

Multifunctional cement-based sensors with integrated piezoresistivity and hydrophobicity toward smart infrastructure

by Wenkui Dong

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Under the supervision of Dr. Wengui Li (Principle supervisor) Prof. Daichao Sheng (Co-supervisor) Prof. Kejin Wang (Co-supervisor)

> University of Technology Sydney Faculty of Engineering and Information Technology

November 2021

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Wenkui Dong declare that this thesis is submitted in fulfillment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution. This research is supported by the Australian Government Research Training Program.

Signature:

Production Note: Signature removed prior to publication.

Date: 16/11/2021

ACKNOWLEDGEMENTS

Upon the completion of this thesis, I am grateful to those who have offered me encouragement and support during my PhD study.

Firstly, I would like to express my sincere gratitude to my principal supervisor Dr. Wengui Li for the continuous support to my PhD study and related research, for his patience, motivation and immense knowledge. His guidance provides me with many enlightening ideas as well as helps me in writing this thesis. I am also extremely grateful to my co-supervisors Prof. Daichao Sheng and Prof. Kejin Wang, for their insightful comments and encouragement throughout my study. It is a great privilege to work and study under their supervision.

Besides supervisors, I would like to appreciate my beloved families, my father Xiguan Dong, my mother Qiufen Lin and my older brother Wenxuan Dong for their persistent understanding, support and love throughout years of my study. I also appreciate my girlfriend Mingxing Li for her care and encouragement in my daily life, which creates me a comfortable environment and allows me to focus on my study and research.

Finally, my heartiest thanks go to my fellows Yipu Guo, Fulin Qu, Zhiyu Luo, Peiran Li, Zhuo Tang, Shaoqi Li, Jie Wei, Dongle Cheng, Idris Ibrahim, and many other friends who provide me with academic inspiration and help me in different experiments actively. Most importantly, they make me happier and less stressful when I am in difficult situation. It is a great honour to meet them in my PhD life and looking forward to keeping in touch with them in our future study and life.

This is a memorable time I have had, while challenging, it is rewarding and precious. Thank you to everyone I have met along the way.

LIST OF PUBLICATIONS

Dong, W., Guo Y., Sun Z., Tao Z., Li W. (2021). Development of self-sensing cement-based sensor using recycled fine waste glass aggregates coated with carbon nanotube. Journal of Cleaner Production, 127968.

Dong, W., Li, W., & Tao, Z. (2021). A comprehensive review on performance of cementitious and geopolymeric concretes with recycled waste glass as powder, sand or cullet. Resources, Conservation and Recycling, 172, 105664.

Dong, W., Li, W., Zhu, X., Sheng, D., & Shah, S. P. (2021). Multifunctional cementitious composites with integrated self-sensing and hydrophobic capacities toward smart structural health monitoring. Cement and Concrete Composites, 118, 103962.

Dong, W., Li, W., Vessalas, K., He, X., Sun, Z., & Sheng, D. (2021). Piezoresistivity deterioration of smart graphene nanoplate/cement-based sensors subjected to sulphuric acid attack. Composites Communications, 23, 100563.

Dong, W., Li, W., Wang, K., & Shah, S. P. (2021). Physicochemical and Piezoresistive properties of smart cementitious composites with graphene nanoplates and graphite plates. Construction and Building Materials, 286, 122943.

Dong, W., Li, W., Shen, L., Zhang, S., & Vessalas, K. (2021). Integrated self-healing and selfsensing cementitious composites using microencapsulation of nano-carbon black and slaked lime. Materials Letters, 128834.

Dong, W., Li, W., Wang, K., Han, B., Sheng, D., & Shah, S. P. (2020). Investigation on physicochemical and piezoresistive properties of smart MWCNT/cementitious composite exposed to elevated temperatures. Cement and Concrete Composites, 112, 103675.

Dong, W., Li, W., Luo, Z., Guo, Y., & Wang, K. (2020). Effect of layer-distributed carbon nanotube (CNT) on mechanical and piezoresistive performance of intelligent cement-based sensor. Nanotechnology, 31(50), 505503.

Dong, W., Li, W., Wang, K., Vessalas, K., & Zhang, S. (2020). Mechanical strength and selfsensing capacity of smart cementitious composite containing conductive rubber crumbs. Journal of Intelligent Material Systems and Structures, 1045389X20916788.

Dong, W., Li, W., Guo, Y., He, X., & Sheng, D. (2020). Effects of silica fume on physicochemical properties and piezoresistivity of intelligent carbon black-cementitious composites. Construction and Building Materials, 259, 120399.

