

Supporting consumer decisions in
cloud computing using trust model

by Muhammad Raza

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy

under the supervision of Associate Professor Farookh
Khadeer Hussain

University of Technology Sydney
Faculty of Engineering and Information Technology

May 2021

ii

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Muhammad Raza declare that this thesis, is submitted in fulfilment of the requirements for

the award of PhD, in the School of Computer Science, Faculty of Engineering and Information

Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition,

I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature:

Date: 26-04-2021

Production Note:

Signature removed prior to publication.

iii

Acknowledgements

I would like to express my sincere gratitude to my principal supervisor A/Prof. Farookh

Khadeer Hussain for his continuous support, guidance and encouragement during my Ph.D

studies. His generosity and patience always provided me with extra energy throughout difficult

times. I would also like to thank my co-supervisor A/ Prof. Zia ur Rehman for his help and

support. His presence and cooperation allowed me to continue and complete my Ph.D journey.

I specially thank A/Prof. Omar Khadeer Hussain for his guidance, support and untiring

willingness to help that kept me continue my research journey. I would also like to express my

appreciation to Mr. Ming Zhao for his excellent support and helpful discussions.

I would like to extend my gratitude to my friends at UTS, Dr. Quynh Do, Dr. Supannada

Chotipant, Dr. Mohammad Ikram and Dr. Omar Alshaweesh whose company and

encouragement during my Ph.D journey have been invaluable.

Finally, I would like to dedicate this thesis to my family. My father, who is not with us to see

this accomplishment and my mother, whose passion for reading and learning is the core

motivation for my academic choices. I would like to thank my brother and sister for being with

me throughout the difficult times and my uncle for his kind support.

iv

List of Publications

Journal Articles

1. Raza, M., Hussain, F. K., Hussain, O. K., Zhao, M., & Rehman, Z. u. (2019). A

comparative analysis of machine learning models for quality pillar assessment of SaaS

services by multi-class text classification of users’ reviews. Future Generation

Computer Systems, 101, 341-371. (JCR(Q1), Impact Factor (6.125))

2. Raza, M., Hussain, F.K., Hussain, O.K. et al. Imputing sentiment intensity for SaaS

service quality aspects using T-nearest neighbors with correlation-weighted Euclidean

distance. Knowl Inf Syst 63, 2541–2584 (2021). JCR(Q2), Impact Factor (2.936))

v

Table of Contents

CERTIFICATE OF ORIGINAL AUTHORSHIP ... ii

Acknowledgements ... iii

List of Publications ... iv

Table of Contents ..v

List of Figures ...x

List of Tables .. xiii

Glossary of terms ..xv

Abstract ... xviii

Chapter 1: Introduction ...1

1.1 Introduction ..1

1.2 Overview of cloud computing ..1

1.2.1 What is cloud computing? ..2

1.2.2 Cloud services deployment models ..3

1.2.3 Cloud services delivery models ..3

1.3 Key challenges in cloud computing ..4

1.3.1 Privacy 4

1.3.2 Security 5

1.3.3 Trust 5

1.4 Trust related issues in SaaS ..6

1.4.1 Factors affecting trust in SaaS ..6

1.4.2 Missing information regarding trust factors ...7

1.4.3 Forecasting information regarding trust factors ..8

1.4.4 Modelling trust for Software as a Service ..9

1.5 Objectives of the thesis ...9

1.6 Scope of the thesis ..9

1.7 Significance of the thesis ..10

1.8 Plan of the thesis ...11

vi

1.9 Conclusion ..12

Chapter 2: Literature Review ..13

2.1 Introduction ..13

2.2 Trust assessment and trust models ..13

2.2.1 Definition of Trust ..13

2.2.2 Trust modelling approaches ..14

2.2.3 Trust in different domain ..15

2.3 Trust assessment and Trust models in Cloud Computing ...16

2.4 Factors effecting Trust ..30

2.5 Fuzzy Trust models in cloud computing...31

2.6 Critical Analysis ...32

2.7 Conclusion ..34

Chapter 3: Problem Definition ..36

3.1 Introduction ..36

3.2 Problem definition ..37

3.3 Research Issues ...39

3.4 Research Objectives..40

3.5 Research approach ..42

3.6 Conclusion ..43

Chapter 4: Solution Overview ...45

4.1 Introduction ..45

4.2 Trust model for Software as a Service ..45

4.3 Overview of proposed solution ...46

4.4 Overview of solution for component 1: Identification of service factors48

4.5 Overview of solution for component 2: Imputing missing sentiment intensity scores for service

factors ..51

4.6 Overview of solution for component 3: Forecasting sentiment intensity scores for service

factors ..53

vii

4.7 Overview of solution for component 4: Modelling trust levels in Software as a Service55

4.8 Conclusion ..57

Chapter 5: An Ensemble approach for identifying SaaS service factors58

5.1 Introduction ..58

5.2 Machine learning based text classification ...59

5.3 An Ensemble machine learning approach for multi-class text classification of SaaS reviews 59

5.3.1 Overview of SaaS service factor identification from customer reviews59

5.3.2 Data preparation..61

5.3.3 Parameter estimation ..69

5.3.4 Model evaluation ..71

5.3.5 Creating Ensemble ..76

5.4 Experiments and Evaluation Results ..79

5.4.1 Dataset description..79

5.4.2 Model evaluation ..80

5.4.3 Statistical significance test ..88

5.4.4 Performance of the Ensemble ...88

5.5 Conclusion ..90

Chapter 6: T-NN: A Threshold-based Nearest Neighbour approach for Imputing

missing values of SaaS service factors ...92

6.1 Introduction ..92

6.2 Missing data mechanisms ...93

6.3 Threshold-based Nearest Neighbour approach ...94

6.3.1 Overview of Missing sentiment imputation methodology..94

6.3.2 Data preparation stage ..95

6.3.3 Sentiment intensity computation stage ...97

6.3.4 Inference stage ..98

6.3.5 Validation stage ..105

6.4 Experiments and Evaluation results ..111

6.4.1 Scheme A 111

6.4.2 Scheme B 116

6.5 Imputing sentiment intensity score of a service factor: An example Case study129

6.5.1 Finding donor instances ..129

viii

6.5.2 Calculating Pearson’s correlation coefficient ...130

6.5.3 Calculating weighted distance ..130

6.6 Conclusion ..132

Chapter 7: A methodology for time series Forecasting of SaaS service factors 134

7.1 Introduction ..134

7.2 Background ...135

7.2.1 Time series ..135

7.2.2 Regular and irregular series ..135

7.2.3 Time series components ...136

7.2.4 Stationary and non-stationary series ...137

7.2.5 Univariate and multivariate time series ..138

7.2.6 Time series forecasting ...138

7.2.7 Correlations ..138

7.2.8 Interpolation ..139

7.3 Timeseries forecasting approaches ...139

7.3.1 Autoregressive model (AR) ..139

7.3.2 Moving Average model (MA) ..140

7.3.3 Autoregressive Moving Average model (ARMA) ...141

7.3.4 Auto Regressive Integrated Moving Average (ARIMA) ...141

7.3.5 Exponential Smoothing ..142

7.3.6 Multilayer Perceptron (MLP) ...144

7.3.7 Long Short-term Memory (LSTM) ..145

7.4 A methodology for time series forecasting of SaaS service factors148

7.4.1 Overview of sentiment intensity forecasting methodology ..148

7.4.2 Data preparation..149

7.4.3 Model selection ...152

7.4.4 Parameter estimation ..162

7.4.5 Model evaluation ..174

7.5 Experiments and Evaluation results ..175

7.5.1 Data preparation and Pre-processing ..175

7.5.2 Model evaluation and comparative analysis ...176

7.6 Conclusion ..184

Chapter 8: A Fuzzy-based Trust model for SaaS ..185

ix

8.1 Introduction: ...185

8.2 Overview of the Fuzzy-based trust model for SaaS: ..186

8.3 MDR weight metric ..187

8.3.1 Maturity: 189

8.3.2 Density: 189

8.3.3 Reviewers: 190

8.4 Fuzzy-based Trust model: ...192

8.4.1 SaaS service factors as Trust factors...194

8.4.2 Fuzzification of input variables and input membership functions195

8.4.3 Fuzzy inference rules for the trust model ...198

8.4.4 Rule aggregation and evaluation ..201

8.4.5 Defuzzification to crisp trust values ...202

8.5 Implementation and Case study ..202

8.5.1 MDR scores calculation ..203

8.5.2 Fuzzy inference ...205

8.5.3 Experiments and Simulation results: ..208

8.6 Conclusion ..212

Chapter 9: Recapitulation and future work ...214

9.1 Introduction ..214

9.2 Recapitulation ...215

9.3 Contribution of the thesis..216

9.3.1 Contribution 1: A novel framework that establishes the root of trust in SaaS using Architectural

best practices ...216

9.3.2 Contribution 2: An ensemble model that automatically identifies SaaS service factors216

9.3.3 Contribution 3: An imputation method for missing sentiment scores of SaaS service factors 217

9.3.4 Contribution 4: A forecast model for SaaS service factors...218

9.3.5 Contribution 5: A dynamic trust model for SaaS ...218

9.4 Future Work ..219

9.5 Conclusion ..220

References ..221

Appendices ...230

x

List of Figures

Figure 1.1 Cloud computing conceptual reference model (Liu et al., 2011)2

Figure 3.1 Research approach ...43

Figure 4.1. The proposed trust management framework for SaaS48

Figure 4.2. Overview of classification model ...50

Figure 4.3. Overview of the imputation model ...52

Figure 4.4. Overview of the forecast model ...54

Figure 4.5. Overview of the trust model ...56

Figure 5.1 Sequence of steps for the SaaS service factors identification approach60

Figure 5.2. Number of samples per class before and after using SMOTE69

Figure 5.3. Comparison of the training time for the classification models with their best
parameters ...87

Figure 5.4. Performance of the Ensemble model on training and test data with optimal
parameters using SMOTE ...90

Figure 6.1 Methodology for imputation of the missing service factors of SaaS94

Figure 6.2 Sequence of steps in imputing the missing sentiment intensity values in a dataset
 ..103

Figure 6.3 Steps in the validation process of Scheme A ...107

Figure 6.4 Steps in the validation process of Scheme B ...110

Figure 6.5 RMSE values averaged on all the datasets with different missing percentages of
 ..114

Figure 6.6 RMSE scores comparison on all imputed datasets with different missing
percentages ...116

Figure 6.7 Adjusted R-squared scores comparison on all imputed datasets with different
missing percentages ..116

Figure 6.8 RMSE values averaged on all the datasets with different missing percentages of
Scheme B ..118

Figure 6.9 Cross-validation results from Linear and RBF kernels (RMSE) on T-NN imputed
datasets ..120

Figure 6.10 Cross-validation results from Linear and RBF kernels (Adjusted R-squared) on
T-NN imputed datasets ...121

Figure 6.11 RMSE scores comparison on all imputed datasets with different missing
percentages during cross-validation ...123

Figure 6.12 Adjusted R-squared scores comparison on all imputed datasets with different
missing percentages during cross-validation ..123

xi

Figure 6.13 RMSE scores comparison on all imputed datasets with different missing
percentages on test dataset ..125

Figure 6.14 Adjusted R-squared scores comparison on all imputed datasets with different
missing percentages on test dataset ..126

Figure 6.15 RMSE scores comparison on imputed datasets using T-NN127

Figure 6.16 Adjusted R-squared scores comparison on imputed datasets using T-NN127

Figure 6.17 SVR and Baseline evaluation comparison on T-NN imputed and test datasets 128

Figure 6.18 SVR and Baseline evaluation comparison on T-NN imputed and test datasets 128

Figure 7.1 Components of time series ..137

Figure 7.2 A multilayer perceptron with two hidden layers145

Figure 7.3 Overview of a LSTM cell ..146

Figure 7.4 Sequence of steps for the SaaS service factors forecasting methodology148

Figure 7.5 Time series of each service factor ...151

Figure 7.6 Time series transformation into supervised data152

Figure 7.7 Stationary series after 1st-order differencing ..154

Figure 7.8 Components of service factor E ..155

Figure 7.9 Components of service factor L ..155

Figure 7.10 Components of service factor S ...156

Figure 7.11 Autocorrelations within the series for each service factor160

Figure 7.12 Partial-autocorrelations within the series for each service factor160

Figure 7.13 ARIMA model residuals..165

Figure 7.14 Autocorrelations in ARIMA model residuals..166

Figure 7.15 Partial autocorrelations in ARIMA model residuals167

Figure 7.16 KDE of the ARIMA model residuals ..168

Figure 7.17 Exponential smoothing model residuals ..170

Figure 7.18 Autocorrelations in exponential smoothing model residuals171

Figure 7.19 Partial autocorrelations in exponential smoothing model residuals172

Figure 7.20 KDE of the exponential smoothing model residuals172

Figure 7.21. MLP model summary ...173

Figure 7.22 LSTM model summary..174

Figure 7.23 LSTM Single-step (Actual vs. Forecast) ...178

Figure 7.24 LSTM Multi-steps (Actual vs. Forecast) ...179

Figure 7.25 Multivariate models forecast errors ...180

Figure 7.26 Univariate models forecast errors ..180

Figure 7.27 Univariate vs. Multivariate models average forecast errors181

xii

Figure 7.28 Forecast errors comparison (Actual vs. Differenced)............................182

Figure 8.1 Overview of the framework for fuzzy-based trust model187

Figure 8.2 Graphical representation of the individual metric in MDR188

Figure 8.3 Flowchart for the sequence of tasks in fuzzy-based trust model193

Figure 8.4 Main component of a Fuzzy Inference System194

Figure 8.5 The input and output of Mamdani FIS ..195

Figure 8.6 Input membership functions for all the input variables197

Figure 8.7 Output membership functions for the fuzzy-based trust model198

Figure 8.8 MDR scores for all the service factor from the SaaS dataset205

Figure 8.9 Output membership functions for a given SaaS product's trust score and trust level
 ..208

Figure 8.10 simulation results on the SaaS dataset and the percentage distribution of SaaS
products based on their computed trust levels ..209

Figure 8.11 Example output membership functions with trust levels and trust scores210

Figure 8.12 Example output membership functions with trust levels and trust scores210

Figure 8.13 Sentiment intensity scores for each service factor of a given SaaS product, used
as trust factors for inputs in fuzzy trust model ...211

Figure 8.14 The output trust scores at each time spot for which the input trust factors are
observed ..212

xiii

List of Tables

Table 2.1 Trust modelling approaches ..14

Table 2.2 Trust in different application domain ...15

Table 2.3 Fuzzy trust models in cloud computing ..32

Table 2.4 Critical analysis of Trust models in cloud computing32

Table 5.1. Notations of the variables used in the experiments61

Table 5.2. Service factors with associated tags...63

Table 5.3. Pre-processed review samples with associated labels63

Table 5.4. Sparse matrix representation of review samples with TF-IDF scores for features
 ..66

Table 5.5 Selected text classification approaches ...69

Table 5.6. Selected parameters for tunning ..70

Table 5.7. Dataset description with the number of reviews per service factor79

Table 5.8. Optimal parameters selected after training ..80

Table 5.9. Comparative analysis of the multiclass text classification approaches using
Stratified k-folds and SMOTE ..81

Table 5.10. Results from Nemenyi's post hoc test for classifier pairs88

Table 5.11. Extended classification report of individual classes using ensemble model 88

Table 5.12. Confusion matrix for the ensemble classification model89

Table 6.1. SaaS service quality pillars (service factors) ...96

Table 6.2. Correlation values among the features...101

Table 6.3 Imputation approaches ..105

Table 6.4. Datasets Description (scheme A) ...111

Table 6.5. RMSE values by increasing the threshold values (scheme A)113

Table 6.6. RMSE scores with different missing percentages (scheme A)115

Table 6.7. Adjusted R-squared values with different missing percentages (scheme A)115

Table 6.8. Datasets Description (scheme B) ...117

Table 6.9. RMSE values by increasing the threshold values (scheme B)119

Table 6.10. Cross-validation results with RMSE values using SVR on imputed datasets
(scheme B) ..122

Table 6.11. Cross-validation results with Adjusted R-squared values using SVR on imputed
datasets (scheme B) ..122

Table 6.12 Test results with RMSE values using SVR on imputed datasets (scheme B) 124

xiv

Table 6.13 Test results with Adjusted R-squared using SVR on imputed datasets (scheme B)
 ..124

Table 6.14. SVR vs Baseline performance with RMSE and Adjusted R-Squared ...126

Table 6.15. Sample dataset with the sentiment intensity value SaaS service quality pillars
(service factors) ..130

Table 6.16. Correlation values among the features ...130

Table 6.17. Service factors with correlation values and weights130

Table 6.18. Forming a subset D ̅ from the donor instances131

Table 7.1. Augmented Dickey-Fuller Test (Significance level 0.05)153

Table 7.2. Granger Causality test (Significance level = 0.05)157

Table 7.3. Correlation results between service factors ...158

Table 7.4. ARIMA optimal parameter for each service factor163

Table 7.5. Exponential Smoothing model fit parameters ...169

Table 7.6. MLP and LSTM parameters ..173

Table 7.7. Parameters of the fitted MLP model ..173

Table 7.8. Parameters of the fitted LSTM model ...174

Table 7.9. SaaS sentiment intensity time series data description176

Table 7.10. Single-step forecast errors ...176

Table 7.11. Multi-steps forecast errors ...177

Table 7.12. Average forecast errors ..178

Table 8.1. SaaS service factors used as Trust factors for the fuzzy-based trust model186

Table 8.2. Specifications of the triangular input fuzzy sets with their linguistic terms196

Table 8.3. Specifications of the triangular output fuzzy sets with their linguistic terms198

Table 8.4. Fuzzy inference rules with MDR scores for each Trust factor199

Table 8.5. Samples of SaaS products with the sentiment intensity scores for each input Trust
factor ...203

Table 8.6. Details of individual metric used in MDR score calculation204

Table 8.7. Fuzzy membership in each of the input membership function for the input
variables ..205

Table 8.8. Rule strengths and output fuzzy set association206

xv

Glossary of terms

In this section, I present the key definition of the terms used in this chapter and rest of the

thesis.

Cloud computing

Cloud computing is a computing paradigm in which the computer resources are virtualized and

are accessed over the internet as web services.

Cloud service

A virtualized computing resource that is accessed over the internet.

Cloud service provider

An entity that owns and provides cloud services.

Cloud service customer

An entity that uses cloud services. The terms cloud service customers, cloud service users and

cloud service consumers are used interchangeably in this thesis.

Cloud services delivery model

The way a cloud service is delivered to the cloud customer i.e., as a virtualized infrastructure

(Infrastructure as a Service), as a virtualized application development and deployment platform

(Platform as a Service) and as a virtualized software (software as a Service).

Software as a Service

A shared virtualized software that is used by the cloud service customers over the internet.

Cloud service selection

The process of choosing cloud services from the available services.

Well-architected framework

Frameworks proposed by Amazon web services (AWS, 2018) and Microsoft Azure (Azure,

2018) which are based on architectural best practices for cloud application design and

operations.

Service factors

xvi

The key factors for the optimal design and operations of cloud applications and services. The

terms service aspect, service factor, trust factor, software quality pillars and pillars of well-

architected framework are used interchangeably in this thesis.

Customer review

Textual feedback by a cloud service customer based on previous experience.

Label

Representation of a textual data into a given category.

Data pre-processing

The process of manipulating a textual data into an acceptable format as input for the next stage.

Ensemble model

A technical combination of two or more machine learning models.

Sentiment intensity

The strength of cloud service customer’s opinion.

Trust

The belief in an entity.

Trust model

A formal representation of the belief in an entity. In this thesis, it is the belief in a Software as

a Service.

Trustworthiness level

The linguistic representation of the level of belief in a Software as a Service.

Trust value

A numerical representation of the level of belief in a Software as a Service.

Missing data

An unobserved data during the data collection stage.

Imputation

The process of inserting a new value for an unobserved value of a given variable.

xvii

Inference

To deduce a missing observation by learning from the existing evidence following a reasoning

technique.

Threshold

A numerical acceptance level for a given measurement.

Time spot

The instance of time for which an observation or forecast is referred to.

Time slot

An interval of time for which a set of observations or forecasts are divided.

Time stamp

A date or time label associated to a time spot.

Forecasting

The process of predicting a value for a given time spot in the future.

xviii

Abstract

In recent years, cloud computing has gained much attention in research. Compared to its

predecessor computing paradigms, cloud computing is more complex in its infrastructure and

the nature of services it provides to its customers. Customers are reluctant to adopt cloud

computing because of the ongoing issues such as data security, privacy and highly abstract

nature of the cloud services. There is a need to facilitate consumer decisions when it comes to

cloud services selection. Trust can play an important role in bringing the consumers closer to

cloud computing as it has been successfully implemented in several domains. The complex

nature of cloud services specially, the Software as a Service (SaaS), brings new challenges for

trust modelling compared to the trust models in other domains. In the existing literature, there

are a number of approaches proposed to model the trust in cloud services. However, the

majority of existing research is focused on establishing the concept of trust and to assess the

willingness of cloud service providers. Trust is multi-faceted, dynamic and is based on multiple

factors. Besides cloud service providers willingness, the existing literature does not consider

the SaaS architectures and their dependencies in their trust models. Besides that, computing

trust in SaaS requires the information regarding all the trust factors. There is no approach in

the existing literature to address the issue of missing information in the trust factors.

Furthermore, the existing literature has not focused on forecasting the trust factors for the future

time spots which is important in boosting customers confidence in the adoption of SaaS. The

computation of trust in SaaS must adopt to time and should be reliable. The existing trust

models for cloud services do not provide comprehensive solution that captures both dynamicity

and reliability of trust factors.

Based on the shortcoming mentioned above, in this thesis I propose and develop a

comprehensive trust management framework for SaaS. The proposed framework identifies the

key trust factors from SaaS architectural best practices. Each component of the framework is

designed to address the issues faced by trust models for SaaS. In the first component of the

framework, an ensemble machine learning approach automatically categorizes and extracts the

trust factors from SaaS customer reviews. An intelligent Threshold-based Nearest Neighbour

(T-NN) method is proposed to impute the missing customer sentiments in SaaS service factors.

The third component of the framework is designed to forecast the values of the SaaS service

xix

factors. The forecast model is designed through a comprehensive study of the traditional and

latest forecasting approaches. Finally, the last component of the framework, models the trust

using an intelligent and dynamically weighted fuzzy trust model. Each component of the

proposed trust management framework is validated against several well-known approaches

during experiments.

This thesis will help and facilitate cloud services consumers in their decisions before utilizing

cloud services and also the SaaS providers to improve different aspects of their offered services.

Introduction

1

Chapter 1:
Introduction

1.1 INTRODUCTION

Cloud computing is a modern computing paradigm and is the future of server-based computing.

Virtualization is the key concept behind cloud computing where computing resources are accessed

virtually over the internet. The virtual computing resources on the cloud are made accessible through

web services. These cloud services are delivered in the form of Infrastructure as a Service, where the

infrastructural resources are delivered virtually, Platform as a Service for application development

and deployment and Software as a Service, where software are designed under multitenant

architecture and made accessible virtually. The dynamic and elastic nature of cloud computing brings

a lot of flexibility and benefits to the cloud users. Some of the benefits include cost effectiveness, less

overhead in resource management, ease in upgrade and deployment. Beside all these benefits, cloud

computing also brings several challenges and risks to the cloud market.

Software as a Service is one of the main cloud service delivery models and is receiving more attention

from customers with time. It is crucial for the Software as a Service customers to make informed

decisions when selecting the most suitable service for their businesses and a certain level of trust in

the SaaS products help in their decisions. In this chapter, I introduce the importance and the key issues

related to trust in Software as a Service.

In the next section, I provide an overview of cloud computing and main service delivery and

deployment models. In Section 1.3, the key challenges in cloud computing are discussed. In Section

1.4, I present the trust related issues in cloud services. The objectives of the thesis are described in

Section 1.5, followed by the scope of the thesis in Section 1.6. In Section 1.7, I explain the

significance of the thesis and present the plan of the thesis in Section 1.8. Section 1.9 concludes this

chapter.

1.2 OVERVIEW OF CLOUD COMPUTING

In this section, I provide an overview of cloud computing that includes the evolution of computing

and the key concepts. I also discuss the cloud service deployment and delivery models.

Introduction

2

1.2.1 What is cloud computing?

Cloud computing is the future of modern computing paradigm due to the innovative system

architecture. The core concept of cloud computing is based on its predecessor technologies and

service models namely Grid computing, Utility computing and Autonomic computing. Cloud

computing can be seen as a merge of different deployment models and service models (Zissis &

Lekkas, 2012). Moreover, cloud computing is also the product of the increase trend towards external

deployment of Information and Telecommunication Services (ITS) resources (Stanoevska-Slabeva,

Wozniak, & Ristol, 2009).

The emergence of cloud computing as a computing model enables ubiquitous, convenient and on-

demand network access to shared pool of configurable computing resources such as, networks,

computing services, storage, and applications services. These resources are provisioned rapidly with

less service provider interaction and released with minimum management efforts (Mell & Grance

2011). Figure 1.1 depicts the conceptual reference model of cloud computing with the major actors

along with their associated activities and functions in cloud computing.

Figure 1.1 Cloud computing conceptual reference model (Liu et al., 2011)

Cloud services are provided and managed by businesses called the Cloud Providers. On the other

hand, these cloud services are paid for and used by individuals or businesses called the Cloud

Consumers (or Cloud Customers).

Introduction

3

Cloud computing brings several benefits for the customers that includes reduced cost of the

computing resources. Dynamic resource sharing is one key factor in bringing the cost of cloud

services down. The pay-per-use and pay-as-you go cost model of cloud service makes it affordable

for large as well as small businesses and start-ups. On the provider side, the management of the

services become easier and efficient in rolling out of new services and service features.

1.2.2 Cloud services deployment models

Cloud computing infrastructures are deployed and operated under one of the following deployment

models (Liu et al., 2011):

• Public cloud

• Private cloud

• Community cloud

• Hybrid cloud

The basic cloud service deployment models differ from each other on the basis of several aspects of

its physical architecture. From geographical isolation to their interoperability, they bring a lot of

crucial issues regarding security, privacy and trust among all the others. In a private cloud the

infrastructure is provisioned for exclusive use by single organization whereas in a public cloud the

infrastructure is for open use by general public (Liu et al., 2011). In a community cloud the

infrastructure is owned, managed and operated by one or more organizations. These organizations as

a group are called as communities which are based on their shared concerns. A hybrid cloud is a

composition of two or more distinct cloud infrastructures.

1.2.3 Cloud services delivery models

Cloud services offerings are categorized under three service models (Mell & Grance 2011):

• Software as a Service (SaaS)

• Platform as a Service (PaaS)

• Infrastructure as a Service (IaaS)

In Software as a Service model, a SaaS provider offers an application to the consumers in a multi-

tenant architecture. SaaS can be accessed over the internet using a web browser or application specific

clients. In a shared responsibility model, most of the responsibilities of managing the hardware

infrastructure and applications is assumed by the SaaS provider. The SaaS provider is responsible for

Introduction

4

the deployment, configurations, maintenance and updates of the software application. On the other

hand, the SaaS consumers have very limited control over the administration of the applications. Some

of the well-known examples include Salesforce, Microsoft Office365 and SAP Concur.

In Platform as a Service model, the consumers deploy their applications on the platform provided by

the PaaS providers. The platform may support applications developed in different programming

languages by providing with related libraries, runtime environments and tools. In a shared

responsibility model, the PaaS provider have control in managing the platform infrastructure and the

environment settings. The PaaS provider is responsible for managing different components of the

platform such as the middleware components, runtime software execution stack and databases.

Whereas, the PaaS consumer have control over the applications and limited environment settings

apart from the PaaS hardware and virtualization infrastructures such as hardware devices, servers,

operating systems, networks and hypervisors. The well-known examples are AWS Elastic Beanstalk,

Google AppEngine, Heroku and Microsoft Azure.

In Infrastructure as a Service model, the IaaS provider provides virtual computation capabilities to

provision resources such as computing, storage, network and operating systems. In the shared

responsibility model of IaaS, the IaaS provider maintains control over the hardware and virtualization

infrastructures but grants more control and access to fundamental resources such as operating

systems, storage and network components to the IaaS consumer. IaaS providers maintain control to

the hardware resources such as servers, storage and network infrastructures. Some of the well-known

IaaS are Amazon Web Services, Microsoft Azure and Google Cloud Platform.

1.3 KEY CHALLENGES IN CLOUD COMPUTING

Beside all the benefits of cloud computing, a number of challenges is also associated with cloud

services due to its complex and remote infrastructure. From customer point of view, the main

obstacles for the acceptance of cloud services are their abstract and distributed nature. Some of the

key challenges related to cloud service are briefly explained below.

1.3.1 Privacy

One of the basic concerns on the customer side is regarding the privacy of their data and applications

on cloud services. Informational privacy (Martucci et al., 2012) (Fischer-Hübner, 2001), is referred

to as the rights of a person to determine how and when their personal information is communicated

to the others and to what extent. The issue of privacy of customer assets being outsourced on the

Introduction

5

cloud is based mainly on the deployment methods of the cloud services. Customer data being outside

the organization boundaries raises the confidentiality questions of how and to what extent their

information is exposed outside their organization. Keeping this in mind, some of the organizations

still allow less sensitive organizational data to be transferred to the cloud (Martucci et al., 2012).

