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Abstract

Multi-beam antennas will play an increasingly important role in future communications sys-
tems such as the fifth generation (5G) and sixth generation (6G) cellular systems. There will also
be a shift to higher frequencies where more spectrum is available to accommodate wide-band high
data rate systems. These factors will cause shifts in the technologies used in implementing ad-
vanced communications systems. Multi-beam antenna implemented with conventional network
techniques are approaching physical limitations due to increasing losses and complexity. Quasi-
optical techniques for implementing multi-beam antenna such as Luneburg lenses should be an

attractive alternative.

In this thesis, some of the advantages and limitations of these opposing technologies using as
examples firstly, a multi-beam antenna implemented using a Butler matrix feed network which
is approaching high frequency limitations of loss and complexity and secondly, a multi-beam an-
tenna based on a spherical Luneburg lens implemented with an artificial dielectric material which
is approaching low frequency limitations of excessive size, weight and anisotropy is explored. In
the case of Butler matrix networks, control of beamwidth and sidelobes is studied as are imple-
mentation details such as network crossovers. In the case of Luneburg lenses, the effects of an
economical layered construction and the characteristics of the artificial dielectric are examined in
detail. Two prototype Butler matrix fed arrays and two prototype spherical Luneburg lenses were

designed, manufactured and tested. The results of these tests are described in the text.

An important qualitative difference between these two technologies is that to implement a
two-dimensional (2D) beam space with beamforming networks requires a 2D array of networks.
To provide dual polarization as is almost universally required in communications systems, all the
hardware must be duplicated. The spherical lens solution naturally provides these capabilities
with no duplication. In addition, the ohmic losses can be very low. These capabilities are explored
in detail and simple construction methods for the artificial dielectric are presented that avoid the

anisotropy that can mar such designs.

In current advanced 5G antennas with 2D arrays using multiple-input and multiple-output
(MIMO) where multipath propagation is exploited to enhance capacity are being used in prefer-
ence to multi-beam antennas. Such systems require a separate radio for each array element. The
high power consumption is seen as a disadvantage of such systems as is the high cost. The move
to higher frequencies where propagation characteristics make MIMO less advantageous will likely

lead to a trend to wider use of multi-beam antennas.
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