Dong, W., Li, W., Luo, Z., Long, G., Vessalas, K., & Sheng, D. (2020). Structural response monitoring of concrete beam under flexural loading using smart carbon black/cement-based sensors. Smart Materials and Structures, 29(6), 065001.

Li, W., **Dong, W.***, Shen, L., Castel, A., & Shah, S. P. (2020). Piezoresistivity of nano-carbon black (NCB) enhanced functional cement-based sensor with polypropylene fibres. Materials Letters, 127736.

Dong, W., Li, W., Vessalas, K., & Wang, K. (2020). Mechanical and conductive properties of smart cementitious composites with conductive rubber crumbs. ES Materials & Manufacturing, 7, 51-63.

Dong, W., Li, W., Shen, L., Sun, Z., & Sheng, D. (2020). Piezoresistivity of carbon nanotubes (CNT) reinforced cementitious composites under integrated cyclic compression and impact load. Composite Structures, 112106.

Dong, W., Li, W., Wang, K., Guo, Y., Sheng, D., & Shah, S. P. (2020). Piezoresistivity enhancement of functional carbon black filled cement-based sensor using polypropylene fibre. Powder Technology, 373, 184-194.

Dong, W., Li, W., Wang, K., Luo, Z., & Sheng, D. (2020). Self-sensing capabilities of cementbased sensor with layer-distributed conductive rubber fibres. Sensors and Actuators A: Physical, 301, 111763.

Dong, W., Li, W., Lu, N., Qu, F., Vessalas, K., & Sheng, D. (2019). Piezoresistive behaviours of cement-based sensor with carbon black subjected to various temperature and water content. Composites Part B: Engineering, 178, 107488.

Dong, W., Li, W., Long, G., Tao, Z., Li, J. and Wang, K. (2019). Electrical resistivity and mechanical properties of cementitious composites incorporating conductive rubber fibres. Smart Materials and Structures, 28, 085013.

Dong, W., Li, W., Shen, L. and Sheng, D. (2019). Piezoresistive behaviours of carbon black cement-based sensors with layer-distributed conductive rubber fibres. Materials & Design, 182, 108012.

Dong, W., Li, W., Tao, Z., & Wang, K. (2019). Piezoresistive properties of cement-based sensors: Review and perspective. Construction and Building Materials, 203, 146-163.

TABLE OF CONTENTS

TITLE	I
CERTIFICATE OF ORIGINAL AUTHORSHIP	II
ACKNOWLEDGEMENTS	III
LIST OF PUBLICATIONS	IV
TABLE OF CONTENTS	VI
LIST OF ACRONYMS	XI
LIST OF FIGURES	XIII
LIST OF TABLES	XXI
ABSTRACT	XXII
CHAPTER 1: INTRODUCTION	1
1.1 Research background	1
1.2 Research objective	2
1.3 Outline of thesis	3
CHAPTER 2: LITERATURE REVIEW	5
2.1 Introduction	5
2.1.1 Sensing techniques, their developments and applications for SHM	5
2.1.2 Components and principles of piezoresistive cement-based sensors	8
2.2 Conductive phases	
2.2.1 Commonly-used conductors	
2.2.2 Percolation of conductors	14
2.2.3 Treatment of conductors	17
2.3 Non-conductive phase	
2.3.1 Types of non-conductive phases	
2.3.2 Fractional changes of resistivity	
2.3.3 Effect of paste proportion and composition on piezoresistivity	
2.3.4 Effects of steel reinforcement on piezoresistivity	22
2.3.5 Discrepancy in Poisson' ratio	22
2.4 Manufacture of sensors	23
2.4.1 Dispersion of conductive materials	23
2.4.2 Rheological properties of composite	
2.4.3 Curing	
2.5 Loading and deformation	
2.5.1 Mechanical loading style and amplitude	

