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Qubit Mapping Based on Subgraph
Isomorphism and Filtered Depth-Limited Search

Sanjiang Li, Xiangzhen Zhou, Yuan Feng

Abstract—Mapping logical quantum circuits to Noisy Intermediate-Scale Quantum (NISQ) devices is a challenging problem which has
attracted rapidly increasing interests from both quantum and classical computing communities. This paper proposes an efficient
method by (i) selecting an initial mapping that takes into consideration the similarity between the architecture graph of the given NISQ
device and a graph induced by the input logical circuit; and (ii) searching, in a filtered and depth-limited way, a most useful SWAP

combination that makes executable as many as possible two-qubit gates in the logical circuit. The proposed circuit transformation
algorithm can significantly decrease the number of auxiliary two-qubit gates required to be added to the logical circuit, especially when
it has a large number of two-qubit gates. For an extensive benchmark set of 131 circuits and IBM’s current premium Q system, viz.,
IBM Q Tokyo, our algorithm needs, in average, 0.4346 extra two-qubit gates per input two-qubit gate, while the corresponding figures
for three state-of-the-art algorithms are 0.6047, 0.8154, and 1.0067 respectively.

Index Terms—NISQ, quantum circuit transformation, qubit mapping, subgraph isomorphism, heuristic search.
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1 INTRODUCTION

S INCE Shor’s exciting quantum algorithms for solving
integer factorization and discrete logarithm [1], many

quantum algorithms have been proposed that could of-
fer an exponential speed-up when compared with best
classical algorithms. These include in particular the HHL
algorithm for solving systems of linear equations [2] and
other machine learning algorithms derived from HHL (cf.
[3] for a summary). Typically, the implementation of these
algorithms requires quantum computers with millions of
qubits which are perhaps still not available in the next two
decades. On the other hand, IBM, Intel and Google have all
announced their quantum devices with around 50-70 qubits
recently. The Noisy Intermediate-Scale Quantum (NISQ)
era seems coming in reality. Despite that quantum error
correction is not yet available in the near future, quantum
supremacy is recently demonstrated in Google’s 53-qubit
quantum processor Sycamore [4].

There is yet another gap between theoretical research on
quantum algorithms and their implementation on realistic
quantum devices. When designing quantum algorithms,
typically, the quantum circuit model allows multi-qubit
gates to act on any set of qubits without restriction. This is,
however, not the case in realistic NISQ devices, which have
“limited number of qubits, limited connectivity between
qubits, restricted (hardware-specific) gate alphabets, and
limited circuit depth due to noise” [5]. In the superconduct-
ing devices of IBM, Google, and Rigetti, only single and
special two-qubit gates (like CNOT or CZ) are supported.
Even worse, these two-qubit gates can only be implemented
between neighbouring qubits. For example, Fig. 1 shows the
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Fig. 1. The architecture graphs for IBM Q Tokyo.

architecture graph of IBM’s current premium quantum sys-
tem IBM Q Tokyo (also known as IBM Q20), which supports
elementary single-qubit gates and two-qubit CNOT gates
and a CNOT gate can be implemented only between qubits
which are connected by an (undirected) edge. In order to use
these NISQ devices, the desired quantum functionality in
an ideal quantum circuit should be transformed or mapped so
that the underlying coupling constraints imposed by these
quantum devices are satisfied.

More precisely, in order to implement an ideal quantum
circuit on an NISQ device like IBM Q Tokyo, we need to
address two issues. The first is to decompose the desired
functionality (arbitrary quantum gates) into elementary op-
erations that can be directly applied on the NISQ device.
This issue has already been properly addressed in several
works [6], [7], [8]. The second issue, known as qubit mapping
or circuit transformation, is to map or route the qubits in
the ideal quantum circuit to qubits of the quantum device
so that the coupling constraints imposed by the quantum
device are satisfied and thus the two-qubit gates in the ideal
quantum circuit are executable.
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In the past several years, the qubit mapping problem has
attracted rapidly increasing interests from both classical and
quantum computing communities, see, e.g., [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18] and references therein.
Given an arbitrary quantum circuit and an NISQ device,
the task of qubit mapping is to construct automatically a
quantum circuit with the same functionality which can be
immediately implemented in the NISQ device. For ease of
presentation, we call an arbitrary quantum circuit a logical
circuit and call a circuit that is implementable in the NISQ
device a physical circuit. Similarly, we call qubits in a logical
(physical) circuit logical (physical) qubits. We assume that
gates in the input logical circuit are already decomposed
into elementary gates supported by the NISQ device. In
particular, each gate in the logical circuit involves at most
two qubits. Naturally, we also assume that the number of
logical qubits is not larger than the number of physical
qubits.

It is not difficult to find such a solution for an input
logical circuit. Indeed, we can start with an arbitrary initial
mapping and then execute one two-qubit gate per round
(note single-qubit gates can be executed directly) by in-
serting several SWAP operations to transform the current
mapping to a mapping that can execute the current two-
qubit gate. The challenge lies in that if we can find a solution
with minimal overhead in terms of the number of auxiliary
SWAP gates added. This is crucial for the success of quantum
computing as a large number of extra two-qubit gates will
significantly accumulate the error of the output physical
circuit.

Finding an optimal solution for the qubit mapping prob-
lem is often very difficult. Indeed, it is NP-complete [11] to
decide if an input logical circuit can be transformed into
an equivalent physical circuit using up to k SWAP gates
for a fixed integer k > 0. Several previous works use off-
the-shelf tools like dynamic programming [11], SAT solvers
[10], temporal planners [12], Integer Linear Programming
(ILP) [19], satisfiability modulo theory (SMT) solvers [13].
In worst cases, all these approaches take time exponential in
the number of qubits.

Many other works devise specialised heuristic search
algorithms for solving the qubit mapping problem. For
example, Zulehner, Paler and Wille [14] partition the in-
put logical circuit into layers and introduce an A∗ search
algorithm. When combined with a lookahead scheme and
a dedicated method for selecting the initial mapping, their
algorithm performs much better than IBM’s own solution.
However, this A∗ algorithm also takes time exponential in
the number of qubits. Li, Ding and Xie [15] propose a search
algorithm based on reverse traversal, which is polynomial in
the number of qubits and works very well for small circuits
with less than a hundred two-qubit gates. Their algorithm,
called SABRE, outperforms the A∗-approach [14] with expo-
nential speedup and comparable or better results on various
benchmarks. Childs, Schoute and Unsal [16] also propose
efficient methods that attempt to minimise the circuit depth
or size overhead and have worst-case time complexity poly-
nomial in the sizes of the input circuit and the architecture
graph. To this end, they decompose the problem into two
subproblems: qubit movement and qubit placement. The
first subproblem concerns how to transform the current

mapping to a selected next mapping by imposing SWAP
gates on edges in the architecture graph, while the second
subproblem gives method to compute the next mapping.
In another work, Cowtan et al. [17] describe a solution
implemented in the platform-independent compiler t|ket〉.
They also partition the input circuit into layers and then
select the SWAP which can maximally reduce the diameter of
the subgraph composed of all pairs of qubits in the current
layer. We address their algorithm as the Cambridge algo-
rithm henceforth. In [18], we designed a new qubit mapping
algorithm, called SAHS in this paper, which uses simulated
annealing for constructing an initial mapping and searches
the next mapping by using a heuristic function that reflects
the variable influence of gates in different layers. Empirical
results showed that SAHS outperforms both SABRE and the
Cambridge algorithm by a large margin. Initial mappings
of SAHS are, however, computed non-deterministically by
simulated annealing, which is sometimes unstable and runs
slowly when the circuit size is large [18].

In this paper, we propose a new search algorithm based
on subgraph isomorphism and filtered depth-limited search.
The idea is to construct a graph G from the input circuit
which is isomorphic to a subgraph of AG, the architecture
graph of the given NISQ device, and select any embedding
from G to AG as the initial mapping. Starting from this
initial mapping, we then, step by step, construct the physical
circuit while removing executable gates from the logical
circuit. If the current mapping can execute some gates in
the front layer of the logical circuit, we remove them from
the logical circuit and properly append them to the current
physical circuit; if there are no executable gates in the front
layer, then we need to insert SWAP gates and obtain a
new mapping so that some two-qubit gates in the front
layer can be executed. To select a good next mapping, we
tend to exhaustively search all possible combinations of
SWAP operations such that the number of executable two-
qubit gates per SWAP is maximised. As selecting the best
SWAP combination is expensive, we set up a fixed limit
k > 0 and only consider combinations of at most k SWAPs.
The search process could be further sped up if we ‘filter’
those SWAPs which do not interact with gates in the front
layers of the circuit. Such filters are designed and used in
our algorithm. While less efficient when compared with
SABRE, our algorithm is, if neglecting not considering the
time for computing the initial mapping, still polynomial
in all relevant parameters and can significantly reduce the
number of SWAPs required to transform the input logical cir-
cuit. Indeed, empirical evaluation shows that our algorithm
can often reduce by half the number of SWAPs required
when compared with SABRE, if the input logical circuit
has hundreds or more two-qubit gates. Similar empirical
evaluations also show that our algorithm is significantly
better than the Cambridge algorithm developed by Cowtan
et al. [17] and our SAHS algorithm [18] in terms of the size
of the output circuits, when no postmapping optimisation is
used.