Privacy of customer information on the cloud brings reluctance in the adoption of cloud services by

cloud customers.

1.3.2 Security

The nature of cloud service and their deployment architecture is different and relatively more complex

compared to the traditional computing paradigm, peer-to-peer computing, grid computing and

distributed computing. Due to the complex nature of the cloud service architecture, the effectiveness

and of traditional security mechanisms is not suitable for cloud services (Zissis & Lekkas, 2012). One

of the main concerns on the customer side that leads to hesitation in the adoption of cloud services is

related to the loss of control over data and computation.

In the context of cloud computing, each service model discussed in the previous section, exposes

different aspects of the service and creates vulnerable attacking surfaces for the adversaries (Liu et

al., 2011). In IaaS model, the virtual machines share the same host and are managed by hypervisors.

Similar is the case of customer data on the shared storage devices on the remote host servers. This

brings security challenges regarding the virtual machines, hypervisors, storage devices and storage

management software applications. In case of SaaS, the security and integrity of multitenant software

applications accessed over the internet connections through client web browsers creates relatively

different vulnerable entry points. Where, customer data at rest and on transit, both creates a risk in

security breach. Similar security issues arise with the deployment method of cloud service such as in

public clouds, where multiple tenants share the same resources. The solutions for security related

issues can be broadly categorized under the concepts such as authentication, authorization,

monitoring and encryption. Therefore, the security and integrity of customer data and application

creates another hurdle in the adoption of cloud services.

1.3.3 Trust

Trust and security are two different concepts and extensively studied in different research areas. In

traditional computing paradigm, security is related to the physical protection of resources such as

servers, network infrastructures, storage devices and software. Whereas in cloud computing, the

Introduction

6

concept of security is associated with the protection of software components in virtual information

technology infrastructures and services.

On the other hand, trust is subjective in nature. It is not purely a technical issue rather in reality it is

a social problem (X. Wu, 2012). Also known as Soft trust (Varadharajan, 2009), it is concerned with

intrinsic human emotions and perception, interaction and exchange of information. Trust normally

deals with the dependability of one party on another. It is a measurable belief in a behaviour, in a

given context, for a specified period of time (Olmedilla, Rana, Matthews, & Nejdl, 2005). In cloud

computing, trust plays a crucial part in the decision-making process of cloud service adoption and

selection. Some of the key issues related to trust in cloud services specifically software as a service,

are briefly discussed in the following section.

1.4 TRUST RELATED ISSUES IN SAAS

As discussed in the previous section, Software as a Service (SaaS) is one of the well-known types of

cloud service delivery model (Liu et al., 2011). SaaS is software developed by the developers and

unlike tradition software, it is delivered to the consumers in the form of web services. The

development of the software (as a Service) may or may not follow the traditional software

development models. The SaaS is generally deployed in one of the following two approaches: a) The

whole service stack owned by the SaaS provider or; b) the application and service stack developed

by the by the developers but is deployed on the infrastructure of other cloud service providers. In the

second case, the performance and security of SaaS products are partially dependent on the offerings

by the IaaS providers. It can be stated over here, that these IaaS providers have most in-depth and up-

to-date information regarding the issues faced by the hosted SaaS on their infrastructure. From the

above discussion, it becomes clear that the structure of SaaS is different from the other service models

and brings extra complexity with their design. In order to establish trust in SaaS, the following issues

arise:

1.4.1 Factors affecting trust in SaaS

Trust is multi-faceted and it is dependent on more than one factor. The concept of trust is being studied

thoroughly in different domain and is modelled using different approaches. To establish trust in an

entity, a number of factors are involved which in general, can be divided into two categories. 1)

domain specific factors and, 2) the approach being used to model trust. Among the others, trust has

been studied in several domains such as eCommerce (Audun Jøsang & Ismail, 2002), multi agent

systems (Sabater & Sierra, 2002), social networks (Golbeck & Hendler, 2005), wireless sensor

Introduction

7

networks (Ganeriwal, Balzano, & Srivastava, 2008) and cloud computing (Abawajy, 2009). A

comprehensive review of trust in different domains is presented in Chapter 2. There are several

approaches used to model trust in different domain such as reputation-based (Audun Jøsang & Ismail,

2002) (Xiong & Liu, 2003) (Pramod S. Pawar, Rajarajan, Dimitrakos, & Zisman, 2013), role-based

(Huynh, Jennings, & Shadbolt, 2006), policy-based (Sheikh Mahbub Habib, Ries, Mühlhäuser, &

Varikkattu, 2014), attribute-based (Manuel, 2015) and metric-based (E. D. Canedo, Junior, Carvalho,

& Albuquerque, 2012).

In cloud computing, establishing trust using one service delivery model is different from the others,

but there are dependencies as well. For example, the performance and efficiency of a SaaS product

using storage components of another cloud infrastructure can be compromised because of its

dependency on the disk Input-Output (I/O) capacity of the infrastructure provider. On the other hand,

the performance and efficiency of the SaaS may be affected by the design of the SaaS and not due to

the underneath infrastructure. To assess SaaS products and compute trust, it is crucial to identify the

most reliable and relevant factors which is one of the main issues addressed in this thesis. A detailed

review of the suggested factors to assess cloud services is presented in Chapter 2.

Furthermore, besides the identification of the relevant factors, it is also important to obtain effective

information regarding the identified factors. In this thesis, I utilize the architectural best practices for

the identification of most relevant and reliable factor and use customer sentiment towards each of

these factors to model trust in SaaS. In the existing literature, there are number of factors used to

establish trust but there is no such approach that uses the architectural best practices and customer

sentiment to compute trust in SaaS. The identification and tagging of SaaS customer reviews under

different SaaS service factors should be automated for future customer reviews. In literature, this

problem is addressed as the text classification also known as text categorization. The detailed design

and implementation of the solution for this research issue is presented in Chapter 5 of this thesis.

1.4.2 Missing information regarding trust factors

As discussed in the previous section, trust depends on multiple factors in SaaS and a complete trust

level can only be computed with the information regarding all the factors. Missing information is

very common issue faced in many research areas. Missing information can occur under several

circumstances such as malfunctioning of sensors in industrial setups, Internet of things, unwillingness

of respondents in surveys, human negligence or simply unavailability of certain factors in the data

collection process.

Introduction

8

The same is true in the modelling and computation of trust from multiple factors. There are

circumstances in which the information regarding some of the trust factors are not available. In this

thesis, as the main source of information for the trust model is based on customer text reviews, the

customers simply do not highlight different factors of the SaaS products in their reviews. This results

in the unavailability of information regarding useful service factors of SaaS which is helpful in the

modelling and computation of trust. To facilitate customer decisions in SaaS products selection, the

related information regarding all the service factors must be available which is used during the

modelling and computation of trust levels. Modelling trust with partially available information could

lead to unrealistic assumptions towards the SaaS trust levels.

In the existing literature there is no such approach that focuses on the missing sentiment intensity of

service factors of SaaS products for trust computation. The details of the design and implementation

of this solution is presented in Chapter 6 of this thesis.

1.4.3 Forecasting information regarding trust factors

Trust is time dependent and its value changes over time. In cloud computing, one of the aspects which

continuous effect the cloud service is the economies of scale, which provide significant financial

benefits for the providers and effects the overall quality of their service. Due to this benefit, the overall

quality of service changes over time and the effects can be observed through the available information

for each service factor. Another aspect that effects the cloud services is the ever-increasing number

of SaaS products. This creates a competitive cloud marketplace where the services continuously bring

innovations, added features, cost reductions and improved customer support. In this scenario, the

performance of each service factor keeps on changing. The rapid changes in cloud related

technologies are another aspect that effects the overall quality of SaaS products. Such improvement

can be seen in new virtual storage technologies, improved virtual machine features and improved

network performances. A trust model for SaaS products, should have the capability to capture and

utilize the dynamicity in the cloud marketplace in trust modelling.

The SaaS customer on the other hand, prefer to use those SaaS products that maintains and constantly

improve the quality of their product. A trust model should be able to provide forecasted trust values

for future time spots. This trust forecasts help the customers in their decisions for long term contracts

with SaaS providers. In the existing literature, no such approach exist that forecast the values for

service factors for trust modelling. The details of the proposed forecast model are presented in

Chapter 7.

Introduction

9

1.4.4 Modelling trust for Software as a Service

As discussed in previously, the trust in SaaS depends on multiple factors and each factor has different

contribution in the computation of trust score. Generally, the trust factors are prioritised based on

customer preferences but the priorities can be captured dynamically and automatically by utilizing

the relevant available information for the SaaS products. This is important in the modelling and

computation of trust as the nature of trust is dynamic and it varies with time. The dynamic changes

in the values of the trust factors should be captured by the trust model to compute the weights for

each factor and rank them accordingly. This ranking helps in prioritizing the trust factors that are used

to compute the final trust level of SaaS products. Such metrics is suitable for the dynamic nature of

trust and the weights for each trust factor can vary with time that in effect changes the priorities

among them. The detail design and implementation of the trust model is presented in Chapter 8 of

this thesis.

1.5 OBJECTIVES OF THE THESIS

In the previous sections, I outlined the importance of trust in SaaS products and the issues related to

the modelling and computation of trust in SaaS. The main aim of this thesis is to propose a trust model

along with a solution framework that assist the SaaS customers in their decisions for the selection of

SaaS products. For the solutions of the issues outlined in the previous sections, the objectives of the

thesis are summarized as follows:

1. To develop an intelligent method that automatically identifies the key service factors from

the SaaS products.

2. To develop a method for imputing the missing information regarding the identified service

factors of SaaS products.

3. To develop a reliable method for forecasting the future values for the SaaS service factors.

4. To develop an intelligent and dynamic method that models the trust level of SaaS products.

5. To validate the developed techniques for the solution of the identified research issues in

this thesis.

1.6 SCOPE OF THE THESIS

Cloud service are delivered using modes such as Infrastructure as a Service, Platform as a Service

and Software as a Service. The solutions proposed in this thesis that includes the framework and its

Introduction

10

constituent components are aimed only at solving the issues related to the Software as a Service cloud

delivery model.

There are several key research issues that hinders the adoption of SaaS such as privacy, security and

trust. This thesis is only focused on the trust related issues in SaaS and does not aim to directly address

the other issues. There is a considerable work in the literature on trust modelling and trust computation

in different application domain. However, the solutions designed in this thesis for different steps in

the computation of trust is focused on SaaS only.

The solutions developed in this thesis are tested and implemented on the SaaS dataset collected and

prepared only for this study.

1.7 SIGNIFICANCE OF THE THESIS

There is a significant growth in the adoption of cloud services specially the software as a service

delivery model. Due to the increase in the quantity of the similar SaaS products, the need to make

low-risk decisions in the adoption of these services has become more critical. To assist the SaaS

customers in their decisions, the existing literature, to the best of our knowledge, does not take

account of the architectural best practices in accessing the trustworthiness of the SaaS products. The

core significance of this thesis lies in the above statement that, to assess and model the trust in SaaS

products based on factors derived from the architectural best practices. The key significances of this

thesis are summarized as follows:

1. To assist SaaS customer in their decisions, this thesis develops a comprehensive

framework for assessing and modelling trust in SaaS products

2. This thesis develops an efficient model that classifies customer text reviews into key SaaS

service factors

3. In the existing literature, the trust in cloud services is computed using many different

factors, however, to the best of my knowledge, this thesis is the first to consider customer

sentiment intensity towards the service factors in computing the trust.

4. It is less realistic to model trust in a SaaS product with missing information. In this thesis,

I develop a high performing imputation model that imputes the missing sentiment scores

for the SaaS service factors.

5. For better informed decision, it is helpful for the customers to be able to obtain the trust

values of SaaS product in the future time spots. This thesis develops a forecast model as

Introduction

11

part of the proposed framework, that forecasts the sentiment scores for SaaS service

factors in the future.

6. In this thesis, as part of the proposed framework, I develop a trust model for the SaaS

products that is based on the factors with dynamic weights.

1.8 PLAN OF THE THESIS

In this chapter I explained the importance of the trust model for SaaS. I presented my intention to

develop a trust management framework that models the trust in SaaS products that assist the SaaS

customers in their decisions for acquiring these services. I have highlighted the main objectives of

this thesis in this chapter which are achieved and their details are arranged in the following chapters.

The rest of the thesis is organized as follows:

Chapter 2: In Chapter 2, I provide an extensive review of the existing approaches for modelling trust

in different domain including cloud computing. I present a critical analysis of the current literature

on trust modelling and assessment of SaaS products. Based on the thorough review of the literature,

I highlight the shortcoming in the existing literature related to trust in SaaS.

Chapter 3: In Chapter 3, I outline and define the research problem of this thesis that emerge from

the shortcomings in the trust assessment and modelling in existing literature. I explain the key

terminologies used in the domain of trust and cloud computing. I explain the research methodology

that I have selected to following in this thesis. This chapter present the key research issues and a set

of objectives that I have set to achieve in this thesis.

Chapter 4: In Chapter 4, I present an overview of the proposed trust management framework with a

brief explanation of each of its components. The components of the framework and their associated

tasks are designed to address and solve the issues highlighted in Chapter 3.

Chapter 5: This chapter presents an ensemble multi-class text classification model that is developed

to categorize customer reviews into SaaS service factors. All the pre-processing of textual data is

presented with detailed implementation steps.

Chapter 6: In this chapter, a detailed design and development of a proposed imputation model is

presented that is developed to impute the sentiment intensity scores for the missing service factors.

Chapter 7: Chapter 7 presents a forecast model for forecasting the sentiment intensity values of

service factors. The proposed model utilizes the historic sentiment time series data for SaaS products

to forecast the values in the future.

Introduction

12

Chapter 8: In this chapter, the design and development of the trust model for SaaS products is

presented. The service factors are considered as trust factors for the trust model which are ranked

using the proposed ranking weight metrics.

Chapter 9: Chapter 9 concludes the thesis and highlights the future research directions based on the

learning and achievements during this thesis.

1.9 CONCLUSION

Software as a service is one of well-known cloud service delivery model. There has been an increasing

trend in the adoption of SaaS and its preference has increased over the on-premises standalone

software solutions. However, the customers are still reluctant in acquiring SaaS for their business due

to ongoing issues such as trust. The customers have a choice to select SaaS products offered by variety

of providers. However, customers need to make informed decisions when selecting SaaS products.

In comparison with the SaaS providers, the customers do not have the visibility into the SaaS

deployed architecture. In this thesis, I aim to develop a framework that models the trust in SaaS

products that is based on the key service factors. In this chapter, I explained the key challenges in the

adoption of cloud service specially SaaS. I discussed the research issues that relates to the trust in

SaaS. I highlighted the main objectives of this thesis and discussed the scope and limitation of this

thesis. In this chapter I outlined the significance of this thesis and provided the plan of the thesis. In

the next chapter, I will discuss in details the current literature relevant to cloud services and provide

a critical evaluation of existing literature on trust in SaaS.

Literature Review

13

Chapter 2:
Literature Review

2.1 INTRODUCTION

In this chapter, I present an in-depth background study that is focused on trust, the trust assessment

and modelling theories and applications. Section 2.2 presents an overall understanding to the concept

of trust that includes formal trust definitions, trust modelling approaches and the well-known trust

models in different application domains. In Section 2.3, a comprehensive survey of the existing

literature on trust modelling in cloud computing is presented followed by a discussion on the

importance of trust factors in Section 2.4. In Section 2.5, I present a critical analysis of the existing

fuzzy-based trust models in cloud computing. A comprehensive critical analysis of the trust model

for cloud computing is presented in Section 2.6 along with a summary of the emerging gaps in existing

literature. Section 2.7 concludes the chapter.

2.2 TRUST ASSESSMENT AND TRUST MODELS

Trust is a mature concept and there are several formal definitions of trust in existing literature. It is

modelled and measured using a number of theories and approaches for different application domains.

In the following subsection, I present some of the well-known definitions of trust, followed by the

trust modelling theories and approaches and the application of trust in different domain.

2.2.1 Definition of Trust

One of the well-known definitions of trust by McKnight and Chervany (1996) defines trust as “the

extent to which one party is willing to depend on the other party in a given situation with a feeling of

relative security, even though negative consequences are possible”. The definition provided by

McKnight and Chervany (1996) can be considered as generic. The key highlights of this definition

suggest that trust has an ‘extent’ which can be measured, it is on the ‘will’ of one party which indicates

its subjectiveness and it is situational, indicating that it is context specific.

 Another definition of trust in the context of service-oriented environment is presented by Olmedilla

et al., (2005) which states that “Trust of a party A to a party B for a service X is the measurable belief

of A in that B behaves dependably for a specified period within a specified context (in relation to

Literature Review

14

service X)”. The definition of trust by Olmedilla et al., (2005) also suggests that trust is a measurable

belief, it is subjective, ‘time dependent’ indicates its dynamicity and also context dependent.

Table 2.1 Trust modelling approaches

Modelling Approaches References
Probability Theory (Schryen et al., 2011), (Hang & Singh, 2011), (Xiao et al., 2010)

Bayesian
(Buchegger & Le Boudec, 2003), (Wang & Vassileva, 2003), (Ries,
2009a), (Whitby et al., 2004), (Jøsang & Ismail, 2002), (Hang &
Singh, 2011), (Habib et al., 2011)

Role-based (Huynh et al., 2006), (Billhardt et al., 2007)
Propagation Model (Levien, 2009)

Subjective Probability
(Gambetta, 2000), (Habib et al., 2013), (Habib et al., 2014), (Qiang et
al., 2011), (Habib et al., 2011), (Pawar et al., 2013), (Josang, 2009),
(Zhou et al., 2011), (Habib et al., 2012)

Computational Model (Marsh, 1999)
Negotiation Model (Winslett et al., 2002), (Lee et al., 2009)
Behavioural Model (Castelfranchi & Falcone, 2010)
Policy Based (Habib et al., 2013)
Attribute-based (Li & Du, 2013), (Manuel, 2015)
Cryptography (Zissis & Lekkas, 2012)
Metric based (Canedo et al., 2012), (Manchala, 2000)
Fuzzy logic (Wu, 2012)
Domain-based (Yang et al., 2010)

Reputation-based

(Xiong & Liu, 2003), (Huynh et al., 2006), (Limam & Boutaba, 2010),
(Levien, 2009), (Abawajy, 2009), (Kamvar et al., 2003), (Whitby et
al., 2004), (Sabater & Sierra, 2002), (Ganeriwal et al., 2008), (Jøsang
& Ismail, 2002), (Kinateder et al., 2005), (Resnick & Zeckhauser,
2002), (Macías & Guitart, 2012), (Wu, 2012), (Pawar et al., 2013),
(Xiao et al., 2010)

2.2.2 Trust modelling approaches

Trust has been modelled using different approaches in different domain. The Trust Models are

classified as, PKI Based Trust Model; Feedback Creditability based Global Trust Model, Behavioural

Based Trust Model, Subjective Trust Model and Domain-based Trust Model (Saravanakumar &

Arun, 2014). Similarly, Kanwal et al., (2013) have classified the trust models into five categories

namely, Agreement based trust models, Certificate/secret key based trust models, Feedback based

trust models, Domain based trust models and Subjective Trust models. Trust has also been assessed

in literature based on entities behaviour. Entities behaviour is captured in the form of their reputation,

intentions, capabilities and competencies which can be measured in terms of their trust values (Habib

et al., 2012).

Literature Review

15

The entities willingness, trust relationship, trust propagation, prediction and the uncertainty in trust

using the well-known trust modelling approaches illustrated in Table 2.1.

2.2.3 Trust in different domain

Regardless of methods and approaches through which trust is modelled and implemented, the concept

gained a huge attraction in solving the issue of dependability among entities in traditional computing

paradigms. Table 2.2 shows the well-known trust models in different application domains where Trust

is applied successfully to bring more understanding among entities.

Table 2.2 Trust in different application domain

Applied Domain References
SOE (Schryen et al., 2011), (Billhardt et al., 2007), (Hang & Singh, 2011)
eCommerce (Jøsang & Ismail, 2002), (Xiong & Liu, 2003)
P2P (Wu, 2011), (Wang & Vassileva, 2003), (Kamvar et al., 2003),

(Kinateder et al., 2005)
Mobile Ad-hoc Networks (Buchegger & Le Boudec, 2003)
MAS (Sabater & Sierra, 2002), (Xiong & Liu, 2003), (Huynh et al., 2006),

(Wang & Singh, 2007)
Distributed Systems (Schryen et al., 2011), (Beth et al., 1994)
Online Services (Jøsang et al., 2007)
File Sharing (Wang & Vassileva, 2003)
Web based Social
Networks

(Golbeck & Hendler, 2005), (Hang et al., 2009)

Cloud Computing (Abawajy, 2009), (Naseer et al., 2014), (Habib et al., 2011), (Habib
et al., 2013), (Habib et al., 2014), (Li & Du, 2013), (Manuel, 2015),
(Macías & Guitart, 2012), (Qiang et al., 2011), (Canedo et al., 2012),
(Wu, 2012), (Pawar et al., 2013), (Yang et al., 2010)

Grid computing (Lin et al., 2004)
Wireless Sensor Networks (Ganeriwal et al., 2008)
Ubiquitous Computing (Ries, 2009b)

Table 2.2 shows that the concept of trust is very important in bringing a level of certainty in

transactions among entities regardless of the domain it is used. The concept of trust has also been

studied in the context of cloud computing. As discussed previously, cloud computing has a complex

architecture and there is a great deal of hesitation on the cloud consumers side in adopting this modern

and cost-effective computing paradigm. A comprehensive discussion and analysis on the trust

assessment and trust models in cloud computing is presented in Section 2.3.

Besides its importance in research domain, it has been successfully adopted in several e-commerce

companies like eBay, Amazon and other app markets for mobile applications (Habib et al., 2011).

Literature Review

16

2.3 TRUST ASSESSMENT AND TRUST MODELS IN CLOUD COMPUTING

Modelling trust includes modelling real-world social trust characteristics (Abdul-Rahman & Hailes,

2000). As discussed in the previous section, the concept of trust has been studied in several domains

such as, Service Oriented Environments, Multi-agent systems and Information systems. Recently,

trust modelling has also been used in cloud environment to tackle the ongoing issues of

trustworthiness in cloud services. Trust modelling faces several challenges due to the complex nature

of cloud computing. The non-transparent nature of cloud computing raises some important issues that

needs to be addressed while modelling trust in cloud computing.

To identify and analyse issues related to security, privacy, trust and interoperability in cloud

computing, a survey is conducted by (Saravanakumar & Arun, 2014). Their survey considers security

as the key parameter to secure customers data on the cloud. The security issues in cloud computing

have been classified as, Security Issues, Risk Management issues, access level issues and service

composition and evaluation plan.

Privacy issues, Trust issues, inter-cloud and intra-cloud standards of cloud interoperability have been

highlighted by Saravanakumar and Arun (2014) to identify the challenges during the cloud

interaction. Their survey focuses on cloud interoperability, security, privacy and trust based on

standards and guidelines and analysed.

They have also classified the issues related to SLAs as, Resource Access Level, Billing Level, SLA

Level, Log Level, CSP Level, Separation Level, Border Level, Data and Resource Migration Level,

Bandwidth Level and Customer Level.

One of main focus of their survey is on the interoperability among different cloud service providers

for effective interaction by maximizing the QoS of cloud computing. The survey discusses the Cloud

Interoperability Standards into two different contexts i.e., in internal cloud management, design

communication standards and inter cloud interoperability and federation framework. The internal

cloud management standards are, Distributed Management Task Force, Storage Networking Industry

Association and OGF Standards. The Intercloud Interoperability and Federation Framework is

described as, ITu-T Focus Group on Cloud Computing, NIST Cloud Computing related Standards

and ITU-T Cloud Network Infrastructure Models.

To study the importance of trust in cloud computing, Uusitalo et al. (2010) have also conducted a

semi-structured qualitative expert interview to find out what trust related aspects the experts deem

noteworthy when surrendering organization’s computing services into foreign hands. The total

Literature Review

17

number of participants was 33 and majority of the participants belong to technology domain. The

research questions which were considered included, aspects that contribute and affect trust in cloud

computing, experience of trust or lack of trust in cloud and how to measure trust in cloud.

According to the participants the Non-functional factors that affect the trust in cloud services include,

Brand (reputation, brand, image, history and name), auditing and agreement, own experience, critical

mass of user, price, customer care, search engine results others including outsourcing, size of

customer and multi-tenancy. The functional aspects that the participants thought to be effectors of

trust include, privacy and security, transparency and reliability, user experience, good functionality

and interoperability, availability and resources and language.

The second question of the interview was regarding the experience of trust or lack of trust in cloud.

The non-functional aspects mentioned by the participants are, Brand, reputation background of

company, auditing, SLAs and time. The functional aspects were usefulness of services, tailor ability,

user experience, Security and privacy, transparency and reliability and complexity of the

environment. The results of the interview conducted by Uusitalo et al. (2010) suggested that, brand,

reputation, image, history and name were the most important effectors while privacy and security

were the most important functional aspects that enforce trust in cloud.

Besides the benefits of cloud computing such as, reduced cost, dynamic resource sharing, pay-per-

use, faster time to roll out new services and dynamic resource availability, it also brings possible

threats and risks involved in using cloud computing. These threats and risks include threats to

security, threats to privacy, lack of trust, lack of identity management solutions for federated clouds

(Federated Identity Management FIM), lack of latency a bandwidth guarantees, weak service level

agreements, lack of standards and interoperability, lack of customer support, perceived lack of

reliability and absence of independent quality assurance body (Habib et al., 2010). In their work,

Habib et al. (2010) propose a new research direction regarding trust and reputation system in selecting

trustworthy cloud providers. They suggest some recommendations regarding trustworthy cloud

service providers such as an independent mediation layer and to stop the manipulation of evaluation

process the evaluation framework should be trusted. Moreover, they suggest that the evaluation of

the cloud service providers should be based on fine-grained QoS parameters together with feedbacks

from consumers, recommendation and other specific parameters related to the cloud computing

environment.

Literature Review

18

The complex nature of the cloud infrastructure makes the users reluctant in choosing the suitable and

trustworthy cloud service provider. They are not sure who has access to their data and to what extent

(Zissis & Lekkas, 2012). Consumer data is stored in data centres that are geographically distributed

and services could be hosted at multiple sites managed and hosted by multiple cloud service

providers. Mostly, cloud service providers in the Service Level Agreements with the consumers, only

present the service description and technical specification of their services (Zissis & Lekkas, 2012).

One such example is the telecommunication industry. Beside privacy and security, trust is considered

as key requirement in the adoption of cloud computing for the telecommunication industry (Martucci

et al., 2012). Trust requirements are categorised into hard trust such as certificates, audits and secure

hypervisor, and soft trust such as interactions and exchange of experience, loyalty and perceptions.

These trust requirements are very helpful in addressing the challenges associated in integration of

cloud services with the telecommunication infrastructure.

To identify the important aspects that shape user trust in cloud service providers specially on data

storage, Rashidi and Movahhedinia (2012) have proposed a model for user trust. They have

highlighted the issue of low trust on cloud service providers especially when it comes to critical data

storage. The authors have recognized 8 risk elements and suggest that cloud service providers should

devise a mechanism to eliminate these risks. Rashidi and Movahhedinia (2012) conducted a survey

based on these important elements that shape user trust on cloud service providers. Their survey is

based on a self-administered questionnaire which considers eight elements. The selected elements

include, Data location, Investigation, Data segregation, Availability, Long-term viability, Regulatory

compliance, Backup and recovery and Privileged user access. The questionnaire was distributed to

cloud users online and 72 of the credible questionnaires were collected. Statistical analysis of all the

8 elements of the questionnaire were performed in SPSS and using AMOS. The results of their survey

show that Backup and recovery has the strongest impact on user’s trust while the Data segregation

and Investigation have the weakest impact. Their study is mainly focused on the theoretical

perspective on trust without any real-life applicability and evaluation.

Similarly, due to the geographical distribution of cloud resources, a centralized trust and reputation

framework for the developers in social cloud applications is proposed by Moyano et al. (2013). Their

proposed framework is focused on security concerns due the infrastructure of the cloud computing

that includes heterogeneity, geographical distribution of resources, multiple providers and unknown

identity of the providers. In social cloud applications the users act as service providers, which raises

a lot of security and trust concerns. Cloud resources are distributed across heterogeneous and

Literature Review

19

geographically separated locations and are being managed by several providers who often are

anonymous to each other. In their study (Moyano et al., 2013), trust and reputation are considered to

be beneficial in these scenarios and can help to address security concerns. They suggest that a holistic

approach in which both trust and reputation requirements are considered to assist developers.

To find efficient and trustworthy cloud service providers, Naseer et al. (2014) proposed a trust model

that considers the data from a regulatory authority, performance of cloud service provider for the last

one year and customer feedback. Their proposed model considers attributes such as downtime,

uptime, fault tolerance capability, application update frequency and customer support experience.

The authors suggest high priority for the quality of service over the security measurements will be

more suitable to the users. The final score is computed using the weighted attributes. However, Naseer

et al. (2014) have not provided information regarding the sources of the data being and the name(s)

of the regulatory authority and how have they collected and analysed customer feedbacks. The

approach is simplistic in nature and considered the physical attributes related to hardware.

To address the issue of trust in cloud computing marketplaces, Habib et al. (2014) proposed a multi-

faceted architecture that considers multiple attributes and CAIQ as the source of information

regarding the cloud service providers. Their proposed model is able to identify trustworthy cloud

service providers in terms of attributes such as compliance, data governance and information security.

