

Advanced Conformal Transmitarrays for 5G and Beyond Wireless Communications

by Lizhao Song

Thesis submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

under the supervision of Dr Peiyuan Qin and Prof. Yingjie Jay Guo

University of Technology Sydney Faculty of Engineering and Information Technology

July 2021

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Lizhao Song declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in School of Electrical and Data Engineering/Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature: Production Note: Signature removed prior to publication.

Date: 26/07/2021

ACKNOWLEDGEMENTS

I would like to thank University of Technology Sydney and Faculty of Engineering and Information Technology for providing scholarships to support my PhD study in the last three years. This dissertation would not have been produced without assistance and supports from my university.

I owe my deepest gratitude to my principal supervisor Dr Peiyuan Qin. He is the one who unlocked the door of research for me and ignited my passion to research. I still remember how I gradually grow from an ignorant girl into a dedicated researcher under his guidance and supervision. For all of my presentations in front of public, he is the one who checked each word and sentence over and over, and provided me feedback and advice in the first place. For all of my antenna designs, he is the one who provided me valuable ideas and enlightened me to develop innovative works. For all of my papers, he is the one who revised them again and again, and corrected my errors patiently. There are too much kindness and assistance from him to be listed here. He does not only influence me research-wisely, but also acts as a successful personal model. I have learned generosity, thoughtfulness and optimism from him, which benefit me significantly.

I am deeply grateful to my co-supervisor, Prof. Y. Jay Guo. As an exceptional researcher in multiple areas, he is knowledgeable and farsighted. He is always supportive on my research and provides me guidance and inspirations. As the director of Global Big Data Technologies Centre (GBDTC), he creates an inclusive and positive research environment to motivate and facilitate my progress. As my supervisor, he offers me numerous invaluable opportunities and platforms. I am profoundly influenced by his serious attitude, kindness and consideration. I would like to thank my colleague Mr Shulin Chen, who also acts like my senior brother, for his help on my research and personal life. I appreciate his encouragements and stimulations at each of my breakdowns. I also appreciate his correctness and criticism on each of my faults. It is such a luck and pleasure to know him in the past few years.

Besides, I would like to show my genuine appreciation to Prof. Richard W. Ziolkowski, Prof. Bevan Jones and Prof. Trevor Bird for their insightful advice and suggestions on my research. Also, I would like to thank Dr Can Ding, Dr He Zhu and Dr Wei Lin for their kind helps and encouragements. My gratitude also goes to Mr Tianyu Yang, Mr Jiwei Lian, Mr Ming Li, Miss Xuan Wang, Miss Maral Ansari, Miss Haihan Sun and Mr Wei Huang. They have been both my helpful colleagues and lovely friends.

Moreover, I owe a great debt of appreciation to my parents and brother for their consistent love and unconditional support.

ABSTRACT

Transmitarray antennas (TAs) have received considerable attention as they can serve long-distance communications for space and terrestrial wireless systems. For many wireless communication platforms, such as aircrafts and unmanned aerial vehicles (UAV), conformal TAs, which can be flush mounted onto the shaped platforms, are highly demanded in order to meet the aerodynamic requirements. In this dissertation, a few innovative techniques have been developed for conformal TAs.

Firstly, a thin frequency selective surfaces (FSS) element is developed with a thickness of 0.508 mm (0.04 λ_0 at 25 GHz). It is then applied to a curved TA conformal to a cylindrical surface. The prototype radiates a fixed boresight beam with a peak measured gain of 19.6 dBi and an aperture efficiency of 25.1%. Secondly, a mechanical beamscanning conformal TA is proposed. Its size is about 2.5 times of the fixed-beam one, steering its beam to seven different radiation angles, i.e., ±15°, ±10°, ±5°, and 0°. The measured prototype shows a stable gain of 18.7 dBi at all beam angles.

Thirdly, to improve the aperture efficiency of conformal TAs further, Huygens metasurface theory is employed to design a dual-layer TA element. The element is composed of two metal layers printed on a single substrate with a 0.5-mm thickness $(0.017\lambda_0 \text{ at } 10 \text{ GHz})$. The oblique incidence effects are also considered in the process of element synthesis. Finally, a cylindrically conformal TA is developed, which achieves a measured gain of 20.6 dBi with a 47% aperture efficiency.

Fourthly, by combining connected arrays and true-time-delay lines, a novel technique is introduced to obtain ultrawideband (UWB) TAs. The elements consist of a horizontally connected slot bowtie and vertical meander slot-lines. The TAs have been designed in both planar and conformal configurations. Stable boresight radiation patterns from 6 GHz to 17 GHz are obtained for both antennas. Compared to conformal TAs using multi-layer FSS elements, the proposed one has an ultra-wide bandwidth of 96% in terms of stable radiation patterns.