The remainder of this paper is organised as follows. In
Section 2, we recall some background of quantum com-
putation and quantum circuits, and describe and analyse
our algorithm in Section 3. Detailed empirical evaluation is
reported in Section 4. The last section concludes the paper
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with discussions on directions for future research.

2 BACKGROUNDS

In this section, after a brief introduction of quantum gates
and quantum circuits, we describe the dependency graph
associated to a logical circuit and show how to partition the
logical circuit into layers by using the dependency graph.

2.1 Quantum Gates and Quantum Circuits
Qubit is the counterpart of bit in quantum computation.
While a ‘classical’ bit can only be in one of two states,
viz., 0 and 1, a qubit can be in the superposition state
|ψ〉 = α |0〉 + β |1〉 of the two basis states, |0〉 and |1〉,
where α, β ∈ C are probability amplitudes satisfying
|α|2 + |β|2 = 1. For example, |+〉 = 1√

2
(|0〉 + |1〉) and

|−〉 = 1√
2
(|0〉−|1〉) are two superposition states. The success

of quantum computation partially lies in ingenious use of
quantum superposition.

Quantum computation is realised by applying quantum
gates on qubits. Complex, multi-qubit gates can be decom-
posed into elementary single or two-qubit gates. In fact, any
quantum gate can be approximated to arbitrary accuracy
using a fixed set of single-qubit gates and CNOT gates [20].
Fig. 2 illustrates three very useful gates: Hadamard gate
H, CNOT gate and SWAP gate. Hadamard gate is a single-
qubit gate which can evenly mix the basis states to produce
a superposed one. Precisely, H maps |0〉 to |+〉 and |1〉 to
|−〉. CNOT and SWAP are both two-qubit gates, i.e., they
operate on two qubits. A CNOT gate flips the target qubit
(indicated graphically with ⊕) if and only if the control
qubit (indicated graphically with a black dot •) is in state
|1〉, while a SWAP gate exchanges the states of the two
qubits operated. Precisely, CNOT maps |a〉 |b〉 to |a〉 |a⊕ b〉
and SWAP maps |a〉 |b〉 to |b〉 |a〉 for a, b ∈ {0, 1}. Most NISQ
devices do not support SWAP gates directly and, if this is the
case, we may implement a SWAP gate by three CNOT gates
(see Fig. 2 (right)).

Quantum circuits are the most commonly used model to
describe quantum algorithms, which consist of input qubits,
quantum gates, measurements and classical registers [21].
As only input qubits and quantum gates are relevant in
the qubit mapping problem, in this paper, we represent a
quantum circuit simply as a pair (Q,C), where Q is the set
of involved qubits and C a sequence of quantum gates.

2.2 Dependency Graph and Front Layer
Two-qubit gates in a logical circuit LC = (Q,C) are not
independent in general. We say a two-qubit gate g1 depends
on another two-qubit gate g2 if the latter must be executed
before the former. This happens when g2 is in front of g1 in
C and they share a common qubit, or when g1 depends on
a two-qubit gate g3 which depends on g2. For clarity, we say
g1 directly depends on g2 if g2 is in front of g1 in C and they
share a common point and there are no other gates between
them which share the same common point.

For a logical circuit LC = (Q,C), we construct a di-
rected acyclic graph (DAG), called the dependency graph,
to characterise the direct dependency between two-qubit
gates in LC [15], [16]. Each node of the dependency graph

represents a two-qubit gate and each directed edge the
direct dependency relationship from one two-qubit gate to
another. The front layer of LC , denoted F(LC) or L0(LC),
consists of all two-qubit gates in LC which have no parents
in the dependency graph. The second layer L1(LC) is then
the front layer of the circuit obtained fromLC by deleting all
gates in F(LC). Analogously, we can define the k-th layer
Lk(LC) of LC for all k ≥ 0.

Example 1. Consider the logical circuit LC = (Q,C) shown in
Fig. 3 (left), where

Q = {q0, q1, q2, q3},
C = (g0 ≡ 〈q2, q0〉, g1 ≡ 〈q3, q2〉, g2 ≡ 〈q0, q3〉, g3 ≡ 〈q0, q2〉,

g4 ≡ 〈q3, q2〉, g5 ≡ 〈q0, q3〉, g6 ≡ 〈q3, q1〉),

where 〈q2, q0〉, for example, denotes the CNOT gate in the logical
circuit with q2 being the control qubit and q0 the target.

For this circuit, we have F(LC) = {g0}, L1(LC) = {g1},
L2(LC) = {g2}, and L3(LC) = {g3}, and so on. From the
dependency graph (showing in Fig. 3 (right)), we can see that, for
example, gate g2 can be executed only after g0 and g1.

3 THE PROPOSED APPROACH

The main objective of qubit mapping is to transform an
input logical circuit to a physical one with minimal size or
depth so that the constraints imposed by the NISQ device
are satisfied. To simplify the discussion, we only consider
the connectivity constraints for two-qubit gates as specified
by the architecture graph. This means that single-qubit
gates have no effect in the circuit transformation process.
Furthermore, we make the following assumptions:1

1) The NISQ device supports all single-qubit gates and
CNOT gates;

2) The architecture graph of the NISQ device, AG, is
an undirected graph;

3) CNOT gates are the only two-qubit gates in the input
logical circuit.

From now on and as in Example 1, we write a CNOT gate
simply as a pair 〈q, q′〉, where q is the control qubit and q′ is
the target qubit. We call the CNOT gate 〈q′, q〉 the inverse of
〈q, q′〉.

Let AG = (V,E) be the undirected architecture graph of
the NISQ device we are given, where V is the set of physical
qubits and E the set of edges along which CNOT gates can
be performed. Recall that an edge e in an undirected graph
is an unordered pair of the two endnodes p, q of e. In the
following, we write e simply by {p, q}, i.e., the set of its two
endnodes.

Let LC = (Q,C) be a logical circuit with |Q| ≤ |V |.
Suppose C consists of only CNOT gates after removing all
single-qubit gates. We need to construct a physical circuit
PC = (V,Cp) which contains only CNOT gates, is func-
tionally equivalent to LC after adding back all single-qubit
gates accordingly, and respects the connectivity constraints
imposed by AG, i.e., for any CNOT gate 〈q, q′〉 in Cp, we
have {q, q′} ∈ E.

1. The occurrences of CNOT gates may be replaced by CZ gates when,
e.g., a Rigetti device is used.
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Fig. 2. Hadamard, CNOT and SWAP gate (from left to right).

Fig. 3. A logical quantum circuit with only CNOT gates (left) and its dependency graph (right).

It is easy to find a physical circuit that satisfies the above
conditions, but the real challenge is to find one with minimal
size or depth, which is NP-hard in general [11]. In this paper,
we modify the input logical circuit stepwise by inserting
auxiliary SWAP operations (each implemented with three
CNOT gates as in Fig. 2 (right)) until the logical circuit is
transformed into a physical circuit that can be executed
on the NISQ device. To evaluate the effectiveness of qubit
mapping algorithms, we use the sizes of the output circuits,
i.e., the total number of its two-qubit gates.

3.1 Qubit Mapping

In each step, qubits in the logical circuit are mapped or allo-
cated to physical qubits in the NISQ device. Mathematically,
a (partial) qubit mapping is a (partial) function τ from Q
to V such that τ(q) = τ(q′) if and only if q = q′ for any
q, q′ ∈ Q. We say a partial qubit mapping is complete if it
is defined for every q in Q. A physical qubit v is occupied if
τ maps some logical qubit q to v. If otherwise, we say v is
unoccupied. The mapping may change in consecutive steps
of the transformation which is determined by the inserted
auxiliary SWAP operations.

Given a logical circuit LC and a mapping τ , a CNOT gate
g = 〈q, q′〉 in LC is said to be satisfied by τ , or τ satisfies g, if
{τ(q), τ(q′)} is an edge in AG. Furthermore, g is executable
by τ if it appears in the front layer of LC and τ satisfies g. If
this is the case, we remove g from LC and append a CNOT
gate τ(g) := 〈τ(q), τ(q′)〉 to the end of the physical circuit.
This process is called the execution of g.

For two physical qubits v, v′ in AG, we write
distAG(v, v′) for the distance (i.e., the length of a shortest
path) from v to v′ in AG.

For any mapping τ and any two-qubit gate g = 〈q, q′〉,
the physical distance between the two qubits q, q′ in g under
mapping τ , written distph(q, q′, τ), is defined as

- the distance between τ(q) and τ(q′) in AG, i.e.,
distAG(τ(q), τ(q′)), if both τ(q) and τ(q′) are defined,

- the shortest distance between τ(q) or τ(q′) to all
unoccupied physical qubits if only one of τ(q) and
τ(q′) is defined, and

- the shortest distance between two unoccupied qubits
if neither τ(q) nor τ(q′) is defined.

Apparently, a gate g = 〈q, q′〉 in the front layer is executable
by τ (after possible extension if τ is incomplete) iff the
physical distance between q and q′ under τ is 1.

Example 2 (Example 1 cont’d). Consider the logical circuit
LC shown in Fig. 3. Let τ1 : Q → V be the mapping specified
by τ1(q0) = v2, τ1(q1) = v0, τ1(q2) = v10, τ1(q3) = v6, see
Figure 4 (left). Then, because τ1(q2) = v10 and τ1(q0) = v2
and distAG(v2, v10) = 2, we can see that g0 ≡ 〈q2, q0〉 is not
executable by τ1 in IBM Q Tokyo. However, for the mapping τ3
shown in Figure 4 (right), g0 is executable by τ3 and, indeed,
every gate in LC is satisfied by τ3.