2.5.2 Loading cycles and frequency	30
2.5.3 Loading on concrete beams	31
2.5.4 Environmental loading	33
2.6 Electrical resistance measurement	37
2.6.1 Electrode configuration	38
2.6.2 Applied current	39
2.7 Environmental conditions on the performance of cement-based sensors	41
2.7.1 Effects of temperature on piezoresistivity	42
2.7.2 Effects of relatively humidity on piezoresistivity	43
2.8 Summary	45
CHAPTER 3: PIEZORESISTIVITY OF CEMENTITIOUS MATERIALS WITH CONDUCTIVE RUBBER PRODUCTS	47
3.1 Experimental program	47
3.1.1 Raw materials	47
3.1.2 Treatment of conductive rubber products	48
3.1.3 Specimens preparation	50
3.1.4 Definition on new sensitive coefficient Fi	52
3.1.5 Electrical resistivity measurement	53
3.1.6 Flowability	54
3.1.7 Mechanical properties	54
3.1.8 Microstructure characterization	55
3.2 Cement paste with aligned conductive rubber fibres	55
3.2.1 Percolation threshold	55
3.2.2 Piezoresistivity	56
3.2.3 Mechanism discussion	67
3.2.4 Mechanical and micro properties of composites	69
3.3 Cement mortar with conductive rubber crumbs	72
3.3.1 Flowability	72
3.3.2 Compressive strength	73
3.3.3 Electrical resistivity	76
3.3.4 Piezoresistivity	80
3.4 Summary	86
CHAPTER 4. PIEZORESISTIVITY OF CEMENTITIOUS MATERIALS WITH CARE NANOMATERIALS	SON 88
4.1 Carbon black (CB)	88

4.1.1 Electrical resistivity	
4.1.2 Compressive strength	
4.1.3 Piezoresistivity	90
4.1.4 Hydration heat	
4.2 Carbon nanotube (CNT)	
4.2.1 Raw materials	
4.2.2 Specimen preparation	94
4.2.3 CNT agglomerations	96
4.2.4 Mechanical and micro properties	
4.2.5 Piezoresistivity	
4.3 Graphene (GNP) and graphite (GP)	
4.3.1 Physiochemical properties	
4.3.2 Mechanical and micro properties	114
4.3.3 Piezoresistive behaviours	
4.4 Summary	
CHAPTER 5: ENHANCED CONDUCTIVITY AND PIEZORESISTIVITY WI ADDITIVES	ГН 124
5.1 Effect of conductive rubber fibres	
5.1.1 Conductivity percolation of CB cementitious composites	
5.1.2 Piezoresistivity behaviours	
5.2 Effect of PP fibres	
5.2.1 Electrical resistivity	
5.2.2 Piezoresistivity behaviours	
5.3 Effect of silica fume	145
5.3.1 Physicochemical properties	146
5.3.2 Mechanical and micro properties	148
5.3.3 Crystal phases and nanostructure	
5.3.4 Piezoresistivity behaviours	
5.4 Summary	
CHAPTER 6: PIEZORESISTIVITY INTERFERENCE FROM WORKING ENVIRONMENT	
6.1 Effect of temperature	
6.1.1 Effect of thermal exchange	
6.1.2 Piezoresistivity at low temperatures	
6.1.3 Piezoresistivity at high temperature	170

6.2 Effect of water content	
6.2.1 Piezoresistive properties at various water contents	180
6.2.2 Mechanism discussion	
6.3 Effect of freeze-thaw cycle	
6.3.1 Resistivity development under different cycles	
6.3.2 Piezoresistivity after freeze-thaw cycles	187
6.4 Effect of acid erosion	190
6.4.1 Mass loss	191
6.4.2 Compressive strength	192
6.4.3 Microstructural analysis	193
6.4.4 Piezoresistivity behaviours	196
6.5 Effect of drop impact	204
6.5.1 Piezoresistivity behaviours	204
6.5.2 Mechanism discussion	210
6.6 Summary	210
CHAPTER 7: SELF-SENSING CEMENTITIOUS MATERIALS WITH	
MULTIFUNCTIONALITY	213
7.1 Combined self-sensing and self-healing properties	
7.1.1 Experimental program	
7.1.2 Autonomous crack healing	214
7.1.3 Self-sensing capacity	
7.1.4 Mechanism discussion	216
7.2 Combined self-sensing and hydrophobic properties	217
7.2.1 Water absorption and surface wettability	
7.2.2 Piezoresistive behaviours	221
7.3 Combined self-sensing, hydrophobic and self-cleaning properties	230
7.3.1 Silane treatment	230
7.3.2 Self-sensing performance	231
7.3.3 Water contact angle	232
7.3.4 Self-cleaning performance	233
7.4 Summary	235
CHAPTER 8: APPLICATION OF CEMENT-BASED SENSORS	237
8.1 Cement-based sensors in concrete beams	237
8.1.1 Configuration of cement-based sensors	237
8.1.2 Beam failure monitoring	238

