configuration of Fig. 4.20	83
4.22	Block diagram of the five-beam antenna realized by 6×6 Butler matrix [255].	83
4.23	The corresponding patterns for amplitude taper obtained with 6 dB couplers used in five-beam antenna realized by 6×6 Butler matrix.	84
4.24	Schematic 4×4 Butler matrix	85
4.25	Block diagram of the 4×8 Butler matrix. (a) Classic 4×8 Butler matrix. (b) Proposed 4×8 Butler matrix.	86
4.26	Simulated layout of 4×8 Butler matrix. (a) 4×8 Butler matrix layout. (b) Cross-section view of the structure	87
4.27	Simulated S-parameters of 4×8 Butler matrix versus frequency port 1 excitation.	87
4.28	Simulated phase difference at the output ports of Butler matrix for all input ports excitation.	88
4.29	3D model of the constructed beamforming antenna array	88
4.30	Simulated Co-polarization (co-pol) and cross-polarization (x-pol) gain corresponding to the four input ports (a) port1. (b) port2. (c) port3. (d) port4	89
5.1	Ray diagram of a multi-shell Luneburg lens for a different number of dielectric layer. (a) 5 layers. (b) 10 layers. (c) 30 layers	92
5.2	Full-wave analysis of multi-shell Luneburg lens for different number of dielectric layer. (a) 5 layers. (b) 10 layers. (c) 30 layers	93
5.3	(a) Ray trace of original Luneburg lens with focus (F). (b) Ray bending at arbitrary point P. (Constant RI contour indicated in red)	94
5.4	Ray trace of Luneburg lens when focus is moved outside lens by (a) 0.15R and (b)0.3R.	96
5.5	Corresponding calculated RI profiles for ray trace of Luneburg lens as shown in Fig. 5.4.	96
5.6	Structure of unit cells.	97
5.7	Calculation of velocity factors with uniform arrays of inclusions. (a) Geometry of lens showing inclination α of feed to array of inclusions. (b) Configuration analyzed. Arrays of inclusions replaced by periodic boundary conditions. (c),(d) Field directions for TE and TM (relative to y-direction) excitations.	98
5.8	Velocity factors as a function of inclusion size 'S' for cubic inclusions for normal incidence. (cell size $C = 20 \text{ mm}$)	99

5.9	Velocity factors as function of angle of incidence (α) for different size of cubic inclusions at 3.5 GHz.	101
5.10	Focusing characteristics for different azimuth angles showing movement of focus. (a) TE at 0° azimuth. (b) TE at 45°. (c) TM at 45°. In each case the rays converge to an accurate focus.	101
5.11	Simulated performance of the unit cell at 3.5 GHz. (a) TE mode (VP) at 0° incident (b) TE mode (VP) at 22.5° incident (c) TM mode (HP) at 22.5° incident (d) TE mode (VP) at 45° incident (d) TM mode (HP) at 45° incident	102
5.12	Calculation of velocity factors with uniform arrays of inclusions. (a) HFSS Flo- quet method simulation setup (b) Slab of artificial dielectric. (Normal incident angle and the inclusions are aligned at 45° . This corresponds to $\alpha = 45^{\circ}$ in method1)	103
5.13	RI versus frequency for different size of inclusions at $\alpha = 0^{\circ}$	103
5.14	RI versus frequency for different size if inclusions at $\alpha = 7.5^{\circ}$	104
5.15	RI versus frequency for different size if inclusions at $\alpha = 15^{\circ}$.	104
5.16	RI versus frequency for different size if inclusions at $\alpha = 22.5^{\circ}$.	104
5.17	RI versus frequency for different size if inclusions at $\alpha = 30^{\circ}$.	105
5.18	RI versus frequency for different size if inclusions at $\alpha = 37.5^{\circ}$.	105
5.19	RI versus frequency for different size if inclusions at $\alpha = 45^{\circ}$	105
5.20	Variation of RI versus α for TE and TM modes	106
6.1	Two Luneburg lens antennas installed at the Coachella Valley Music and Arts Festival, Indio, California (11-20 April 2014) [266]	108
6.2	Illustrated spherical Luneburg lens antenna for multi-cell coverage in sport stadium	108
6.3	Velocity factors as a function of inclusion size 's' for spherical inclusions (solid lines) and cubic inclusions (dashed lines) for normal incidence. (cell size C = 20 mm)	110
6.4	Principal design steps. (a) Velocity factor as function of radius. (b) Size of inclusion as function of velocity factor (dashed) and quantized (solid) for cubic and spherical inclusions. (c) Allocate size of each inclusion based on r , its distance from the center of the lens. Two layers shown.	111
6.5	Velocity factors as function of angle of incidence (α) for different size of inclusions at 3.5 GHz. (a) Cubic. (b) Spherical.	111
6.6	Geometry of the square waveguide feed and detailed view of the PCB crossed dipoles oriented at 45° to the waveguide walls. SMA connectors are visible below the brass end short.	112
	· · · · · · · · · · · · · · · · · · ·	