3.2 Initial Mapping

An initial mapping can be constructed step by step or se-
lected arbitrarily or computed from a dedicated subroutine.
Zulehner et al. [14] tested both arbitrary initial mappings
and initial mappings evolved from an empty mapping.
Their experimental evaluation shows that, in general, the
latter approach has better performance. In [15], Li et al.
proposed to use an initial mapping that takes the whole
input circuit into consideration. Starting from a randomly
generated mapping τ0, they first take this mapping as the
initial mapping and apply it on the input circuit (Q,C),
the obtained final mapping τ1 is then used as the initial
mapping and applied to the inverse circuit2 (Q,Cinv), and
lastly, the obtained final mapping τf is selected as the initial
mapping for their main algorithm SABRE. Their approach
is demonstrated as consistently better than the A∗ search
algorithm in [14]. In [18], we proposed SAHS, which uses

2. Note the “inverse” here has a different meaning as the “inverse”
CNOT gate defined in page 3.
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τ1 τ2 τ3

Fig. 4. Qubit mappings τi : {q0, q1, q2, q3} → V for i = 1, 2, 3, where τ2 is obtained from τ1 by SWAP(1,6) and τ3 is obtained from τ2 by SWAP(6,10),
where SWAP(1, 6) is a shorthand for SWAP(v1, v6).

simulated annealing to search for the best initial mapping
that fits well with the input logical circuit and empirical
evaluation there shows that, when compared with the naive
mapping that sends qi to vi, SAHS works significantly better
with the initial mapping obtained by simulated annealing.

In this section we show how to obtain a good initial
mapping by matching a particular graph induced by the
input circuit with the architectural graph.

Suppose LC = (Q,C) is the input logical circuit. We
first construct an undirected graph Gcirc(C) = (Q,Ecirc) on
Q, where {q, q′} is an edge in Ecirc if either 〈q, q′〉 or its
inverse 〈q′, q〉 is in C . If Gcirc(C) happens to be isomorphic
to a subgraph of the architecture graph AG, then the qubit
mapping problem is solved by constructing an (arbitrary)
isomorphic embedding τ from Gcirc(C) to AG. For NISQ
devices, which have up to several thousands qubits, this can
be solved by, for example, the VF2 algorithm [22]. If Gcirc(C)
is not isomorphic to a subgraph of AG, then we may select
a maximal sub-circuit Ctop of C such that

(i) Ctop is a front section of C = {gi ∈ C | 1 ≤ i ≤ n}
w.r.t. the dependency graph of C , i.e., a two-qubit
gate gi is in Ctop only if all two-qubit gates gj on
which gi depends are in Ctop;

(ii) the graph Gcirc(Ctop) is isomorphic to a subgraph of
AG; and

(iii) the graph Gcirc(Ctop ∪ {gi∗}) is not isomorphic to a
subgraph of AG for any gi∗ that is in the front layer
of C \ Ctop.

We call Gcirc(Ctop) a top subgraph (topgraph for short)
of Gcirc(C). Let τtop be an isomorphic embedding from
Gcirc(Ctop) toAG. We select τtop as the initial mapping, which
satisfies all gates in Ctop. Note that τtop might not be a
complete mapping from Q to V .

Example 3 (Example 1 cont’d). For the circuit LC in
Example 1, we have Q = {q0, q1, q2, q3} and Ecirc =
{{q0, q2}, {q0, q3}, {q2, q3}, {q1, q3}}. Clearly, Gcirc(C) is iso-
morphic to a subgraph ofAG and such an isomorphism is specified
by the qubit mapping τ3 in Fig. 4 (right).

Note that τtop often does not take the whole circuit into
consideration. We propose another method for constructing
the initial mapping that considers the whole circuit. For a
logical circuit LC = (Q,C), we introduce a weight function
ω which assigns a weight on each edge of Ecirc (the edge set

of the undirected graph Gcirc(C) defined above) such that
ω({q, q′}) is the number of gates gi in C with gi = 〈q, q′〉
or gi = 〈q′, q〉. Let Ew

circ = {e1, e2, ..., en} where ω(e1) ≥
. . . ≥ ω(en). We then construct a subgraph G∗ = (Q,E∗) of
Gcirc(C) which is isomorphic to a subgraph ofAG as follows.
We start by letting E∗ = {e1} and then consider the next
edge e2. In general, suppose we have decided if ei should
be put into E∗ or not for all i < k for some k ≤ n and
the current subgraph G∗ is isomorphic to some subgraph
of AG. We consider ei+1. If putting ei+1 into E∗ will make
G∗ non-isomorphic to any subgraph of AG, we skip this
edge; otherwise, we put ei+1 into E∗ and update G∗, which
is still isomorphic to some subgraph of AG. If i + 1 < n,
we continue to consider ei+2 till there is no edge left in
Ew

circ. In this way, we obtain a subgraph G∗ of Gcirc(C) that is
isomorphic to some subgraph of AG. The sum of weights of
edges in G∗, though not necessary the largest, is sufficiently
large among all subgraphs of Gcirc(C) that are isomorphic
to some subgraph of AG. Using the VF2 algorithm, we can
find an embedding τwgt which embeds G∗ into AG. Again,
we note that τwgt might be a partial mapping from Q to V .

In the following, we call τtop the topgraph initial map-
ping and call τwgt the weighted graph initial mapping of
LC. Besides these two initial mappings, we also introduce
a method for evolving an initial mapping from the empty
mapping. Similar idea was used by Zulehner et al. [14],
while we extend a partial mapping only when necessary, i.e.,
when the thus extended mapping can execute a two-qubit
gate in the current front layer or it can reduce the minimum
physical distance (cf. Section 3.1) between qubits in a two-
qubit gate in the current front layer. This mapping extension
technique is also used when τtop or τwgt is incomplete.

3.3 Fixed-Depth Heuristic Search
In most search-based algorithms for the qubit mapping
problem, a heuristic function is used to select an action
(i.e., a SWAP or a sequence of SWAPs) which can maximally
reduce the sum or the minimum of the distances between
the two qubits in the CNOT gates of the front layer and,
sometimes, the lookahead layer.

For each edge e = {v, v′} in AG there is an associated
SWAP operation, written SWAP(e), which swaps the states on
v and v′. More precisely, suppose τ is the current mapping
and τ(q) = v, τ(q′) = v′. Then SWAP(e) transforms τ into
a new mapping τ ′ such that τ ′(q) = v′, τ ′(q′) = v, and
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τ ′(q∗) = τ(q∗) for q∗ 6∈ {q, q′}. In case if τ(q) (τ(q′)) is not
defined and τ(q′) = v′ (τ(q) = v), then τ ′(q′) (τ ′(q)) is not
defined and τ ′(q) = v′ (τ ′(q′) = v). If both are undefined,
then τ ′ = τ . We often write SWAP(e) ◦ τ for τ ′.

Example 4 (Example 1 cont’d). For the three qubit mappings in
Fig. 4, we have τ2 = SWAP(1, 6)◦τ1 and τ3 = SWAP(6, 10)◦τ2.

In this section, we propose a new heuristic function
which measures how efficient the mapping can execute gates
in the logical circuit. For convenience, we say a CNOT gate
(in or not in the front layer) is executable by a mapping τ if
itself and all CNOT gates it depends on are satisfiable by τ .

Starting with a selected initial mapping τ0, we write
s0 = (τ0, PC0, LC0) for the initial state of the search
process, where LC0 is obtained by removing all CNOT
gates 〈q, q′〉 that are executable by τ0 from LC, and
PC0 is obtained by adding the corresponding CNOT gates
〈τ0(q), τ0(q′)〉 in an empty physical circuit. Step by step, we
select an action a from S , the set of sequences of SWAPs on
AG and enforce all SWAPs in a one by one to get the next
mapping (and the next state) till there are no gates left in the
logical circuit.

Suppose si is the current state with si = (τ i, PCi, LCi)
and all gates that are executable by τ i are already removed
from LCi. For a sequence a = (SWAP1, SWAP2, ..., SWAP`) of
SWAPs on AG, we define a value function

val(τ i, a) =
number of gates executable by τ ′

len(a)× 3
, (1)

where τ ′ is the mapping obtained by enforcing SWAPs in
action a one by one on τ i and len(a) = ` is the number of
SWAPs in a. Recall each SWAP is implemented by three CNOT
gates (see Fig. 2 (right)).

Our action set consists of all sequences of SWAPs on AG
and we select any one with the maximal value, i.e., we select
a∗ from

argmax
a∈S

val(τ i, a). (2)

After selecting a∗, we enforce on τ i SWAPs in a∗ one by one
and obtain the next mapping τ i+1. Then we remove all gates
that are executable by τ i+1 from LCi and write LCi+1 for
the resulted logical circuit. In the meanwhile, we append to
PCi three CNOT gates (as in Fig. 2 (right)) for each SWAP in
a∗, and a CNOT gate 〈τ i+1(q), τ i+1(q′)〉 for each CNOT gate
〈q, q′〉 removed from LCi. In this way, we obtain PCi+1 and
the next state si+1 = (τ i+1, PCi+1, LCi+1).