Fifthly, a conformal TA, with an elliptical cylindrical contour at a millimetre-wave (mmwave) band, is presented for wide-angle multibeam radiations. A systematic design procedure is developed. The prototype provides eleven beams with a beam coverage of $\pm 43^{\circ}$. The measured peak boresight gain is 27 dBi at 70.5 GHz with a less than 2.7-dB scanning loss.

TABLE OF CONTENTS

CERT	IFICATE OF ORIGINAL AUTHORSHIP1
ACK	NOWLEDGEMENTS
ABST	STRACT
Table	e of Contents7
List c	of Figures11
List c	f Tables19
List c	of Abbreviations
Chaj	oter 1: Introduction
1.1	Motivation and Scope24
1.2	Organisation of Thesis
1.3	Statement of Contributions
1.4	List of Publications
Chaj	oter 2: Background & Literature Review
2.1	Introduction of TAs
	2.1.1 Basic concept
	2.1.2 Design methods of TA element
2.2	Low-profile TAs
2.3	Beam-scanning TAs
2.4	High-efficiency TAs41
2.5	Wideband TAs

2.6	Multibeam TAs	
2.7	Conformal TAs	47
2.8	Summary	
Chaj	pter 3: Beam-Steering Conformal Transmitarray Emplo	ying Ultra-Thin
Trip	ole-Layer Slot Elements	
3.1	Conformal TA Design	
	3.1.1 Element Design	
	3.1.2 TA Simulation and Measurement	
	3.1.3 Simulated and Measured Results	
3.2	Mechanically Reconfigurable Conformal TA	
	3.2.1 Scanning Mechanism	62
	3.2.2 Experimental Results	
3.3	Discussion	
3.4	Conclusion	71
Chaj	pter 4: A High-Efficiency Conformal Transmitarray An	tenna Employing
Dua	l-Layer Ultra-Thin Huygens Element	
4.1	Huygens Element Design	75
	4.1.1 Huygens Surface Theory	75
	4.1.2 Element Synthesis	
4.2	High-Efficiency Conformal TA Design	
4.3	Experimental Verification	91
4.4	Conclusion	
Cha	pter 5: Ultrawideband Conformal Transmitarray Emplo	oying Connected
Slot-	-Bowtie Elements	

5.1	Ultrawideband Planar TA9) 8
	5.1.1 Ultrawideband TA Theory) 8
	5.1.2 Ultrawideband TA Element Design10)0
	5.1.3 Planar TA10)5
5.2	Ultrawideband Conformal TA11	12
5.3	Discussion11	18
5.4	Conclusion	21
Cha	pter 6: An Elliptical Cylindrical Shaped Transmitarray for Wide-Angle	e
Mul	tibeam Applications12	23
6.1	Multibeam TA Design	24
	6.1.1 TA Contour and Phase Calculation12	25
	6.1.2 Refocusing	27
	6.1.3 Phase Compensation along z Axis	30
6.2	Concept Verification through Simulation13	32
	6.2.1 Unit Cell	32
	6.2.2 TA Contour and Refocusing for Boresight Radiation	33
	6.2.3 Phase Distribution on Multibeam TA13	34
	6.2.4 Feed System for Multibeam Realization	37
	6.2.5 Design Procedure	39
6.3	Prototype Fabrication and Measurement14	10
6.4	Conclusion14	14
Cha	pter 7: Conclusions and Future Work14	15
7.1	Conclusion14	15
7.2	Future Work14	17

Bibliography	
Appendix	

LIST OF FIGURES

Fig. 2-1 Sketch of TA
Fig. 2-2 Topology of a conventional bi-convex dielectric lens
Fig. 2-3 Schematic of phased array
Fig. 2-4 Element model of TAs reported in [19]
Fig. 2-5 Aperture-coupled microstrip patch element proposed in [25]
Fig. 2-6 The three-dimensional structure and its top/bottom layer of element
developed in [27]
Fig. 2-7 The complementary I-shaped metamaterial reported in [28]
Fig. 2-8 3-D view of element in [5]
Fig. 2-9 Double-layer TA element model reported in [32]
Fig. 2-10 1-bit reconfigurable TA element in [35] 40
Fig. 2-11 Circular-polarized reconfigurable TA element proposed in [10]40
Fig. 2-12 Three-layer slot TA element developed in [39]
Fig. 2-13 Element configuration designed in [12] 42
Fig. 2-14 The wideband triple-layer element reported in [41]
Fig. 2-15 Topologies of two true-time-delay elements presented in [30] 44
Fig. 2-16 Geometry of the tightly coupled dipole TA element proposed in [46] 45
Fig. 2-17 Configuration of multibeam TA in [65] 46