8.1.3 Beam stress monitoring	243
8.2 Cement-based sensors in mortar slabs	249
8.2.1 Pre-connection of cement-based sensors	249
8.2.2 Cement mortar slab and sensors embedding	250
8.2.3 Application of cement-based sensors for human motion detection	251
8.2.4 Application of cement-based sensors for vehicle speed detection	254
8.3 Summary	
CHAPTER 9: CONCLUSIONS AND RECOMMENDATIONS	
9.1 Conductive rubber products as fillers in cement-based sensors	
9.2 Carbon nanomaterials as fillers in cement-based sensors	
9.3 Enhanced conductivity and piezoresistivity with additives	
9.4 Piezoresistivity interference from working environment	
9.5 Self-sensing cementitious composites with multifunctionality	
9.6 Cement-based sensors in small concrete beams and mortar slabs	
9.7 Recommendations for future works	
REFERENCES	

LIST OF ACRONYMS

SHM	Structure heath monitoring
AE	Acoustic emission
CNT	Carbon nanotube
MWCNT	Multi-walled carbon nanotube
CF	Carbon fibre
SF	Silica fume
CB	Carbon black
GNP	Graphene nanoplate
GNPC	Graphene nanoplate filled cementitious composite
GP	Graphite plate
GPC	Graphite plate filled cementitious composite
SCMs	Supplementary cementing materials
DC	Direct current
AC	Alternating current
SEM	Scanning electron microscope
CRC	Conductive rubber crumb
UDCC	Uniformly-dispersed CNT composites
РСР	Plain cement paste
LDCC	Layer-distributed CNT composite
LDCC1	CNT composite with 1 layer of undispersed CNT
LDCC2	CNT composite with 2 layers of undispersed CNT
DSC	Differential scanning calorimetry
TGA	Thermal-gravity analysis
PP	Polypropylene
FCR	Fractional changes of resistivity
C-S-H	Calcium silicate hydrate
XRD	X-Ray diffraction

EDX	Electron dispersion X-ray
СН	Calcium hydroxide
CAL	constant amplitude-loading
VAL	varied amplitude-loading
CBS	Cement-based sensors
NCB	Nano-carbon black
SL	Slaked lime
СР	Cement particles
SHP	Silane hydrophobic powder
CA	Contact angle
CBCS	CB filled cement-based sensor
CBCS05	CBCS with various CB contents of 0.5%
CBCS1	CBCS with various CB contents of 1.0%

LIST OF FIGURES

Figure 2.1. The application history of sensing techniques on SHM7
Figure 2.2. Key influential factors and applications of piezoresistive cement-based sensors. 10
Figure 2.3. Electrical conductivity and volumetric resistivity of cement sensor to different
aspect ratio of CF
Figure 2.4. Fractional changes of resistivity in different cement matrices during loading and
unloading19
Figure 2.5. The effect of silica fume on electrical resistivity of cement-based sensors
Figure 2.6. Effect of air and moist curing on the resistivity of cement mortar with curing ages.
Figure 2.7. Schematic plot of the cement-based sensors applied to the concrete beams with
coexistence of tension and compression zone
Figure 2.8. Fractional changes of resistivity of concrete beam under flexural loading with
strain-sensing coating
Figure 2.9. Conductivity changes after one cycle of temperature change
Figure 2.10. Fractional changes of electrical resistivity with temperature cycles
Figure 2.11. Effect of electrodes spacing on the resistivity of cement composite
Figure 2.12. Potential drops out of polarisation after the termination of DC current40
Figure 2.13. Influence of current intensity on piezoresistive responses
Figure 2.14. Changes of electrical resistivity as a function of temperature
Figure 2.15. Change in resistance with relative humidity for plain mortar and CFRM
specimens45
Figure 3.1. Special treatment on rubber wires to produce rubber fibres with high aspect ratio.
Figure 3.2. Grading curves of the conductive rubber crumb and fine sand50
Figure 3.3. Schematic diagram of the compression machine and the multimeter to record
resistance
Figure 3.4. Electrical resistivity of rubber/cement composite with different contents of rubber
fibres at w/b ratios of 0.34, 0.38 and 0.42
Figure 3.5. Fractional changes of resistivity with different rubber contents and stress
magnitudes for the composites at w/b ratio of 0.34
Figure 3.6. Illustration of the relationship between sensitive coefficient, stress magnitude and
the rubber fibres for the composite at w/b ratio of 0.3460