Apparently, considering all sequences of SWAPs is inef-
ficient. In practice, we propose to consider actions with up
to k SWAPs for some fixed k ≥ 1. In particular, for IBM Q
Tokyo, we select k = 3, which reflects a good compromise
between efficiency and effectiveness.

Example 5 (Example 1 cont’d). Suppose τ1 is the qubit map-
ping which maps q0, q1, q2, q3 to, respectively, v2, v0, v10, v6, see
Fig. 4 (left). As the front layer contains only g0 = 〈q2, q0〉, which
is not executable by τ1, there are no gates in LC that can be
executed by τ1. Examining all sequences of up to 3 SWAPs, the
four best actions are as follows:

• a1 = (SWAP(1, 6), SWAP(6, 10)), which can execute all
7 gates in LC;

• a2 = (SWAP(5, 6), SWAP(2, 6)), which can execute all 7
gates in LC;

• a3 = (SWAP(6, 7), SWAP(6, 10)), which can execute all
but the last gate in LC;

• a4 = (SWAP(6, 11), SWAP(2, 6)), which can execute all
but the last gate in LC.

The fifth best action contains 3 SWAPs. Thus a1 and a2 are the op-
timal actions, with the optimal value val(τ1, a1) = val(τ1, a2) =
7/6.

3.3.1 Heuristics used in related works

Now it is a good time to compare our heuristic function with
those used in the related works.

Zulehner et al. [14] select the action that results in a
mapping which can execute all gates in the front layer and
the lookahead layer. The action consists of a sequence of
SWAPs and is selected by using A∗ search and the following
heuristics:

h(τ i) =
∑{

3×
(
distAG(τ i(q), τ i(q′))− 1

)
|

〈q, q′〉 ∈ L0(LC
i) ∪ L1(LC

i)

}
,

where, for any two-qubit gate 〈q, q′〉, distAG(τ i(q), τ i(q′)) is
the distance from τ i(q) to τ i(q′) in AG. The heuristic cost is
not admissible and thus an optimal action is not guaranteed.
Moreover, the worst-case time complexity of this A∗ search
algorithm is exponential in the number of logical qubits.

Childs et al. [16] select the action which can maximally
reduce the total distance between qubits in the CNOT gates
in the current front layer, i.e.,

R(τ i) =
∑{

distAG(τ i(q), τ i(q′)) | 〈q, q′〉 ∈ L0(LC
i)

}
. (3)

Their algorithm is polynomial in all relevant parameters
but its performance is not directly compared with the A∗

algorithm in [14].
To overcome the inefficiency of the A∗ search algorithm,

several researchers (see, e.g., [15], [17]) propose to select
a single SWAP each time. Their methods are more efficient
than the A∗ approach when processing logical circuits with
more than 15 qubits. In [15], Li et al. design a heuristic cost
function that can reduce the sum of distances between the
two qubits in each two-qubit gate in the front (and the
lookahead) layers. Analogously, Cowtan et al. [17] use a
heuristic cost function that can reduce the diameter of the
subgraph composed of all qubits in the two-qubit gates of
the front layer. In the evaluation section, we will see that the
efficiency of these algorithms is achieved at the cost of the
quality of the output physical circuit.

In the SAHS algorithm [18], we introduce a heuristic func-
tion that supports weight parameters to reflect the variable
influence of gates in different layers. In each step, instead of
selecting the action with the minimal cost to apply, the SAHS
algorithm selects the SWAP which has the best consecutive
SWAP to apply.
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3.4 Optimisation and Fallback

Considering all sequences of up to k SWAPs is still not very
efficient for devices with a medium to large architecture
graph. Let τ be the current mapping and Li the current i-th
(0 ≤ i ≤ k) layer. Write Qi for the set of logical qubits in Li.
It’s natural not to consider SWAPs that do not interact with
gates in the front layers. This idea was used for edges in the
front layer in, e.g., [14], [15], [18].

For an edge e = {v, v′}, if neither τ−1(v) nor τ−1(v′) is
inQ0, then swapping v and v′ does not reduce the minimum
distance between qubits in a two-qubit gate in the current
front layer, viz. L0. Therefore, it is reasonable to introduce
the following filter for selecting actions a = (e1, e2, ..., e`)
with at most k SWAPs:

1. Q0-filter: We say a = (e1, e2, ..., e`) is a Q0-plausible
action if, for any edge ej = {v, v′} of a, we have
either τ−1j−1(v) or τ−1j−1(v

′) is in Q0, where τ0 ≡ τ
and τj is obtained from τj−1 by enforcing SWAP(ej)
for 1 ≤ j ≤ `.

Similarly, we could look ahead and introduce Qi-filter for
0 < i < k.

2. Qi-filter: We say a = (e1, e2, ..., e`) is a Qi-plausible
action if, for any edge ej = {v, v′} of a with j > i,
we have either τ−1j−1(v) or τ−1j−1(v

′) is in Qi, where
τ0 ≡ τ and τj is obtained from τj−1 by enforcing
SWAP(ej) for 1 ≤ j ≤ `.

The above Qi-filter could be weakened by requiring that
either τ−1i−1(v) or τ−1i−1(v

′) is in (a subset of)Q0∪Q1∪· · ·∪Qi.
In our evaluation, we used Q0 and (weakened) Q1 filters
and the results are very promising (see Section 4).

It should be stressed that, sometimes, Q0-filter may
‘filter’ out optimal actions.

Example 6 (Example 1 cont’d). Note that Q0 = {0, 2} and
τ1(q0) = v2, τ1(q2) = v10. Each ai for 1 ≤ i ≤ 4 in Example 5
is not Q0-plausible. Thus our algorithm with Q0-filter cannot
find an optimal action. In fact, the following Q0-plausible action
is selected by our algorithm

• a5 = (SWAP(2, 7), SWAP(1, 6), SWAP(6, 10)).

This action (see Fig. 4) can execute all 7 gates in LC and has
val(τ1, a5) = 7/9.

Another type of filters is also introduced in our algo-
rithm. Let τ be the current mapping and Li the i-th layer
of the current logical circuit. Recall the notion of physical
distance defined in Sec. 3.4 and assume that γ ∈ [0, 1] is
a discount factor and s ≥ 0. For two mappings τ1 and τ2,
we say τ1 is s-better than τ2 if R̂s(τ1) < R̂s(τ2), where for
i = 1, 2 we have

R̂s(τi) =
s∑

`=0

γ` ×
(∑{

distph(q, q′, τi) | 〈q, q′〉 ∈ L`

})
. (4)

Intuitively, τ1 being s-better than τ2 implies that it is easier
to execute all gates in the first s-level if we starts from τ1
instead of τ2.

Let τ be the current mapping. We define the Ds-filter as
follows.

3. Ds-filter: We say a = (e1, e2, ..., e`) is aDs-plausible
action if τj−1 is not s-better than τj for any 1 ≤ j ≤
`, where τ0 ≡ τ and τj is obtained from τj−1 by
enforcing SWAP(ej) for 1 ≤ j ≤ `.

Note that if γ = 0 then Ds-filter is the same as D0-filter.

Fallback
For a prefixed positive integer k, it is possible that, in some
cases, no sequence of SWAPs with length ≤ k can lead to a
mapping which can execute any CNOT gate in the current
front layer. If this is the case, we use the following natural
fallback:
Fallback: Select any SWAP that can reduce FB(τ), the
minimum distance between qubits in a two-qubit gate in
the current front layer, which is formally defined as follows:

FB(τ) = min

{
distAG(τ(q), τ(q′)) | 〈q, q′〉 ∈ L0

}
. (5)

It is worth noting that, for our experiments on IBM Q
Tokyo and an extensive set of logical circuits, the fallback is
rarely activated.

3.5 Complexity Analysis
In the following we give a rough estimation of the complex-
ity of the search process of our algorithm.

The construction of the topgraph and weighted graph
initial mappings requires finding an isomorphic graph em-
bedding. In general, it is NP-hard to check if a graph is
isomorphic to a subgraph of another but there are efficient
algorithms, say the VF2 algorithm [22], which can quickly
solve this problem and output an embedding if the answer
is yes for graphs with several thousands nodes. Therefore,
for the purpose of qubit mapping with NISQ devices, we
don’t take into our analysis the time of computing an initial
mapping. Experiments on various architecture graphs with
up to 361 nodes and circuits with up to 50 qubits and 15,000
CNOT gates show that the time consumption is acceptable.
For detailed discussion please see Sec. ??.

Suppose LC = (Q,C) is a logical circuit and AG =
(V,E) is the architecture graph of a NISQ device. Write |Q|,
|V |, and |E| be, respectively, the cardinalities of Q, V , and
E. Let diam be the diameter of AG and m the number of
CNOT gates in C .

We have the following simple observations:

• The dependency graph of LC can be computed in
time linear in m.

• For any mapping τ and any logical circuit LC, we
can identify (and remove from LC as well as from
its dependency graph) in time linear in m the set of
gates in LC executable by τ .

We first consider the ideal case when fallback is never
activated during the search process. As described in Sec-
tion 3.3, starting with a selected initial mapping τ0, step by
step, we select an action a consisting of up to k SWAPs on
AG and enforce all SWAPs in a one by one to get the next
mapping till there are no gates left in the logical circuit.
Suppose si = (τ i, PCi, LCi) is the current search state. As
there are at most O(|E|k) actions with up to k SWAPs, we
can generate at mostO(|E|k) different mappings from τ i. To
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select from these mappings the one which can execute the
most gates in LCi, we need time O(|E|k ·m) (cf. the second
observation above). Because each step removes at least one
CNOT from LC, in at most O(|E|k ·m2) time, we can execute
all gates in LC. We note that this is an overestimated upper
bound. If any Q-filter is used, there are at most nk · degk
actions with up to k SWAPs, where deg is the maximum
degree of AG. For IBM Q Tokyo, the maximum degree is 6,
and for most grid-like AGs, the maximum degree is 4.