6.7	Photographs of the feed (a) Back wall showing PCB crossed dipoles. (b) View into mouth of waveguide of assembled feed. (c) Feed located in test fixture	113
6.8	2D layout of the lens with feed showing spacing between feed aperture and lens surface.	114
6.9	Simulated performance of the lens antenna at 3.5 GHz. (a) Calculated distance of focus from lens surface by ray tracing and by full-wave simulation. (b) Realized gain of lens antenna with feed located at 13 azimuth/elevation positions spaced every 7° apart at optimum spacings. (c) Improvement in SLL obtained by optimizing the distance between lens surface and feed aperture compared with a constant feed spacing which is optimum for 0° azimuth.	115
6.10	Internal geometry of the fabricated lens prototype	116
6.11	Different views of lens mounted in test fixture	117
6.12	Lens antenna fabrication and measurement. Test fixture and lens mounted on po- sitioner of far-field test range. The feed is visible in the r.h. photo.	117
6.13	Simulated (solid lines) and measured (dashed lines) return loss and isolation of (a) Feed (b) Lens and feed. Design bandwidth is indicated by vertical lines	118
6.14	Simulated (solid lines) and measured (dashed lines) co-polarization (black lines) and cross-polarization (red lines) azimuth radiation patterns of feed antenna, frequencies superimposed (a) Port1. (b) Port2.	118
6.15	Simulated (solid lines) and measured (dashed lines) co-polarization (black lines) and cross-polarization (red lines) radiation patterns of the lens antenna. Patterns superimposed for frequencies 3.3, 3.4,3.8 GHz. Cross-polarization azimuth patterns superimposed. Feed at 0° azimuth. (a) Azimuth pattern, Port 1. (b) Azimuth pattern, Port 2. (c) Elevation pattern, Port 1. (d) Elevation pattern, Port 2. Feed at 45° azimuth. (e) Azimuth pattern, Port 1. (f) Azimuth pattern, Port 2. (g) Elevation pattern, Port 1. (h) Elevation pattern, Port 2.	120
6.16	Simulated normalized radiation patterns of lens antenna at 1.7 GHz. (a) Feed at 0° azimuth. (a) Feed at $+45^{\circ}$ azimuth.	121
6.17	Measured normalized patterns with feeds spaced 20° apart in azimuth. Patterns superimposed for frequencies 3.3, 3.4,, 3.8 GHz. (The patterns intersect at approximately -8 dB which is required in multicell applications.)	122
6.18	Measured absolute gain for ports 1 and 2 at 0° azimuth and at 45° . Design bandwidth is indicated by vertical lines.	122
6.19	Comparison of measured gain (dashed lines) and simulated directivity (solid line), and $10 \log(4\pi A/\lambda^2)$ of the Luneburg lens antenna for Port1 (black lines) and Port2 (grey lines) versus frequency at 0° azimuth.	123

6.20	Measured (dashed lines) and simulated (solid line) results of the Luneburg lens antenna for Port1 (black lines) and Port2 (grey lines) versus frequency at 0° azimuth . (a) SLL in azimuth and elevation plane at 0 deg azimuth. (b) Azimuth and	
	elevation 3 dB and azimuth 10 dB beamwidth.	123
7.1	Required RI as a function of radius within the lens	129
7.2	2D cross section (a) Side view of lens layers. (b) Top view of cubic grid with cubic inserts. (c) Top view of hexagonal grid with cylindrical inserts. (The layers are stacked up the same way and with the same spacing in both lens configurations.).	130
7.3	Unit cells (a) Cubic grid with cubic inserts. Unit cells at 0° and 45° . (b) Hexagonal grid with cylindrical inserts. Unit cells at 0° and 30° .	131
7.4	Calculated RI for VP and HP as a function of diameter of cylindrical inserts. (The intersection of the curves provides the relationship between diameter and height that results in equal VP and HP velocities.) (a) height = 3.2 mm . (b) height = 4.4 mm . (c) height = 5.96 mm . (d) height = 7.69 mm . (e) height = 9.59 mm . (f) height = 12 mm . (g) height = 14 mm . (h) height = 16 mm .	132
7.5	Height versus diameter of cylindrical inserts for equal VP and HP velocities at 3.3, 3.55, and 3.8 GHz overlaid.	133
7.6	The calculated RI values for (a) Cubic grid with cubic inserts (VP). (b) (a) Cubic grid with cubic inserts (HP). (c) Cubic grid with spherical inserts (VP). (d) Cubic grid with spherical inserts (HP). (e) Hexagonal grid with cylindrical inserts (VP). (f) Hexagonal grid with cylindrical inserts (HP)	134
7.7	The variation of RI with angle that occurs with (a) Cubic grid with cubic inserts. (b) Cubic grid with spherical inserts. (c) Hexagonal grid with cylindrical inserts.	135
7.8	The variation of RI with elevation for the cubic grid with cubic inserts (a) 0° azimuth (VP). (b) 0° azimuth (HP). (c) 45° azimuth (VP). (d) 45° azimuth (HP).	136
7.9	The variation of RI with elevation for the cubic grid with cubic inserts (a) 0° azimuth (VP). (b) 0° azimuth (HP). (c) 30° azimuth (VP). (d) 30° azimuth (HP).	137
7.10	Ray trace of Luneburg lens when focus is moved outside lens by (a) 0.15R and (b)0.3R [182]	137
7.11	Focusing of the beam obtained by ray tracing (a) Cubic grid with cubic inserts. (b) Hexagonal grid with cylindrical inserts.	138
7.12	Anisotropy analysis of hexagonal grid with cylindrical inserts at differnet frequencies (a) VP (b) HP (c) Comparison of VP and HP at the mid-band frequency.	139
7.13	Simulated 3D radiation patterns of the multi-beam lens antenna from -80° to $+80^{\circ}$ with 20° spacing.	140