Figure 3.7. Fractional changes of resistivity with different rubber contents and stress
magnitudes for the composite at w/b ratio of 0.38
Figure 3.8. Relationship between sensitive coefficient, stress magnitude and the rubber fibres
for the composite at w/b ratio of 0.3863
Figure 3.9. Fractional changes of resistivity with different rubber contents and stress
magnitudes for the composite at w/b ratio of 0.4265
Figure 3.10. Illustration of the relationship between sensitive coefficient, stress magnitude
and the rubber fibres for the composite at w/b ratio of 0.4267
Figure 3.11. Schematic illustration for the electrical conductivity and piezoresistivity
mechanism of rubber/cement composites
Figure 3.12. Compressive strength of rubber/cement composites with different contents of
rubber fibres and w/b ratios70
Figure 3.13. SEM images on the boundaries of rubber fibre to cement matrix72
Figure 3.14. Flowability of conductive rubber crumbs modified cement mortar with different
W/B ratios and rubber contents73
Figure 3.15. Compressive strength and the reduction rate for the CRC filled cement mortar at
various W/B ratios75
Figure 3.16. Cross-sectional morphology of rubberized cement mortar with (a) 20% CRC and
(b) 40% CRC76
Figure 3.17. Electrical resistivity for the rubberized mortar with various contents of CRC at
different W/B ratios79
Figure 3.18. Schematic diagram of conductive passages in rubberized cement mortar before
and after drying treatments
Figure 3.19. The fractional changes of resistivity for the rubberized cement mortar at the W/B
ratio of 0.40 under cyclic compression
Figure 3.20. Fractional changes of resistivity as a function to compressive strain for the
rubberized cement mortar at the W/B ratio of 0.40
Figure 3.21. The fractional changes of resistivity for the rubberized cement mortar at the W/B
ratio of 0.42 under cyclic compression
Figure 3.22. Fractional changes of resistivity as a function to compressive strain for the
rubberized cement mortar at W/B ratio of 0.42
Figure 3.23. The fractional changes of resistivity for the rubberized cement mortar at the W/B
ratio of 0.45 under cyclic compression

Figure 3.24. Fractional changes of resistivity as a function to compressive strain for the
rubberized cement mortar at the W/B ratio of 0.45
Figure 4.1. Electrical resistivity of CB/cement cementitious composites with multiple
contents of CB
Figure 4.2. Compressive strength of CB/cement cementitious composites with multiple
contents of CB90
Figure 4.3. Fractional changes of resistivity of CB/cement cementitious composites with (a)
0.5% CB; (b) 1.0% CB and (c) 2.0% CB
Figure 4.4. Effect of carbon black powder on cement hydration heat in 72 hrs
Figure 4.5. Morphologies of clustered and dispersed CNT94
Figure 4.6. Preparation of CNT reinforced cementitious composites: (a) UDCC and (b)
LDCC
Figure 4.7. Classification of CNT agglomerations based on size distribution
Figure 4.8. Size distribution of CNT agglomerations and the proportion of the occupied areas.
Figure 4.9. Average roundness of CNT agglomerations in various sizes and schematic plot of
stress concentration in pores
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with various distributions of CNT
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with various distributions of CNT
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with various distributions of CNT
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with various distributions of CNT
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with various distributions of CNT
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with various distributions of CNT
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with various distributions of CNT
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with various distributions of CNT
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with various distributions of CNT
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with various distributions of CNT
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with various distributions of CNT
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with various distributions of CNT
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with various distributions of CNT
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with various distributions of CNT. 101 Figure 4.11. Microstructural morphology of CNT in cracks or gaps in different specimens (a) 102 UDCC and (b) LDCC. 102 Figure 4.12. FCR as a function to compressive strain for specimens of UDCC and LDCC. 103 102 Figure 4.13. Absorbance of GNP and GP solutions after ultrasonic treatment and mechanical 106 Figure 4.14. Electrical resistivity and atomic structures of cementitious composites with 108 Figure 4.15. Thermogravimetric results of cementitious composites with various content of 109 Figure 4.16. DTG curves of cementitious composites with various contents of GNP and GP. 110 Figure 4.17. Hydration heat release and accumulative heat for cementitious composites with various content of GNP. 112
Figure 4.10. Compressive strength of plain cement paste and cementitious composites with various distributions of CNT. 101 Figure 4.11. Microstructural morphology of CNT in cracks or gaps in different specimens (a) 102 UDCC and (b) LDCC. 102 Figure 4.12. FCR as a function to compressive strain for specimens of UDCC and LDCC. 103 102 Figure 4.13. Absorbance of GNP and GP solutions after ultrasonic treatment and mechanical 106 Figure 4.14. Electrical resistivity and atomic structures of cementitious composites with 106 Figure 4.15. Thermogravimetric results of cementitious composites with various content of 108 Figure 4.16. DTG curves of cementitious composites with various contents of GNP and GP. 110 Figure 4.17. Hydration heat release and accumulative heat for cementitious composites with 112 Figure 4.18. Rate of hydration heat and accumulative heat for cementitious composites with 112