Now, suppose fallback is activated. Since each activation
of the fallback reduces by (at least) one the minimum
distance between qubits in a CNOT gate in the current
front layer (i.e., FB(τ) in Eq. 5), the whole search process
activates the fallback procedure at most m × diam times.
Note that each activation (see Eq. 5) needs to compute the
shortest distance between the control and target qubits in a
CNOT gate in the front layer of the current logical circuit and
there are at most |Q|/2 CNOT gates in the front layer. Using
Dijkstra’s algorithm with lists, FB(τ) can be computed in
time O(|Q| · |V |2).3 Thus the total fallback on-cost is at most
O(|Q| · |V |2 ·m · diam).

Therefore, the overall time complexity of the search
process is O(|E|k ·m2+ |Q| · |V |2 ·m ·diam). As |Q| ≤ |V | ≤
|E|+1 and diam is usually very small when compared with
m, the overall time complexity is bounded by O(|E|k ·m2)
if k ≥ 3. In practice, this could be significantly reduced if we
use Q-filters as the base in |E|k can be significantly reduced.

As for the space complexity, in each state s, we maintain,
besides the logical and physical circuits, the dependency
graph of the current logical circuit and the set of plausible
actions with up to k SWAPs. Thus the space complexity of
the algorithm is bounded by O(|E|k +m).

4 EVALUATION

In this section, we compare our approach with the SABRE
algorithm of Li et al. [15], the Cambridge algorithm of
[17], and our qubit transformation algorithm SAHS based
on simulated annealing and heuristic search [18], which
are the state-of-the-art algorithms for the qubit mapping
problem on IBM Q Tokyo (see Fig. 1). Although we focus on
a particular NISQ device in the evaluation, our approach is
applicable to any undirected architecture graph, including
for example Rigetti 16Q Aspen-44. We use Python as our
programming language and IBM Qiskit [23] as auxiliary
environment.5 All experiments are conducted in a MacBook
Pro with 3.1 GHz Intel Core i5 processor and 8GB memory.

As for benchmark circuits, we consider all publicly avail-
able circuits evaluated in [15] or [17]. Note that only CNOT
gates are concerned in our comparison. For each individual
circuit, we extract all its CNOT gates and use the thus
reduced circuit as the input of our qubit mapping algorithm.
We then compare the involved algorithms in terms of the
number of auxiliary CNOT gates required. One may also

3. In practice, we precompute the distance between every two nodes
of AG and store it in a table.

4. Note that this device supports CZ instead of CNOT.
5. Code available at https://github.com/BensonZhou1991/Qubit-

Mapping-Subgraph-Isomorphism

use the following relative measure RCNOT, first introduced in
[17], to compare different algorithms on a particular circuit:

RCNOT =
#CNOT in the output physical circuit

#CNOT in the input logical circuit
.

In order to compare algorithms evaluated over different
benchmark sets of circuits, for any benchmark set B of
quantum circuits, we define the following CNOT index,
written IBCNOT, of an algorithm relative to B as the fraction
of the total number of CNOT gates in all output physical
circuits over the total number of CNOT gates in all input
logical circuits from B, i.e.,

IBCNOT =

∑
LC∈B #CNOT in the output physical circuit of LC∑

LC∈B #CNOT in LC
.

For convenience, we write Bs and Bc for the benchmark
sets of circuits used in [15] and [17] respectively. Note that
Bc contains 131 circuits and includes all the 23 circuits in
Bs. For more precise comparison, we decompose Bc into
three categories according to the number of CNOTs these
benchmark circuits contain: small (0-99), medium (100-999)
and large (≥ 1000).

For all experiments reported here, we fix the search
depth k as 3 and useQ0-filter for the first SWAP andQ1-filter
for all the other SWAPs for filtering actions a = (e1, ..., e`)
with at most 3 SWAPs. In addition, we also adopt the D0-
filter to exclude more less significant actions.

4.1 Comparison Among Different Initial Mappings
We first compare the two subgraph isomorphism related
initial mappings (viz., the topgraph initial mapping τtop
and the weighted graph initial mapping τwgt) introduced
in Section 3 with the empty mapping and the naive initial
mapping (which maps qi to vi for each qi in Q). Table 3
summarises the results for all (small, medium, large) circuits
in Bc, while we give the detailed results in Tables 7-9
in Section A. For each of these circuits and each initial
mapping, the transformation can be completed within about
500 seconds by using our algorithm.

From Table 3, we can see that the two isomorphism sub-
graph related initial mappings, τtop and τwgt are significantly
better than the empty initial mapping and the naive initial
mapping for small and medium circuits, but the difference
is not significant when large circuits are evaluated. This is
not a surprise as the search heuristics plays a dominant role
if the circuit has a large size. Note that if a logical circuit can
be transformed into a physical circuit with zero overhead,
our algorithm, when using either the topgraph or weighted
graph initial mapping, will very likely detect this.

Since the topgraph initial mapping is slightly better
than the other three initial mappings, in the following,
when compared with other algorithms, we always use the
topgraph initial mapping.

4.2 Comparison with SABRE, Cambridge, and SAHS
We then compare our algorithm with SABRE [15] on the
small benchmark set Bs of circuits used in [15]. We use
the topgraph initial mapping τtop. The results are reported
in Table 2, in which the ‘Comparison’ column shows the
improvement of our algorithm over SABRE in terms of the
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benchmarks #circ. topgr.i.m. wghtgr.i.m. empty i.m. naive i.m. SAHS Cambridge
small 63 1.2521 1.3175 1.5041 1.8760 1.2619 1.5103

medium 39 1.2886 1.3034 1.4074 1.5727 1.3101 1.6854
large 29 1.4280 1.4366 1.4504 1.4422 1.6151 1.8211

all 131 1.4231 1.4324 1.4497 1.4486 1.6047 1.8154
TABLE 1

Summary of the IBCNOT-index of our algorithm with four different initial mapping constructing methods and SAHS and Cambridge

numbers of auxiliary CNOT gates added. Specifically, let
nsabre and nours be the numbers of CNOT gates added by
SABRE and by ours, respectively. Then the improvement ra-
tio is calculated as (nsabre−nours)/nsabre. From Table 2 we
can see that only two circuits have negative improvement
against SABRE. For all circuits with more than 300 CNOT
gates, the improvement is at least 48%. In terms of the CNOT

index, we have successfully decreased the index IBs
CNOT from

1 + 50874/50534 = 2.0067 to 1 + 20790/50534 = 1.4114.
We further compare our algorithm with the Cambridge

algorithm of [17] and our SAHS algorithm [18] on the large
benchmark set Bc, which contains 131 circuits. A summary
of the results in terms of the CNOT index is presented in
Table 3. As for detailed results, see Tables 7-9 in Section A.
It is worth stressing that the results of the Cambridge algo-
rithm is obtained without using postmapping optimisations.
Precisely, we have removed the following codes from their
algorithm:

• ‘Transform.OptimisePhaseGadgets().apply(tkcirc)’
and

• ‘Transform.OptimisePostRouting().apply(outcirc)’.

Thus the results of their algorithm given in Tables 7-9 are
different from those reported in [17, Table VI]. In this sense,
Tables 7-9 provide a fair comparison as we do not do
postmapping optimisations either.

From Table 3 we can see that, for all 131 circuits in Bc, the
IBc

CNOT index of our algorithm is 1+141252/333811 = 1.4231,
while the indices for SAHS and Cambridge are, respectively,
1.6047 and 1.8154. This shows that our algorithm can in
average generate significantly better results than Cambridge
and SAHS. This is particularly true for large circuits which
contain 1000 or more CNOT gates. For small circuits with less
than 100 CNOT gates, our algorithm is slightly better than
SAHS, 2 points (1.2886 vs. 1.3101) better than SAHS when
medium circuits with 100-999 CNOT gates are considered.
Both algorithms are significantly better than Cambridge in
all three categories.

In the above experiments, we used Q0-filter for the first
SWAP and Q1-filter (see Section 3.4) for all the other SWAPs
when filtering actions with up to 3 SWAPs. If we useQ0-filter
for all SWAPs, then the index becomes 1.4774, which is about
5 points inferior to the index 1.4231 reported in Table 3. In
addition, if we weaken Q1-filter by using the qubits in the
front layer and the lookahead layer, then the index could
be further improved to 1.3801 from 1.4231. However, this
is achieved at the cost of slower search process: for six
large circuits (e.g., ‘mlp4 245’ with 16 qubits and 8232 CNOT
gates), the compete process requires 900-1600 seconds.

4.3 Detailed Empirical Results
In the following, we present the detailed empirical results
in Tables 7-9.

5 FURTHER DISCUSSION

From the above evaluation, we can see that our algorithm
has significant better performance on IBM Q Tokyo than
state-of-the-art algorithms. In this section, we give a more
detailed discussion on the effectiveness, extensibility and
time efficiency of our algorithm. In particular, we report
more experiments on three larger architecture graphs.