Their proposed trust management system is able to combine multi-attribute-based trust from multiple

sources under uncertainty. The operators used to combine those attributes are considered as

equivalent to subjective logic and compatible with the standard probabilistic approach.

There are limitations to their proposed approach such as the CAIQ information from the STAR

repository is not classified according to the types of the services. Moreover, synthetic dataset is used

for the validity and applicability of the approach. The second limitation is the inconsistencies found

in the completed CAIQs such as, blank assertions by the cloud service providers. Trust factors

extracted from sources such as CAIQ, raises the key issues of reliability and dynamicity in the

reported documents by the providers. Trust is a time dependent concept and the trustworthiness in

cloud services changes over time with the changes in each factor on which trust is based. Previously,

Habib et al. (2011) have argued that the trustworthiness of cloud service providers should be assessed

based on different cloud attributes other than standard Service Level Agreements.

To enforce Service Level Agreements, continuous monitoring of the trust attributes is very important

because of the dynamic nature of cloud computing. Li and Du (2013) proposed an Adaptive Trust

Literature Review

20

management model called the Cloud-Trust which is based on the user opinion. The proposed model

is a combination of Adaptive and multi-attribute-based trust model for SLA in cloud computing.

Their proposed attribute-based trust management scheme considers an objective, attribute-based

scheme based on user’s direct experiences. The adaptive model for measuring multi-dimensional trust

attributes uses rough set theory for Trust analysis. Li and Du (2013) have used rough set theory to

adaptively conduct knowledge discovery of multiple trust attribute values called evidences which are

collected by their Cloud-Trust model. In their study, they have integrated two kinds of adaptive

modelling tools namely, rough sets and induce ordered weighted averaging IOWA operators. Their

proposed model considers the performance requirements of cloud service providers such as, Security,

availability and reliability. Their proposed SLA scheme is designed to eliminate the collaborative

cheating or fraudulent practices issues which are faced by the traditional Reputation based Trust

models. Their proposed model does not consider the reputation aspect of the cloud service providers,

Li and Du (2013) acknowledges that it is a challenge to motivate users to submit their feedback to the

trust measurement engine.

Generally, the cloud service users are assured by the cloud service providers regarding the quality of

their services through the Service Level Agreements (SLAs). From the customers perspective, these

SLAs are not surety for the trustworthiness of the cloud service providers and are not transparent

enough. A multi-faceted Trust Management System which considers multiple attributes is important

in gain customers confidence. A multi attribute Trust Management System for cloud service is

suggested by (Habib et al., 2011). Their proposed Trust Management system architecture considers

multiple attributes to compute trust. Their proposed system provides trust scores of the cloud

provider’s trustworthy behaviour of the underlying systems and their answers to Consensus

Assessment Initiative Questionnaire (CAIQ) designed by Cloud Security Alliance. Habib et al. (2011)

have considered multiple parameters such as Quality of Service (QoS), SLA, compliance, portability,

interoperability, geographical location of date centres, customer support, performance test,

deployment model, federated identity management, security measures and user feedbacks. They have

proposed a Bayesian trust model using subjective probability. Using trust metric such as CertainTrust

and CertainLogic, their proposed method provides a customized trust score of cloud service Provider

which is based on the attributes selected by cloud customers.

To select cloud service providers based on their level of trustworthiness in the context of sensitive

data or critical business applications, Alhamad et al., (2010) have proposed a Trust model based on

Literature Review

21

SLA and Trust management. Their proposed Trust model select the desired service providers based

on the functional (matching the desired requirements regarding a service) and non-functional

requirements. The SLA model deals with two attributes namely, functional requirements which finds

average of millions of datasets to match the desired service and Non-functional requirements that

entails the time to process the tasks or Data security. Their proposed architecture also uses a trust

management model to work along with the SLA model to finalize the trustworthiness of the service

provider. The trust model manages the relationship between the cloud service providers and users.

Three sources of information are used by their trust model such as, local experience with the cloud

providers and users, opinions of external cloud services and report provided by the SLA agent.

However, the authors did not provide any evidence regarding the evaluation and implementation of

their proposed model.

The Trust model proposed by the Manuel (2015) is based on past credentials and present capabilities

of the cloud service providers. The proposed trust model calculates the trust value using four QoS

parameters namely, availability, reliability, turnaround efficiency and data integrity. Their proposed

model is implemented with a trust management system where the QoS parameters were assigned

different predetermined weights which are based on their priority. Manuel (2015) presented the SLA

preparation using QoS requirements namely, Turnaround time, Cost, Security, Computing Power and

Networking speed. They have used CloudSim to simulate their model in the experimental setup. The

QoS model has been compared and analysed against the FIFO model and the combines trust model

which is the combination of three popular models such as Identity-based Trust model, Capability-

based Trust model and Behaviour-based Trust model. Manuel (2015) have performed four

experiments for the analysis of their model against the others in the context of Turnaround Time,

Reliability, Availability and Data integrity simultaneously. The results of their experiment show that

the QoS model outperforms the other two models in all the described contexts.

However, Manuel (2015) conclude that they have only used four attributes to calculate trust value of

a cloud service provider but there are some other attributes which could be helpful in calculating the

trust values such as Honesty, Return on Investment and Utilization of Resources, accountability and

audit ability to measure trust.

To validate SLA choreographies, Haq et al. (2010) have proposed a distributed trust management

model. Their proposed trust management model is designed to aggregate SLA from multiple cross-

Virtual Organizations which are based on service-enriched environment such as cloud or grid,

Literature Review

22

requires validation. Their proposed solution is not specific to cloud neither it is targeting the cloud

domain directly. Their proposed trust model integrates the traditional PKI based authentication which

is a policy-based authentication system and reputation-based trust system. In their proposed

conceptual framework, the hybrid trust model is in the form of third-party trust manager which selects

the services before the SLA stage to prevent SLA violations. A use case scenario is used to validate

their proposed hierarchical SLA aggregation with the hybrid trust model. However, their proposed

model is in the form of a simple framework and a real-life implementation is not presented for the

validation of their proposed trust model.

Online reputation systems are helpful for users in cloud computing markets. In their study, Macías

and Guitart (2012) have identified two major drawbacks in online reputation systems, such as, the

disagreement with the cost and ownerships of centralized reputation systems and the vulnerability of

reputation system to reputation attacks from dishonest parties that want to increase their reputation.

To overcome this issue, Macías and Guitart (2012) proposed a reputation system to help clients

choose a suitable cloud service provider and allow avoiding the providers with low QoS.

The trustworthiness of cloud services not just rely on reputation but rather more factors are involved.

Wang and Wu (2014) have proposed a trustworthiness measurement model to address the various

types of possible factors. The first step in their proposed approach is to recognize the trust factors.

Once the trust factors are recognized, these factors are categorized into shared factors (the collection

of factors available for most cloud services) and unique factors (enforced by individual cloud services

only). The shared factors recognized are feedback rating, third party recommendation, time, profile,

transaction history or credit history, risk and friendship. The unique factors are transmission speed,

stable level, capability, price scope, and availability and security settings. Wang and Wu (2014) have

handled the unique factors through an ontology alignment approach. All the factors are then placed

on the trust dimension using different weight and positioning approach. The three dimensions having

six directions are defined as direct-indirect, subjective-objective and inflow-outflow trust dimensions.

Once all the trust factors are located into the trust dimensions then they are converted to trust vectors.

Their proposed multi-criteria trust assessment mechanism is a structured approach to determine the

overall preference among alternative options. It consists of three analysis functions such as, a trust

vector aggregation which is used to analyse the overall cloud service preference. The second function

is called support factor clustering which analyses the cloud service trustworthiness based on

preference of factor characteristic. The third function is a minimum polyhedron, which is used to

Literature Review

23

analyse the overall cloud service trustworthiness. In their proposed approach, an adjustment is

provided which is based on knowledge learning to adjust priority of criteria in case the measurement

results are inconsistent with the user preference. Their proposed model does not capture the

dynamicity of trust.

To create a level of trust regarding the security of cloud service provider’s platform and the integrity

of customer data, Wu (2012) proposed a trust model using fuzzy logic inferences. The Fuzzy

Reputation-based trust model which is designed to handle uncertainty, fuzziness and incomplete

information in cloud trust reports that help to select the most trustworthy cloud service provider. Their

proposed model, calculates local trust scores of the cloud service providers and also their aggregate

global reputation.

In their model the local trust score of a cloud service provider is evaluated by using cloud customer

satisfaction. They have modelled customer satisfaction by using membership functions and by

considering two fuzzy variables namely, Service quality and service price. After collecting the local

trust scores, the model then produces a global reputation score for each provider by aggregating those

local trust values. Fuzzy inference is used to obtain the aggregation weights for the three variables

i.e., cloud provider’s reputation, interaction time and interaction context. To prototype their model,

they have used five fuzzy inference rules.

Alhamad et al. (2011) have proposed a trust-evaluation metric for cloud applications for IaaS to

minimize security risks and malicious attacks in cloud computing. Their proposed evaluation

approach considers four dimensions of trust (factors impacting the trust values) in cloud computing

which are, Scalability, Availability, Security and Usability. Each dimension is modelled using Fuzzy

set theory. The overall trust value is measured using Sugeno fuzzy-inference approach. For the

collection of data and evaluation of their proposed solution, Alhamad et al. (2011) have used an E-

Learning application and an online survey has been developed to collect dataset for their experiments.

Due to the large number of rules in which all of them are not useful for their specific approach, they

have used neural network to reduce the number of fuzzy rules. Their proposed trust evaluation metric

lacks the feature to capture the dynamic nature of trust and the factors are not comprehensive enough

in the context of cloud computing.

The proposed Peer-to-Peer architecture by Wu (2012) is decentralized in nature that would not need

to be managed by a central authority and can help to solve the issue of the cost of implementation of

such model. In their proposed trust model, the cost of implementation of their model is shared by all

Literature Review

24

the peers rather than by any centralized component. They suggested that their proposed model is

designed for Cloud computing business models and also it can be implemented in a decentralized

Peer-to-Peer network. Their proposed a Reputation system calculates the trust relationship from a

client to a provider. Their model also defines trust relationship between peers and updates them in

function to statistically analyse for the trustworthiness of their reports and weights them accordingly

in the overall trust calculation. The validation of their proposed model is performed using the Market

Reputation Simulator. During their experiments they have considered Service Level Objectives such

as CPU, Disk and Network Bandwidth.

Their study focuses on the validity of the reputation model from an experimental point of view and

is focused on the definition of the model which need real market implementation.

A reputation-based trust model is proposed by Pawar et al. (2012) that consider the uncertainty when

computing opinions for cloud service providers. Their proposed model support service providers to

evaluate trustworthiness of infrastructure providers. Their proposed model calculates individual trust

values based on an opinion model in terms of belief, disbelief and uncertainty. The trust values are

based on three parameters namely, SLA monitoring compliance, Service Provider ratings and Service

Provider behaviour. The trustworthiness of the IP is then modelled as the expectation by combining

all the three computations using conjunction and discounting operators. Their proposed model uses

subjective logic operators with the opinion values. The uncertainty is defined as a function of an

ellipse area and shape.

To improve the security in cloud computing, Qiang et al. (2011) proposed a trust evaluation model

called the Extensible Trust Evaluation model for Cloud computing environments (ETEC). In their

proposed algorithm, trust is modelled as a level of subjective probability to assist and make correct

decisions, resist the malicious information, enhance robustness, fault tolerance and security of the

cloud computing. The proposed ETEC algorithm is divided into three parts i.e., Recommendation

Trust algorithm, Direct Trust algorithm and Dynamic Trust algorithm. For expressing the Direct Trust

Qiang et al. (2011) have used a time-variant comprehensive evaluation method and for calculating

Recommendation Trust they have used the space-variant evaluation method. Their proposed

algorithm is implemented using CloudSim toolkit (Buyya et al., 2009).

Resource provisioning in cloud computing is another major challenge especially when it comes to

Quality of Services. To achieve this, Xiao et al. (2010) proposed a reputation mechanism to select the

most promising service form the fittest service set. Their proposed reputation-based QoS service

Literature Review

25

provisioning scheme assists in minimizing service cost of computing resources and for efficient

service provisioning. In their proposed reputation management framework, the reputation of a data

centre is evaluated and updated according to the user feedbacks. The user feedbacks are categorized

under unsatisfactory, basic satisfactory and satisfactory. The appropriate resources are selected using

three QoS metrics that includes Service cost, response time and reputation. The response time is

considered as a practical metric and their scheme considers it as a statistical probability rather than a

typical mean response time. The reputation of cloud services is constructed using the Dirichlet

multinomial model, which is a multinomial Bayesian probability distribution mathematical model for

reputation. To examine their proposed system a common tandem workflow-based queue model is

considered and the efficiency and effectiveness of their proposed scheme is evaluated using numerical

simulation. Their proposed QoS provisioning algorithm does not consider security and privacy

metrics. Moreover, their study does not provide aggregation method for the metrics values.

A centralized trust model to address information security and data privacy concerns is proposed by

Rizvi et al. (2014). Their proposed model involves Cloud service providers, Cloud service users and

third-party auditing bodies to determine a fair score for each service provider by combining third

party auditing score and feedbacks from each CSU. Their proposed centralized model is objective in

nature. In their proposed model, the base line trust values are obtained from the initial scores by the

third-party auditors. These initial scores are then combined using mathematical formula with the

feedback scores from the cloud service users to obtain the final trust value of cloud service providers.

Their proposed model considers scores for specific context rather than an overall generic score of the

cloud service provider. The trust value is updated using a time decay function introduced by (Yang

et al., 2010). However, the trustworthiness of the feedbacks by Cloud service users is not considered

neither the effectiveness of the third-party auditors is proved.

Trust models can also help consumers in selecting suitable peers for reliable file exchanges (Canedo

et al., 2012). This is closely related to the data integrity issue in cloud computing. Reputation based

trust management schemes have been introduced in cloud computing which can address data integrity

and security issues related to cloud provider’s platform (Wu, 2012).

Secure access control of the resources in cloud computing is of great importance and the cloud users

are unsure about the integrity of their data and are reluctant to reveal their data to the cloud providers.

The cloud service providers do not provide a solution for the reliability of file exchange among peers.

To address and ensure reliable file exchange in private clouds, Canedo et al. (2012) have proposed a

Literature Review

26

trust model which calculates the trust values among users or nodes. Their proposed model ranks

between the trustworthy nodes using a predefined metrics. The attributes considered in the metrics

are Processing Capacity, Operating System, Storage and Link Capacity. Each attribute is assigned

with different weights such as, Storage and Processing is assigned 35% each while 15% to Link and

Operating System. The value of trust could be between [0, 1]. Each file sharing node manages two

Trust tables in a distributed fashion i.e., List of Direct trust values and a list of recommended trust

values. These values are stored based on the previous interactions or history by the node in the direct

trust table and values from recommendation by other nodes regarding the trustworthiness of the

particular nodes. In order to share or transfer files to other nodes, the sending node first check the

trust value of the receiving node in the direct trust table if not found, then it queries other peers

regarding the trustworthiness of that node. To simulate their proposed model, Canedo et al. (2012)

have used CloudSim framework as a simulation tool. However, their proposed trust model considers

only Hardware features to calculate trust values.

Malicious feedbacks from users (Pawar et al., 2013) and malicious access towards cloud domains

(Yang et al., 2010) are among the well-known challenge being faced by trust models.

To evaluate the trustworthiness of Infrastructure Provider, Pawar et al. (2013) proposed a trust model

which considers different cloud characteristics called as the dimensions and their associated features.

The dimensions considered in their work include, on-demand self-service, resource pooling, rapid

elasticity and measured service. The identified features specify the context within the dimension. The

on-demand self-service dimension has features like availability_d and timely_d whereas the

dimension rapid elasticity has the features availability_e and timely_e. The affinity and legal are the

features of the resource pooling dimension while viewable, controllable and reportable are the

features of measured service dimension. The proposed trust model works with an opinion model that

considers uncertainty and uses early filtering to reduce the impact of the malicious feedback

providers.

In the model proposed by Pawar et al. (2013), the trust of the infrastructure provider is evaluated by

the cloud broker who takes trust information in the form of feedbacks from the cloud service

providers. The trust value is computed and combining reputation and reliability using subjective

probability. The reputation of the infrastructure provider is computed using the feedbacks gathered

from individual service providers. The reputation value is the result of the computation of the values

assigned to each of the features in cloud dimensions. The reliability of the infrastructure provider is

Literature Review

27

based on direct interactions between the service providers and infrastructure providers. The reliability

value is also computed regarding all the features in the cloud dimensions and the service providers

updates its reliability and rating for each feature of the dimensions. Finally, the credibility of the

feedback provider is computed which has impact on the reputation and reliability values and also

helps to filter out the malicious feedback providers. The outlier detection technique is used to filter

out the malicious feedback providers. Their model is evaluated using simulation for the robustness

against malicious feedback providers using OPTIMIS project using simulation data.

The security requirements of the cloud computing environment are higher than the traditional

environment because of the large-scale, distributed, heterogeneous and dynamic nature. To meet the

security requirements of the cloud computing environment, Yang et al. (2010) proposed a trust model

that can work in collaboration with firewalls to estimate dynamic context and define risk signals.

Their proposed model is similar to the domain-based trust models in which, cloud environment is

divided into a number of autonomous domains. Each domain maintains its local trust values at node

level and also at domain level. The trust values are extracted from direct interactions by the nodes

and also recommendations kept in separate tables. Yang et al. (2010) proposed an algorithm for

acquiring trust values among nodes of in cloud. The domains are defined using quantitative theory

and the trust values are updated using the Time Decay Function. Their proposed model is very focused

and not comprehensive to cover the most common trust related issues related to cloud service.

A trust management model proposed by Sun et al. (2011) addresses the two main issues related to

security in cloud computing environments such as, relation of trust levels and evaluation of trust

objects using different evaluation attributes. Their proposed model perceives trust as a subjective

probability and is based on the fuzzy set theory. Their proposed model builds a trust relationship

between cloud users and cloud service providers which helps the cloud users in their decision making

towards searching for cloud services from suitable cloud service providers.

Their model measures trust, direct trust relation, intro-domain direct trust relation, direct trust

expression, recommended trust and connection and incorporation of trust using fuzzy set theory. An

algorithm is presented by Sun et al. (2011) for the inter-domain and intro-domain direct trust

evaluation. The trust evaluation attributes used in their model includes, flow of network produced by

interaction, bandwidth of current network, successful communication time of nth interaction,

tentative communication time of the nth interaction and the time consumed. All the trust evaluation

attributes are considered as time decaying which means that their value changes constantly. They

Literature Review

28

have used a time decaying function to model this dynamicity. Beside the high accuracy rate of their

model, the practicability and rationality of their proposed model is yet to be justified.

Cloud service can be deployed under different deployment models which brings more challenges in

the context of trust. To determine the trustworthiness of federated cloud computing entities in

intercloud computing, Abawajy (2009) proposed trust management system to provide help and satisfy

client QoS requirements by selecting high quality cloud services. One of the major features of cloud

computing is that application deployment could require resources from multiple distributed platforms

located on several autonomous clouds. One of the main issues here is that the interacting users and

services either have no previous information about the other parties and the information is not enough

for service assessment. The type of information required and the distribution of this information is

another issue in intercloud computing. This intercloud resource sharing leads to the issue of the

trustworthiness of these entities which are practically located on separate cloud infrastructures. The

proposed reputation-based trust management system determines the trustworthiness of intercloud

computing entities using a distributed framework.

In a similar study, to improve security issues in cross-clouds environment, Li and Ping (2009) have

proposed a trust model which is a domain-based model. Their proposed model ensures security of

both cloud providers and consumers. The domain-based cloud model divides the cloud environment

into several domains and computes trust locally. Their proposed model divides the cloud environment

into two separate domains. One of the domains contains the cloud provider’s resource nodes and an

agent to compute the trust of the domain entities. The other domain contains the cloud customers.

Each domain has different domain-specific trust tables and trust in each domain is computing through

different strategies. Their proposed trust model itself is implanted as a service in this domain-based

model. Before every transaction, entities check the threshold for trust decisions. If the other party has

a trust valued bigger than the threshold then they proceed with the transaction. This threshold is set

independently by each domain. Li and Ping (2009) have presented algorithms for Direct trust,

Recommendation Trust and updating trust values. Updating of trust values is based on two

assumptions. First, trust valued could be updated based on time and second, trust values could be

updated after every transaction. A set of experiments have been performed to evaluate their proposed

model. Two evaluation criteria are set for their proposed model namely, trust accuracy and transaction

success rate. However, their proposed model is merely a simulation that does not reflect real life

scenario as cloud entities behaviour are more complex in real life.

Literature Review

29

The study by Abawajy (2009) assumes that each cloud computes and maintains their reputation

locally and the trust is in the form of relationship between entities. This makes the nature of the trust

value storage distributed when seen in intercloud context. The reputation manager inside their

proposed infrastructure computes the reputation of an entity by using three types of ratings namely,

Personal experience, Reputation ratings and Honesty ratings. The reputation manger also updates the

reputation of the entities using the first-hand or second-hand information through a trust update

algorithm.

Most of the proposed trust models in cloud computing are focused on the trustworthiness of the cloud

service providers. Prajapati et al. (2013) have proposed a Trust management model which is focused

on SaaS and Trust is considered as a level of subjective probability. Their proposed trust model is

responsible for managing Trust, its properties and different components of Trust model. Their

proposed model is focused on SaaS and Trust is considered as a level of subjective probability. Their

proposed model computes Trust based on Direct experience, entity’s reputation and recommendation

from third party. The direct trust is defined by time-variant evaluation method and the recommended

trust with the space-variant evaluation method. A decay function is used to estimate the trust value

and uncertainty of each peer. The evaluate the feasibility of their proposed model, a case study is

presented in a distributed file sharing service scenario using SaaS. However, their proposed trust

model is not comprehensive and does not consider multi-factor trust computation.

For multicloud environments, a User-centric trust management framework is proposed by Soleymani

et al. (2021) to facilitate trust worthy cloud service provider selection. Their proposed framework

considers both subjective and objective attributes to calculate trust values for cloud service providers.

The subjective trust values are calculated from feedbacks and objective trust values from parameters

such as availability, reliability, response time, security, privacy, transparency, and consumer

protection. The final trust values from the subjective and objective parameters are calculated using

fuzzy rules. Their proposed framework has a feedback evaluation component for the rectification of

fake user feedbacks. However, their proposed framework does not consider forecasting trust values

and user sentiment towards the service parameters.

As discussed earlier, security and privacy are among the key challenges that is faced in cloud

computing. To enhance data security and privacy in cloud based distributed storage framework

Alshammari et al. (2021) proposed a trust model that is integrated with cryptographic task role-based

access control. They have considered inheritance and hierarchy in their trustworthiness evaluation of

Literature Review

30

roles and tasks. Their study in focused on security and privacy of data stored on the cloud and does

not consider other aspects cloud services other capabilities.

Recently, an integrated multi-stakeholder framework for cloud-based trust building is proposed by

Lynn et al. (2021). The framework is based on the assurance and accountability in cloud service

providers. Their proposed approach focuses on trust building and trust repair mechanisms. However,

their proposed approach is a high-level framework and a detailed discussion and implementation of

each component is not provided. Trabay et al. (2021) proposed a trust framework using multi-criteria

decision-making to evaluate cloud services. Their proposed framework applies fuzzy logic on criteria

such as performance, agility, finance, security and usability. MCDM approaches such as TOPSIS and

VIKOR is used for the ranking and selection of trust in cloud service providers. Their proposed

framework does not consider dynamicity in the selection and ranking of cloud service providers.

Trust management frameworks are also gaining attention in federated cloud environment. To

facilitate cloud federation, Latif et al. (2021) proposed a federated cloud trust management

framework. In their proposed framework, the trust evaluation is performed on service level

agreements and feedbacks from customers and cloud service providers. Questionnaires are used to

collect customer feedback regarding the security and privacy related features. However, their study

does not consider the missing information in the SLAs and customer feedbacks.

2.4 FACTORS EFFECTING TRUST

One of the major issues highlighted in (Habib et al., 2012) is the unwillingness of the cloud consumers

to depend on the providers in relinquishing the control over their potentially business relevant

information, data and internal processes. This is a key challenge in developing a trust model for SaaS

products. The existing trust models for cloud services, consider either the subjective or objective

factors without the actual understanding of the cloud services internal architectures and processes.

The trustworthiness of a cloud entity or service can be evaluated using several mechanisms (Habib et

al., 2012) such as, Black box approach, Inside-out approach and Outside-in approach. The Black-box

approach only considers user feedback without considering the internal components and processes of

the service. In the Inside-out approach, the trustworthiness of an entity or service is derived based on

the knowledge about the architecture and trustworthiness of its components. The Outside-in approach

requires knowledge of the internal architecture and components of a service along with the observed

behaviour.

Literature Review

31

In a similar study (Habib et al., 2014), CAIQ is proposed as the root for the trust factors. As discussed

in the previous section, one of the key issues with trust sources such as CAIQ includes reliability of

the information provided by the cloud service providers related to their platform, processes and

service architectures. The trust modelling process for the cloud services must not be influenced by

the cloud service providers. Moreover, trust models tend to become dependent and can struggle to

acquire on-demand updates for the cloud services, hence compromising the dynamicity of the models.

The key to the identification of appropriate trust factors is to understand the architectures of deployed

services and the practices in place to maintain and monitor these services without the influence of

cloud service providers.

Insufficient and missing information is an obstacle in predicting the provider’s quality of service and

trustworthiness which effects the adoption of cloud computing by the customers. In the existing cloud

computing literature, to the best of my knowledge, the missing factors for trust modelling has not

been explored.

2.5 FUZZY TRUST MODELS IN CLOUD COMPUTING

As discussed in Section 2.2, the concept of trust is subjective and different theories and approaches

have been used to model trust. Fuzzy sets and fuzzy inference systems are based on subjectivity and

has been used to model trust in several application domains. The studies using fuzzy system to model

trust in cloud computing is shown in Table 2.3.

Most of the existing literature on trust models in cloud computing which utilize fuzzy systems do not

assign dynamic weights to the input factors and leave it open to customer preferences. The weights

are assigned by the users manually by the users based on their preferences. Moreover, the focus of

these studies is on the objective factors in cloud computing.

The proposed trust models for cloud services have strengths and weaknesses which can compromise

the effectiveness of these models. Kanwal et al. (2013) have proposed assessment criteria for the

evaluation of trust models in cloud computing. They have pointed out seven assessment criteria each

having one of the three levels High, Medium and Low. Their proposed assessment criteria include,

Data Integrity, Data control and Ownership, Process execution control, Quality of Service attributes,

Detection of untrusted entities, Dynamic trust update and logging model complexity. However, in

their study, Kanwal et al. (2013) have not provided any experimental results to validate their proposed

assessment criteria for trust models.

Literature Review

32

Table 2.3 Fuzzy trust models in cloud computing

Reference Domain Fuzzy
Approach

Input type Input
weights

Dynamic

Nagarajan, et al. (2017) Cloud services - QoS factors Fuzzy -
Lee et al. (2006) Generic Sugeno Generic Open -
Alhamad et al. (2011) Cloud apps Sugeno Objective Open -
Kesarwani & Khilar,
(2019)

Cloud
computing

Mamdani Objective Open -

Selvaraj & Sundararajan,
(2017)

Cloud services Sugeno IaaS Objective Max.
Info

Yes

Rizvi et al. (2020) Cloud service
providers

Mamdani Security factors Open -

Wu (2012) Cloud
computing

- Service quality and
service price

- -

2.6 CRITICAL ANALYSIS

From the above discussion, it can be concluded that the concern is not entirely about the cloud

provider’s intentions, rather on the capabilities of the cloud computing itself (Khan & Malluhi, 2010).

Trust in cloud computing is not only limited to the technology but also associated to the customer’s

confidence in the lack of transparency, loss of control over data and security assurances provided by

the cloud service providers.