7.14	Photographs of the feed (a) Back wall showing SMA connector. (b) View into mouth of waveguide of assembled slant-pol feed. Note: VP and HP feeds are also	
	fabricated.	141
7.15	Photographs of the internal geometry of the fabricated lens prototype. (a) 3D printed cylinder. (b) Foam layers.	142
7.16	Test fixture and lens mounted on positioner of far-field test range. The standard horn gain and the lens feed are visible in the r.h. and l.h. of photo, respectively.	143
7.17	Simulated and measured return loss of feed and lens antenna	143
7.18	Measured co-polarization and cross-polarization azimuth normalized radiation patterns of the feed antenna, frequencies superimposed (3.3, 3.4,, 3.8 GHz) (a) $+45^{\circ}$ -polarized. (b) -45° -polarized. (c) VP. (d) HP	144
7.19	Measured co-polarization and cross-polarization lens patterns superimposed for frequencies 3.3, 3.4,3.8 GHz. Feed at (a) 0° azimuth 0° elevation. (b) 30° azimuth 0° elevation. (c) 60° azimuth 0° elevation. (d) 0° azimuth 30° elevation. (e) 30° azimuth 30° elevation. (f) 60° azimuth 30° elevation	145
7.20	Comparison of measured absolute gain (black line) and simulated directivity (red lines) of $+45^{\circ}$ -polarized lens antenna at different angles.	145

LIST OF TABLES

2.1	Comparison of the Number of Components in Circuit Type BFNs	16
2.2	Comparison of Different Circuit Type BFNs	18
2.3	Reported Techniques to Reduce the SLL in Circuit Type BFNs	21
3.1	Dimensions of the 4×6 Butler matrix.(unit:mm)	53
3.2	Dimensions of the Antenna (unit:mm)	61
3.3	Overall Performance of the Six-element Antenna Array Fed by the BFN at the Center Frequency (28 GHz)	68
3.4	Comparison of the Size and Structure of the Proposed Beamforming Antenna Array and Those in References	69
3.5	Comparison of the Radiation Pattern Performance of the Proposed Beamforming Antenna Array and Those in References	69
4.1	90° Hybrid Transmission Lines Impedance and Dimensions	74
4.2	Dimensions of 90° Phase Shifter (unit:mm) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	75
4.3	Dimensions of 60° Phase Shifter (unit:mm) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	76
4.4	Dimensions of 90° Unequal Hybrid (unit:mm)	77
4.5	Phase Difference Corresponding to Port 3 Excitation of Three-way Butler matrix Shown in Figure. 4.11.	78
4.6	10-element array amplitude taper obtained with 3 dB and 6 dB splitters	84
4.7	Comparison of the Performance of the Proposed Multi-beam Antenna Array with Those in References	90
5.1	Coefficient Values Defining RI Profiles.	96
6.1	Variation of Position of Focus with Azimuth Angle	112
6.2	Dimensions of the Feed.(unit:mm)	113

6.3	Comparison of The Weight of This Type of Lens of The Same Diameter With
	Different Construction Methods
6.4	Comparison of the realization and design characteristics of Luneburg lens Antennas 124
6.5	Comparison of Luneburg lens Antenna Radiation Performances
7.1	Comparison of Mass of the Lens
7.2	Comparison of the realization and design characteristics of Luneburg lens Antennas 146
7.3	Comparison of Luneburg lens Antenna Radiation Performances