5.1 Extension

Our filtered depth-limited approach actually can adopt
heuristic value functions other than Eq. 1. Indeed, we have
implemented another value function that based on the func-
tion specified in Eq. 4. The new heuristic value function is
obtained by replacing “number of gates executable by τ ′” in
Eq. 1 with R̂s(τ

i)− R̂s(τ
′), i.e., we have

v̂als(τ i, a) =
R̂s(τ

i)− R̂s(τ
′)

len(a)× 3
, (6)

where τ ′ is the mapping obtained by enforcing SWAPs in
action a one by one on τ i and len(a) = ` is the number
of SWAPs in a. Using this value function, we then select
any action with the maximal value as our next action. The
algorithm adopting this value function has the same com-
putational complexity as the one discussed before while its
performance is similar to that of the Cambridge algorithm
on IBM Q Tokyo and the benchmark set Bc.

5.2 Effectiveness

While it works very good in average and especially on
large circuits, our algorithm performs bad on several small
or medium circuits. For example, the circuit ‘alu-v0 27’
contains 5 qubits and 17 CNOT gates. To execute it on IBM Q
Tokyo, our QCT algorithm needs to insert 3 (2, resp.) swaps
if the topograph (wgtgraph, resp.) initial mapping is used,
while both Cambridge and SABRE only require 1 swap.

This bad performance is perhaps due to three reasons.
First, during the search process, our algorithm works in a
greedy way and always try to find the best action. This,
however, often leads to a series of local optimal transfor-
mations, which gives no guarantee to the optimality of
the global transformation. Second, there are many differ-
ent mappings which can embed a given graph into AG.
Our algorithm selects an arbitrary one. Selecting a good
embedding may further improve the performance of our
algorithm. Third, our selection of the initial mapping is
also greedy (cf. Sec. 3.2). For example, when constructing
the topgraph initial mapping, we select a maximal sub-
circuit Ctop of C whose corresponding graph Gcirc(Ctop) is
isomorphic to a subgraph of AG. The following example
shows that, however, this is not always a good choice.
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Circuit
Name

qubit
no.

input
gate

input
CNOT

SABRE
added

topgraph
added

topgraph
time (s) Comp.

4mod5-v1 22 5 21 11 0 0 0.01 1
mod5mils 65 5 35 16 0 0 0.01 1

alu-v0 27 5 36 17 3 9 0.07 3
decod24-v2 43 4 52 22 0 0 0.01 1

4gt13 92 5 66 30 0 0 0.01 1
ising model 10 10 480 90 0 0 0.01 1
ising model 13 13 633 120 0 0 0.01 1
ising model 16 16 786 150 0 0 0.01 1

qft 10 10 200 90 54 39 0.01 0.72
qft 16 16 512 240 186 153 124 0.82

rd84 142 15 343 154 105 72 8.72 0.69
adr4 197 13 3439 1498 1614 630 37.4 0.39
radd 250 13 3213 1405 1275 555 52.8 0.44

z4 268 11 3073 1343 1365 630 27.5 0.46
sym6 145 7 3888 1701 1272 513 4.8 0.40

misex1 241 15 4813 2100 1521 786 40.9 0.52
rd73 252 10 5321 2319 2133 1095 23.6 0.51

cycle10 2 110 12 6050 2648 2622 1194 23.7 0.46
square root 7 15 7630 3089 2598 1338 446.9 0.52

sqn 258 10 10223 4459 4344 1578 39.9 0.36
rd84 253 12 13658 5960 6147 2352 111.8 0.38
co14 215 15 17936 7840 8982 4257 194.6 0.47
sym9 193 11 34881 15232 16653 5589 161.1 0.34

sum - 117289 50534 50874 20790 - 0.41
TABLE 2

Comparison of our algorithm with SABRE in [15] on IBM Q Tokyo. The numbers in the last column indicate the ratio of our added CNOT gates (with
the topgraph initial mapping) against that of SABRE.

Fig. 5. The circuit graph of ‘alu-v0 27’ (left) and a mapping (right).

Example 7. Consider the circuit ‘alu-v0 27’, which contains 5
qubits and the 17 CNOT gates in

C =

(
〈3, 4〉, 〈2, 1〉, 〈1, 3〉, 〈2, 1〉, 〈3, 2〉, 〈3, 1〉, 〈2, 1〉, 〈3, 2〉, 〈1,

3〉, 〈2, 0〉, 〈0, 4〉, 〈2, 0〉, 〈4, 2〉, 〈4, 0〉, 〈2, 0〉, 〈4, 2〉, 〈0, 4〉
)
.

The circuit graph (Fig. 5 (left)) is not embeddable in AG, the
architecture graph of IBM Q Tokyo. Let Ctop be the sub-circuit
of the first 10 gates in C . Then the circuit graph of Ctop is the
topgraph of C and can be embedded in AG. Let τ ′ be such an
embedding. After removing gates inCtop, the rest gates (involving
only qubit 0, 2, and 4) cannot be solved with one swap from τ ′.
However, letting τ be the mapping as showing in the right of
Fig. 5, we can see that τ solves only the first 9 gates and, after
swapping 0 and 1, the rest 7 gates can also be solved.

5.3 Scalability and More on Time Complexity
In Sec. 3.5 we have seen that the search process is poly-
nomial in all relevant parameters. As we go deeper in the
search tree, our algorithm is considerably slower than SABRE
and Cambridge. The significant decrease of the CNOT index
shows that this is, however, worthwhile.

In contrast with the search process, the initial mapping
construction process relies on the efficiency of subgraph

isomorphism algorithms, which have time complexity ex-
ponential in the number of qubits in the circuit. We argue
that this is not a serious problem for the following reasons.
First, for the QCT problem in the NISQ era, only graphs
with up to 1000 nodes are involved. Second, the architecture
graphs usually have very simple and regular (e.g., grid-like)
topologies, which can be exploited to design customised ef-
ficient subgraph isomorphism algorithms. Last but not least,
good approximate solutions can also do the job well. This is
partially evidenced by the results summarised in Table 3,
where it shows that, for large circuits, the transformation
results with an empty mapping are only slightly inferior to
that using the selected topgraph initial mappings.

To further evaluate the effectiveness and efficiency of our
approach, we have added experiments on IBM Q Rochester
(53 qubits), Google’s Sycamore (53 qubits), and an artificial
19×19 grid architecture graph, called Q19×19, which has 361
nodes. As circuits in the benchmark set Bc have only up to
16 qubits, we also tested a benchmark of circuits with large
number of qubits. The benchmark was used in xx for xx,
containing 19 circuits with 20-50 qubits and up to 15000
CNOT gates. The running time of our algorithm on these
larger AGs does not get worse. See Table xx.
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benchmarks #circ. topgr.i.m. wghtgr.i.m. empty i.m. naive i.m. SAHS Cambridge
smallx 63 1.2521 1.3175 1.5041 1.8760 1.2619 1.5103

medium 39 1.2886 1.3034 1.4074 1.5727 1.3101 1.6854
large 29 1.4280 1.4366 1.4504 1.4422 1.6151 1.8211

all 131 1.4231 1.4324 1.4497 1.4486 1.6047 1.8154
TABLE 3

Summary of the IBCNOT-index of our algorithm with four different initial mapping constructing methods and SAHS and Cambridge
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Circuit
name

qubit
no.

input
CNOT

topgr.
added

wgtgr.
added

empty
added

naive
added

SAHS
added

Cambridge
added

ex1 226 6 5 0 0 3 18 0 0
graycode6 47 6 5 0 0 0 9 0 0

xor5 254 6 5 0 0 3 18 0 0
4gt11 84 4 9 0 0 9 12 0 0
ex-1 166 3 9 0 0 6 6 0 0

4mod5-v0 20 5 10 0 0 9 9 0 9
4mod5-v1 22 5 11 0 0 9 12 0 9

ham3 102 3 11 0 0 9 6 0 0
mod5d1 63 5 13 0 0 3 12 0 0

4gt11 83 5 14 0 0 0 18 0 12
4mod5-v0 19 5 16 0 0 0 18 0 9
4mod5-v1 24 5 16 0 0 15 21 0 12
mod5mils 65 5 16 0 0 15 21 0 9

rd32-v0 66 4 16 0 0 18 18 0 0
rd32-v1 68 4 16 0 0 18 18 0 0

3 17 13 3 17 0 0 9 9 0 0
alu-v0 27 5 17 9 6 12 18 6 3
alu-v1 29 5 17 9 6 12 24 6 3
alu-v2 33 5 17 9 6 12 18 6 9
4gt11 82 5 18 3 3 3 27 3 12
alu-v1 28 5 18 9 6 21 18 6 3
alu-v3 35 5 18 9 6 12 24 6 3
alu-v4 37 5 18 9 6 12 18 6 3

decod24-v2 43 4 22 0 0 18 15 0 0
decod24-v0 38 4 23 0 0 27 15 0 0

miller 11 3 23 0 0 6 9 0 0
alu-v3 34 5 24 9 6 27 27 6 3

mod5d2 64 5 25 18 9 18 36 12 12
4gt13 92 5 30 0 0 30 42 0 18

4gt13-v1 93 5 30 0 0 33 27 0 18
4mod5-bdd 287 7 31 6 18 9 36 6 15

4mod5-v0 18 5 31 9 12 30 36 9 9
4mod5-v1 23 5 32 9 21 30 36 9 12

decod24-bdd 294 6 32 15 27 24 24 15 21
one-two-three-v2 100 5 32 9 9 18 30 9 9
one-two-three-v3 101 5 32 15 18 24 36 6 15