Table 2.4 Critical analysis of Trust models in cloud computing

Reference C
lo

ud
 E

nt
ity

M
od

el

A
rc

hi
te

ct
ur

al
 B

es
t

Pr
ac

tic
es

M
is

si
ng

 T
ru

st

fa
ct

or
s

Tr
us

t f
ac

to
rs

Fo

re
ca

st
in

g

D
yn

am
ic

 tr
us

t
Fa

ct
or

s w
ei

gh
ts

Fu
zz

y
lo

gi
c-

ba
se

d
Tr

us
t m

od
el

Wang et al. (2018) Generic Trust - - - - -
Manuel (2015) CSP Trust - - - - -
Hwang et al. (2009) Generic Trust - - - - -
Hassan et al. (2020) CSP QoS - - - - -
Abdelrazek et al. (2015) SaaS SM - - - - -
Hussain et al. (2014) Generic SLA - - - - -
Tan et al. (2008) SaaS SLA - - - - -
Tang and Liu (2015) SaaS SC - - - - -
Hedabou et al. (2020) SaaS TPM - - - - -
Prajapati et al. (2013) SaaS Trust - - - - -
Sule et al. (2016) Generic SC - - - - ✓
Chou and Chiang (2013) SaaS QoS - - - - -
Habib et al. (2011) CSP Trust - - - - -
Naseer et al. (2014) CSP Trust - - - - -
Qiang et al. (2011) Generic Trust - - - - -

Literature Review

33

Macías and Guitart (2012) CSP Trust - - - - -
Li and Du (2013) Generic Trust - - ✓ - -
Habib et al. (2014) Generic Trust - - - - -
Moyano et al. (2013) SCA Trust - - - - -
Canedo et al. (2012) PC-Nodes Trust - - - - -
Wu (2012) CSP Trust - - - - ✓
Pawar et al. (2013) Generic Trust - - - - -
Abawajy (2009) FC Trust - - - - -
Yang et al. (2010) Generic Trust - - - - -
Rizvi et al. (2014) CSP Trust - - - - -
Pawar et al. (2012) CSP Trust - - - - -
Alhamad et al. (2010) CSP Trust - - - - -
Sun et al. (2011) Generic Trust - - - - ✓
Li and Ping (2009) Generic Trust - - - - -
Canedo et al. (2011) PC-Nodes Trust - - - - -
Rashidi and Movahhedinia (2012) CSP Trust - - - - -
Alhamad et al. (2011) IaaS Trust - - - - ✓
Wang and Wu (2014) Generic Trust - - - - -
Nagarajan et al. (2017) Generic Trust - - - - ✓
Kesarwani and Khilar (2019) Generic Trust - - - - ✓
Selvaraj and Sundararajan (2017) Generic Trust - - - ✓ ✓
Rizvi et al. (2020) CSP Trust - - - - ✓
SM = Security Metric, SCA = Social Cloud Applications, PC = Private Cloud, CSP = Cloud Service

Provider, FC = Federated Cloud, SC = Security Controls, TPM = Trusted Platform Modules

The Trust in cloud computing does not mean to compensate when a violation of agreement occurs

rather it is a mean to prevent such violations. Thus, Trust models in cloud computing should focus on

preventing failures and violations than post-failure compensations (Khan & Malluhi, 2010).

Table 2.4, shows a critical evaluation of the existing literature on trust models in cloud computing

where, a ‘✓’ sign indicates that the article has addressed the specified aspect of trust model and ‘-’ indicates

vice versa. None of the trust models in the existing literature have considered the cloud services

architectural best practices as the key trust factors. Similar is the case of missing trust factors, where

the existing trust models have not considered this key issue during the modelling of trust for cloud

services. Among the existing literature, Li and Du (2013) have proposed a forecasts component for

their trust model. However, their proposed model forecast the overall trust model rather than

individual trust factors. Li and Du (2013) have also proposed a Simple Trust Model (STM) that uses

a simple average approach to assign weights to trust attributes which is not dynamic in nature. In the

context of dynamic weighted trust factors, Selvaraj and Sundararajan (2017) have used the dynamic

weights for the input trust factors using maximum information for IaaS.

Literature Review

34

Based on the critical analysis from Table 2.4, the emerging current issues related to trust models for

cloud services is summarized as follows:

1. Most of the existing literature on trust models are focused on the cloud service providers

trustworthiness. However, as discussed in Section 2.2, trust is context specific and the trust

models should consider modelling trust for the services separately. This means that cloud

service provider’s capabilities may differ in providing a specific type of cloud service from

another. This is important because a cloud service provider can offer multiple services where

the quality of each service may differ from the others. This position also stands when

comparing different type of cloud services such as SaaS, IaaS and PaaS.

2. As discussed previously, cloud delivery models have dependencies and independencies,

which means, that the factors considered in modelling the trust of IaaS are relatively different

when modelling trust in SaaS. SaaS is a special case of cloud delivery models in which the

entire cloud infrastructural stack underneath the SaaS, may or may not be owned by the SaaS

provider. To the best of my knowledge, there is not approach in the existing literature that

considers factors that are specific to SaaS in modelling trust.

3. None of the existing approaches have considered the cloud applications and services

architectural best practices as trust factors to compute the trustworthiness of SaaS.

4. There is no approach for modelling trust that provides solution for the missing information

regarding the trust factors.

5. As trust is computed using the most relevant trust factors, it is important for the trust models

to have the capability to forecast these trust factors for a point in time in the future and

eventually, compute the trust value from the forecasted trust factors. In the existing literature,

there is no approach to forecast the values of the relevant trust factors.

6. None of the existing fuzzy trust models uses dynamic weights to rank each trust factor.

2.7 CONCLUSION

In this chapter, an extensive survey of the existing literature on trust models for cloud service was

presented. At first, the chapter provided an overview of the trust assessment and modelling concepts

that included formal definitions of trust, the well-known trust modelling theories and methods and

few of the well-known trust models in different application domains. This was followed a

comprehensive survey of the existing literature on trust assessment and trust modelling in cloud

Literature Review

35

computing. The existing fuzzy-based trust models is critically analysed based on their inference

methods, input data types and input weighing methods. Finally, a critical analysis of the existing trust

models in cloud computing is presented using the criteria that is based on the emerging gaps in the

current literature related to cloud trust models.

In the next chapter, the main research problem being addressed in this thesis is described along with

the research issues which are based on the gaps in the existing literature.

Problem Definition

36

Chapter 3:
Problem Definition

3.1 INTRODUCTION

As discussed in the previous chapters, it is very important for the Software as a Service customers to

make informed decisions when selecting the most suitable service for their businesses. A certain level

of trust needs to be established in the SaaS products before a decision is made by the customers.

Moreover, in the frequently expanding and enhancing cloud marketplace, the level of trustworthiness

in the services vary accordingly. On one hand, the SaaS providers must keep up their pace to adopt

the latest innovation in cloud related technologies and on the other hand, the customers need to be

provided with the latest information regarding the trustworthiness of the SaaS providers. The trust in

SaaS products comprise of many factors and the core understanding of these factors is very important

and need to be researched thoroughly. Furthermore, the selection of SaaS products by the customers

are generally based on different priorities among the underlying trust factors. Therefore, it is also very

important that the SaaS customers should be able to have access to the performance level of each of

the core trust factors.

In order to facilitate the SaaS customers in their decisions, it is very important to understand the up-

to-data industry standards and best practices for the identification of core service factors (Raza et al.,

2019). In addition to that, to make a realistic assessment of trust in the SaaS products, it is important

to obtain the most relevant and reliable information regarding the all the core service factors of SaaS

products. However, as discussed in Chapter 2, the existing approaches consider the objective aspects

and questionnaires designed for the service providers to fill-in. This brings into question the reliability

of the information regarding different service factors of the services. Furthermore, the up-do-date

industry standards and best practices are not considered as the source of identification for the relevant

service factors.

Based on these limitations of the current studies, in this chapter, I present and formally define the

problem that this aim to address. The aim of this thesis is to develop a methodology that support the

SaaS customer in making informed decision by assessing the trust in SaaS products. I explain, the

sub-problems in this thesis as fined grained research issues. For the solution of each research issue

identified in this chapter, I set corresponding objectives that this thesis aims to achieve.

Problem Definition

37

In the next section, the key terms and concepts are defined that are used in this chapter and throughout

the thesis. In Section 3.2, I formally define the thesis problem. I will present the breakdown of the

thesis problem into a number of research issues in Section 3.3. In Section 3.4, I will explain the

objectives set to solve the research issues mentioned in Section 3.3 that I aim to achieve in this thesis.

In Section 3.5, I present the research approach which is followed to develop the solution for the

problem identified in this chapter. Section 3.6 will conclude this chapter.

3.2 PROBLEM DEFINITION

In the previous chapters, I have discussed the details regarding the importance of customer trust in

cloud services specially in the Software as a Service delivery model. There is a variety of Software

as Service available in different software categories on the cloud marketplace. Choosing the most

suitable SaaS is a crucial task for businesses. There are a number of challenges associated with using

the SaaS products including their shared infrastructure, the host location and the delivery of these

service over the internet. The SaaS customers do not have enough visibility into the security and

deployment structure of these services which raises many questions regarding the security of their

data, privacy and trust.

As technologies related to cloud computing are advancing constantly, it directly effects different

aspects of the SaaS products. For example, most of the SaaS products are hosted on third party

infrastructures and these infrastructure providers offer the benefits for their economy of scale to the

customers (in this case the SaaS providers). Hence, the cost of these SaaS products must be constantly

adjusted accordingly. Moreover, other factors such as the availability also known as the uptime, is

improving as the infrastructure providers are constantly expanding and enhancing their infrastructure.

The SaaS products on the other hand, must keep up with these changes to facilitate their own

customers. Besides that, for the available SaaS products, their existing customer base is growing as

well, which consistently effects the performance, management and customer support. The

introduction of new SaaS products in the cloud marketplace, generally, support and utilize latest cloud

related technologies. This entices the customers of the existing SaaS products and persuade them to

adapt to the latest offerings. From the above examples, it is very clear that there is an urge to

constantly monitor the SaaS marketplace for these frequent changes. This puts a healthy competition

among the SaaS providers to constantly improve their offerings. At the same time, it is very important

that the SaaS customers also should be able to assess these services based on these changes in different

service factors.

Problem Definition

38

Furthermore, business using the SaaS products have different preferences for their business needs.

For example, a business might prioritize data security over the other service factors and another

business might rely heavily on cost as a key in choosing a suitable SaaS product. Therefore, it is very

important that the SaaS customers must also be able to assess the services based on their preferred

service factors. The key issue that arises from this discussion is:

“What are the key service factors of SaaS that can potentially be used as trust factors to build

customer trust, and what are the basis for the identification of these service factors?”

The SaaS customers must have access to such frameworks that enables them to assess the SaaS

products based on different service factors. The key challenges over here are to (1) identify the core

service factors and acquire reliable information regarding them and (2) a framework that can model

the trust in the SaaS products based on the core service factors.

Identification of core service factor that can help in the assessment of cloud services is a key issue.

As discussed in Chapter 1 and Chapter 2, in the current literature, there are a number of suggested

factors to assess cloud services. Most of the suggested factors are objective and are focused on the

infrastructure level services. Furthermore, service providers and their services are also assessed based

on structured questionnaires. In either of the assessment approaches, the main challenge is the

relevance and reliability of the information regarding the information acquired for the service factors.

For example, the efficiency of a SaaS product can be assessed based on the response time which can

partially be dependent on the application and service design and partially on the infrastructure

underneath. Also, the information collected from the service providers through the questionnaires

does not provide a reliable or measurable level of trust. Therefore, in order to compute trust in the

SaaS products, it is very necessary to have relevant and reliable information regarding the core service

factors.

Once the core service factors for the SaaS products are identified and relevant information is

collected, the next challenge is to model the trustworthiness in the SaaS products with the help of

acquired information. As discussed in chapter 2, different factors are considered when modelling trust

in different domain. Beside the reliability and the method used for collecting information for these

core service factors, the consistency in the observed information regarding each service factor is very

important. For example, to devise a level of trust for SaaS products that facilitate customer decision

in service selection, information regarding all the core factors must be available. The unavailability

of information regarding one or more service factor can lead to unrealistic assumptions towards the

Problem Definition

39

trust level. Besides that, as discussed earlier in this section, businesses have different priorities when

selecting the most suitable SaaS products. Missing information related to their preferred service factor

pose a major challenge for any trust assessment framework.

Furthermore, as discussed earlier, due to rapid changes in cloud related technologies, the SaaS

products must keep up with ongoing changes. This requires any trust assessment framework to have

the capability to predict the performance of each service factor at a given future time spot. This is

very important for individual customers and businesses that plan ahead in acquired SaaS products. A

trust assessment framework should have this capability to forecast the trust levels as well as the

performance of individual service factor, of the potential SaaS products, for a future time spot.

Based on the discussion above, the problems that I aim to address in this thesis is formally defined

as: How to develop a trust assessment methodology to support Software as a Service customers in

selecting most suitable services based on factors rooted in architectural best practices for cloud

application design and operations?

3.3 RESEARCH ISSUES

In the wake of a comprehensive solution for the main thesis problem mentioned in the previous

section, a number of research issues are raised. These research issues are described as follows:

1. How to develop an intelligent method for the identification of the key service factors for

Software as a Service? The proposed framework and method should be able to identify each

service factor from the obtained information with higher accuracy.

2. How to develop a method for inferring and imputing the missing information regarding the

identified service factors of Software as a Service? During the collection of information

regarding the service factors of SaaS, there are missing information related to one or more

service factor. A methodology is needed to infer and impute these missing values with high

precision.

3. How to develop an efficient method to forecast the future values for the service factors of

Software as a Service? For the support of the customers, a methodology is needed that should

be able to forecast the quantitatively, the performance values of each service factor at a

required time spot in the future.

Problem Definition

40

4. How to develop an intelligent method that can model the trust level of Software as a Service

based on the relevant factors of SaaS? A comprehensive framework is needed that should

model the trust level in Software as a Service products for any given time spot.

5. How to validate the developed techniques for the research issues in this thesis? The developed

techniques and methodologies need to be evaluated to ascertain their validity.

3.4 RESEARCH OBJECTIVES

To solve the thesis problem and the issues identified in the previous section, I have set the following

objective to achieve in this thesis.

Objective 1: To develop an intelligent method that automatically identifies the key service

factors of the SaaS

The first part of this objective is focused on to investigate the most relevant information. In the

existing literature, the trust assessment approaches for cloud services broadly consider either the

objective factors of the services or rely on the questionnaires that are filled in by the service providers

regarding the key factors. In this thesis, I intend to consider the service factors that are rooted in

architectural best practices for cloud services and applications design and operations. The second part

of this objective is to obtain the reliable information for the SaaS products. As discussed above, the

information collected for the objective factors of SaaS or the from the questionnaires filled in by the

service providers has been considered in many studies and are considered to be less reliable as they

can be impacted by the providers. I only consider the information regarding the SaaS products that

are free from the providers impacts.

In the second part of objective 1, an intelligent method is developed that is able to automatically

identify each service factor from the obtained information with higher accuracy. This is only possible

when the relevant and reliable information is collected and pre-processed. This means that, a

component of the framework will use intelligent techniques to filter and convert the information in

an acceptable format for the other components of the framework to perform the identification and

categorization tasks. There are a number of studies that have used different classification and

categorization techniques in different domains. However, to the best of my knowledge, there is no

such approach that are used for the categorization of the SaaS service factors.

Objective 2: To develop a method for imputing the missing information regarding the identified

service factors of SaaS

Problem Definition

41

As discussed in the previous section, in order to assess the trust levels in a SaaS product, the

information regarding each service factor is required. The unavailability of information regarding any

of the service factor results in the unrealistic computation of trust values. A methodology is developed

in this thesis, that is capable to impute the missing values for the service factors with high precision.

This methodology is developed primarily to achieve Objective 2, but also, paves a way for the

achievement of Objective 4 which depends on complete information for SaaS products. To the best

of my knowledge, there is no such approach developed to infer missing information of service factors

of SaaS products.

Objective 3: To develop a reliable method for forecasting the future values for the SaaS service

factors

The service factors information is crucial to the SaaS customers in their decisions to select suitable

SaaS products, for the current product standings as well as for any given time in the future. In order

to get the performance status of the service factors, the proposed methodology should be able to

forecast these performance values in the future based on the past information. In the existing

literature, there are many timeseries forecasting methods that are successfully implemented in several

domains. However, to the best of my knowledge, there is currently no approach that are used to

forecast the performance of service factors of SaaS products. This is a key objective of this research

as the proposed methodology use the most optimal technique for forecasting the data specifically

collected for this thesis.

Objective 4: To develop an intelligent and dynamic method that models the trust level of SaaS

based on the relevant factors of SaaS?

A comprehensive framework is developed that models the trust level in Software as a Service

products for any given time spot based on the services factors. The trust assessment framework is

capable not only to compute the trust levels of the SaaS products as of its current standings, but also,

for any given time spot in the future. For such capabilities, the framework developed to achieve this

objective is, dependent on the success of the methodologies and techniques developed in the previous

objectives. In the existing literature, there are number of trust models and trust assessment techniques

in different domains. However, for the trust assessment of SaaS products, no existing approach use

the service factor information of the SaaS products as trust factors.

Objective 5: To validate the developed techniques for the solution of the identified research

issues in this thesis.

Problem Definition

42

Each of the developed techniques in this thesis are assessed for their effectiveness and applicability

by validating them against the relevant approaches. The components of the main solution framework

are integrated as a prototype. The validation is conducted on the data collected specifically for the

purpose of this thesis.

3.5 RESEARCH APPROACH

To address the research issues outlined in the Section 3.4, this thesis aims to develop a trust

framework for Software as a Service products with subsequent testing and validation. To achieve the

aim and objectives of this thesis, I follow an appropriate scientific research method during the

complete development cycle of the trust framework. In this section, I provide an overview of the most

commonly used categories of the scientific research methods and a detailed explanation of the

selected scientific research method for this thesis.

The science and engineering approach and the social sciences approach are the two main categories

of research approaches in information system research. The social sciences research approach broadly

involves social and cultural issues and objectives are set to prove or disprove hypothesis and are not

concerned with the development of new methods and artefacts. On the other hand, the science and

engineering research approaches are focused in designing new methods and artefacts to achieve the

research objectives. The research following the science and engineering approach are carried out at

three broad levels namely, the conceptual level, the perceptual level and the practical level. Following

are a brief explanation of each level.

• At the conceptual level, which is the first level of the research approach, the problems are

identified, analysed and conceptual frameworks are constructed.

• At the perceptual level, new methods and system architectures are analysed, designed and

developed.

• At the practical level, based on the methods designed in the previous step, experiments,

testing and evaluation of the new methods and system is performed.

Problem Definition

43

Figure 3.1 Research approach

Based on the brief explanation above, this thesis clearly falls under the science and engineering

research approach with the development of the trust framework as the aim of this thesis. Figure 3.1

depicts the three levels of this research approach with specific set of tasks at each level. I follow the

research method proposed by Nunamaker et al. (1990) in the detailed design, development and

validation of the research output. In the first level of my research, I extensively research the literature

in the domain of cloud computing with particularly focusing on the customer support and trust models

for Software as a Service. This led to the identification of the key and open issues in the relevant

literature in cloud computing. I designed the conceptual framework with appropriate formulation of

the identified problems. At the perceptual level, for each of the identified problem in the conceptual

framework, I developed approaches for the components that includes the identification of SaaS

service factors from the customer reviews, customer sentiment intensity computation, imputing

missing service factors, forecasting sentiment intensities and a trust model. Each developed

component is prototyped accordingly at the end of this level. Finally, using the data collected in the

previous steps, experiments and case studies are conducted and the developed systems are evaluated

in the practical level.

3.6 CONCLUSION

In this chapter, I summarized the research issues concerning to the trust assessment and modelling in

Software as a Service. I formulated the definition of the problem that this thesis aims to address. The

key terms used throughout the thesis is also formally defined in this chapter. The main research

Problem Definition

44

problem is divided into sub-problems and for each of the sub-problems, research objectives are set to

be achieved in this thesis. I explained the details of the science and engineering research methodology

that this thesis employs to achieve the research objectives. In the next chapter, I provide an overview

of the solutions for the research issues identified in this chapter.

Solution Overview

45

Chapter 4:
Solution Overview

4.1 INTRODUCTION

In the previous chapter, I explained the issues arising from the modelling of trust in Software as a

Service that supports customers in making informed decisions. Based on the identified research issues

in the previous chapter, each issue is studied as sub-problems in this thesis. To address the research

issues, in this chapter, I present a conceptual solution framework. As discussed in the previous

chapters, trust modelling and assessment has been studied extensively in different application domain

and several approaches have been used to define the concept of trust. However, the assessment and

modelling of trust in Software as a service based on the factors from architectural best practices has

not be considered in the current literature. In this chapter, I propose a definition of trust in the context

of Software as a Service and a solution framework for modelling trust.

In Section 4.2, I present the definition of trust model in the context of Software as a Service, followed

by the overview of the solution framework for the proposed trust assessment model in Section 4.3. In

Section 4.4, I provide an overview of the component 1 of the framework for the identification of SaaS

service factors. In Section4. 5, I give an overview of the component 2 of the solution framework that

is developed for imputing the missing sentiment intensity scores of the SaaS service factors. In

Section 4.6, I discuss component 3 of the solution framework by providing an overview of the

component 3 developed for forecasting the sentiment intensity scores of the SaaS service factors. In

Section 4.7, I explain the modelling of SaaS service factors as trust factors by providing an overview

of component 4 of the solution framework. I conclude the chapter in Section 4.8.

4.2 TRUST MODEL FOR SOFTWARE AS A SERVICE

Trust is subjective in nature and the concept of trust has been extensively researched in existing

literature in several research and application domain. From generic to domain specific, there are

several formal definitions of trust in the existing literature. In this thesis, I define the trust in SaaS

that is derived from the definition by Olmedilla et al. (2005) with extended specifics. I define trust

as:

Solution Overview

46

“a measurable belief from one entity onto another in delivering a service or perform a well-defined

task. An entity is a person, business or service. Trust is time-dependent and the level of trust vary

with time. Trust is multi-faceted and is rooted in more than one factor. A complete trust level can

only be established in an entity, when the information regarding all the factors is available. The

importance of the trust factors differs from one another in the computation of the final trust value and

trust level”

Based on the above definition, a trust model for SaaS, computes the trust level in SaaS products for

the current or future point in time by utilizing the information from all the trust factors.

The detailed explanation of trust model for SaaS along with the implementation is presented in

Chapter 8.

4.3 OVERVIEW OF PROPOSED SOLUTION

In Chapter 3, I have explained the importance of trust in the decision-making process by the customers

in acquiring SaaS products. I have explained the challenges and issues related to trust assessment of

the SaaS products that need to be addressed as part of the trust assessment methodology that has the

capability to assist the customers in their decisions. In Chapter 3, I have also highlighted the

importance of the architectural best practices in designing the cloud applications especially Software

as a Service.

In general, cloud service consumers especially SaaS consumers, have a very basic knowledge of the

physical implementation and functionalities of the cloud applications and services. The cloud service

providers on the other hand have great visibility and ability to access these cloud applications and

services from a standard perspective. These standards are set independently by each cloud service

provider according to architectural best practices. The general guidelines and general design

principles in this regard that is put forth by Amazon Web Services (AWS) is called as pillars of the

well-architected framework (AWS, 2018). The AWS well-architected framework provides guidance

in five conceptual areas or pillars namely, security, reliability, performance efficiency, cost

optimization and operational excellence.

The second top cloud service provider is Microsoft. Microsoft Azure is the second largest cloud

infrastructure provider (Inc, 2017). Similar to AWS, Microsoft Azure also suggests five pillars of

software quality for successful cloud applications. The five software quality pillars suggested by

Microsoft Azure are the same as AWS. However, previously Microsoft Azure well-architected frame

Solution Overview

47

work included pillar such as scalability, availability, resiliency, management and security (Azure,

2018).

In this section, I give an overview of the proposed trust management framework that is capable to

model the trust in SaaS products. The framework addresses all the research issues identified in Section

2.6. The proposed framework shown in Figure 4.1, has four main components and is designed

specifically to address and solve the research issues mentioned in Chapter 3. In Section 4.2, I provided

a formal definition of trust and trust model for SaaS. According to the definition, trust is multi-faceted

and is rooted in multiple factors. The proposed trust model must be provided with information

regarding all the trust factors. The trust factors are identified based on the architectural best practices

used to design and develop cloud applications and SaaS. The factors in architectural best practices

(as explained in the previous chapters) is referred to as the service factors of the SaaS products, in

this thesis.

The first component of proposed framework addresses the first three research issues highlighted in

Section 2.6. It includes tasks such as collecting the SaaS customer reviews from multiple available

sources, identification and categorization of reviews under the service factors.

The second component of the framework addresses the issue of missing information highlighted in

Section 2.6. It utilizes the classification model from component 1 to identify the service factors from

the text reviews. The second component has two main tasks. The first task is focused on computing

the sentiment intensity scores for the text reviews and review segments. The second task of this

component deals with developing imputation model that imputes the sentiment intensity scores of the

missing service factors.

The third component provides the capability to forecast the sentiment intensity scores of each service

factor of a given SaaS product. It provides the solution for the forecasting issue mentioned in Section

2.6. It utilizes the historic sentiment intensity scores of the service factors for a given SaaS product

and forecasts these values in future time spots. Finally, the last component of the framework, models

the trust levels of the SaaS products by utilizing the classification model and sentiment intensities

from component 1 and component 2. During the trust modelling and computation in component 4,

for the SaaS products with missing information the imputation model from component 2 is utilized

to impute the missing sentiment intensity scores. In order to compute the trust levels and trust score

for a given SaaS product in the future time spots, the forecast model from component 3 is utilized

initially to forecast the sentiment intensity scores for each service factor which are then used by the

Solution Overview

48

trust model in component 4. Component 4 of the proposed framework addresses the research issue of

dynamic ranking highlighted in Section 2.6.

Each of the components depicted in Figure 4.1, are explained in detail in the following subsections

of this chapter.

Figure 4.1. The proposed trust management framework for SaaS

4.4 OVERVIEW OF SOLUTION FOR COMPONENT 1: IDENTIFICATION OF
SERVICE FACTORS

The main objective of this component of the proposed framework is to develop an ensemble

classification model for text reviews from SaaS products. The classification model associates the text

reviews with one of the SaaS service factors. The first component consists of the following two main

tasks:

1. Collecting textual reviews for available SaaS products

2. Classification of the textual reviews into one of the service factors

Solution Overview

49

The customer reviews for SaaS products are collected from multiple online sources. The advantage

of reviews from multiple sources help to reduce bias at platform level. It means that collecting reviews

both from service providers platform and independent platforms reduces the probability of bias in the

collected reviews. A typical review by a reviewer on a given SaaS products includes the product

details, textual reviews, review ratings, review dates and reviewer information. The initial raw text

reviews are manually labelled as one of the SaaS service factors. The initial manual labelling of the

raw textual data is important as the identification of SaaS service factors is based on the subjective

interpretation of the architectural best practices. This results in a labelled dataset solely focused on

the SaaS service factors. The classifiers trained on this labelled dataset (described in Chapter 5) will

have the capability to automatically label customer reviews. The relationship of each task along with

the flow and shape of the SaaS information is depicted in Figure 4.2.

To achieve the first task the following steps are involved:

• Scrap review data from multiple sources

• Pre-process the text data by text cleaning techniques

• Manually label the text reviews for each SaaS product

The next task in this component is to design an automated system that can classify any text review

into one of the service factors. The solution for the identification and classification of SaaS service

factors from customer text reviews is designed and implemented under the multi-class text

classification setup also known as text categorization. Text classification is a mature field and the

methods applied for text categorization has proven to be effective on a number of text corpora.

However, the classification of text reviews under the SaaS service factors from SaaS textual reviews

has not been explored in the literature.

The following steps are involved in the second task:

• Selecting the relevant text classification methods

• Tunning the hyper-parameters and train on the labelled text data

• Designing an ensemble model by selecting the high performing trained classification

models

As shown in Figure 4.2, after the completion of first task in this component of the framework, the

textual reviews along with the associated service factor labels are fed to the second task of this

Solution Overview

50

component. The outcome of second task results in output data that has the identified service factors

for a given SaaS product. Component 1 of the proposed framework is the foundation of this thesis as

all of the other components of the framework utilized the trained classification model to identify and

categorize textual reviews for SaaS products. The proposed ensemble model achieves the textual

categorization task with the accuracy of 86%, outperforming the selected well-known classification

methods. K-NN’s performance is the lowest with the accuracy of 38%.

Throughout this thesis, the review data collected, processed and the data generated as output of the

classification model available to the remaining components. The data passed from component 1 acts

as the core dataset for the remaining components where they are further processed based on the

specific requirements. In Chapter 5, I explain the detail design and implementation of component 1

of the framework.

Figure 4.2. Overview of classification model

Solution Overview

51

4.5 OVERVIEW OF SOLUTION FOR COMPONENT 2: IMPUTING MISSING
SENTIMENT INTENSITY SCORES FOR SERVICE FACTORS

Based on the definition in Section 4.2, a trust in a SaaS can only be established when the information

regarding all the trust factors is available. The main objective of the second component of the

proposed framework is to develop an imputation model for the SaaS service factors with missing

sentiment scores. The second component of the proposed framework consists of three main tasks:

1. Segmentation of text reviews for the collected SaaS products

2. Computation of sentiment intensity scores for each review segment

3. Imputation of sentiment intensity scores for the missing service factors

The first task of the second component involves two steps. In the first step, the text reviews are

separated into small text segment following linguistic structure that defines a sentence. This step is

important as in general, a single customers reviews consist of feedback regarding more than one

service factor. The segmentation step helps to identify these service factors from each sentence

separately. The second step of this task utilizes the classification model developed in the first

component to categorize each of the review text segments into one of the service factors.

The second tasks of this component compute the sentiment intensity scores for each of the text

segments. The text segments at this stage are already associated with a label that categorizes them

under one of the service factors. In few studies, the customer sentiment is calculated on three level

scale namely, negative, neutral and positive. However, I use the sentiment intensity of the text reviews

which is the requirement for modelling the trust level and trust scores implemented in component 6

of the proposed framework (explained in Section 4.7). After the completion of the second task, the

newly created dataset depicts text reviews in small segments where each text segment is associated

with a label indicating the service factors and a numeric sentiment intensity score.

Solution Overview

52

Figure 4.3. Overview of the imputation model

The third task of this component is to develop a model that identifies the service factors with missing

sentiment intensity scores and imputes them accordingly. The solution for missing numerical

sentiment intensity scores for SaaS service factors is designed and implemented under the missing

values imputation setup. Missing values has been studied and several methods have been proposed

in literature in different domains. However, the imputation of missing sentiment intensity scores of

SaaS service factors has not been studied in current literature.