Figure 4.19. XRD analysis for the cementitious composites with: (a) GNP, and (b) GP. ($E =$
ettringite; P = portlandite; D = OPC clinkers) at 28 days age114
Figure 4.20. Compressive and flexural strength of cementitious composite with GNP or GP at
28-day age116
Figure 4.21. Microstructural morphology of GNP reinforced cementitious composites117
Figure 4.22. Microstructural morphology of GP reinforced cementitious composites118
Figure 4.23. Fractional changes of resistivity for cementitious composites with GNP and GP
under cyclic compression
Figure 4.24. Schematic plot of contact points among GP and GNP in cementitious composites
under external force
Figure 5.1. Resistivity as a function of different contents of CB composites with various
amounts of conductive rubber fibres
Figure 5.2. Schematic diagram of the functionality of conductive rubber fibres on CB/cement
composites
Figure 5.3. Fractional changes of resistivity for 0.5 wt.% CB/cement cementitious
composites
Figure 5.4. Correlation between fractional changes of resistivity and compressive strain and
their linear fits for the 0.5% CB/cement composites with/without rubber fibres129
Figure 5.5. Fractional changes of resistivity for 1.0 wt.% CB filled cementitious composites.
Figure 5.6. Correlation between fractional changes of resistivity and compressive strain and
their linear fits for the 1.0 wt.% CB filled composites with/without rubber fibres
Figure 5.7. Fractional changes of resistivity for 2.0 wt.% CB filled cementitious composites.
Figure 5.8. Correlation between fractional changes of resistivity and compressive strain and
their linear fits for the 2.0 wt.% CB filled composites with/without rubber fibres136
Figure 5.9. Electrical resistivity for CB/cementitious composite with various contents of PP
fibre
Figure 5.10. Microstructure of PP fibres in CB/cement matrix and functional groups in CB
surface
Figure 5.11. Fractional changes of resistivity as a function of compressive stress under
various loading rates and ratio of FCR to stress with various PP contents142
Figure 5.12. Schematic diagram of CB, PP fibres and potential contact points in cementitious
composite143

Figure 5.13. FCR changes during flexural failure test and flexural stress sensitivity at various
of PP fibres
Figure 5.14. Compressive and flexural strengths of CB-cementitious composite with various
content of SF149
Figure 5.15. Micromorphology and agglomeration in CB-cementitious composite without SF.
Figure 5.16. Micromorphologies and agglomeration of CB-cementitious composite with
different SF contents
Figure 5.17. TG/DSC curves of CB-cementitious composite with different contents of SF.154
Figure 5.18. XRD analysis for CB-cementitious composite with various amounts of SF (E =
Ettringite; M= Monocarboaluminate; P = Portlandite; C= Calcite; D = OPC clinkers)155
Figure 5.19. Rate of hydration heat and cumulative heat of hydration for cement paste with
various SF contents
Figure 5.20. Microstructures of CB-cementitious composites with different SF contents158
Figure 5.21. Morphology of CB/SF agglomerations in cementitious composite
Figure 5.22. Fractional changes in electrical resistivity for CB-cementitious composite with
different SF contents
Figure 5.23. FCR as a function to compressive strength for CB-cementitious composite with
various SF contents
Figure 6.1. Relationship between thermal radiation/absorption and FCR of dry CB
cementitious composites under temperature of 20 °C and relative humidity of 60%166
Figure 6.2. The FCR of dry CB cementitious composite at different temperatures under cyclic
compression
Figure 6.3. Relationship between FCR and strain for CB cementitious composites under
various temperatures
Figure 6.4. Fractional changes of resistivity of 0.25% MWCNT/cementitious composites
related to compressive stress and strain
Figure 6.5. Fractional changes of resistivity as a function to compressive strain of
cementitious composites incorporating 0.25% MWCNT after heat treatments
Figure 6.6. Fractional changes of resistivity of 0.50% MWCNT/cementitious composites
related to compressive stress and strain174
Figure 6.7. Fractional changes of resistivity as a function to compressive strain of
cementitious composites incorporating 0.50% MWCNT after heat treatments