rd32 270 5 36 18 24 39 30 12 18
4gt5 75 5 38 9 12 24 51 15 15

alu-bdd 288 7 38 24 15 39 36 24 45
alu-v0 26 5 38 12 9 30 36 9 21

decod24-v1 41 5 38 3 21 21 45 15 18
4gt5 76 5 46 21 36 48 48 15 27
4gt13 91 5 49 6 6 15 45 15 6
alu-v4 36 5 51 6 15 30 30 15 36
4gt13 90 5 53 9 9 18 48 27 9
4gt5 77 5 58 9 18 18 45 9 36

one-two-three-v1 99 5 59 24 33 42 48 12 39
rd53 138 8 60 30 42 30 42 27 39

decod24-v3 45 5 64 15 24 36 72 15 39
one-two-three-v0 98 5 65 18 27 48 63 24 27

4gt10-v1 81 5 66 15 18 36 60 27 33
aj-e11 165 5 69 33 36 42 33 18 24

4mod7-v0 94 5 72 12 27 33 51 12 39
4mod7-v1 96 5 72 21 21 48 45 18 42

alu-v2 32 5 72 15 45 69 45 15 39
mod10 176 5 78 15 24 63 66 24 36
4gt4-v0 80 6 79 15 39 48 69 24 78
cnt3-5 179 16 85 3 30 72 87 15 87

4gt12-v0 88 6 86 21 15 69 66 21 21
ising model 10 10 90 0 0 18 27 0 0

qft 10 10 90 45 33 57 96 36 57
sys6-v0 111 10 98 54 81 63 60 45 111

4 49 16 5 99 18 30 42 48 36 69
sum 2428 618 849 1602 2133 636 1239

I-index 1.255 1.350 1.660 1.879 1.262 1.510
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Circuit
name

qubit
no.

input
CNOT

topgr.
added

wgtgr.
added

empty
added

naive
added

SAHS
added

Cambridge
added

TABLE 4: Comparison on IBM Q Tokyo with small circuits

Circuit
name

qubit
no.

input
CNOT

topgr.
added

wgtgr.
added

empty
added

naive
added

SAHS
added

Cambridge
added

4gt12-v1 89 6 100 57 18 30 81 24 93
0410184 169 14 104 6 27 75 93 12 75
4gt4-v0 79 6 105 12 12 30 87 12 96
hwb4 49 5 107 36 42 54 63 33 45

mod10 171 5 108 39 27 27 60 24 60
4gt4-v0 78 6 109 15 15 33 93 15 99
4gt12-v0 87 6 112 6 6 24 69 6 123
4gt4-v0 72 6 113 45 39 51 93 42 90
4gt12-v0 86 6 116 9 9 27 75 9 123
4gt4-v1 74 6 119 39 27 75 93 78 114

ising model 13 13 120 0 0 36 45 0 0
mini-alu 167 5 126 30 33 69 87 33 75

one-two-three-v0 97 5 128 42 78 72 90 66 66
rd53 135 7 134 60 84 99 111 54 48

decod24-enable 126 6 149 66 63 72 84 87 81
ham7 104 7 149 48 42 75 51 81 102

ising model 16 16 150 0 0 48 48 0 0
mod8-10 178 6 152 69 33 69 87 21 162

rd84 142 15 154 84 126 87 108 102 198
ex3 229 6 175 24 81 87 102 18 174

4gt4-v0 73 6 179 99 42 117 120 42 177
mod8-10 177 6 196 123 78 72 87 39 135

alu-v2 31 5 198 78 90 60 99 54 63
rd53 131 7 200 63 78 93 81 90 87
C17 204 7 205 111 84 144 147 96 114

alu-v2 30 6 223 60 54 87 93 45 105
mod5adder 127 6 239 84 81 93 114 51 87

qft 16 16 240 189 135 204 231 135 195
rd53 133 7 256 60 174 138 150 105 159

majority 239 7 267 66 105 87 213 84 123
ex2 227 7 275 78 108 90 126 96 270

cm82a 208 8 283 117 105 102 225 84 222
sf 274 6 336 30 36 63 180 24 381
sf 276 6 336 36 36 102 159 24 384

con1 216 9 415 273 153 210 195 192 375
rd53 130 7 448 267 207 168 222 171 390

f2 232 8 525 336 126 192 312 213 225
rd53 251 8 564 201 195 225 240 204 309
hwb5 53 6 598 207 204 195 237 174 210

sum 8513 3165 2853 3582 4851 2640 5835
I-index 1.372 1.335 1.421 1.570 1.310 1.685

TABLE 5: Comparison on IBM Q Tokyo with medium circuits

Circuit
name

qubit
no.

input
CNOT

topgr.
added

wgtgr.
added

empty
added

naive
added

SAHS
added

Cambridge
added

z4 268 11 1343 525 468 609 600 546 1671
radd 250 13 1405 633 567 555 549 669 1647
adr4 197 13 1498 681 741 642 807 711 1146
sym6 145 7 1701 540 585 540 765 744 2139

misex1 241 15 2100 621 726 858 924 921 1263
rd73 252 10 2319 1062 852 1227 1074 1065 2115

cycle10 2 110 12 2648 1125 1290 1320 1236 1038 2424
hwb6 56 7 2952 1077 1026 1098 1011 1104 1719

square root 7 15 3089 1263 1374 1242 1470 1353 1326
sqn 258 10 4459 1467 1716 1638 1986 1953 3192

cm85a 209 14 4986 2073 2091 2289 2397 2337 4173
rd84 253 12 5960 2952 2841 3174 3009 3198 5286
root 255 13 7493 2928 3099 3468 3399 3525 5601
co14 215 15 7840 3975 4563 4629 4437 4356 7752
mlp4 245 16 8232 4275 4146 4173 4104 4116 6462
sym9 148 10 9408 1947 2166 1992 2388 2172 6438
urf2 277 8 10066 6285 6267 6135 6045 5934 8205
hwb7 59 8 10681 3684 3846 3696 3588 4602 6378

max46 240 10 11844 4410 4308 4560 4530 5289 9681
clip 206 14 14772 6762 6834 6963 6405 6843 12624

9symml 195 11 15232 5481 6462 5373 5682 6036 11454
sym9 193 11 15232 5481 6462 5373 5682 6123 11454
dist 223 13 16624 7470 6582 7107 7254 6936 12834
sao2 257 14 16864 7596 6756 8361 6792 7827 11742
urf5 280 9 23764 11988 11679 12060 11802 13065 20436
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Circuit
name

qubit
no.

input
CNOT

topgr.
added

wgtgr.
added

empty
added

naive
added

SAHS
added

Cambridge
added

urf1 278 9 26692 13872 13809 14190 14022 15678 24600
sym10 262 12 28084 11490 10623 11520 10635 11697 20115
hwb8 113 9 30372 11295 11382 11769 11394 59977 35376
urf2 152 8 35210 18342 18342 18018 18489 18780 25857

sum 322870 141300 141603 144579 142476 198595 265110
I-index 1.438 1.439 1.448 1.441 1.615 1.821

TABLE 6: Comparison on IBM Q Tokyo with large circuits
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6 CONCLUSION

We have proposed a new algorithm for qubit mapping
which can significantly reduce the extra two-qubit gates
required per two-qubit gate in the input circuit. Our algo-
rithm is based on subgraph isomorphism and filtered depth-
limited search. If the input circuit can be executed directly,
the proposed approach can always detect this. It seems that
this nice property is not enjoyed by any other approach.

From our experimental results, we can see that, when
the circuit has less than 1000 two-qubit gates, our subgraph
isomorphism induced initial mappings are much better than
empty mappings and naive mappings that assign the i-th
qubit in the logical circuit to the i-th qubit in the quantum
device. For large circuits, our results show that initial map-
pings are not very important.

A weighted graph like ours (see Section 3.2) is also
introduced in a recent work [24], where Lin, Anschuetz, and
Harrow exploit spectral graph theory to qubit mapping. The
performance of their algorithm is in general not better than
the A∗ approach of [14]. They also suggested to use their
“spectral mapper to provide an initial mapping” while its
effectiveness needs further investigation.

It seems that we are still quite far from devising al-
gorithms that could output circuits with nearly minimal
overheads. Future work will investigate along the following
directions:

• Although our approach basically can be applied on
any NISQ device with an undirected architecture
graph, it is not certain if the actual efficacy highly
depends on the size or ‘compactness’ of the architec-
ture graph. Further work is required to evaluate our
approach on more general NISQ devices with a large
number of qubits and various topologies.

• Minimizing depth or latency and circuit error is also
important for qubit mapping. Although the num-
ber of CNOT gates in our output circuit is already
smaller than the depth of the output circuit (only
CNOT gates are counted) of some compared algo-
rithm [17] (see [18] for a more detailed analysis), it
will be nice if we can adapt our approach to address
other or multiple optimisation objectives.

• More on heuristic search and filters. Could we do
better by designing new filters?

• In our approach, the initial mapping is obtained by
constructing a subgraph isomorphism. We certainly
could do this in each step, after those executable
gates are removed from the logical circuit. But the
clear obstacle is how to transform the current map-
ping to a selected next mapping and how to select a
good subgraph isomorphism.