Figure 4.3, depicts the main tasks of this component, their relationship and the flow of structured data

among them. As shown in Figure 4.3, the data used by task 1 is the output from component 1. After

task 1 is successfully performed, the output data is converted into small text segments for each SaaS

product and each text segment has an associated label. This data is fed to task 2, where, for each text

segment a numeric sentiment intensity score is calculated and associated with the class label (service

factor). Finally, the last task of this component identifies the service factors for the SaaS products that

has missing sentiment intensity scores and develops an imputation model.

Solution Overview

53

The output data of this component is available and utilized by the trust model briefly explained in

Section 4.7 of this chapter. The detailed design and implementation of component 2 of the framework

is presented in Chapter 6 of this thesis.

4.6 OVERVIEW OF SOLUTION FOR COMPONENT 3: FORECASTING SENTIMENT
INTENSITY SCORES FOR SERVICE FACTORS

As highlighted in Section 4.2, a trust model for SaaS is capable to compute the trust level of SaaS

products at the current as well as in the future point in time. In order to compute the trust level for the

future time spots, the information regarding all the trust factors must be available for the given future

time spot. The main objective of the third component of the proposed framework is to develop a

forecast model for the sentiment intensity of the SaaS products. The third component consists of the

following main tasks:

1. Preparing and modelling sentiment data as time series

2. Forecasting the customer sentiment for the identifies service factors

The first task of this component is to prepare the sentiment data in the form of time series and model

different features of the time series data. Data preparation for forecasting is important and helpful in

the selection and development of the appropriate forecast model. This task involves the application

of the standard data modelling techniques to identify the features and behaviour of the time series

data and the transformation into acceptable form for input to the forecast model.

The second task of this component of the proposed framework is to develop a forecast model that is

capable to forecast the sentiment scores for each service factor in the future time spots. The forecast

component is crucial to the proposed framework as for any future business interaction, it is important

for the customers to be able to acquire trust levels of SaaS products in the future time slots. Such

requirement is achieved using time series forecasting methods that utilizes the historic information to

forecast future values. Time series forecasting has been studies widely in literature and high

performing methods has been proposed in several domain such as statistics and machine learning.

Forecasting sentiment intensity scores of SaaS service factors has not been studied in the current

literature.

Solution Overview

54

Figure 4.4. Overview of the forecast model

Figure 4.4, depicts the relationship among the tasks of component 3 and shows the type of information

acquired and produced by each task. Task 1 utilized the data from the component 2 of the framework

and prepares a time series data for each SaaS product. After the modelling the data during task 1, the

time series data is used by task 2 for the development of the forecast model. The forecast model is

trained on the time series data and is capable to predict the sentiment scores for the service factors in

the future time spots.

The forecasted values by this component of the framework is available to be used by the trust model

introduced in Section 4.7 of this chapter. The detailed discussion and development of the time service

forecast model for the SaaS sentiment forecasting is presented in Chapter 7 of this thesis.

Solution Overview

55

4.7 OVERVIEW OF SOLUTION FOR COMPONENT 4: MODELLING TRUST LEVELS
IN SOFTWARE AS A SERVICE

Based on the definition in Section 4.2, trust is a measurable belief and is multi-faceted. It is measured

from the available information for all the trust factors with different level of importance. The main

objective of the fourth component of the proposed framework is to develop a trust model for the SaaS

products that utilizes the sentiment intensity scores for all the service factors as trust factors, to

compute the final trust level and trust value. To support customers decision for any current and future

SaaS signups and purchases, it is important to provide a realistic trust value for each SaaS product.

This proves to be valuable when the trust values are computed directly from the previous users’

sentiments towards different service factor compared to a standalone rating for a SaaS product. Some

of the benefit of the sentiment-based trust model over the other rating systems include:

• The ability to choose SaaS products based on custom preferences

• An automated system that extracts the sentiment intensity towards different service factor

from lengthy reviews

• Providing efficiency and ease in the decision-making process on customer side by avoiding

the reading of hundreds of user reviews

Providing an automated feedback system that identifies the strength and weaknesses categorically

which can be utilized by the SaaS providers to improve specific factors of their products.

The two main tasks involved in achieving the objective of component 4 are:

1. Computing the importance of each service factor of the SaaS products

2. Computing the trust level and trust scores for the SaaS products

The first task of this component utilizes the data from Component 2 of the proposed framework. It

develops a metrics through which it computes the importance of each service factor and rank them

accordingly.

Solution Overview

56

Figure 4.5. Overview of the trust model

The second task of this component is to develop a trust model that computes the trust level and trust

score of the SaaS products. The trust model considers the SaaS service factors as the input trust factors

and uses the ranking scores from the previous task as weights for the trust factors in computing the

trust scores. The proposed model utilizes the output data from Component 2 of the framework to

compute the current trust score of SaaS products. In order to compute the trust score for a SaaS

product in the future time spot, the trust model utilizes the output data from the forecast model in

Component 3 of the proposed framework. Based on the concept of trust and trustworthiness, the trust

levels and trust scores for the SaaS products is modelled though fuzzy inference system. Fuzzy

inference models are well known in literature and proved to be effective in many application domains.

Solution Overview

57

However, fuzzy trust inference model for SaaS products that utilizes the sentiment intensity scores of

service factors has not been explored in existing literature.

Figure 4.5 depicts the tasks and the associated data as input and output to these tasks. From Figure

4.5, it can be seen that the trust model developed in tasks 2, utilizes data from three different

processes. The output data from the first tasks of this component is used to rank the trust factors and

the sentiment data for the SaaS products from the output of Component 2 and Component 3 is used

to compute the trust level and trust score for the SaaS products.

In Chapter 8, I present the details for the development and implementation of the proposed weight

metrics and the fuzzy based trust model.

4.8 CONCLUSION

In this chapter, I presented a general overview of the proposed framework. Each component of the

framework is briefly explained along with the associated tasks that are designed to solve the issues

discussed in Chapter 3. The proposed framework is composed of four main components. The first

component includes tasks for collecting SaaS reviews, processing the text reviews and developing a

text classification model. The sentiment intensity of the text reviews is computed and the imputation

model for the missing sentiment scores for the service factors is developed as part of the component

2 of the framework. A forecast model is developed for forecasting the sentiment intensity values of

the SaaS products utilizing the historic time series values in component 3. Finally, in component 4 of

the proposed framework a trust model is developed for the SaaS products.

In the next chapter, I present the details of the first component of the proposed framework that leads

to the development of a text classification model for the SaaS service factors from customer reviews.

An Ensemble approach for identifying SaaS service factors

58

Chapter 5:
An Ensemble approach for identifying
SaaS service factors

5.1 INTRODUCTION

In the previous chapters, I highlighted the core component of the proposed trust framework that

identifies the key factors of the SaaS products which effects the trustworthiness of these services. The

primary issue addressed by the framework is to identify these key factors in SaaS marketplace. As

explained in Chapter 4, the software quality pillars and the pillars of the well-architected frameworks

suggested by the major cloud service providers is used as key factors to identify the trust of cloud

applications and services. These service quality pillars which I refer to as service factors in this study,

is learned from the customer reviews of the SaaS products in this chapter. This brings this primary

issue under the umbrella of multi-class text classification problem which is also known as text

categorization in literature. In this chapter, I explain each stage of the proposed approach for text-

classification from SaaS product reviews in details.

The SaaS products reviews are crawled and collected from multiple online sources and are prepared

by going through several pre-processing steps to convert them in an acceptable format for the

methods. From textual to numerical matrices, methods such as bag-of-words and TF-IDF are applied

to achieve the final workable format. I explain and implement 11 machine learning methods that are

commonly used for text classification with their strengths and weaknesses. All the selected text

classification algorithms are thoroughly cross-validated using the SaaS reviews dataset and their core

parameters are estimated. The cross-validation is performed on both the original and resampled data

using stratification and SMOTE to further examine the effects of class-imbalance. The fitted models

are then evaluated on test data and their performance is compared using several error measures. Also,

there are performance are tested using Freidman significance test and Nemenyi’s post-hoc test to

examine the significance difference among their performances. In the final stage of the proposed

approach, and ensemble of the best performing classifiers are created. The problem addressed in the

chapter with the proposed solution has been published in (Raza et al., 2019).

In the next section, I present an overview of the machine learning approaches for text classification.

In Section 5.3, the detailed stages of the proposed approach for text-classification of SaaS customer

An Ensemble approach for identifying SaaS service factors

59

reviews are presented. In Section 5.4, I present the details of the experiments and evaluation results

of all the 11 selected classification methods and the proposed ensemble. Section 5.5 concludes this

chapter.

5.2 MACHINE LEARNING BASED TEXT CLASSIFICATION

The core concept of machine learning is to learn a function that can map input variables to output

variable(s) using the provided training data. For example, in this study, the machine learning

algorithms estimate the mapping function Y = f(X) that maps the input data samples in X (customer

reviews) to the output labels in Y (service factors). There are a number of machine learning algorithms

that works with different assumptions about this learning function. They can be broadly categorized

into parametric and non-parametric ML algorithms. The parametric machine learning algorithms

summarizes the data with a finite set of parameters. While the non-parametric algorithms are

parameter-less, they perform the classification tasks using one of many techniques such as, instance-

based learning and searching, using similarity and distance measures among samples.

While using machine learning algorithms with textual data also known as text categorization, takes

few extra steps in preparing the dataset. ML algorithms works comfortably with numerical input data.

Therefore, the textual data has to go through a number of steps using different methods at each step

to prepare it in a workable format. In the next, I briefly discuss some of the famous machine learning

classification methods used for text classification.

5.3 AN ENSEMBLE MACHINE LEARNING APPROACH FOR MULTI-CLASS TEXT
CLASSIFICATION OF SAAS REVIEWS

As discussed in Section 5.1, the main objective of this component is to identify the SaaS service

factors from the customer reviews using machine learning methods and develop an ensemble of the

best performing ML methods. As discussed in Chapter 4, the concept of service factors is derived

from the pillar of software quality and well-architected frameworks. To achieve this objective, the

sequence of steps in our proposed approach is depicted in Figure 5.1. The proposed approach is

designed based on the nature of the problem that this study is addressing.

5.3.1 Overview of SaaS service factor identification from customer reviews

The four main stages of the proposed approach are data pre-processing stage, parameter estimation

stage and model evaluation stage. After the evaluation of the models implemented in this study, an

ensemble of the best models is developed in the final stage.

An Ensemble approach for identifying SaaS service factors

60

In the first stage of the proposed approach, data is prepared which involves multiple well-defined

steps. In the pre-processing step the customer reviews are crawled and collected from different

websites. The reviews are labelled according to the service factors and cleansed for special characters.

This is followed by transforming the textual data into metrics with numerical values by creating a

feature vector set. After the feature vector is created, the feature selection also known as

dimensionality reduction is performed which generally improves the efficiency of the models. Most

of the classification models work well when the dataset and all the values in each feature are in a

suitable format i.e., they fall within the same scale, hence feature scaling is performed on the reduced

feature vector in the last step of this stage. These steps make the data ready and understandable for

the machine learning methods to work on (Brownlee, 2016b). The effective pre-processing of textual

data is crucial to obtain an acceptable performance and better quality of text classification (Richert &

Coelho, 2013) (Trstenjak et al., 2014).

Figure 5.1 Sequence of steps for the SaaS service factors identification approach

The next stage of the proposed approach involves the selection of the appropriate ML algorithms for

the classification. This preliminary investigation involves, the identification of the famous approaches

applied in large text classification problems in both the parametric and non-parametric categories.

Also, a set of error measures is investigated and selected that can help to examine the performance of

the models from multiple perspectives.

After the potential methods have been selected, the next stage will thoroughly investigate each

method by training them on the dataset prepared in the first stage, resampled version of the datasets,

cross validating the estimator’s multiple times on the dataset and model specific hyper-parameter

tunning. As we are dealing with multi-labels, the resampling ensures that the data considered to train

An Ensemble approach for identifying SaaS service factors

61

each label are consistent across all of them and during the cross-validation, the training dataset is sub-

divided into different folds to assist in choosing the best parameter from the available ones that will

give the most accurate output. During the training process, each machine learning algorithm needs to

be tuned to the parameter values on which it gives an output that is within the defined agreeable

threshold of error.

In the following stage, the fitted models on the dataset are introduced to test dataset which is new to

the models. The performances of each model are evaluated and compared among them using the error

measures discussed in the second stage of the proposed approach. Furthermore, a statistical

significance test is conducted to confirms the performance difference among the selected models. On

the basis of this, the models are ranked and the best models are selected for the final stage in which

an ensemble model is created that fits best with the textual dataset collected for this study. Table 5.1

shows some of the symbols and notations that are used in this chapter.

Table 5.1. Notations of the variables used in the experiments

Notation Description
Rd Vector space with d dimensions, where 𝑑 = 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ×

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
X Training samples (matrix), where 𝑋 ⊂ 𝑅𝑑
xi ith training sample (vector), where 𝑥𝑖 = {𝑥1, 𝑥2, … , 𝑥𝑛} ∈ 𝑋
Y Set of class labels
yi ith class label in label set Y, where 𝑦𝑖 = {𝑦1, 𝑦2, … , 𝑦10} ∈ 𝑌
C An individual class (Ci is the ith class)
TP True positive (TPi is the true positive value for the ith class)
TN True negative (TNi is the true negative value for the ith class)
FP False positive (FPi is the false positive value for the ith class)
FN False negative (FNi is the false negative value for the ith class)

As depicted in Figure 5.1, there are four main stages of the proposed solution. Each stage along with

their steps and set of tasks are discussed in the following subsections.

5.3.2 Data preparation

The first stage of the proposed approach deals with the data preparation which is used by the selected

machine learning algorithms in the following stage. The data preparation is achieved through multiple

steps such as pre-processing, creating feature vector from text data, assigning weights to features,

reducing the dimensions and scaling the feature space onto a single scale. The first step in data

preparation is called the pre-processing which is described in the following subsection.

An Ensemble approach for identifying SaaS service factors

62

Pre-processing

The goal of the data pre-processing phase is to collect and process the customers’ reviews so that they

are in a format in which machine learning algorithms are able to work. The following steps are carried

out in this phase:

Step 1: Data collection

In this step, the reviews from cloud consumers are collected using a web crawler. The crawler used

in our framework is developed in the Python programming language using Scrappy (Scrapy). To

address the drawback of having a limited number of reviews from a single source, we crawl three

different sources, namely the AWS marketplace (AWS, 2017), GetApp.com (GetApp, 2017) and

Serchen.com (Serchen, 2017) to obtain a comprehensive representation of user opinions. As a result,

we harvested and collected 2,297 unique reviews from the AWS marketplace, 15,545 reviews from

GetApp.com and 11,519 reviews from Serchen.com. In total, 29,361 reviews were collected by

combining reviews from all the three sources.

Step 2: Labelling

In this step, each sample (review) in the training dataset is manually labelled using the labels

described in Table 5.2. Each of these labels represents a unique service factor and pillar of SaaS,

including an unknown (N) label, which is assigned to those reviews that do not mention any service

pillars.

In the function, Y = f(X), X is the input data samples (customer reviews) and the output Y= {A, C, E,

L, M, N, O, P, R, S} represents the set of output labels.

However, there are two important points which must be noted at this stage.

• We consider this to be a multi-class single label problem. In other words, in our approach,

only a single label for a review is assigned even in cases when the review has comments

related to more than one factor of the SaaS products.

• The process of assigning a label to a review is a subjective decision by the experts.

For instance, the customer review, “… offers an excellent cost-effective service, but the service

responded very slowly during the holiday season”, indicates more than one factor of the SaaS product.

Based on the description of the factors explained earlier, this review relates to performance,

scalability (indicating its incapability to scale on increased load) and cost optimization (indicates the

An Ensemble approach for identifying SaaS service factors

63

service is delivered at an acceptable cost). However, only one label from the possible cases is assigned

to the review and the decision as to which label is assigned is subjective.

Table 5.2. Service factors with associated tags

Service factor Label/Ta
g

Numeric
Value Unknown N 0

Security S 1
Reliability R 2
Performance P 3
Cost optimization C 4
Operational
excellence

O 5
Availability A 6
Scalability L 7
Resiliency E 8
Management M 9

Step 3: Data cleansing

In this step, the reviews are cleansed of special characters and symbols. The reviews normally come

with a lot more than just informative text, such as HTML tags, punctuations errors, characters without

any expressive meanings and so on. These words hinder the process of learning about the text and

text classification. So, in this step, the following techniques are applied to clean the reviews and

convert them into standard text strings:

• Remove punctuation, emoticons and other special characters;

• Convert text to lowercase;

• Remove stop words such as ‘a’, ‘an’, ‘of’ etc.;

• Convert words to their root forms using lemmatization.

Table 5.3. Pre-processed review samples with associated labels

 Reviews Label

0 postrouting prerouting possible seem nice appliance vpn nat ipsec tunnel possibility use
……… O

1 fantastic always last minute need move part aws solution multiple external dedicate
server …. M

2 good product phenomenal support migrate away nat instance six virtual private
gateway ……. C

3 2 hour make progress quick start guide anything date easy read think make assumption
clear … M

4 work like charm use product many year amaze project product 200 000 user globally
build …. S

An Ensemble approach for identifying SaaS service factors

64

Compared with stemming, lemmatization produces grammatically correct forms of individual words.

Stemming creates singular instances of words, but in the process, can create non-real words as well.

Table 5.3 depicts few samples from the dataset after the pre-processing steps.

Feature Vectors creation

The main objective in this subsection is to create numerical feature vectors from the labelled and

cleansed text reviews. This process involves three steps explained as follows:

Step 1: Numerical feature vector creation using Bag-of-Words

The bag-of-words approach on the cleansed dataset is used to create a feature vector. The features in

this case represent the words which are mentioned in the customer reviews. Converting the textual

reviews to a vocabulary of bag-of-index terms is important as they do not themselves have any

internal structure or ordering (Lewis, 1998) (Raschka, 2014). The core idea of the bag-of-words

approach is to represent each word in the text documents (in our case all the review text) in the form

attribute-value and create a vocabulary from the entire corpus. The attribute-value representation

shows how often each word from the vocabulary appears in each review text. The vocabulary of the

bag-of-index terms which is in textual form is then converted to numerical feature vectors to perform

machine learning on them for classification. This step is necessary since the machine learning

algorithms require inputs of fixed length vectors with numerical features.

The objective of this step is achieved in the following three tasks,

• tokenization

• vocabulary building

• encoding

During the tokenization task, each review is split into tokens based on the whitespaces. Each word in

the review is converted into a single token during this step. In the vocabulary building task, all the

unique words (tokens) from each review are collected, numbered in alphabetical order and added to

the vocabulary. The created vocabulary is referred to as the feature vector for this corpus and each

word in the vocabulary represents a feature. Once the vocabulary is created from the entire corpus of

reviews, then for each review, the number of occurrences of each word is counted. In the encoding

task, which is also called vectorization, each review is then encoded with numerical codes which

represent the number of times each feature from the vocabulary has appeared in that review. The

An Ensemble approach for identifying SaaS service factors

65

resultant output is known as the feature vector. The feature vector shows the built vocabulary for each

review with the number of times each word from the vector occurs in that review.

Step 2: Feature weights and Dimensionality reduction using Tf-Idf

At the end of the previous step, there may be many feature columns that contain an encoded value of

zero for a given review. This will result in a long list of features with zero values that will impact

negatively during the classifier learning step. To improve the performance and time required to train

the classifiers, in this step, the extracted features from the previous step are pruned to have a better

representation of the review dataset. This is done using the following sub-steps:

a) Only considering those features for the training and testing of classifiers that occur more than

a defined threshold level:

The objective of this sub-step is to omit those features from the built vocabulary (and hence the

training process) that do not occur often in the review dataset. We achieve this by setting a threshold

variable of five. In other words, we only consider those features from the built vocabulary that appear

in at least five reviews. This threshold level of five is not fixed and can be changed, but this will help

to reduce the number of features from the feature vector in the next steps.

b) Ascertain the weight of those features from the corpus that occur frequently in a review:

Some features will appear many times in particular reviews but not in all of them. These particular

features are highly descriptive of the content of the specific reviews in which they occur. Hence,

assigning higher weights to these features and linking them to the service factor that has been assigned

to that review will have a positive impact during the process of training and testing of the classifiers.

The weights to be assigned to those features are determined using the term frequency-inverse

document frequency (tf-idf) method (Salton, 1991) (Raschka & Mirjalili, 2019) (Salton & Buckley,

1988) (Muller & Guido, 2016). In our case, term refers to the features and a single customer review

represent a document. tf-idf determines the number of times a term occurs in a review (known as term

frequency) over the number of times it occurs in all the documents (inverse document frequency). In

other words, the tf-idf of each feature is the product of the term frequency (tf) and inverse document

frequency (idf), calculated as:

𝑡𝑓 − 𝑖𝑑𝑓(𝑡, 𝑑) = 𝑡𝑓(𝑡, 𝑑) × 𝑖𝑑𝑓 (𝑡, 𝑑) (5.1)

where

tf (t, d) is the number of times the term (feature) t occurs in a document (review) d.

An Ensemble approach for identifying SaaS service factors

66

𝑖𝑑𝑓 (𝑡, 𝑑) for the same term is the number of times it occurs in all the documents.

Equations 5.2 and 5.3 calculate the tf-idf score for term t appearing in document d (review).

𝑖𝑑𝑓(𝑡, 𝑑) = 𝑙𝑜𝑔
1 + 𝑛𝑑

1 + 𝑑𝑓(𝑑, 𝑡)

(5.2)

𝑡𝑓 − 𝑖𝑑𝑓(𝑡, 𝑑) = 𝑡𝑓 𝑙𝑜𝑔(
 1 + 𝑛𝑑

1 + 𝑑𝑓(𝑑, 𝑡)
) + 1

(5.3)

where

nd represents the total number of documents in the training set;

df(d,t) represents the number of times the term occurs in documents d. (Trstenjak et al., 2014)

(Joachims, 1997).

Table 5.4. Sparse matrix representation of review samples with TF-IDF scores for features

Review 0 Review 1 Review 2 Review 3 Review 4
(Row,

Feature) TF-IDF
(Row,

Feature) TF-IDF
(Row,

Feature) TF-IDF
(Row,

Feature) TF-IDF
(Row,

Feature) TF-IDF

(0, 6501) 0.20367 (1, 1350) 0.33553 (2, 19783) 0.10394 (3, 2769) 0.24726 (4, 17607) 0.11988

(0, 958) 0.21543 (1, 4932) 0.13761 (2, 3940) 0.12237 (3, 19671) 0.25105 (4, 6632) 0.14978

(0, 20730) 0.25179 (1, 1349) 0.31869 (2, 3663) 0.10777 (3, 11024) 0.21063 (4, 17536) 0.16844

(0, 6291) 0.24549 (1, 14162) 0.29815 (2, 7938) 0.09931 (3, 17328) 0.35876 (4, 20696) 0.17938

(0, 19636) 0.22592 (1, 25488) 0.26795 (2, 19818) 0.12032 (3, 7739) 0.43976 (4, 19937) 0.17397

(0, 24262) 0.25179 (1, 5885) 0.33553 (2, 4637) 0.08698 (3, 2766) 0.16636 (4, 13729) 0.10972

(0, 13101) 0.25556 (1, 15671) 0.33152 (2, 23122) 0.07101 (3, 23630) 0.25781 (4, 17577) 0.08982

(0, 4348) 0.14230 (1, 27224) 0.33152 (2, 3117) 0.11209 (3, 12649) 0.23216 (4, 25458) 0.13810

(0, 26180) 0.16636 (1, 17371) 0.16777 (2, 9694) 0.09971 (3, 11017) 0.15038 (4, 6545) 0.05924

(0, 6295) 0.05992 (1, 6800) 0.17863 (2, 4622) 0.11019 (3, 6122) 0.21988 (4, 17535) 0.14175

(0, 932) 0.10309 (1, 20247) 0.09333 (2, 26584) 0.10288 (3, 14255) 0.11341 (4, 704) 0.14078

(0, 1486) 0.18135 (1, 4841) 0.10205 (2, 21152) 0.11558 (3, 3510) 0.27880 (4, 25759) 0.15131

(0, 18771) 0.17080 (1, 1342) 0.15675 (2, 27176) 0.09619 (3, 17126) 0.25456 (4, 11178) 0.18398

(0, 11077) 0.15256 (1, 14153) 0.17012 (2, 20748) 0.10572 (3, 7723) 0.27645 (4, 3379) 0.16312

(0, 26290) 0.14319 (1, 25021) 0.06469 (2, 23833) 0.09446 (3, 17360) 0.15577 (4, 16040) 0.09126

(0, 3572) 0.19056 (1, 5884) 0.24651 (2, 6114) 0.08013 (3, 25021) 0.10277 (4, 18228) 0.12632

(0, 15805) 0.16962 (1, 16546) 0.20913 (2, 24090) 0.10189 (3, 19618) 0.12736 (4, 16459) 0.13895

(0, 23275) 0.13102 (1, 15632) 0.15519 (2, 19782) 0.10012 (3, 24091) 0.08668 (4, 3144) 0.16509
.

.

.

An Ensemble approach for identifying SaaS service factors

67

Using the tf-idf method for scaling and assessing the term frequencies in feature vectors helps us to

determine the most important features for a review which eventually improves the performance of

the classifiers.

Table 5.4 shows the results of the TF-IDF calculation on the sample reviews from Table 5.3. In each

review, the features that is present has a non-zero value and the absent features are set to zero. Table

5.4 shows a sparse matrix representation of each review features by showing only the features with a

non-zero value and the feature location in the feature vector space. A TF-IDF score is calculated for

each of the feature as depicted in Table 5.4.

Step 3: Feature scaling

The calculated TF-IDF score for each feature can vary over a wide range, hence having a rough and

undefined numerical distribution. Most of the machine learning algorithms such as k-nearest

neighbours (k-NN) (excluding decision trees and random forests) perform much better if the values

for each feature in the vector set follow the same scale (Brownlee, 2016b). Feature scaling is generally

performed to avoid one attribute dominating the distance measure. Normalization is one of the well-

known approaches used for feature scaling. The normalization process is applied on the TF-IDF

scores of each feature which converts all the term values on a common scale between 0 – 1. Scaling

inputs to unit norms is a common operation for text classification or clustering, for instance.

Traditionally, inputs are normalized (rescaled) to values between 0 and 1 (Brownlee, 2016b). In our

work, we use the L2-norm, also known as the Euclidean norm (Muller & Guido, 2016) (Toman et al.,

2006) to normalize the values over a scale of 0 to 1 using:

𝑥𝑛𝑜𝑟𝑚 =
𝑥

√∑ |𝑥𝑘|2
𝑛
𝑘=1

 (5.4)

where

𝑥 is the feature;

k represents all the features in a review where feature x appears;

xnorm is the normalized value of x;

x is the tf-idf value of the feature 𝒙

Resampling

Class imbalance impacts the overall performance of the trained classifiers and in this study, we are

dealing with class imbalance in the number of the training data available for each label. If such an

An Ensemble approach for identifying SaaS service factors

68

imbalance before the training is not addressed, it will lead to scenarios where the algorithm for a label

which has large number of samples performs at an agreeable level while testing as compared to other

labels which do not have a sufficiently large number of samples. As we are using 10-fold cross-

validation for each of the classifiers in our experiments, it is very important that in each fold, there

must be same number of samples from each class.

To achieve a good performance for the classifiers and better understanding of the dataset, resampling

techniques are frequently used in data classification. In this study, along with the actual (imbalanced)

dataset, I used two approaches to deal with the class imbalance and to improve the performance of

classifiers.

1. Stratification: Stratified sampling is well known approach (Muller & Guido, 2016) (Kohavi,

1995) (Mullin & Sukthankar, 2000) (Forman, 2003) used for the imbalanced sample

distribution among classes that we are dealing with in this study. Stratified sampling also helps

in dealing with the class imbalance problem. During cross-validated training, stratification

uses a balanced proportion of samples from each class for each fold. As we are using k-fold

cross-validation with stratification (or stratified k-fold cross-validation), each fold of the

cross-validation will have the same percentage of the samples per class. Using stratified cross-

validation also addresses the issue of having a consistent amount of data for each label thereby

avoiding overfitting and scenarios where the trained model does not perform well on testing

or new data as it has been fitted too much on the trained data.

2. Synthetic Minority Over-sampling Technique (SMOTE): Beside stratification during cross

validation, I also used a well-known oversampling technique for imbalance datasets known

as the Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002). SMOTE

is an oversampling technique which creates synthetic samples from the minority classes to

match the number of samples in the majority class. It uses k-nearest neighbours to select

similar instances for creating synthetic samples. In our experiments we have created synthetic

samples for all the classes to match the number of samples in the majority class by considering

5 nearest neighbouring instances. Figure 5.2 depicts the review samples per class (left) and

the resampled samples using SMOTE (right).

In Section 5.4, the fitted classifiers performance using both stratification and SMOTE is compared

for further evaluation.

An Ensemble approach for identifying SaaS service factors

69

Figure 5.2. Number of samples per class before and after using SMOTE

5.3.3 Parameter estimation

The preliminary investigation of the machine learning algorithms that are suitable for the purpose of

text classification is performed in this stage. The most relevant machine learning approaches for text

classification shown in Table 5.5 are selected to model the problem addressed by this study.