Figure 6.8. Mechanisms for improved fractional changes of resistivity for
MWCNT/cementitious composites after heat treatments179
Figure 6.9. The FCR of CB cementitious composites with different water contents under
cyclic compression
Figure 6.10. The FCR of CB cementitious composites at different water contents as a
function of compressive strain
Figure 6.11. Resistance of CB cementitious composites to water content and the relative
positions between CB particles on account of water layers
Figure 6.12. Electrical resistance development of dry CB cementitious composites with or
without subzero temperature exposures
Figure 6.13. Electrical resistance development of saturated CB cementitious composites with
or without subzero temperature exposures
Figure 6.14. The FCR changes of dry CB cementitious composites with compressive strain
before and after the freeze-thaw cycles
Figure 6.15. The FCR changes of saturated CB cementitious composites with compressive
strain before and after the freeze-thaw cycles190
Figure 6.16. Mass change of GNP cementitious composites stored in 0%, 1%, 2% and 3%
H2SO4 after 90 and 180 days192
Figure 6.17. Compressive strength of GNP filled CBS stored in 0%, 1%, 2% and 3% H2SO4
after 90 and 180 days193
Figure 6.18. Microstructural morphology: (a) GNP in cement matrix; (b) Erosion products
and GNP filled cementitious composite subjected to (c) 0%; (d) 1%; (e) 2% and (f) 3%
H2SO4 solution
Figure 6.19. EDX analysis on elements of Ca, Si, Al, Na and S in the GNP filled cementitious
composite subjected to 0%, 1%, 2% and 3% H2SO4 solutions after 180 days196
Figure 6.20. Piezoresistivity of GNP-filled cement-based sensor without sulphuric acid
immersion
Figure 6.21. FCR as a function to compressive stress for the initial CBS under CAL and VAL
patterns199
Figure 6.22. Piezoresistivity of GNP filled CBS after 90 days sulphuric acid storage subjected
to CAL pattern
Figure 6.23. Piezoresistivity of GNP filled CBS after 180 days sulphuric acid immersion
subjected to VAL pattern

Figure 6.24. Schematic diagram of conductive passage alteration of highly porous GNP filled
cementitious composite under loading204
Figure 6.25. Fractional changes of resistivity of 0.1% CNT/cementitious composites under
cyclic compression after different times of impact with energy of $6.24 \times 10-4$ J/cm3206
Figure 6.26. Fractional changes of resistivity of 0.1% CNT/cementitious composites under
cyclic compression after different times of impact with energy of 12.48 $\times 10$ -4 J/cm3207
Figure 6.27. Fractional changes of resistivity of 0.1% CNT/cementitious composites under
cyclic compression after different times of impact with energy of $18.72 \times 10-4$ J/cm3209
Figure 6.28. Schematic diagram of micro-cracks initiation and propagation in
CNT/cementitious composites after impact treatment210
Figure 7.1. Crack closure of NCB/cementitious composites with/without SL at various curing
ages [183]215
Figure 7.2. Stress sensing performances of the NCB cementitious composites with/without
SL216
Figure 7.3. Microstructural morphology of NCB enclosed SL in cement matrix
Figure 7.4. Schematic diagram of the released slaked lime after sonication bath for cracks
self-healing217
Figure 7.5. Water absorption of cementitious composites with various contents of GNP and
SHP
Figure 7.6. Water contact angle in fracture surface of cementitious composite with SHP and
GNP
Figure 7.7. FCR as a function of compressive stress and strain of cementitious composite
with 2% SHP223
Figure 7.8. Gauge factor variation under coupled effects of loading rate and load magnitude.
Figure 7.9. FCR of cementitious composite without SHP before/after water immersion
treatment
Figure 7.10. FCR of cementitious composite with 1% SHP before/after water immersion
treatment
Figure 7.11. Schematic diagram of water penetration into GNP/cementitious composite
with/without SHP
Figure 7.12. Schematic plots of the detailed procedures of surficial enhancement on cement-
based sensors
Figure 7.13. Self-sensing performance of cement-based sensor after silane treatment232