LIST OF ABBREVIATIONS

ABS	Acrylonitrite Butodiene Styrene
ADS	Advanced Design System
AR	Axial Ratio
BFN	Beamforming Network
BLC	Branch Line Coupler
COW	Cell-On-Wheel
СР	Circularly-Polarization
CPW	Coplanar Waveguide
DFT	Discrete Fourier Transfer
DRGW	Double Ridge gap Waveguide
EDT	Electronic downtilt
EM	Electromagnetic
FFT	Fast Fourier Transfer
FCSIW	Folded C-type Substrate Integrated Waveguide
FR1	Frequency Range1
FR2	Frequency Range2
FTBR	Front-to-Back Ratio
HFSS	High-Frequency Structure Simulator
HIS	High Impedance Surface
HP	Horizontal Polarization
HPBW	Half-Power Beamwidth
LEO	Low Earth Orbit
LP	Linearly-Polarization
LTCC	Low Temperature Co-fired Ceramic
MD-FFT	Multi-dimensional Discrete Fourier Transfer
ME-dipole	Magneto-Electric Dipole
MIMO	Multiple-Input Multiple-Output
Mm-wave	Millimeter-wave
РСВ	Printed Cicuit Board
PD	Power Divider

PIM	Passive Intermodulation
РМС	Perfect Magnetic Conductor
PMSL	Packaged Microstrip Lines
PPW	Parallel Plate Waveguide
PRGW	Printed Ridge Gap Waveguide
PS	Phase Shifter
PTFE	Polytetrafluoroethylene
RF	Radio Frequency
RHMSIW	Ridge Half Mode Substrate Integrated Waveguide
RI	Refractive Index
RL	Return Loss
RMSE	Root-Mean-Squared-Error
RSIW	Ridge Substrate Integrated Waveguide
SINR	Signal to Interference and Noise Ratio
SISL	Substrate Integrate Suspended Line
SIW	Substrate Integrated Waveguide
SLL	Sidelobe Level
TDD	Time-Division-Duplex
ТЕ	Transverse-Electric
TEM	Transverse-Electromagnetic
TM	Transverse-Magnetic
UWB	Ultra-Wideband
VP	Vertical Polarization
XPD	Cross Polarization Discrimination
XPS	Extruded Polystyrene Sheets
1D	One-dimensional
2D	Two-dimensional
3D	Three-dimensional
4 G	Fourth Generation
5G	Fifth Generation
6G	Sixth Generation

Abstract

Multi-beam antennas will play an increasingly important role in future communications systems such as the fifth generation (5G) and sixth generation (6G) cellular systems. There will also be a shift to higher frequencies where more spectrum is available to accommodate wide-band high data rate systems. These factors will cause shifts in the technologies used in implementing advanced communications systems. Multi-beam antenna implemented with conventional network techniques are approaching physical limitations due to increasing losses and complexity. Quasioptical techniques for implementing multi-beam antenna such as Luneburg lenses should be an attractive alternative.

In this thesis, some of the advantages and limitations of these opposing technologies using as examples firstly, a multi-beam antenna implemented using a Butler matrix feed network which is approaching high frequency limitations of loss and complexity and secondly, a multi-beam antenna based on a spherical Luneburg lens implemented with an artificial dielectric material which is approaching low frequency limitations of excessive size, weight and anisotropy is explored. In the case of Butler matrix networks, control of beamwidth and sidelobes is studied as are implementation details such as network crossovers. In the case of Luneburg lenses, the effects of an economical layered construction and the characteristics of the artificial dielectric are examined in detail. Two prototype Butler matrix fed arrays and two prototype spherical Luneburg lenses were designed, manufactured and tested. The results of these tests are described in the text.

An important qualitative difference between these two technologies is that to implement a two-dimensional (2D) beam space with beamforming networks requires a 2D array of networks. To provide dual polarization as is almost universally required in communications systems, all the hardware must be duplicated. The spherical lens solution naturally provides these capabilities with no duplication. In addition, the ohmic losses can be very low. These capabilities are explored in detail and simple construction methods for the artificial dielectric are presented that avoid the anisotropy that can mar such designs.

In current advanced 5G antennas with 2D arrays using multiple-input and multiple-output (MIMO) where multipath propagation is exploited to enhance capacity are being used in preference to multi-beam antennas. Such systems require a separate radio for each array element. The high power consumption is seen as a disadvantage of such systems as is the high cost. The move to higher frequencies where propagation characteristics make MIMO less advantageous will likely lead to a trend to wider use of multi-beam antennas.