Table 5.5 Selected text classification approaches

Text classification approach Related references
K Nearest Neighbours (Muller & Guido, 2016) (Cover & Hart, 1967)
Naïve Bayes (Multinomial and Bernoulli) (Lewis, 1998) (Raschka, 2014)
Rocchio (Ittner et al., 1995) (Schapire & Singer, 2000)
Perceptron (Crammer et al., 2006) (Crammer & Singer, 2003)
Ridge (Hoerl & Kennard, 2000) (Yang et al., 2003)
Stochastic Gradient Descent (Brownlee, 2016b) (Rumelhart et al., 1986)
Classification and Regression Trees (Breiman et al., 1984) (Sakakibara et al., 1993)
Linear Support Vector Classification (Joachims, 1998) (Zhang & Yang, 2003)
Passive Aggressive (Crammer et al., 2006) (Martínez-Rego et al., 2015)
Logistic Regression (Brownlee, 2016b) (Raschka & Mirjalili, 2019)

To create an ensemble, the 11 machine learning algorithms from both the parametric and non-

parametric branches are selected based on the key aspects of the problem such as:

• The learning is Supervised

• The output is multi-class

• The input is text

• The data has high dimensions

It must be noted over here that most of the text classification algorithms are sensitive to the type and

nature of the dataset (Muller & Guido, 2016) (Schapire & Singer, 2000), they depend on factors such

as the number of classes, class imbalance (number of samples per class), feature scaling, number of

An Ensemble approach for identifying SaaS service factors

70

training samples, number of features and so on. Furthermore, different algorithms follow different

approaches to solve multi-class classification problems, which also affects their performance.

The main objective of this stage is to find the best fit for each selected method on the SaaS review

dataset with using strategies such as cross-validation and hyper-parameter tunning.

Hyper-parameter tunning

The objective of hyper-parameter tunning step is to address the issue of overfitting and bias-variance

trade-off. As discussed in Section 5.2, the goal of machine learning algorithms is to best estimate the

mapping function or target function which maps input data to output variables. The ability of each

algorithm to achieve this goal is measured by the values it obtains for the performance metrics

discussed in the previous subsection. Generally, these predictions come with measurable errors that

can be broken down into bias error, variance error and irreducible error (Brownlee, 2016b). Bias error

occurs when the model makes simplifying assumptions to learn the target function. More suggestions

about the form of the target function by the model results in high bias and vice versa. Variance error

suggests changes to the estimate of the target function if changes are made to the training dataset or

if new dataset is used. A high variance suggests that large changes will be expected to the estimates

made by the target function with the introduction of new training data. High variance is directly

related to overfitting which means that the model becomes too complex by learning very complex

details of the training data and does not generalize well to unseen data.

Table 5.6. Selected parameters for tunning

Classification
methods

Selected Parameters for tunning

kNN K, Distance metric
NB (Multinomial) Smoothing parameter ‘alpha’
NB (Bernoulli) Smoothing parameter ‘alpha’, binarizing threshold
Rocchio Distance metric, Shrinking threshold
Ridge Solver
Perceptron Regularization term (Penalty), Learning rate (alpha)
LSVC Multi-class scheme, Penalties, Error term penalty (C), Loss
PA Loss function, Regularization term (Penalty), epochs
DT Splitting criteria
SGD Loss function, Regularization term (Penalty), Learning rate (alpha), epochs
LR Multi-class scheme, Penalties, Inverse of regularization (C), Solver

Every supervised machine learning algorithm aims to achieve low bias and low variance but all of

them face these errors. Aside from irreducible error, bias and variance errors can be controlled by

tuning the parameters of each machine learning algorithm. Algorithms with high variance are

An Ensemble approach for identifying SaaS service factors

71

generally low in bias and vice versa. The tuning of the parameters for each classifier is done in the

hyper-parameter tuning step. During our experiments with each classification algorithm the hyper-

parameter tuning is done on the training set and in this phase, the classifiers are run on each possible

value for their parameters. The parameter values which give the least error in prediction is selected

as the value for that parameter. Table 5.6 shows the list of text classification methods along with their

selected parameters for tunning.

Cross-validation

k-fold cross-validation is one of the well-known sampling techniques (Breiman et al., 1984) (Kohavi,

1995). Compared to normal estimation from a classifier, a cross-validated estimate is more reliable

estimate by the models when generalizing on new data. Applying k-fold cross-validation on the

training dataset divides the training set into k disjoint subsets. A single training is changed into k

training cycles on the training set. During each cycle one subset is left out as a test set and the

remaining k-1 subsets are used for training the model. Which means that each classifier is trained and

tested k times on the training data so that the error is within acceptable levels before they are applied

on unseen (testing) data. A 10-fold cross-validation is performed on each of the selected method

during the training phase. There is no formal rule to select the value for k. However, a smaller value

for the k can introduce bias in the trained model's skills. Higher values of k are preferred to reduce

the bias. The leave-one-out cross-validation (LOOCV) technique which considers large number of

subsets has shown similar results to 10-fold cross-validation. The 10-fold cross-validation may be

preferred to LOOCV for large datasets with computationally intensive analysis (Molinaro et al.,

2005).

5.3.4 Model evaluation

The performance of the trained classifiers is evaluated and compared using a number of error

measures and also a statistical significance test. Once the classification models are trained and fitted

with their optimal parameters on the training dataset, their performance is examined by introducing

them with a test dataset which is new to them. During this study, I have used 75% of the core dataset

for the training of the methods and the remaining 25% for the testing during the model evaluation

step. Using the error measures, the class prediction errors by the trained classification models are

compared with the actual class labels. The results from the error measures on the selected classifiers

are compared which will help to rank then based on the level of their performance.

An Ensemble approach for identifying SaaS service factors

72

Error measures

In this subsection, we discuss the details of the evaluation metrics used to assess the performance of

the classifiers during the process of being trained and tested. In the context of text classification,

accuracy and error rates are not necessarily good performance measures (Yang & Liu, 1999)

(Joachims, 1998) (Wang & Chiang, 2007) (Yang, 1999). To understand the performance of the

classifiers in detail, we use macro-averaging and micro-averaging for some of the metrics in our

multi-class problem. Macro-averaging treats all classes equally while micro-averaging favours bigger

classes (Sokolova & Lapalme, 2009). Macro-average computes the given metric independently for

each class and then takes the average. For example, when calculating the precision of the classifier,

the precision for each class is calculated first then the average is calculated, whereas micro-average

aggregates the contributions of all classes globally to compute the average metric (Özgür et al., 2005)

(Yang & Liu, 1999). The error measures used to evaluate the performance of the classification models

are discussed in the following subsections.

Accuracy

Accuracy is the most common metric used to evaluate the performance of classifiers. The accuracy

of a prediction by a classifier is defined as the proportion of the correctly classified instances (Raschka

& Mirjalili, 2019) (Muller & Guido, 2016) or in simple terms, it is the effectiveness of a classifier

(Sokolova & Lapalme, 2009). In multiclass problems, it is important to look at the accuracy of each

class in addition to the average accuracy for all the classes. For example, the accuracy for an

individual class Ci is calculated in the one-vs-the-rest way, where the sum of the true positive

(correctly predicted instances belonging to class Ci) and true negative predictions (correctly predicted

instances not belonging to class Ci) divided by the total predictions shows the effectiveness of the

classifier.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐶𝑖) =
𝑇𝑃𝑖 + 𝑇𝑁𝑖

𝑇𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖
 (5.5)

The average accuracy of the classifier over multiple classes is calculated as:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑

𝑇𝑃𝑖 + 𝑇𝑁𝑖
𝑇𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

𝑛
𝑖=1

𝑛

(5.6)

where n represents the total number of classes

Precision

An Ensemble approach for identifying SaaS service factors

73

Precision (also known as positive predictive value) is another commonly used performance evaluation

metric in classification problems (Richert & Coelho, 2013) (Raschka & Mirjalili, 2019). It is the

ability of the classifier not to label a negative sample as positive or in other words, when the goal is

to limit the number of false positives (Muller & Guido, 2016). In multi-class problems, the precision

of a class Ci is calculated as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐶𝑖) =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

(5.7)

For multiple classes, the macro-averaged and micro-averaged precision (Sokolova & Lapalme,
2009) is calculated as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝜇 =
∑ 𝑇𝑃𝑛
𝑖=1 𝑖

∑ (𝑇𝑃𝑖 + 𝐹𝑃𝑖)
𝑛
𝑖=1

(5.8)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑀 =
∑

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝑛
𝑖=1

𝑛

(5.9)

The precision scores are calculated in the interval [0, 1]. The precision score of 1 is considered as the

best and a 0 as the worst.

Recall (Sensitivity or True Positive rate)

Also known as sensitivity or the true positive rate is the ability of the classifier to find all the positive

samples (Richert & Coelho, 2013) (Raschka & Mirjalili, 2019) (Muller & Guido, 2016). In multi-

class problems, the recall for a class Ci is calculated as:

𝑅𝑒𝑐𝑎𝑙𝑙 (𝐶𝑖) =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

(5.10)

For multiple classes, the macro-averaged and micro-averaged recall (Shalev-Shwartz & Singer, 2005)

is calculated as:

𝑅𝑒𝑐𝑎𝑙𝑙 𝜇 =
∑ 𝑇𝑃𝑛
𝑖=1 𝑖

∑ (𝑇𝑃𝑖 + 𝐹𝑁𝑖)
𝑛
𝑖=1

(5.11)

An Ensemble approach for identifying SaaS service factors

74

𝑅𝑒𝑐𝑎𝑙𝑙 𝑀 =
∑

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖

𝑛
𝑖=1

𝑛

(5.12)

The recall scores are calculated in the interval [0, 1] and a value of 1 is considered as the best and a

0 as the worst.

F-Measure

Also known as F-Score or F1-measure is the harmonic mean of the precision and recall (Raschka &

Mirjalili, 2019) (Muller & Guido, 2016) (Sokolova & Lapalme, 2009) (Özgür et al., 2005). The F-

measure values are in the interval [0, 1]. A larger F-measure value corresponds to higher classification

quality (Özgür et al., 2005). The macro-averaged F1 is calculate as:

𝐹1 (𝐶𝑖) = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑖 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

(5.13)

Specificity

Specificity, also known as the true negative rate, is a measure of how a classifier identifies negative

labels (Sokolova & Lapalme, 2009). In a multi-class problem, the specificity of a class Ci is calculated

in a one-vs-the-rest way and is written as:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝐶𝑖) =
𝑇𝑁𝑖

𝑇𝑁𝑖 + 𝐹𝑃𝑖

(5.14)

The specificity values are in the interval [0, 1], where it reaches its best value at 1 and worst at 0.

Cohen’s Kappa

Cohen’s kappa is a statistic that measures inter-annotator agreement. Cohen’s kappa was initially

introduced (Cohen, 1960) to measure the degree of agreement or disagreement of two or more people

observing the same phenomenon. Later (Ben-David, 2008), it was used successfully to demonstrate

the accuracy of classifiers. Cohen’s kappa measures the degree of agreement between the

classification model’s predictions and the actual values (Ben-David, 2008). Cohen’s kappa score

expressing the level of agreement between two annotators on a classification problem is written as:

An Ensemble approach for identifying SaaS service factors

75

𝑘 =
(𝑝𝑜 − 𝑝𝑒)

(1 − 𝑝𝑒)

(5.15)

where po is the empirical probability (total agreement probability) of agreement on the label assigned

to any sample (review) called the observed agreement ratio, and

pe is the expected agreement (agreement probability which is due to chance) when labels are assigned

randomly.

The kappa statistic is a number between -1 and 1 where lower values to -1 indicate total disagreement,

0 being a random classification and a maximum value to 1 shows total agreement (Cohen, 1960)

(Ben-David, 2008).

Mathews’ Correlation Coefficient (MCC)

Introduced by Matthews (1975), the MCC was initially used to assess the performance of protein

secondary structure prediction. The coefficient ranges between the values of -1 to 1. A coefficient of

+1 represents a perfect prediction, 0 represents a random prediction and −1 indicates total

disagreement between prediction and observation (Boughorbel et al., 2017). In multi-class problems,

it can easily be calculated from a confusion matrix in terms of true positive (TP), false positive (FP),

true negative (TN), and false negative (FN) (Baldi et al., 2000) (Gorodkin, 2004) (Jurman et al., 2012)

(Scikit-learn, 2017b).

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

(5.16)

Hamming Loss

Hamming loss is a useful measure to evaluate the number of times the label of a review is

misclassified. In simple terms, it is the fraction of incorrectly classified single labels over the total

number of labels (Schapire & Singer, 2000) (Tsoumakas & Katakis, 2009) (Schapire & Singer, 1999).

For a multiclass problem, it is defined as:

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 =
1

𝑘
∑

𝑌𝑖 ∆ 𝑥𝑖
𝐿

𝑘

𝑖=1

(5.17)

Where k is the number of samples, L is the finite set of class labels, Yi is the actual, xi is the predicted

value, and △ stands for the symmetric difference between two sets of labels (i.e., Yi and xi).

An Ensemble approach for identifying SaaS service factors

76

In multiclass classification problems, hamming loss corresponds to the Hamming distance between

the actual labels (Yi) and predicted labels (xi) which is equivalent to the subset zero-one loss function

(Scikit-learn, 2017a).

Statistical significance test

For the purpose of model evaluation, besides the error measures discussed in the previous subsection,

I also conduct a statistical significance to verify the significance difference among the performances

of the classifiers. I used the well-known Friedman significance test (Friedman, 1940) which is a non-

parametric statistical significance test widely used in comparing multiple algorithms using their

performance samples to identify any significant difference among them. The Friedman statistics is

computed as:

𝑋𝐹
2 =

12𝑛

𝑘(𝑘 + 1)
[∑𝑅𝑗

2 −
𝑘(𝑘 + 1)2

4
𝑗

]
(5.18)

where, a larger value of 𝑋𝐹2 indicates that there is a significant difference among the classifiers and

the null hypothesis can be rejected. Further, the Nemenyi’s post hoc test (Nemenyi, 1963) is applied

to report the significant differences between individual classifiers. According to Nemenyi’s post hoc

test, the performance of two classifiers is significantly different if their average rank differs by at least

the critical difference calculate as:

𝐶𝐷 = 𝑞𝛼√
𝑘(𝑘 + 1)

6𝑁

(5.19)

The statistical significance tests are also very helpful in the selection of the best classification models.

Once the models are selected based on the preliminary study, the parameters of each method are

estimated.

5.3.5 Creating Ensemble

Creating ensemble of the trained models is one method to improve classification performance. There

are a number of techniques to created model ensembles such as, Bagging, Boosting and Voting.

Voting ensembles are the simplest and effective method of combining individual classifiers output to

improve classification performance. Besides that, voting ensemble can work with different types of

base classifiers compared to the others. There are several voting schemes that include weighted and

unweighted voting methods. In this study, I have applied a simple weighted majority voting ensemble

An Ensemble approach for identifying SaaS service factors

77

on our base classifiers. For the voting ensemble, the core idea is to only include the classifiers with

high performances and lowest miss-classification rates.

There are three steps involved in the implementation of the weighted majority voting ensemble:

1. The first step of the weighted voting ensemble calculates a threshold level for selecting the

base classifiers. This threshold level is set on the classification performance of the base

classifiers. It helps to avoid adding the classifiers to the ensemble, that have lower

classification performance which will negatively affect the overall performance of the

ensemble.

𝑇 = 𝛼𝐵 − (
1 − 𝑒𝐵
𝑁

) (5.20)

where, αB represents the classification accuracy of the best classifier, eB represents the

misclassification error rate of the best classifier and N represents the total number of selected

classifiers. Thus, the classifiers for the ensemble are shortlisted as:

𝐸 = {𝑐 |𝑐 ∈ 𝐶, 𝑐𝑎 ≥ 𝑇} (5.21)

where C represents the set of trained classifier and ca represents the classification accuracy of a given

classifier c.

2. In the second step, weights are assigned to the selected classifiers. This step is also necessary

in combination with the first step, as it assigns higher weights to the base classifiers with the

lowest mis-classification rates. Assigning weights are very helpful specially when there is a

tie when selecting among more than one class label. Let CA be the set of classification

accuracies for the selected classifiers over the threshold for the ensemble, CA = {ca1, ca2, …,

can}

𝑤𝑐 =
1

2
+ (

𝑐𝑎 −min (𝐶𝐴)

max (𝐶𝐴) − min (𝐶𝐴)
)

(5.22)

where wc represents the weight of a given classifier ‘c’ and a value of ½ is added to set a base weight.

3. Finally, for each test sample ‘x’, the class ‘y’ is assigned according to the weighted votes from

the selected base classifiers.

Algorithm 5.1 shows the detailed steps of the proposed approach. The complexity of algorithm 5.1

considering the three loop structures can be written as O (R + C * CV * T).

An Ensemble approach for identifying SaaS service factors

78

Algorithm 5.1: Different stages of the Ensemble approach for SaaS service factor
identification

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20

21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45

// Pre-processing dataset
D: Dataset
Rc: Clean reviews
R ← ExtractReviews(D)
L ← ExtractLabels(D)
for each r ϵ R: do
 Remove URLs from r
 Remove non-alphabets from r
 Remove multiple periods from r
 Remove multiple spaces from r
 Lemmatize r
 Append Rc ← r
 end for
// Vectorization and Bag of Words
Tokenize Rc
Build Vocabulary from Tokenized Rc

Build Feature Vector from Vocabulary
Reduce Dimensions of feature vector (mindf: 5)
Assign Feature weights using tf-idf
Normalize tf-idf scores
Split Reviews Rc as Xtrain, Xtest
Split Labels L as Ytrain, Ytest
// Resampling:
Apply SMOTE on Xtrain
Split and Stratify Xtrain into 10-folds as CV
// Training the classifiers and hyper-parameter tunning
C: Classifiers selected for training
P: Relevant parameter set for each classification algorithm
T: Total permutations of parameters
for each c ϵ C: do
 for each f ϵ CV: do
 for each t ϵ T: do
 Train classifier c on f with t
 Select the parameters setting with best performance score
 Test classifier c on f’s test subset with t
 Save Classifier name, performance score, f, t
 end for
 end for
Save classification model c
end for
Identify any significant difference among classifiers performance using Friedman test and
Nemenyi’s post hoc test
CM: Saved classification models
M: Set of performance metrics
for each m ϵ CM: do
 Test m’s performance on Xtest using M
 Save m's performance scores
 end for
Compare classification models over performance metrics M
Select the best performing classifiers

An Ensemble approach for identifying SaaS service factors

79

5.4 EXPERIMENTS AND EVALUATION RESULTS

In this section, I present the details of the dataset used during the experiments, the optimal parameter

from the training phase and evaluate the performance of each classifier. The performance of the

proposed ensemble is discussed at the end of this section.

5.4.1 Dataset description

I use Python (version 3.6.2) for all the experiments in this study. As a result of the data preparation

and pre-processing stage, in the pre-processed dataset, the total samples in the vector space Rd have

the final form of 29,362 review samples and 27,657 features (d = 29362 x 27657). For all the

experiments, the dataset is divided into training and test sets with the split of 75% and 25%

respectively. The training set consists of 22020 samples and the test set consists of 7341 samples. As

shown in Table 5.7, the number of samples for each service factor is different. This indicates a class

imbalance which is common in real world datasets. The main implication of this problem is that the

classifiers have fewer samples to learn from for some of the classes compared to the others. However,

in the experiments using SMOTE resampling, the number of training samples has increased to 52240

due to the addition of synthetic instances. The results from both the actual and SMOTE resampled

data is compared for performance during the experiments. Each of the samples in the training and test

set is labelled with exactly one of the ten class labels listed in Table 5.3.

Table 5.7. Dataset description with the number of reviews per service factor

Service factor Complete Dataset Training Test
Availability 3020 2272 748

Cost optimization 2288 1693 595
Resiliency 64 53 11
Scalability 613 455 158

Management 6984 5224 1760
Unknown 2189 1602 587

Operational Excellence 3882 2943 939
Performance 4858 3663 1195
Reliability 4971 3747 1224
Security 492 368 124

Total reviews 29361 22020 7341

The selected machine learning algorithms in this study are implemented using Python (version 3.6.2)

and scikit-learn’s (version 0.19.0) libraries. Also, the dataset is vectorized with unigrams, bigrams

and 3-grams throughout the experiments.

An Ensemble approach for identifying SaaS service factors

80

Table 5.7 shows the number of review samples for each service factor in the considered data corpus.

Since we are also using oversampling. As the dataset faces the challenge of class imbalance, stratified

k-fold cross validation along with SMOTE is used for resampling of the dataset. Figure 5.2 shows the

number of samples per class after applying SMOTE to the training dataset. In stratified cross-

validation, the subsets from the training data are created having roughly the same proportion of each

service factor (class) samples. The class returns a stratified randomized fold from the training data.

We have applied 10-fold cross-validation for all the machine learning algorithms with the test split

of 10 percent from each fold to accurately determine the value of the best performing parameters.

The same set of experiments are conducted again using SMOTE.

5.4.2 Model evaluation

In this subsection, I compare and discuss the performance of all the fitted classification models

selected in this study against the proposed ensemble text classification model using the error measures

discussed in Section 5.4. Table 5.8 shows the optimal values for the parameters estimated for each

of the classifier with lower classification errors. The details of the parameter tunning and CV for all

the selected text classification approaches is presented in Appendix A.

Table 5.8. Optimal parameters selected after training

Classification
methods

Optimal values for selected Parameter

kNN n_neighbors=20, metric='euclidean', leaf_size=30,
algorithm='auto', weights='uniform'

NB (Multinomial) alpha = 0.1, class_prior=None, fit_prior=True
NB (Bernoulli) alpha = 0.5, Binarize threshold = 0, class_prior=None,

fit_prior=True
Rocchio metric='euclidean', shrink_threshold=None
Ridge alpha= 1, solver= svd
Perceptron alpha=1e-05, n_iter=6, penalty='l1'
LSVC C= 0.5, loss= hinge, multi_class= crammer_singer, penalty= l2
PA C=0.1, loss='hinge', n_iter=10
DT criterion= gini, max_depth= 96/ none, min_samples_split= 2
SGD alpha= 5e-05, loss= hinge, n_iter= 9, penalty= ‘l1'
LR C= 5, multi_class= ovr, penalty= l1, solver= liblinear

In this section, the performance of the classification methods is evaluated using both macro- and

micro-averaged scores. In addition, we use two widely used measures to assess the degree of

agreement between the actual sample classes and the predicted class labels. The main reason for

looking at the performance of the classification models through different evaluation metrics is that

our dataset is imbalanced in terms of number of samples per class and also there are class overlaps

 An Ensem
ble approach for identifying SaaS service factors

81

 Table 5.9. C
om

parative analysis of the m
ulticlass text classification approaches using Stratified k-

folds and SM
O

TE

k-NN

NB - M

NB -B

Rocchio

Ridge

Percep

LSVC

PA

DT

SGD

LR

Ensembl
e

St

SMOTE

St

SMOTE

St

SMOTE

St

SMOTE

St

SMOTE

St

SMOTE

St

SMOTE

St

SMOTE

St

SMOTE

St

SMOTE

St

SMOTE

SMOTE

Accuracy

0.38

0.08

0.487

0.47

0.512

0.48

0.53

0.52

0.70

0.67

0.75

0.77

0.77

0.76

0.77

0.76

0.77

0.78

0.835

0.82

0.845

0.84

0.856

Prec (m)

0.39

0.42

0.42

0.40

0.42

0.48

0.47

0.46

0.76

0.66

0.67

0.69

0.79

0.71

0.77

0.74

0.69

0.73

0.75

0.76

0.83

0.82

0.800

Prec (µ)

0.38

0.08

0.49

0.47

0.51

0.48

0.53

0.52

0.70

0.67

0.75

0.77

0.77

0.76

0.77

0.76

0.77

0.78

0.84

0.82

0.845

0.84

0.856

Rec (m)

0.25

0.12

0.40

0.39

0.39

0.35

0.51

0.48

0.57

0.64

0.66

0.73

0.63

0.69

0.65

0.67

0.65

0.75

0.68

0.84

0.74

0.79

0.725

Rec (µ)

0.38

0.08

0.49

0.47

0.51

0.48

0.53

0.52

0.70

0.67

0.75

0.77

0.77

0.76

0.77

0.76

0.77

0.78

0.84

0.82

0.845

0.84

0.856

F1 (m)

0.26

0.05

0.40

0.39

0.38

0.36

0.47

0.45

0.62

0.65

0.66

0.70

0.67

0.70

0.69

0.70

0.67

0.74

0.70

0.78

0.77

0.80

0.750

F1 (µ)

0.38

0.08

0.49

0.47

0.51

0.48

0.53

0.52

0.70

0.67

0.75

0.77

0.77

0.76

0.77

0.76

0.77

0.78

0.84

0.82

0.845

0.84

0.856

Ham. loss

0.62

0.92

0.51

0.53

0.49

0.52

0.47

0.48

0.30

0.33

0.25

0.23

0.23

0.24

0.23

0.24

0.23

0.22

0.16

0.18

0.15

0.16

0.14

Specificity

0.924

0.901

0.940

0.938

0.942

0.937

0.945

0.944

0.963

0.961

0.971

0.973

0.972

0.972

0.972

0.972

0.973

0.974

0.980

0.980

0.981

0.981

0.983

C. kappa

0.240

0.005

0.396

0.373

0.423

0.376

0.447

0.437

0.636

0.612

0.706

0.727

0.720

0.717

0.725

0.722

0.729

0.739

0.804

0.792

0.817

0.814

0.828

MCC

0.250

0.040

0.398

0.376

0.426

0.385

0.450

0.440

0.641

0.613

0.707

0.728

0.721

0.717

0.727

0.722

0.729

0.739

0.805

0.794

0.817

0.814

0.829

Tr. time

1370.8

10810.8

4.4

11.8

6.5

17.1

6.4

16.5

30.1

148.3

9.2

31.5

55.2

3727.4

8.7

29.3

126.9

455.8

12.0

41.7

37.0

162.8

-

Ts. time

7.814

19.074

0.009

0.009

0.018

0.018

0.013

0.013

0.009

0.009

0.009

0.009

0.010

0.009

0.009

0.010

0.015

0.016

0.009

0.010

0.011

0.010

-

An Ensemble approach for identifying SaaS service factors

82

which means that the labelling of samples is subjective in most of the cases. The selected error metrics

used in this study are famous in evaluating the classification performance of the models trained and

tested on imbalanced datasets. Following is the detailed discussion on the performance results for

each of the models on test data.

Naïve Bayes (Multinomial)

With the optimal parameter i.e., alpha = 0.1, the model’s prediction on new data (test set) is evaluated

with different metrics. The results show no overfitting in terms of classification accuracy of 0.49 and

loss of 0.51. As we are dealing with a multiclass problem and facing a class imbalance, scikit-learn

gives the flexibility to look further into the classification performance of the model using the micro-

averaged metrics. The micro-averaged precision shows the performance by weighting each sample

equally hence showing the capability of naïve Bayes to classify each sample with precision and recall

of 0.49. The specificity (𝑇𝑁/𝑇𝑁 + 𝐹𝑃) or the true negative rate is 0.94. As scikit-learn implements

multiclass scoring via the one-vs-all classification approach, this means that most of the instances

will be predicted as members of the remaining classes (true negatives), hence a higher specificity

value. Another interesting perspective to investigate the performance of the classifier in a multiclass

problem is the capability to find all the positive samples known as the true positive rate or recall.

Here, the naïve Bayes multinomial shows a micro-recall score of 0.49 and an overall macro-averaged

recall of 0.40. The degree of agreement is measured using two famous measures used frequently in

multiclass classification problems i.e., the Cohen kappa measure with 0.396 and the MCC with 0.398,

which is at an acceptable level when it is not in the negative value range.

In addition to the low performance shown here by the naïve Bayes multinomial classifier, it shows

minimal difference when comparing performance scores for the training and test data.

Naïve Bayes Bernoulli

With the best estimated parameters i.e., alpha = 0.5 and binarizing threshold = 0, the performance of

the model on the different metrics on the test dataset the model achieves an accuracy of 51% (0.51),

precision of 42%, recall of 39% and F1 score of 38%. Since we are dealing with a multiclass

classification problem, looking at the micro-average scores is very helpful. The specificity or the true

negative rate of the classification is at 0.94; while the degree of the agreement between the actual and

predicted classes measured, using Cohen Kappa is 0.422 and with MCC is at an acceptable sore of

0.426.

An Ensemble approach for identifying SaaS service factors

83

The NB Bernoulli classifier shows a minimal difference between the performance scores on the

training and test dataset using different evaluation metrics. Similar to the multinomial version, the

naïve Bayes Bernoulli is also very quick to train but the performance is not very encouraging.

Nearest Centroid (Rocchio)

The results show that the difference in the performance on the training and testing dataset is minimal

when the algorithm is used with the optimal distance measure i.e., Euclidean. The macro-accuracy,

precision, recall and F1 measure remains at 53% (0.53), 0.47, 0.51 and 0.47 respectively on test data.

The true negative rate (specificity) is 0.945 and the degree of agreement measured with Cohen’s

kappa is 0.446 and 0.449 with MCC.

Stochastic Gradient Descent (SGD)

The classification accuracy of 84% (0.84) on test data is very impressive. The macro-precision (75%),

recall (68%) and F1 (70%) scores are also very significant. The most interesting outcome is the micro-

averaged scores (as it is very important in multiclass problems). The micro-averaged scores are very

impressive while facing the issue of class imbalance. The true negative rate (specificity) is high as

usual, as we are using the one-vs-all approach for the multiclass problem. Compared with the results

from the other classifiers, the degree of agreement measured with Cohen’s kappa (0.803) and MCC

(0.805) is significantly higher.