Figure 7.14. Water contact angle of silane-treated cement-based sensor: (a) intact silane-
treated surface; (b) with scratches and (c) in the cross section233
Figure 7.15. Dust and food stain self-cleaning performance of cement-based sensors
before/after silane treatment
Figure 8.1. Configuration of CBCS embedded in different zones of unreinforced beam under
three-point-bending
Figure 8.2. Resistivity of CBCS containing various CB contents with long distance to the
central loading point in compression zone
Figure 8.3. Resistivity of CBCS containing various CB contents with close distance to the
central loading point in compression zone241
Figure 8.4. Resistivity of CBCS containing different CB contents in tension zone during
three-point bending
Figure 8.5. The FCR variations of embedded CBCS with the long distance to central load
point in compression zones under cyclic flexural loading244
Figure 8.6. FCR alterations of embedded CBCS with close distance to the central loading
point in compression zones under cyclic flexural loading246
Figure 8.7. FCR alterations of embedded CBCS in tension zones of unreinforced concrete
beams under cyclic flexural loading247
Figure 8.8. Potential distribution of conductive CB particles and agglomerations in CBCS
embedded in the tension zones of unreinforced concrete beams
Figure 8.9. Morphology and microstructures of CBCS and the CB agglomerations
Figure 8.10. The joint connection, insulated glue coating and final cement-based sensors in
series
Figure 8.11. Insertion of cement-based sensors to cement mortar slab during casting251
Figure 8.12. Self-sensing performance of cement mortar slab under human motion of feet up
and down252
Figure 8.13. Self-sensing performance of cement mortar slab under human motion of jump
up/down
Figure 8.14. Self-sensing performance of cement mortar slab under traffic load with different
speeds
Figure 8.15. Car speed discrepancy based on the speed indicator of car and the FCR peaks.
Figure 8.16. Relationship between largest FCR of wheels and vehicle speed under
logarithmic fitting

LIST OF TABLES

Table 2.1 Comparison of different sensing techniques used in SHM
Table 2.2 Electrical properties of cement-based sensors with sheet, fibrous, and powdery
conductive fillers
Table 2.3 Effects of loading cycles and amplitudes on the fractional changes of resistivity 30
Table 3.1 Electrical, physical and mechanical properties of conductive rubber product48
Table 3.2 Physical properties and main compositions of General purpose cement
Table 3.3 Chemical compositions and the physical properties of silica fume
Table 3.4 Physical and chemical properties of superplasticizer 48
Table 3.5 Mixture ratios of cement paste containing conductive rubber fibres
Table 3.6 Mix proportion of rubberized cement mortar with various contents of rubber crumb
Table 3.7 Sensitive coefficient for cementitious composites at w/b ratios of 0.34, 0.38 and
0.42
Table 4.1 Proposed parameters of UDCC and LDCC assessing strain sensitivity and linearity
Table 5.1 Physicochemical properties of CB-cementitious composite with various SF 146
Table 7.1 Square deviation of cementitious composite under various stress magnitudes223

ABSTRACT

Concrete is the most widely used construction material for buildings, pavements, harbours and bridges. The piezoresistive cement-based sensor consists of the traditional cementitious composite and conductive fillers, thus the electrical conductivity is greatly improved and easily captured. Therefore, the cement-based sensors can be applied in concrete infrastructures to self-sense and monitor the damages and cracks through the measurements of concrete electrical resistivity, due to their low cost, easy manufacturing, high sensitivity and good durability compared to traditional sensors. However, several factors ranging from types and contents of conductive fillers, additives and environmental factors can affect the piezoresistivity and restrict the practical application of cement-based sensors.

In this study, the conventional cementitious materials with different conductive fillers including conductive rubber products (rubber crumbs and fibres) and carbon nanomaterials (carbon black, carbon nanotube, graphene and graphite) were developed to produce cementbased sensors, whose sensitivity was dozens or hundreds of times higher than the commercially available strain gauge. Later, the effects of additives such as rubber fibres, polypropylene fibres and silica fume on the electrical, mechanical, microstructural and piezoresistive properties of carbon black filled cement-based sensors were investigated. It was observed the enhanced durability and sensitivity of cement-based sensors containing these additives. Given working environment can significantly affect the piezoresistive performance of cement-based sensors, the effects of temperature, humidity, freeze-thaw cycles, acid erosion and drop impact on the cement-based sensors containing nanomaterials were explored regarding to the electrical resistivity and piezoresistivity. To reduce the interference from working environment, multifunctional cement-based sensors were developed with combined self-sensing, self-healing, self-cleaning and superhydrophobicity. These functions can hinder the penetration of water and ions inside of cement-based sensors, thus reduce the influences of working environment on the piezoresistive performance of cement-based sensors. On the other hand, it provides the cement-based sensors with more functions to clean and heal themselves automatically.

In the end, this study carried out the piezoresistivity test on the small concrete beams and slabs with embedded cement-based sensors, to evaluate the sensing performance of cement-based sensors inside of concrete structures. Despite the inherent challenges, the multifunctional cement-based sensors have great potential for smart infrastructures. Overall, this study has comprehensively investigated the performance of cement-based sensors exposure to various conditions and taken a solid step forward for their practical application.