• Machine learning and deep learning algorithms may
be designed to quickly select the best action in Eq. 2.
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Circuit
name

qubit
no.

input
CNOT

topgr.
added

wgtgr.
added

empty
added

naive
added

SAHS
added

Cambridge
added

ex1 226 6 5 0 0 3 18 0 0
graycode6 47 6 5 0 0 0 9 0 0

xor5 254 6 5 0 0 3 18 0 0
4gt11 84 4 9 0 0 9 12 0 0
ex-1 166 3 9 0 0 6 6 0 0

4mod5-v0 20 5 10 0 0 9 9 0 9
4mod5-v1 22 5 11 0 0 9 12 0 9

ham3 102 3 11 0 0 9 6 0 0
mod5d1 63 5 13 0 0 3 12 0 0

4gt11 83 5 14 0 0 0 18 0 12
4mod5-v0 19 5 16 0 0 0 18 0 9
4mod5-v1 24 5 16 0 0 15 21 0 12
mod5mils 65 5 16 0 0 15 21 0 9

rd32-v0 66 4 16 0 0 18 18 0 0
rd32-v1 68 4 16 0 0 18 18 0 0

3 17 13 3 17 0 0 9 9 0 0
alu-v0 27 5 17 9 6 12 18 6 3
alu-v1 29 5 17 9 6 12 24 6 3
alu-v2 33 5 17 9 6 12 18 6 9
4gt11 82 5 18 3 3 3 27 3 12
alu-v1 28 5 18 9 6 21 18 6 3
alu-v3 35 5 18 9 6 12 24 6 3
alu-v4 37 5 18 9 6 12 18 6 3

decod24-v2 43 4 22 0 0 18 15 0 0
decod24-v0 38 4 23 0 0 27 15 0 0

miller 11 3 23 0 0 6 9 0 0
alu-v3 34 5 24 9 6 27 27 6 3

mod5d2 64 5 25 18 9 18 36 12 12
4gt13 92 5 30 0 0 30 42 0 18

4gt13-v1 93 5 30 0 0 33 27 0 18
4mod5-bdd 287 7 31 6 18 9 36 6 15

4mod5-v0 18 5 31 9 12 30 36 9 9
4mod5-v1 23 5 32 9 21 30 36 9 12

decod24-bdd 294 6 32 15 27 24 24 15 21
one-two-three-v2 100 5 32 9 9 18 30 9 9
one-two-three-v3 101 5 32 15 18 24 36 6 15

rd32 270 5 36 18 24 39 30 12 18
4gt5 75 5 38 9 12 24 51 15 15

alu-bdd 288 7 38 24 15 39 36 24 45
alu-v0 26 5 38 12 9 30 36 9 21

decod24-v1 41 5 38 3 21 21 45 15 18
4gt5 76 5 46 21 36 48 48 15 27
4gt13 91 5 49 6 6 15 45 15 6
alu-v4 36 5 51 6 15 30 30 15 36
4gt13 90 5 53 9 9 18 48 27 9
4gt5 77 5 58 9 18 18 45 9 36

one-two-three-v1 99 5 59 24 33 42 48 12 39
rd53 138 8 60 30 42 30 42 27 39

decod24-v3 45 5 64 15 24 36 72 15 39
one-two-three-v0 98 5 65 18 27 48 63 24 27

4gt10-v1 81 5 66 15 18 36 60 27 33
aj-e11 165 5 69 33 36 42 33 18 24

4mod7-v0 94 5 72 12 27 33 51 12 39
4mod7-v1 96 5 72 21 21 48 45 18 42

alu-v2 32 5 72 15 45 69 45 15 39
mod10 176 5 78 15 24 63 66 24 36
4gt4-v0 80 6 79 15 39 48 69 24 78
cnt3-5 179 16 85 3 30 72 87 15 87

4gt12-v0 88 6 86 21 15 69 66 21 21
ising model 10 10 90 0 0 18 27 0 0

qft 10 10 90 45 33 57 96 36 57
sys6-v0 111 10 98 54 81 63 60 45 111

4 49 16 5 99 18 30 42 48 36 69
sum 2428 618 849 1602 2133 636 1239

I-index 1.255 1.350 1.660 1.879 1.262 1.510
TABLE 7: Comparison on IBM Q Tokyo with small circuits

Circuit
name

qubit
no.

input
CNOT

topgr.
added

wgtgr.
added

empty
added

naive
added

SAHS
added

Cambridge
added

4gt12-v1 89 6 100 57 18 30 81 24 93
0410184 169 14 104 6 27 75 93 12 75
4gt4-v0 79 6 105 12 12 30 87 12 96
hwb4 49 5 107 36 42 54 63 33 45

mod10 171 5 108 39 27 27 60 24 60
4gt4-v0 78 6 109 15 15 33 93 15 99
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Circuit
name

qubit
no.

input
CNOT

topgr.
added

wgtgr.
added

empty
added

naive
added

SAHS
added

Cambridge
added

4gt12-v0 87 6 112 6 6 24 69 6 123
4gt4-v0 72 6 113 45 39 51 93 42 90
4gt12-v0 86 6 116 9 9 27 75 9 123
4gt4-v1 74 6 119 39 27 75 93 78 114

ising model 13 13 120 0 0 36 45 0 0
mini-alu 167 5 126 30 33 69 87 33 75

one-two-three-v0 97 5 128 42 78 72 90 66 66
rd53 135 7 134 60 84 99 111 54 48

decod24-enable 126 6 149 66 63 72 84 87 81
ham7 104 7 149 48 42 75 51 81 102

ising model 16 16 150 0 0 48 48 0 0
mod8-10 178 6 152 69 33 69 87 21 162

rd84 142 15 154 84 126 87 108 102 198
ex3 229 6 175 24 81 87 102 18 174

4gt4-v0 73 6 179 99 42 117 120 42 177
mod8-10 177 6 196 123 78 72 87 39 135

alu-v2 31 5 198 78 90 60 99 54 63
rd53 131 7 200 63 78 93 81 90 87
C17 204 7 205 111 84 144 147 96 114

alu-v2 30 6 223 60 54 87 93 45 105
mod5adder 127 6 239 84 81 93 114 51 87

qft 16 16 240 189 135 204 231 135 195
rd53 133 7 256 60 174 138 150 105 159

majority 239 7 267 66 105 87 213 84 123
ex2 227 7 275 78 108 90 126 96 270

cm82a 208 8 283 117 105 102 225 84 222
sf 274 6 336 30 36 63 180 24 381
sf 276 6 336 36 36 102 159 24 384

con1 216 9 415 273 153 210 195 192 375
rd53 130 7 448 267 207 168 222 171 390

f2 232 8 525 336 126 192 312 213 225
rd53 251 8 564 201 195 225 240 204 309
hwb5 53 6 598 207 204 195 237 174 210

sum 8513 3165 2853 3582 4851 2640 5835
I-index 1.372 1.335 1.421 1.570 1.310 1.685

TABLE 8: Comparison on IBM Q Tokyo with medium circuits

Circuit
name

qubit
no.

input
CNOT

topgr.
added

wgtgr.
added

empty
added

naive
added

SAHS
added

Cambridge
added

z4 268 11 1343 525 468 609 600 546 1671
radd 250 13 1405 633 567 555 549 669 1647
adr4 197 13 1498 681 741 642 807 711 1146
sym6 145 7 1701 540 585 540 765 744 2139

misex1 241 15 2100 621 726 858 924 921 1263
rd73 252 10 2319 1062 852 1227 1074 1065 2115

cycle10 2 110 12 2648 1125 1290 1320 1236 1038 2424
hwb6 56 7 2952 1077 1026 1098 1011 1104 1719

square root 7 15 3089 1263 1374 1242 1470 1353 1326
sqn 258 10 4459 1467 1716 1638 1986 1953 3192

cm85a 209 14 4986 2073 2091 2289 2397 2337 4173
rd84 253 12 5960 2952 2841 3174 3009 3198 5286
root 255 13 7493 2928 3099 3468 3399 3525 5601
co14 215 15 7840 3975 4563 4629 4437 4356 7752
mlp4 245 16 8232 4275 4146 4173 4104 4116 6462
sym9 148 10 9408 1947 2166 1992 2388 2172 6438
urf2 277 8 10066 6285 6267 6135 6045 5934 8205
hwb7 59 8 10681 3684 3846 3696 3588 4602 6378

max46 240 10 11844 4410 4308 4560 4530 5289 9681
clip 206 14 14772 6762 6834 6963 6405 6843 12624

9symml 195 11 15232 5481 6462 5373 5682 6036 11454
sym9 193 11 15232 5481 6462 5373 5682 6123 11454
dist 223 13 16624 7470 6582 7107 7254 6936 12834
sao2 257 14 16864 7596 6756 8361 6792 7827 11742
urf5 280 9 23764 11988 11679 12060 11802 13065 20436
urf1 278 9 26692 13872 13809 14190 14022 15678 24600

sym10 262 12 28084 11490 10623 11520 10635 11697 20115
hwb8 113 9 30372 11295 11382 11769 11394 59977 35376
urf2 152 8 35210 18342 18342 18018 18489 18780 25857

sum 322870 141300 141603 144579 142476 198595 265110
I-index 1.438 1.439 1.448 1.441 1.615 1.821

TABLE 9: Comparison on IBM Q Tokyo with large circuits
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