K-NN

Using the best estimated parameters i.e., n_neighbors=20, metric='euclidean', leaf_size=30,

algorithm='auto', weights='uniform', identified during the cross-validation of the training data, the

macro-averaged accuracy, precision, recall and F1 scores are recorded as 0.38 (38%), 0.39, 0.25 and

0.26 respectively. The micro-averages scores are low as well. The true negative rate (specificity) is

0.923 and the degree of agreement measured by Cohen’s kappa (0.24) and MCC (0.25) is also lower

compared to the other classifiers used. The main reason for the low performance of the k-NN

classification algorithm is that it is not suitable for large datasets with high dimensionality (a large

number of features) (Soucy & Mineau, 2001) (Raschka & Mirjalili, 2019). The k-NN algorithm is

well known to perform better with small datasets with fewer features.

Passive Aggressive

The passive aggressive algorithm with the best parameters achieved an accuracy score of 77% (0.77),

the passive aggressive algorithm achieved a macro-averaged precision, recall and F1 score of 77%

An Ensemble approach for identifying SaaS service factors

84

(0.77), 65% (0.65) and 69% (0.69) respectively. As we are dealing with an issue of class imbalance

in a multiclass problem, the micro-averaged scores give very interesting results. The micro-averaged

precision, recall and F1 scores from the test dataset are 0.77 for each of these metrics. The true

negative rate (specificity) is 0.972, the degree of agreement between the actual and predicted classes

measured using Cohen’s kappa and MCC are 0.725 and 0.726, respectively. A comparison between

the performance of the passive aggressive classifier on the training and test datasets shows that there

is no significant difference between the performance of the passive aggressive classifier.

In addition to the number of parameters to tune, the passive aggressive algorithm for classification

tasks is very cheap to train and test on larger datasets. The test performance of the passive aggressive

classifier makes it a strong candidate for our multiclass problem.

Perceptron

The accuracy of the classification on text dataset is at an acceptable level of 75% (0.75). The macro-

precision, recall and F1 scores are 0.75, 0.66 and 0.66 respectively. The micro-averaged precision,

recall and F1 scores are 0.75 each. The micro-averaged classification performance scores of the

perceptron algorithm show very promising results as it focuses on individual samples. The specificity

or the true negative rate is a high score of 0.970. The degree of agreement measured by Cohen’s

kappa and MCC are 0.706 and 0.707, respectively. It is very important to look at the performance

using several metrics as it provides a detailed breakdown of the nature of the model for specific

classification problems.

A minimal difference between the performance of the perceptron is observed on the training and test

data. In addition to the number of parameters to tune, the perceptron is very efficient to train and the

entire 10-fold stratified cross-validation on our relatively large dataset is completed in just under 3780

seconds.

Logistic Regression

Using the best parameters for logistic regression, a classification accuracy of 85% (0.845) is achieved

on test dataset. The macro-averaged precision, recall and F1 scores are 0.845, 0.74 and 0.77,

respectively. It is very interesting to see the micro-averaged scores for logistic regression on the test

data. The micro-averaged precision, recall and F1 scores are recorded as 0.845 for each of these

measures, which is very promising as we are dealing with class imbalance. The true negative rate

(specificity) is 0.981 which is another promising outcome of the logistic regression for multiclass

problems. The degree of agreement measured using Cohen’s kappa is 0.817 and MCC is 0.817 which

An Ensemble approach for identifying SaaS service factors

85

again shows a high level of agreement between the actual and the predicted classes. A very small

difference between the classification performance on the training and test dataset is observed during

the experiments. The cost of training logistic regression for a large dataset such as the one we used

in this study is not very high, even with a 10-fold cross-validation.

Decision Tree

The overall classification accuracy of the decision tree is 77% (0.77) on test dataset. The macro-

averaged precision, recall and F1 scores are 0.69, 0.65 and 0.67 respectively. However, the micro-

averaged scores give us a good insight in the model’s performance with a high precision of 77%

(0.77). The degree of agreement between the actual and predicted classes by the decision tree is also

very promising with a Cohen’s kappa score of 0.728 and an MCC score of 0.728. It is observed that

the difference between the performance of the decision tree classifier on the training and test data is

also very low.

Ridge

The Ridge classifier achieved a classification accuracy of 70% (0.70), while the macro-averaged

precision, recall and F1 scores are 0.76, 0.57 and 0.62 respectively using the best estimated

parameters on test data. The micro-averaged scores for precision, recall and F1 are all 0.70. The

specificity (true negative rate) is 0.962 while the degree of agreement measured using the Cohen’s

kappa and MCC are 0.635 and 0.641 respectively. The results are encouraging, and the Ridge

classifier is very simple and efficient to use on relatively large datasets. Furthermore, our results show

that the difference in the classification performance on the training and test datasets using the optimal

parameters is also minimal.

Linear SVM (LSVC)

On test dataset the LSVC achieved an accuracy of 77% (0.77), the macro-averaged precision, recall

and F1 scores are at the promising levels of 0.79, 0.63 and 0.67 respectively. The micro-averaged

precision, recall and F1 scores are also very interesting as we are dealing with class imbalance. The

degree of agreement measures with Cohen’s kappa and MCC are 0.720 and 0.721, indicating a good

classification performance by linear SVC. In addition to the number of parameters to adjust to achieve

optimal performance, linear SVM is highly efficient with large datasets and the entire training is

completed within 1361 seconds.

An Ensemble approach for identifying SaaS service factors

86

The results from Table 5.9 show that the logistic regression classification model has the highest

accuracy of 85% (0.845) among all the individual classification models. The accuracy score for the

SGD classification model is the second highest at 84% (0.84). As discussed in the previous

subsection, the SGD algorithm is used with the hinge loss function among others, which is the same

as the soft-margin SVM. The results show that the lowest accuracy score is achieved by the k-NN

classification method at 38% (0.38) followed by the two versions of the naïve Bayes classifiers i.e.,

naïve Bayes multinomial and naïve Bayes Bernoulli. Although the macro-averaged scores for the

logistic regression models is very promising, the macro-averaged scores are relatively less expressive

of the classification details as they are dominated by the rare classes (classes with fewer samples),

giving equal weight to all classes. As we are dealing with the issue of class imbalance as shown in

Table 5.7, the micro-averaged scores provide a good understanding of the model’s performance.

Interestingly, the micro-averaged scores are 85% (0.845) which is very significant on text data.

Both the precision and recall scores for logistic regression are very good in terms of multiclass text

classification. Furthermore, looking the performance through the harmonic means (F1) of the

precision and recall shows high scores above 75%. The true negative rate, also known as the

specificity of the logistic regression model, is the highest of all the classifiers i.e. 0.981. When

working with multiclass problems, the true negative rate of the models is generally high and it

increases with an increase in the model’s classification accuracy. Another approach used to assess

the performance of the classification model is to measure the degree of agreement between the

prediction and observation. We used two of the most well-known approaches to measure the degree

of agreement, namely Cohen’s kappa score and Matthews’ correlation coefficient. The scores of both

measures are good for the logistic regression model with a Cohen’s kappa score of 0.817 and MCC

of 0.818.

Considering the global performance of the classification models from Table 5.9, it can be concluded

that the classes are linearly separable. One of the main reasons for the low performance of some of

the classifiers, such as k-NN and naïve Bayes, is that they do not work well with a large number of

features. It has been reported previously that the performance of k-NN is very low when the dataset

is facing the issue of class imbalance (Trstenjak et al., 2014) (Schapire & Singer, 2000). The same

is the case with naïve Bayes, in which the classifiers perform below expectations with imbalanced

classes (Joachims, 1997) (Brownlee, 2016b). Similarly, studies also indicate that the performance of

the Rocchio algorithm is very low when it comes to multi-class text classification with noisy data and

class imbalance (Brownlee, 2016b).

An Ensemble approach for identifying SaaS service factors

87

Figure 5.3. Comparison of the training time for the classification models with their best parameters

Table 5.9 shows that using SMOTE oversampling technique on the training data did not improve the

performance of the classifiers when they are introduced to new data (test data). Even in some cases

the classifiers trained just on 10-fold stratified cross-validation performs slightly better than an

additional oversampling step. However, when the trained Logistic regression classifier is applied on

the new data (test data), the performance drops and the test performance is same as the Logistic

regression classifier trained without oversampling of training data.

Table 5.9 depicts the training times of all the classification methods used in this study. In addition to

the efficient training time of the logistic regression approach, the other methods such as passive

aggressive, perceptron, ridge and naïve Bayes classification approaches are also very efficient. The

training time of the k-NN classification algorithm is the highest of all the methods used in this study.

On the same training dataset, the k-NN algorithm took 1370.8 seconds with its best parameters

identified in the first phase of parameter tuning all the methods. The training time of the decision tree

(using CART) is the second highest of all the classification methods used in this study, with a training

time of 127 seconds. Figure 5.3, shows the total training time consumed by all the selected algorithm.

An Ensemble approach for identifying SaaS service factors

88

5.4.3 Statistical significance test

Table 5.10 shows the significant differences among classifier pairs with bold and italic p-values. The

Friedman’s test is conducted initially on the combined results of the classifiers for which, the null

hypothesis is rejected at p-value of less than 0.001 with a test statistic of 98.055. Using Nemenyi’s

post hoc test, the results at a significance level of 5% (α = 0.05) is shown in Table 5.10.

Table 5.10. Results from Nemenyi's post hoc test for classifier pairs

 DT KNN LR LSVC NB_B NB_M PA Percp. Ridge Rocch SGD

DT -1.0000 0.0010 0.9000 0.9000 0.0074 0.0010 0.9000 0.8240 0.3499 0.0712 0.9000

KNN 0.0010 -1.0000 0.0010 0.0010 0.9000 0.9000 0.0010 0.0247 0.2010 0.6143 0.0010

LR 0.9000 0.0010 -1.0000 0.5305 0.0010 0.0010 0.7401 0.0862 0.0074 0.0010 0.9000

LSVC 0.9000 0.0010 0.5305 -1.0000 0.1031 0.0122 0.9000 0.9000 0.8660 0.4428 0.6143

NB_B 0.0074 0.9000 0.0010 0.1031 -1.0000 0.9000 0.0385 0.5724 0.9000 0.9000 0.0010

NB_M 0.0010 0.9000 0.0010 0.0122 0.9000 -1.0000 0.0034 0.1723 0.6143 0.9000 0.0010

PA 0.9000 0.0010 0.7401 0.9000 0.0385 0.0034 -1.0000 0.9000 0.6563 0.2336 0.8240

Percp. 0.8240 0.0247 0.0862 0.9000 0.5724 0.1723 0.9000 -1.0000 0.9000 0.9000 0.1237

Ridge 0.3499 0.2010 0.0074 0.8660 0.9000 0.6143 0.6563 0.9000 -1.0000 0.9000 0.0122

Rocch 0.0712 0.6143 0.0010 0.4428 0.9000 0.9000 0.2336 0.9000 0.9000 -1.0000 0.0010

SGD 0.9000 0.0010 0.9000 0.6143 0.0010 0.0010 0.8240 0.1237 0.0122 0.0010 -1.0000

5.4.4 Performance of the Ensemble

The performance results for the ensemble model using different error measures are shown in Table

5.9. The performance of the weighted voting ensemble is better than the other base classifiers with a

classification of accuracy of 0.856 compared to the best performance of the Logistic regression among

the base classifiers at 0.846. The improvement is also reflected in the number of accurately classified

samples i.e., 6281 compared to that of the Logistic regression at 6250.

Table 5.11. Extended classification report of individual classes using ensemble model

 Accuracy Precision Recall F1 Specificity Support
Availability 0.972 0.925 0.791 0.853 0.993 748
Cost optimization 0.974 0.838 0.837 0.838 0.986 595
Resiliency 0.998 0.333 0.091 0.143 1.000 11
Scalability 0.993 0.901 0.747 0.817 0.998 158
Management 0.925 0.809 0.899 0.852 0.933 1760
Unknown 0.979 0.851 0.888 0.869 0.987 587
Operational Excellence 0.959 0.852 0.825 0.838 0.979 939
Performance 0.966 0.888 0.905 0.896 0.978 1195
Reliability 0.958 0.879 0.868 0.873 0.976 1224
Security 0.987 0.725 0.403 0.518 0.997 124

An Ensemble approach for identifying SaaS service factors

89

The performance score of the ensemble model for each of the 10 classes is depicted in Table 5.11.

The support column of Table 5.11 shows the actual number of samples per class in the test dataset.

Table 5.12. Confusion matrix for the ensemble classification model

 A C E L M N O P R S
A 592 15 1 1 26 6 39 36 31 1

C 3 498 0 1 52 11 8 10 8 4

E 3 2 1 0 1 0 2 2 0 0

L 3 2 0 118 7 0 14 11 3 0

M 19 14 1 4 1582 33 39 32 29 7

N 0 2 0 1 59 521 1 0 3 0

O 4 16 0 0 62 6 775 33 40 3

P 3 16 0 2 42 9 15 1082 25 1

R 10 29 0 4 74 19 12 11 1062 3

S 3 0 0 0 50 7 5 2 7 50

The confusion matrix for the ensemble model is shown in Table 5.12. Each row and column in the

confusion matrix of Table 5.12 is labelled according to the tags defined in Table 5.2. The confusion

matrix is based on the performance of the classification models’ computing using the actual

(observed) class labels for each test sample and the predicted class labels by the model. A confusion

matrix is very useful in analysing the accuracy of predictions from the trained models. It helps to

calculate misclassifications in terms of the true positive, false positive, true negative and false

negative values. It also helps to look at the number of correctly and incorrectly predicted classes

which can be used to improve the labelling of the dataset. From Table 5.12, the samples labelled

under Resiliency, Management and Security need to be revisited and updated which will eventually

help to improve the classification performance.

The performance of the ensemble model on the training and test dataset is depicted in Figure 5.4. The

classification performance in terms of accuracy shows an acceptable amount of overfitting by the

trained ensemble classification model.

An Ensemble approach for identifying SaaS service factors

90

Figure 5.4. Performance of the Ensemble model on training and test data with optimal parameters

using SMOTE

5.5 CONCLUSION

In this chapter, I discussed the importance of the core factors that is necessary to select SaaS products

and are key to the development of trust models for SaaS. I have also explained the importance of the

software quality pillars and the pillars of well-architected frameworks which are used by major cloud

services vendors as key factors to identify the quality of cloud applications and services. I termed

these key factors as service factors in this study and propose an approach to identify them from

customer reviews of SaaS products. I discussed the categorization of the SaaS customer reviews into

different service factors as a multi-class text classification problem and explained how the machine

learning based text classification methods are can be used to identify them. The proposed approach

builds an ensemble of the top performing machine learning models that fits best on the SaaS reviews

dataset by going through well-defined stages. I prepare the customer reviews using different methods

such as the bag-of-words, in order to make them workable with the machine learning algorithms. The

analysis of the dataset shows a class-imbalance among the output labels. I have used methods such

as stratification and SMOTE to minimize the effect of class-imbalance. Based on the nature of the

problem, I investigated and selected 11 of the most appropriate machine learning algorithms that is

used for text classification. Each of the selected machine learning algorithms are thoroughly cross-

validated and their parameters are tunned systematically in the model’s parameter estimation stage.

An Ensemble approach for identifying SaaS service factors

91

After the parameters for each method that fits best on the dataset, is identified, the trained and fitted

models are introduced to completely new test data. Their performance is evaluated using appropriated

error measure and also through Friedman’s significance test with Nemenyi’s post-hoc tests. The

performance of the classifiers is compared, ranked and the best performing classifiers on the SaaS

dataset is selected to build an ensemble model. The experimental results on the SaaS dataset shows

that the performance of the logistic regression method is the best among the others.

The proposed ensemble for SaaS reviews text classification approach in this chapter is the first

component of the framework discussed in Chapter 4 and is considered as the foundation for the

remaining components of the proposed framework. In order to build an effective trust model, for each

of the identified service factor, the customer’s sentiment towards them also need to be computed.

Furthermore, the trust in a SaaS product cannot be computed if the customer’s sentiment regarding

any of the core service factors are missing. There issues are discussed in details in the next chapter.

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

92

Chapter 6:
T-NN: A Threshold-based Nearest
Neighbour approach for Imputing
missing values of SaaS service factors

6.1 INTRODUCTION

In the previous chapter, I discussed the identification of SaaS service factors from customer reviews

and presented an ensemble approach using machine learning methods. As discussed in Chapter 4, the

next step in the trust management framework is dealing with the missing SaaS service factor and

sentiment intensity scores related to each service factor of the SaaS products. The missing values in

the service factors effects and degrades the decision-making capabilities in selecting the SaaS

products and computing their trust levels. Imputing precisely the missing sentiment intensity scores

of the service factors enables the other components of the framework such as forecasting and

modelling the trust levels using these service factors, to perform optimally. In this chapter, I have

proposed a novel sentiment intensity imputation approach which is highlighted as a component of the

trust management framework in Chapter 4.

In this chapter, the two main area of investigation include, computing the sentiment intensity scores

for each identified service factors for the SaaS products and imputing the missing sentiment intensity

scores in any of the identified service factors. It is important to accurately quantify the user’s

assessment in a service factor. For example, while the following two sentences of an assessment ‘the

operational quality was good’ and ‘the operational quality was the best I have ever experienced’

represent a positive sentiment of the user, the sentiment intensity in the later sentence is higher than

in the former one. Thus, when the sentiment intensity of the service factor is being determined, the

second sentence should get a higher positive score than the first one. Furthermore, inferring the

sentiment intensity of service factors which are not mentioned in the users’ assessment is another

common problem which occur when customers do not provide their opinion in all the service factors.

This chapter is organized as follows. In the next section, I provide a brief overview of the different

pattern of missingness in data, their effects on any analysis on that data and a broad category of

methods involved in dealing with these patterns. In Section 6.3, I present the detailed development

stages of the proposed imputation approach called the Threshold-based Nearest Neighbours (T-NN).

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

93

In Section 6.4, I provide a detailed discussion on the experiments and evaluation results of T-NN

against the well-known imputation approaches. In Section 6.5, I present an example case study to

demonstrate the steps involved in the imputation of a missing value for a given SaaS service factor.

Section 6.6 concludes the chapter.

6.2 MISSING DATA MECHANISMS

The missingness of data can be categorised under three mechanisms (Rubin, 1976) (Little & Rubin,

1986):

1. Missing Completely at Random (MCAR)

2. Missing at Random (MAR)

3. Missing Not at Random (MNAR)

The missingness of data is assumed as MCAR when the missing value of a given variable does not

depend on the values (observed or missing) of other variables. In the MAR assumption, the

missingness of the values in one variable may be dependent on the observed values of other variables.

MCAR and MAR are also known as ignorable missingness. When the missingness of values is

dependent on the unobserved data, then the missingness is assumed to be MNAR. The MNAR

mechanism is also called on-ignorable missingness. The data can be missing in one of many patterns

that includes, univariate, multivariate, monotone, general (Little & Rubin, 1986). The pattern of

missingness in the dataset used in this study follows a general pattern i.e., the missing values are

spread randomly across all the variables.

For most of the predictive models missing values in the datasets can be problematic. The methods

that deal with datasets with missing values generally take two different approaches.

1. In the first approach the instances with missing values are discarded from the dataset which

is also known as complete case analysis.

2. In the second approach the missing values are imputed using different approaches.

Discarding the instances with missing values can lead to several challenges such as shrinking the

dataset size as the possibility of different variables having missing values on different units, leaving

only those complete units that are not representative of the whole population (thus adds significant

bias) (Gelman & Hill, 2006). On the other hand, imputing the missing values in instances helps to

retain those instances which can help to reduce the bias regarding population representation.

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

94

Missing data imputation can be achieved through univariate imputation methods i.e., imputing a

single variable by utilizing information from the variable itself or it can be achieved via multivariate

imputation methods that impute missing data in more than one variable using a multivariate model.

Figure 6.1 Methodology for imputation of the missing service factors of SaaS

6.3 THRESHOLD-BASED NEAREST NEIGHBOUR APPROACH

In this section, an overview of the proposed threshold-based Nearest Neighbour (T-NN) imputation

approach is presented along with the details for each of the development stages.

6.3.1 Overview of Missing sentiment imputation methodology

The flow of the solution methodology for imputing the missing sentiment intensity scores in SaaS

service factors is depicted in Figure 6.1. It is composed of four different stages and each stage is

organized with well-defined steps. In the Pre-processing stage SaaS customer reviews are collected,

segmented and the service factors are identified. In the second stage, the sentiment intensity of each

text segment is computed. The body of the proposed T-NN approach is developed in the Inference

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

95

stage with a well-defined set of steps. Finally, in stage 4, the proposed T-NN imputation approach is

validated in two different schemes with other imputation approaches implemented in this study.

As shown in Figure 6.1, our proposed solution methodology consists of four stages namely:

1. Pre-processing stage

2. Sentiment Intensity computation stage

3. Inference stage

4. Validation stage

Pre-processing is the first stage in which we utilize the method developed in Chapter 5 to determine

and extract the service quality factors from textual reviews. Sentiment intensity computation is the

second stage in which the sentiment intensity in the users’ reviews linked to a service factor in the

first component is determined. We utilize the rule-based model known as the “Valence Aware

Dictionary for sEntiment Reasoning” (VADER) (Hutto & Gilbert, 2015) to achieve this aim.

Inference stage is the third stage of the methodology that aims to infer the sentiment intensity values

of service factors for which no user reviews are present. We propose a modified and enhanced version

of the traditional kNN approach namely T-NN: A Threshold based nearest neighbour with weighted

Euclidean distance to infer the values of the missing factors. Testing stage is the last stage of the

methodology in which the performance of T -NN in inferring the missing sentiment intensity values

are compared with other similar techniques.

In the next subsections, we explain in detail the workings of each stage of the methodology.

6.3.2 Data preparation stage

The objective of this stage which is to collect the reviews and pre-process them is done in three sub-

stages as follows:

Pre-processing

The pre-processing stage is responsible for collecting customer reviews, processing and segmenting

them and determining which SaaS quality factor they relate to. The details of the scrapping and

collecting SaaS customer reviews are presented in Chapter 5, where, from three different sources such

as, AWS marketplace, GetApp.com and Serchen.com we collected 29,361 reviews from 3215 SaaS

products.

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

96

Mathematically, the collected reviews (𝑅𝑇) is the combination of all the reviews for all the products

from n number of review sources considered (RSn), (which in this case is 3) and is written as:

𝑅𝑇 =⋃{𝑅𝑆1, . . , 𝑅𝑆𝑛} (6.1)

The reviews for the product Pi can be represented as:

𝑅𝑃𝑖 = {𝑟 | 𝑟 ∈ 𝑅𝑇} (6.2)

All the collected reviews are pre-processed and cleansed for further analysis. Each review is then split

into a different number of text segments. As outlined in Chapter 5, this step is very important because

a single review may tend to address multiple service factors. The review segments for the product Pi

can be represented as:

𝑆𝑃𝑖 = {𝑠 | 𝑠 ∈ 𝑅𝑃𝑖} (6.3)

The total number of review segments in the whole dataset can be represented as:

𝑆𝑇 = {𝑠 | 𝑠 ∈ 𝑆𝑃𝑖 | 𝑖 ∈ 𝑃𝑇} (6.4)

where PT represents total number of products.

SaaS service factor identification

Each review segment is then labelled using the trained ensemble classifier developed in Chapter 5.

As a result, each of the text segments have a label associated with it as shown in Table 6.1. The label

for each segment either identifies the SaaS quality pillar (service factor) they refer to or an

unidentified segment is labelled “N” if they do not refer to any of the service pillars.

Table 6.1. SaaS service quality pillars (service factors)

Service factor Label/Ta
g

Numeric
Value Availability A 0

Cost optimization C 1
Resiliency E 2
Scalability L 3
Management
(DevOps)

M 4
Unknown N 5
Operational
excellence

O 6
Performance P 7
Reliability R 8
Security S 9

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

97

Mathematically, the label set is expressed in Equation 6.5, and the labelled dataset XL with SaaS

service factors can be represented as expressed in Equation 6.6.

𝑌 = {𝐴, 𝐶, 𝐸, 𝐿,𝑀,𝑁, 𝑂, 𝑃, 𝑅, 𝑆} (6.5)

𝑋𝐿 = {(𝑠1, 𝑦1), (𝑠2, 𝑦2), … , (𝑠𝑛, 𝑦𝑛) | 𝑠 ∈ 𝑆𝑇 | 𝑦 ∈ 𝑌} (6.6)

6.3.3 Sentiment intensity computation stage

The objective of this stage is to compute the sentiment intensity score for each of the text segments

from previous subsection, which we do by using Valence Aware Dictionary for sEntiment Reasoning

(VADER) (Hutto & Gilbert, 2015). VADER uses a reliable valence-based sentiment lexicon used

widely in sentiment analysis of online product reviews, social media and other online systems (Kim

et al., 2016) (Davidson et al., 2017) (Cheng et al., 2017) (Butticè et al., 2017). As its output, it provides

a positive and negative sentiment valence (polarity + intensity) score for text segments. Each text

segment is associated with a compound score (which is a normalized valence score) ranging between

-1 to +1. A value of -1 indicates the most negative or worst sentiment intensity score, and a value of

+1 indicates a positive or best sentiment intensity score. VADER computes the compound sentiment

score for a text segment by summing up the valence scores for all the words in the text segment and

then normalizing the sum between -1 and +1. The compound sentiment score for a given segment si

is calculated as below:

𝑉𝑆 =∑𝑉𝑗

𝑛

𝑗=1

(6.7)

𝑠𝑖 =
𝑉𝑆

√𝑉𝑆 . 𝑉𝑆 + 𝛼
 (6.8)

where Vs represents the sum of valance scores and 𝛼 is used to approximate the max expected value.

As a result of this computation, the sentiment intensity values for each feature j of the SaaS product

i is a value between -1 and 1 and is written as:

𝑆𝑖𝑗 ∈ [−1 1] (𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … ,𝑚) (6.9)

At the end of this stage, for a given product and for each of the identified service factors which the

customer mentions in their reviews, the corresponding sentiment intensity scores are aggregated. For

instance, if product A has 10 text segments associated with it and each of the 10 segments have

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

98

identified the service factor R (Reliability), then the sentiment intensity score for service factor R for

product A, is the aggregated sentiment scores over all the 10 segments is calculated as:

�́�𝐴𝑅 =
∑ 𝑠𝐴𝑅𝑗
𝑛
𝑗=1

𝑛

(6.10)

where n=10 in this case.

As a result of this analysis a dataset is created that include the aggregated sentiment intensity scores

for the services factors associated with each SaaS product. If the review segments do not mention any

of the service factors, then they are assigned with the label ‘N’ and the sentiment scores for those

segments are aggregated under label ‘N’. This value is very helpful and needed in the inference stage

where the overall sentiment intensity score is needed (regardless of the sentiment intensity scores for

each factor).

6.3.4 Inference stage

The objective of this stage is to infer or impute the sentiment intensity values in the service factors

that do not have any associated user reviews and hence missing sentiment intensity score. In our

methodology, we achieve this by using the T-NN approach which is an enhanced version of the kNN

approach. In the traditional kNN approach the k most similar variables, based on their distance to the

candidate variable being studied, are used to decide which class it should belong to. When used in

classification problems, the classes of the selected k instances are used to find the class label with

higher votes (most frequent) as the selected class of the candidate variable. When used in regression,

the aggregated value (mean) of the selected k instances is used to determine/infer the value of the

candidate variable. However, the traditional implementation of the kNN approach has two main

drawbacks:

1. It assumes equal weights for all the variables (features) in the dataset when calculating the

distances between the candidate variable and other variables. This assumption can negatively

affect the prediction results, as variables in real datasets tend to correlate at different levels.

Thus, assigning all the variables the same weight undermines correctly estimating the values

of the candidate variable.

2. Selecting k instances based on their distances from the candidate variable can also lead to

unrealistic estimations. For example, if the distance among the k selected variables is too large,

it can increase the error when inferring the values of the candidate variable. This is especially

relevant in cases of regression when the aggregated values from the k variables are used to

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

99

determine the value of the candidate variable, which is the nature of the problem dealt with in

this chapter.

To address the first drawback, in T-NN we used a weighted Euclidean measure to calculate the

distances among the different variables (features or service factors). The weight to be applied to any

two features is determined by the Pearson’s correlation coefficient that measures the strength and

direction of relationship between them. The rationale here is that if a feature is strongly (either

positively or negatively) related to the candidate feature (which has the missing value), then a higher

weight should be placed on the value of the feature while inferring the value of the candidate feature.

To address the second drawback, we introduce a threshold parameter (T) to select the donor instances

that I consider inferring the value of the candidate feature. The parameter T replaces the traditional

selection approach based on the k closest instances and select ‘the most relevant’ donor features that

improve the accuracy of the inferred values rather than increasing the prediction error. Figure 6.1

shows the five different steps in our proposed T-NN approach to impute the sentiment intensity value

in a feature (service factor) of a SaaS product (instance).