Fig. 2-18 Schematic of lens mounting structure reported in [69]	47
Fig. 2-19 Conformal TA model in [72]	48
Fig. 2-20 Conformal TA structure in [74]	49
Fig. 3-1 The proposed FSS element model. (a) Top view. (b) Side view. (Red part	
is the metal and white part is the substrate)	53
Fig. 3-2 Transmission performance of the planar TA element with L equal to 5	
mm at different <i>h</i> values.	53
Fig. 3-3 TA element on a curved surface. (a) Element sketch with a bending angle	
α. (b) Simulated transmission amplitude and phase	54
Fig. 3-4 Transmission performance of the curved element with α equal to 7.2° at	
25 GHz under normal and oblique incidence.	55
Fig. 3-5 Conformal TA. (a) 3-D structure. (b) Top view	56
Fig. 3-6 Element distribution of the unfolded conformal TA	56
Fig. 3-7 The cross-sectional views of conformal TA model. (a) y0z plane. (b) x0z	
plane	57
Fig. 3-8 Photograph of the conformal transmittarray prototype	58
Fig. 3-9 Simulated and measured input reflection coefficients versus frequency of	
ΤΑ	59
Fig. 3-10 Simulated and measured radiation patterns at 25.5 GHz. (a) E-plane. (b)	
H-plane	60
Fig. 3-11 Simulated and measured realized gain values of the conformal TA	60

Fig. 3-12 Simulated realized gain of the conformal TA with 2.5-mm-thick
element
Fig. 3-13 (a) Fixed-beam conformal TA in section 3.1. (b) Beam-scanning
conformal TA configuration
Fig. 3-14 Normalized patterns of the conformal TA with different angular steps
for two beams
Fig. 3-15 Different operating states of the beam-scanning conformal TA
corresponding to different beam directions. (a) 0° . (b) -5° . (c) -10° . (d) -
15°
Fig. 3-16 Photograph of the reconfigurable TA prototype
Fig. 3-17 Measured input reflection coefficients of the reconfigurable conformal
ТА
Fig. 3-18 H-plane radition patterns at 25 GHz for different states of TA. (a)
Simulated results. (b) Measured resutls
Fig. 3-19 Measured cross-polarization level in H-plane at 25 GHz for different
states of conformal reconfigurable TA
Fig. 3-20 Beam-scanning conformal TA configuration with 2(n+1) parts 69
Fig. 3-21 Beam steering range limit of the proposed conformal tranmsitarray
antenna
Fig. 3-22 Three TAs combined for three beam directions, -72°, 0°, and 72°71
Fig. 4-1 Huygens surface. (a) Field sketch with macro-perspective. (b) Fields
generated by E-current and M-current separately. (c) Equivalent circuit
model

Fig. 4-2 Developed two-layer Huygens element model. (a) 3-D structure. (b) Top	
and bottom layers7	'9
Fig. 4-3 Parametric studies for element 1. (a) Simulated Z_m with different W_z . (b)	
Simulated Z_e with different W_c . (c) Simulated Z_e with different L_c	2
Fig. 4-4 Simulated Z_m with different L_c	3
Fig. 4-5 Simulated S-parameter for element 1	5
Fig. 4-6 Simulated S parameter of element 4 with different substrate thickness	
values	5
Fig. 4-7 Current distributions at specific times in one period T	;7
Fig. 4-8 Conformal TA. (a) 3-D structure. (b) Sketch of front view	8
Fig. 4-9 Simulated results of conformal TA. (a) $ S_{11} $ versus frequency. (b) E plane	
and H plane patterns at 10 GHz8	8
Fig. 4-10 Simulated S ₂₁ amplitude and phase of element 1 under different oblique	
incidence angles	9
Fig. 4-11 Conformal TA design with oblique incidence consideration. (a)	
Schematic with different zones along x0z section. (b) Simulated radiation	
patterns of E plane and H plane9	0
Fig. 4-12 Sketch of the cylindrical TA with larger aperture size. (a) Circular	
section. (b) Straight section	2
Fig. 4-13 Photograph of the conformal TA prototype. (a) Front View. (b) Back	
View9	2
Fig. 4-14 Simulated and measured results of input reflection coefficients)3

Fig. 4-15 Simulated and measured gains at boresight versus frequency
Fig. 4-16 Simulated and measured patterns. (a) E plane. (b) H plane
Fig. 5-1 TA geometry
Fig. 5-2 Traditional connected array element with a constant slot width. (a)
Schematic. (b) S parameters
Fig. 5-3 Connected slot-bowtie dipole. (a) Schematic. (b) Simulated S parameters.101
Fig. 5-4 (a) Schematic of the meander slot-line. (b) Final TA element 101
Fig. 5-5 (a) S21 of final TA element with different meander line lengths. (b)
Phase variation $\Delta \phi$ versus element size a. (c) S21 under 30° incidence
angle. (d) Phase variation $\Delta \phi$ under 30° incidence angle 102
Fig. 5-6 Frequency-normalized phase $\Delta\phi_f$ versus a
Fig. 5-7 Element with true-time-delay slot-line. (a) Schematic. (b) Frequency-
normalized phase $\Delta\phi_f$ versus h
Fig. 5-8 TA structure. (a) Model in HFSS. (b) Photo of the fabricated prototype 105
Fig. 5-9 (a) The sketch of TA system. (b) Simulated and measured input reflection
coefficients107
Fig. 5-10 Simulated and measured E-plane and H-plane patterns. (a) 8.5GHz. (b)
9.5GHz. (c) 10.5GHz. (d) 11.5GHz. (e) 12.5GHz. (f) 13.5GHz. (g)
14.5GHz. (h) 15.5GHz. (i) 16.5GHz 110
Fig. 5-11 Simulated and measured results. (a) Realized gain versus frequency. (b)
Efficiency versus frequency

