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ABSTRACT

S emantic representation aims to encode the meaning of text (e.g., words) in

a form which can be stored and processed by a machine, such as real-valued

vectors or neural networks with well-trained parameters. In particular, semantic

knowledge is expected to be embodied in representations. For example, words with similar

meanings are expected to be close to each other when they are represented as vectors.

Semantic representation is the basic block of neural networks, and it should have better

expression ability to support downstream natural language processing applications.

Although recent research on semantic representation has shown a reasonable ability

to represent textual data by only using large-scale raw text, most research is incomplete

and biased as it only models the surface co-occurrence information of corpora but ignores

deep semantic and syntactic information. In addition, most research focuses on modeling

generic semantics, while disengaging from task requirements. Hence, existing semantic

representation methods still face several unsolved and challenging problems in the real

world.

This thesis aims to design better representation learning methods by utilizing trans-

ferable semantics extracted from source domains, which are resourceful and beyond

raw text. More specifically, this thesis aims to address four problems faced by existing

semantic representation methods: 1) how to reliably transfer semantics from a structural

knowledge base to an unstructured representation space; 2) how to reliably transfer

semantics from multiple source domains to a low-resource target domain; 3) how to

achieve the reliable and low-cost cross-lingual transfer of semantics; and 4) how to adapt

semantic representations for specific applications.
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To address Problem 1), this thesis designs two assumptions to model semantic

structures in knowledge bases and proposes a new semantic structure-based seman-

tic representation method (Chapter 3). It leverages the human-defined relationships

among words from structured knowledge bases as transferable semantics to improve its

representation ability. Instead of using the relations between word-pairs, our method

uses whole semantic structures which have proven to be more effective in semantic

representation.

To address Problem 2), this thesis proposes a dynamical meta-embedding method to

leverage the semantics from multiple source domains (Chapter 4). It leverages latent

knowledge from multiple source embeddings to improve representation learning for a

low-resource domain. Considering domain shifts and quality discrepancy, it dynamically

aggregates multiple source embeddings by a differentiable attention module, instead of

using them equally. It is proven to be more suitable to transfer true required semantics

from multiple source domains to a low-resource domain.

To address Problem 3), this thesis proposes a new method to bridge the cross-lingual

semantic gap with limited bilingual resource reliance (Chapter 5). Based on multilingual

embeddings, it learns a pivot set which is semantically related to a low-resource language

and lexically related to a high-resource language. With the learned pivots, our method is

useful to help models trained on high-resource languages to be adapted on low-resource

languages.

To address Problem 4), this thesis proposes a fuzzy word similarity measure to adapt

general semantic representations according to the need of a specific task (Chapter 6).

It takes task-oriented features into consideration and adapts general semantics to the

specific tasks, which alleviates the problem of disengaging from task requirements.

To conclude, this thesis proposes a set of effective methods to improve semantic

representation by exploring and modeling knowledge beyond raw text and places an

emphasis on encoding task-specific features for real-world applications.
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