Fig. 5-12 Conformal TA structure. (a) Curved element model. (b) Conformal
array model in HFSS 113
Fig. 5-13 (a) Sketch of the conformal TA. (b) Fabricated prototype 113
Fig. 5-14 Simulated and measured input reflection coefficients 114
Fig. 5-15 Simulated and measured E-plane and H-plane patterns of conformal TA.
(a) 8.5GHz. (b) 9.5GHz. (c) 10.5GHz. (d) 11.5GHz. (e) 12.5GHz. (f)
13.5GHz. (g) 14.5GHz. (h) 15.5GHz. (i) 16.5GHz 118
Fig. 5-16 Simulated and measured results. (a) Realized gain versus frequency. (b)
Aperture efficiency versus frequency118
Fig. 5-17 (a) Log-periodic dipole antenna (LPDA). (b) Planar TA with the LPDA
as the feed source
Fig. 5-18 (a) Simulated S11 of feed LPDA and whole TA system. (b) Simulated
gain of feed LPDA and whole TA system
Fig. 5-19 (a) Sketch of conformal TA. (b) Conformal TA with LPDA as the feed
source
Fig. 5-20 (a) Simulated S ₁₁ of conformal TA. (b) Simulated gain of feed LPDA
and conformal TA 121
Fig. 6-1 Schematic of a TA with lateral view
Fig. 6-2 Cross section in x-y plane of TA 126
Fig. 6-3 Phase errors before and after Taylor series expansion
Fig. 6-4 Refocusing schematic

Fig. 6-5 TA configuration with multiple feeds. (a) 3-D schematic. (b) Top view.
(c) Front view131
Fig. 6-6 Simulated element performance at 72 GHz 133
Fig. 6-7 Boresight radiation patterns with $d_{00}^0=60$ mm
Fig. 6-8 (a) Boresight radiation patterns with $d_{\theta\theta}^0=48$ mm. (b) -45° radiation
pattern
Fig. 6-9 Schematic for feed position calculation
Fig. 6-10 Simulated multibeam patterns at 72 GHz 138
Fig. 6-11 (a) The multibeam TA with 5 feed horns for 0° , $\pm 20^{\circ}$ and $\pm 43^{\circ}$. (b)
Simulated radiation patterns with 5 feed horns
Fig. 6-12 Photograph of fabricated prototype. (a) Front view. (b) Side view 140
Fig. 6-13 Results from simulation and measurement. (a) S-parameter for boresight
radiation. (b) Measured S-parameter at different radiation angles
Fig. 6-14 (a) Realized gain versus frequency for boresight radiation. (b) Boresight
radiation patterns at 70.5 GHz 142
Fig. 6-15 Measured multibeam radiation patterns. (a) 66 GHz. (b) 68 GHz. (c)
70.5 GHz. (d) 72 GHz. (e) 74 GHz. (f) Cross polarization at 70.5 GHz 143

LIST OF TABLES

Table 4-1 Huygens properties from theoretical calculation with quantized 360°
phase cover
Table 4-2 Properties of Huygens elements 81
Table 4-3 Dimensions of element 4 with different substrate thickness
Table 4-4 Properties of element 1 under different oblique incidence angles
Table 4-5 Comparison of proposed design with referenced TAs 95
Table 5-1 Parameters of LPDA
Table 6-1 Feed positions for different beam radiations 137
Table 6-2 simulated peak realized gains at different angles
Table 6-3 Measured results of different scanning angles at 70.5 GHz 142
Table 6-4 Performance comparison with other designs 144

LIST OF ABBREVIATIONS

TAs	Transmitarray antennas
RAs	Reflectarray antennas
FSS	Frequency Selective Surfaces
UAV	Unmanned Aerial Vehicles
UWB	Ultrawideband
5G	Fifth generation
Mm-wave	Millimetre-wave
СР	Circular-polarization
2-D	Two-dimensional
3-D	Three-dimensional
EM	Electromagnetic
LPDA	Log-periodic dipole antenna
SLL	Sidelobe level