Step 1: Finding donor instance(s) for the candidate instance

A candidate instance refers to that SaaS product in which the sentiment intensity value of a feature

is to be imputed. A donor instance refers to that instance which can be used to impute the missing

sentiment value in the feature of the candidate instance. In order to be a donor, an instance must fulfil

the following two conditions:

1. it should have the sentiment intensity value in the feature for which it needs to be imputed in

the candidate instance.

2. it should have values in those features where the donor has observed values

In other words, the donor instance should have the sentiment intensity value in the feature to be

imputed in the candidate instance.

Representing this mathematically, if X is the dataset with n instances {x1, x2, x3, …., xn} and m features

{k1, k2, k3, …., km}, where the features contain the sentiment intensity scores, then the sentiment

intensity value of the ith instance in jth feature can be represented as Sij. If the value in a candidate xij

needs to be imputed, then those instances that have a value in the jth feature are donor instances D =

{d1, d2, d3, …., dm}.

𝐷 = {𝑥𝑖 ∈ 𝐷| 𝐷 ⊆ 𝑋, 𝑥𝑖𝑗 ≠ 𝑁𝐴 } (6.11)

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

100

where, xij represents the jth feature of the ith instance in the dataset and ‘NA’ represents a missing

sentiment intensity value.

Step 2: Determining the degree of correlation between features

Pearson’s correlation coefficient (PCC) is one of the most used measures of the strength of the linear

relationship between two variables. Correlation also known as the bivariate correlation is used to

measure the strength and direction of relationship between two variables (Lee Rodgers &

Nicewander, 1988). The values of the correlation vary between +1 and -1. A positive correlation

between two features indicates that the value of a feature tends to increase (positive) with an increase

in the value of the other feature and vice versa. A correlation value of +1 means that there is a perfect

positive relationship between the two variables. On the other hand, a negative correlation between

two variables indicates that the value of the feature tends to decrease (negative) with the increase in

the other feature and vice versa. A correlation value of -1 means that there is a perfect negative

relationship between the two variables. A correlation value of 0 means that there is no relationship

between the two variables. The correlation coefficient for two variables is calculated as:

𝜌𝑥𝑦 =
𝐶𝑜𝑣(𝑥, 𝑦)

𝜎𝑥 𝜎𝑦

(6.12)

where Cov(x, y) represents the covariance of the two variables x and y and is calculated as:

𝐶𝑜𝑣(𝑥, 𝑦) =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)
𝑛
𝑖=1

𝑛 − 1

(6.13)

where xi and yi are the ith values (data points) of the variables x and y, and �̅� and �̅� are the mean values

of the variables x and y.

σx represents the standard deviation of x and σy represents the standard deviation of y and is calculated

as follows:

𝜎𝑥 = √
∑ (𝑥𝑖 − �̅�)2
𝑛
𝑖=1

𝑛 − 1

(6.14)

Similarly, the standard deviation of y can be calculated by using Equation 6.14 with values related to

y. These coefficients are used when determining the distance between the features of the candidate

and the donor instances in the next step. It should be noted that the correlation values calculated from

the dataset that has no missing values are different from the ones with missing values in their features.

In such a case, the correlation values between the features needs to be computed according to the

specifics of the dataset. The PCC values among the features of the dataset are depicted in Table 6.3.

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

101

Table 6.2. Correlation values among the features

 A C E L M N O P R S

A 1.0000 0.1769 0.2258 0.0512 0.1970 0.1881 0.1183 0.2172 0.2095 0.0939

C 0.1769 1.0000 0.2084 0.0002 0.2326 0.2437 0.2590 0.1538 0.0681 0.2929

E 0.2258 0.2084 1.0000 0.4756 0.2375 0.3846 0.2009 0.2866 0.2556 0.7025

L 0.0512 0.0002 0.4756 1.0000 0.1129 0.2068 -0.0397 0.1194 0.0818 0.4026

M 0.1970 0.2326 0.2375 0.1129 1.0000 0.4302 0.3606 0.2307 0.3652 0.3623

N 0.1881 0.2437 0.3846 0.2068 0.4302 1.0000 0.2827 0.2422 0.3635 0.3681

O 0.1183 0.2590 0.2009 -0.0397 0.3606 0.2827 1.0000 0.1961 0.2749 0.3573

P 0.2172 0.1538 0.2866 0.1194 0.2307 0.2422 0.1961 1.0000 0.2547 0.0546

R 0.2095 0.0681 0.2556 0.0818 0.3652 0.3635 0.2749 0.2547 1.0000 0.2829

S 0.0939 0.2929 0.7025 0.4026 0.3623 0.3681 0.3573 0.0546 0.2829 1.0000

Step 3: Determine the correlation weighted distance between the donor instance(s) and the

candidate instance

In this step, the distance between the donor instance and the candidate instance is computed. The

distance between any two variables is computed by using one of many techniques such as Euclidean,

Manhattan, cosine. Among these techniques, Euclidean distance measure is the most commonly used

one as it is a good choice when all the input variables contain similar types of data (Brownlee, 2016b).

This fits the input data of our methodology that consists of sentiment intensity scores scaled between

-1 and +1. The distance between a candidate instance xi and donor instance xj.is computed across all

the features m that have sentiment intensity values in both the instances. Mathematically, the distance

between the two instances xi and xj are calculated as follows:

𝑑(𝑥𝑖, 𝑥𝑗) = √∑(𝑥𝑖𝑘 − 𝑥𝑗𝑘)2
𝑚

𝑘=1

(6.15)

where xi and xj represent the candidate and the donor instance respectively,

m represents the number of features that have sentiment values in features of both the instances.

As discussed earlier, our proposed T-NN approach uses a weighted version of the Euclidean distance

to accurately determine the distance between the donor and the candidate instances. This is done by

using weight wk from the perspective of the feature whose value needs to be imputed. This weight is

applied while computing the distance between any two features of the candidate and donor instances.

wk is calculated by determining the correlation between the candidate feature and other features. Once

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

102

the wk values between the candidate and each other feature is determined, the distance between xi and

xj is calculated as shown in Equation 6.15:

𝑑(𝑥𝑖, 𝑥𝑗) = √∑𝑤𝑘(𝑥𝑖𝑘 − 𝑥𝑗𝑘)2
𝑚

𝑘=1

(6.16)

where wk represents the weight for the feature k and is calculated as:

𝑤𝑘 = 1 − |𝜌𝑘𝑙| (6.17)

where, 𝜌𝑘𝑙 represents the pearson’s correlation coefficient between the features k and l.

Step 4: Finding the optimal value for the threshold parameter (T) to select donor instances for
imputation

The threshold parameter (T) is one of the core components of the T-NN approach. As explained in

the previous section, using the threshold range to select the donor instances is more suitable as

compared to selecting instances based on counts. Assuming a given dataset X and a set of donor

instances D, where D ⊆ X, the threshold value T helps to select a subset �̅� from the donor instances

from D. If Sdc is the distance of the closest donor instance dc to the candidate instance, then the

members of �̅� are selected as:

{d ∣ d ∈ D, S𝑑 − S𝑑𝑐 ≤ T} (6.18)

The threshold value defines the closeness among the selected donor instances. T for a given dataset

needs to be determined according to the understanding of the features in it and the count with missing

values. This helps us to reduce errors in the estimation process as compared to only just randomly

considering the value of T. A range of threshold values is tested to find the best one in the tunning

process. The threshold value is considered the best, when it is used in the T-NN inference process

and results in the lowest error value i.e., the predicted value is the closest to the actual value. When

the value of T is set to 0, only the donor instance that has the least distance from the candidate instance

is selected.

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service factors

103

Figure 6.2 Sequence of steps in imputing the missing sentiment intensity values in a dataset

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

104

Step 5: Imputing the missing values of the feature in the candidate instance from the donor
instances within the threshold

The observed values in each variable j from �̅� are then averaged to determine the value of the

candidate feature of instance xi where xi ϵ X.

𝑥𝑖𝑗 =
∑ 𝑑𝑘𝑗
𝑛
𝑘=1

𝑛
, 𝑑 ∈ �̅�

(6.19)

where d represents the donor instances in �̅� and n represents the total number of instances in �̅�.

Figure 6.2 shows the process of imputing the sentiment intensity value of the missing features in a

dataset. To summarise, the step-by-step process of T-NN in imputing the value of a feature in a

candidate instance from donor instances are as follows:

1. Identify all missing values locations in X.

2. For each missing value in the candidate instance xi on a specific variable kj, select the donor

instances D based on the following conditions, (a) donor instances must have the value for that

specific variable kj, (b) donor instances must at least have values for the features that have

observed values in the candidate instance xi. The donor instances D = {d1, d2, d3, …., dm} is a

subset of X (i.e., D ⊆ X).

3. Calculate the Pearson’s correlation coefficients among the variables in X by using Equation 6.12.

4. Calculate the weighted Euclidean distance using Equation 6.16 between donor instances in D and

candidate instance xi. The weights for each feature are calculated using the PCC between all the

features in step 3. Assuming that the data point xil has the value missing, where l represents a

given variable with missing value, then the weight for the variable k is calculated as 𝑤𝑘 = 1 −

|𝜌𝑘𝑙|. 𝜌𝑘𝑙 is the PCC between l and k. For example, in relation to the missing value in xil, when

calculating the distance between xi and dj, the weights for the variable k are assigned based on the

PCC value between variable l and k.

5. Sort the donor instances according to their distances

6. Select the donors �̅� (where, �̅� ⊆ 𝐷) falling within the threshold range. In this step, the donor

instance with the least distance dc is selected first. Other donor instance(s) are then selected if

their distance(s) from instance dc falls within the given threshold range.

7. The values from the variable j of the selected donor instance �̅� is aggregated and assigned to the

variable l of the candidate instance xi (the datapoint with the missing value)

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

105

8. Steps 2 to 7 is repeated to impute all the missing values in X.

6.3.5 Validation stage

The objective of this stage is to test the accuracy of the sentiment intensity values imputed in the

previous step. The validation is done in two schemes namely scheme A and scheme B. Each scheme

uses a different dataset for experimentation, evaluation procedure and comparison techniques to

ascertain the accuracy of T-NN imputation. In both the schemes, the performance of T-NN is

compared against the well-known missing values imputation approaches shown in Table 6.3.

Table 6.3 Imputation approaches

Imputation approaches References
K Nearest Neighbours (Batista & Monard, 2003) (Troyanskaya et al., 2001)
Singular-Value Decomposition (Troyanskaya et al., 2001) (Ghazanfar & Prügel-Bennett, 2013)
Decision Tree (Rockel et al., 2017) (Vateekul & Sarinnapakorn, 2009)
Stochastic Gradient Descent (Ma & Needell, 2018) (Sportisse et al., 2020)
Expectation Maximization (Rahman & Islam, 2011) (García-Laencina et al., 2010)

The details of the validation process of each scheme are explained in the following subsections.

Error Measures

The two error measures used in all the experiments in this chapter are Root Mean Squared Error and

Adjusted R-Squared. Both of these error measures are used during evaluation and testing during:

Tunning the threshold value T using the SVR model in both Scheme A and Scheme B

Performance evaluation of all the approaches including T-NN in Scheme A

Performance evaluation of all the approaches including T-NN in Scheme B using SVR

Root Mean Squared Error

The root mean squared error (RMSE) is a very common metric used in regression analysis where the

values to be compared are continuous in nature. The RMSE is calculated as the standard deviation of

the difference between the true and imputed values (residuals).

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑖

𝑡𝑟𝑢𝑒 − 𝑋𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2𝑛

𝑖=1

𝑛

(6.20)

where 𝑋𝑖𝑡𝑟𝑢𝑒 represents the ith observed value of the variable X and 𝑋𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 represents the ith

imputed value of the variable X.

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

106

The smaller values of RMSE (closer to 0) indicates a better performance by an estimator on the

imputed data. In other words, the RMSE values on an imputed dataset translates to the performance

of the imputation (or prediction) approaches.

R-Squared (Adjusted)

R-squared computes the coefficient of determination. It measures the proportion of variance in

dependent variable accounted by the independent variables. R-squared is calculated as the ratio of the

sum of squares of residuals to the total sum of squares.

𝑅2(𝑦, �̂�) = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − �̅�)2
𝑛
𝑖=1

(6.21)

where yi is the true value for the ith instance in y, �̂�𝑖 is the corresponding predicted value and �̅� is the

mean of y over n instances.

An R-squared value of 1 is the best outcome. One weakness of R-squared is that its value tends to

increase with the increase in the number of the features. Adjusted R-squared (adjusted coefficient of

determination) can be used instead, which penalizes addition of features that does not bring significant

improvement to the performance of the model.

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 − (1 − 𝑅2)
𝑛 − 1

𝑛 − (𝑝 + 1)

(6.22)

where n represents number of instances and p represents the total number of features (independent

variables).

Scheme A

The core idea in Scheme A validation is to replace the actual sentiment intensity values of random

features and randomly selected instances by missing values. By using T-NN, the missing values are

imputed and then compared with the actual values to ascertain their accuracy. This process is repeated

10 times with varying percentages of missing instances in each iteration. The values of missing

percentages are 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50. The dataset for experiment is created under

the MCAR assumption by randomly inserting missing values into the features. The missing instances

in the dataset vary according to the different values of percentage considered. Furthermore, in the

missing instances, a random number of features were marked as having missing values within each

instance of the subsets. The features to have missing values in an instance were selected randomly

but which should satisfy the condition of there being at least two features with observed values

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

107

(sentiment intensity scores) in an instance. The other values can be missing. This condition is chosen

to allow the imputation approaches used in this study to utilize the value from the existing feature to

impute the missing values. The detailed steps in Scheme A are depicted in Figure 6.3.

To determine the accuracy of the imputed values in scheme A by T-NN, they are compared with the

observed values. Other approaches from the literature such as SGD, K-Neighbours, Mean, Median,

SVD, Decision Tree and EM too are used to impute the values in the missing instances. The

performances of the approaches are quantified and compared by determining their root mean squared

error (RMSE) and the adjusted R-squared (Adj-R2).

Figure 6.3 Steps in the validation process of Scheme A

Scheme B

The core idea behind Scheme B validation is to impute the random missing values in different features

of the generated datasets using T-NN, then train an SVR estimator on these imputed datasets, and

evaluate the performance of the SVR estimator. This scheme helps to evaluate the effect on the

performance of SVR when used on imputed datasets. Similarly, the other imputation approaches

generated their imputed datasets and SVR is trained on those datasets. Finally, the performance of

the SVR on all the imputed datasets by different approaches including T-NN is compared.

For scheme B, we started with a dataset of 542 product instances from the 729 available ones. The

remaining 187 instances were kept for testing purposes as explained later. In scheme B the missing

values are introduced to the dataset by adding new data instances that contain missing values in

random features and test the accuracy of T-NN in imputing them. Scheme B differs from Scheme A

in two ways, as follows:

• Dataset: Scheme B adds additional data instances with missing values to the initial dataset.

As seen in Table 6.8, in scheme A, all the datasets have the same number of total instances

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

108

(542) with varying levels of missing instances and features. Scheme B, as shown in Table

6.8, starts with a dataset of 542 instances. It then creates 10 more datasets by adding new

instances that have missing values to the initial dataset. The missing instances have varying

levels of missing values in each feature as compared to the different datasets of Scheme B

and Scheme A. For example, Table 6.8 shows that the variable E which represent the

‘Resiliency’ service factor, has the most missing values compared to the other datasets of

the scheme. The variable M representing the ‘Management or DevOps’ service factor, has

the least number of missing values in each dataset. The variable N which represents the

segments that are not associated with any service factor, also have fewer missing values.

Adding new instances and features with missing values represents an online scenario where

the incoming data may be incomplete to different degrees. The objective now is to test how

effective and accurate the proposed T-NN approach is to impute the missing values in such

scenarios.

• Validation approach: Scheme B uses a separate machine learning-based approach to test

the accuracy of T-NN to impute missing values. It consists of the following steps:

o After the missing values in each dataset are imputed, the dataset is considered as the

training dataset. The 187 instances which had service intensity values in all the features

from the initial dataset are termed as the testing dataset.

o In both the training and testing dataset, the feature variable M that had the least number

of missing values (from Table 6.8) is considered as the output variable.

o On the training dataset, SVM is used to train and determine the sentiment intensity

value of the feature with label M based on the values of the other features. The training

dataset is divided into 10 folds x 3 repetitions and the accuracy in the prediction of

each is evaluated by using RMSE and R-squared.

o Once the SVR model is trained, it is applied on the unseen testing dataset that has 187

instances with sentiment intensity value in each feature. While testing, the objective is

to predict the values of the feature variable M and compare it with the observed values

of M in the testing dataset. The predicted output is then compared with the actual

output and the accuracy of the approach is determined by using RMSE and Adj-R2.

o The SVR model is also compared against the baseline performance model by using the

RMSE and Adj-R2 techniques.

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

109

o Apart from the dataset imputed from T-NN, the above process is also applied on the

datasets imputed from SGD, K-Neighbours, Mean, Median, SVD, Decision Tree and

EM approaches. The value in feature variable M is predicted in each approach and

compared with its actual value.

Performance evaluation with SVR:
The Support Vector Machine (SVM) was initially introduced by Vapnik (Vapnik, 1998) to solve

binary classification problems (V. Vapnik, 1999). Beside classification, the idea of support vector

machines has been extended and successfully used in regression problems as support vector for

regression (SVR) (Wu et al., 2005) (Yu et al., 2006). SVM belongs to the family of the margin-based

classification (and regression) approaches where the hyperplane that separates the instances is

constructed using the maximum margin in the feature space. The generic estimation function for SVR

can be written as:

𝑓(𝑥) = 𝑤 ∙ 𝑥 + 𝑏 (6.23)

The SVR is implemented using different kernels. These kernels can be linear and non-linear in nature.

Non-linear kernels such as radial basis function (RBF) are more useful when the training data cannot

be separated by a straight line (linearly). A linear SVR kernel function takes the form:

𝑘(𝑥, 𝑥𝑖) = 𝑥 ∙ 𝑥𝑖 (6.24)
whereas, the RBF function kernel is:

𝐾(𝑥, 𝑥𝑖) = 𝑒𝑥𝑝 (−𝛾||𝑥 − 𝑥𝑖||
2
) , 𝛾 > 0 (6.25)

In scheme B, SVR is used during the cross-validation and on the test dataset. We have also used SVR

in tuning the T-NN for the optimal threshold value in both the schemes. The evaluation is performed

with both the Linear and RBF kernels. All the performance results by SVR in scheme B are compared

to a baseline estimator implemented using a zero-rule algorithm with median as a central tendency

(Brownlee, 2016a). Figure 6.4 shows the steps in the validation process of Scheme B.

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service factors

110

Figure 6.4 Steps in the validation process of Scheme B

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

111

6.4 EXPERIMENTS AND EVALUATION RESULTS

This section explains the steps in the implementation of Scheme A and Scheme B as depicted in

Figure 6.3 and Figure 6.4.

6.4.1 Scheme A

Dataset description

The initial dataset is created following the steps discussed in the pre-processing stage of our proposed

solution methodology which include the aggregated sentiment intensity scores for the services factors

associated with each SaaS product. In this study we considered a dataset which had reviews for 3215

SaaS products. From those reviews, only 729 products were found as those that have an aggregated

sentiment intensity score for all the (9) service factors. For scheme A, we created a dataset of 542

product instances from the 729 available which had the aggregated sentiment intensity values in all

the features. The dataset for experiment is created under the MCAR assumption by randomly inserting

missing values into the features.

Table 6.4. Datasets Description (scheme A)

Missing
percentage

Total
instances

Missing
instances

Number of missing values in each feature
A C E L M N O P R S

0 542 0 0 0 0 0 0 0 0 0 0 0
5 542 27 13 10 19 15 15 13 10 14 12 14
10 542 54 25 26 25 20 30 23 16 27 21 19
15 542 81 39 36 42 33 38 35 32 43 29 35
20 542 108 48 42 47 49 54 52 46 56 42 47
25 542 136 68 55 67 62 58 70 68 73 59 64
30 542 163 79 71 85 80 78 70 77 77 68 82
35 542 190 79 86 88 78 74 93 80 93 76 87
40 542 217 93 92 94 92 99 96 105 102 97 98
45 542 243 111 111 126 101 119 108 110 121 116 114
50 542 271 116 127 122 116 116 136 121 126 124 118

As discussed earlier, the core idea in scheme A is to replace the actual sentiment intensity values of

random features and randomly selected instances by missing values. By using T-NN, the missing

values are imputed and then compared with the actual values to ascertain their accuracy. This process

is repeated 10 times with varying percentages of missing instances in each iteration. The values of

missing percentages are 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50. As shown in Table 6.4, the missing

instances in the dataset vary according to the different values of percentage considered. Furthermore,

as shown in Table 6.4, in the missing instances, a random number of features were marked as having

missing values within each instance of the subsets. The features to have missing values in an instance

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

112

were selected randomly but which should satisfy the condition of there being at least two features

with observed values (sentiment intensity scores) in an instance. The other values can be missing.

This condition is chosen to allow the imputation approaches used in this study to utilize the value

from the existing feature to impute the missing values.

As shown in Table 6.4, for scheme A, the initial complete dataset consists of 542 instances (each

instance representing a SaaS product and its related sentiment intensity scores for the service factors).

Table 6.4 shows that for each of the generated dataset, the number of instances with missing values

is increased with a 5 percent increment. In each of the generated datasets, the number of missing

values in each of the variables (service factors) are different as well. Figure 6.3 shows in detail, the

steps in the validation process of Scheme A. After the datasets are prepared; the Pearson’s correlation

coefficient is calculated for all the features in the dataset. Table 6.2 shows the PCC calculated for the

feature with no missing values.

Tunning for optimal threshold

Tables 6.4 shows the different level/s of missing instances and features used in schemes A. For each

dataset, we need to determine the threshold parameter T. We do that by tuning and determining the

optimal threshold value for parameter T according to the following steps:

Step 1: We consider each dataset that has different percentages of missing values i.e., 0, 5, 10, 15, 20,

25, 30, 35, 40, 45 and 50.

Step 2: We define a possible set of T as {0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20,

0.22, 0.24, 0.26, 0.28, 0.30, 0.32, 0.34, 0.36, 0.38 and 0.40}. In other words, the possible set represents

the range from which the value of T is chosen.

Step 3: For each value of the possible set of T, apply the proposed T-NN approach to impute the

missing values in each of the datasets from step 1. This result in 11 x 21 imputed datasets.

Step 4: Using SVR, run the 10 x 3 folds cross-validation on each of the imputed datasets from step 3

(using RMSE as the evaluation criteria).

Step 5: Select that T value that results in the lowest RMSE score aggregated over all the datasets with

different missing percentages.

 T-N
N

: A Threshold-based N
earest N

eighbour approach for Im
puting m

issing values of SaaS service
factors

113

Table 6.5. R
M

SE values by increasing the threshold values (schem
e A

)

0.4

0.134
2

0.133
6

0.130
1

0.129
7

0.131
5

0.131
3

0.129
2

0.130
4

0.125
4

0.126
1

0.127
6

0.129
9

0.38

0.134
2

0.133
5

0.129
9

0.129
6

0.131
4

0.131
2

0.128
9

0.130
2

0.125
3

0.126
0

0.127
3

0.129
8

0.36

0.134
2

0.133
3

0.129
9

0.129
6

0.131
3

0.131
1

0.128
7

0.130
2

0.125
3

0.125
9

0.127
3

0.129
7

0.34

0.134
2

0.133
3

0.129
8

0.129
4

0.130
9

0.131
0

0.128
7

0.129
4

0.125
3

0.125
9

0.126
8

0.129
5

0.32

0.134
2

0.133
3

0.129
8

0.129
2

0.130
8

0.130
9

0.128
7

0.129
2

0.125
1

0.125
6

0.126
6

0.129
4

0.3

0.134
2

0.133
3

0.129
8

0.129
5

0.130
7

0.130
8

0.128
6

0.129
3

0.125
2

0.125
3

0.126
3

0.129
3

0.28

0.134
2

0.133
2

0.129
7

0.129
4

0.130
6

0.130
9

0.128
5

0.128
8

0.125
0

0.125
0

0.126
1

0.129
2

0.26

0.134
2

0.133
3

0.129
7

0.129
4

0.130
6

0.130
9

0.128
3

0.128
6

0.124
9

0.124
8

0.126
1

0.129
2

0.24

0.134
2

0.133
3

0.129
8

0.129
2

0.130
6

0.130
7

0.128
3

0.128
6

0.124
8

0.125
0

0.125
9

0.129
1

0.22

0.134
2

0.133
2

0.129
8

0.129
1

0.130
3

0.130
7

0.127
8

0.128
5

0.124
9

0.125
1

0.125
7

0.129
0

0.2

0.134
2

0.133
1

0.129
7

0.128
8

0.130
6

0.130
7

0.128
1

0.128
2

0.125
1

0.125
1

0.126
0

0.129
1

0.18

0.134
2

0.133
2

0.129
7

0.129
0

0.130
9

0.130
8

0.127
6

0.127
7

0.125
3

0.125
1

0.125
9

0.129
0

0.16

0.134
2

0.133
3

0.129
9

0.129
1

0.131
1

0.130
8

0.128
0

0.127
7

0.125
2

0.125
1

0.126
7

0.129
2

0.14

0.134
2

0.133
1

0.130
1

0.128
8

0.131
5

0.130
7

0.127
7

0.128
5

0.125
2

0.125
0

0.127
1

0.129
3

0.12

0.134
2

0.133
5

0.129
8

0.129
5

0.131
1

0.130
7

0.128
0

0.128
6

0.125
5

0.125
0

0.127
3

0.129
4

0.1

0.134
2

0.133
5

0.129
6

0.129
0

0.131
3

0.130
9

0.127
8

0.129
1

0.125
1

0.125
3

0.127
6

0.129
4

0.08

0.134
2

0.133
4

0.130
0

0.130
3

0.133
0

0.131
2

0.129
4

0.129
0

0.125
8

0.126
0

0.128
8

0.130
1

0.06

0.134
2

0.136
7

0.131
0

0.130
7

0.133
7

0.131
1

0.129
5

0.129
9

0.127
3

0.126
0

0.129
7

0.130
9

0.04

0.134
2

0.136
7

0.132
5

0.130
6

0.134
0

0.131
4

0.129
7

0.129
8

0.128
3

0.125
5

0.128
6

0.131
0

0.02

0.134
2

0.136
7

0.135
0

0.131
6

0.134
4

0.131
4

0.133
2

0.129
7

0.128
5

0.128
8

0.131
1

0.132
2

0

0.134
2

0.137
1

0.142
5

0.132
3

0.135
5

0.135
4

0.134
9

0.131
7

0.131
1

0.134
7

0.136
4

0.135
1

0

5

10

15

20

25

30

35

40

45

50

Avg

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

114

Figure 6.5 RMSE values averaged on all the datasets with different missing percentages of

Scheme A

Table 6.5 depict the RMSE scores on each set of the imputed datasets used in Schemes A. It can be

seen that the aggregated RMSE score tends to drop with an increase in the threshold value before

rising again as shown in Figure 6.5. The lowest aggregated RMSE score of 0.12902 is observed at

the threshold value (T) of 0.22. Using the lowest values of T in each scheme, the performance results

of the proposed T-NN approach in imputing the missing features is compared with the results of other

approaches in the next section.

Performance evaluation

Figure 6.6 plots the performance of the proposed T-NN approach against SGD, K-Neighbours, Mean,

Median, SVD, Decision Tree and EM approaches in terms of their RMSE scores on different datasets.

Table 6.6 shows the RMSE values of each approach on different datasets that have varying levels of

missing values. From Table 6.6, it can be seen that T-NN outperforms the other imputation

approaches with lesser RMSE scores on each dataset. The performance of EM is the worst among all

the other approaches including the univariate Mean and Median imputation approaches. The

performance of SGD, although it is close to the proposed T-NN approach, it is not better.

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

115

Table 6.6. RMSE scores with different missing percentages (scheme A)

Imputers Missing values percentage
5 10 15 20 25 30 35 40 45 50

T-NN 0.2324 0.2225 0.2128 0.2213 0.2280 0.2165 0.2246 0.2179 0.2141 0.2058
SGD 0.2465 0.2281 0.2187 0.2221 0.2291 0.2183 0.2252 0.2197 0.2144 0.2102

K-NN 0.2397 0.2260 0.2237 0.2293 0.2381 0.2211 0.2310 0.2258 0.2192 0.2178
Mean 0.2757 0.2412 0.2401 0.2453 0.2448 0.2396 0.2407 0.2375 0.2322 0.2243

Median 0.2800 0.2432 0.2422 0.2475 0.2460 0.2398 0.2421 0.2367 0.2324 0.2245
SVD 0.2653 0.2718 0.2524 0.2519 0.2592 0.2568 0.2482 0.2584 0.2570 0.2425

D Tree 0.3332 0.3086 0.2835 0.3109 0.3146 0.3191 0.3129 0.2952 0.3040 0.2829
EM 0.3943 0.3094 0.3165 0.3221 0.3280 0.3258 0.3290 0.3400 0.3287 0.3221

Table 6.7. Adjusted R-squared values with different missing percentages (scheme A)

Imputers Missing values percentage
5 10 15 20 25 30 35 40 45 50

T-NN 0.2826 0.1715 0.2403 0.2177 0.1736 0.2013 0.1435 0.1809 0.1638 0.1891
SGD 0.1925 0.1293 0.1975 0.2124 0.1658 0.1877 0.1390 0.1673 0.1618 0.1545
K-NN 0.2365 0.1457 0.1607 0.1603 0.0992 0.1672 0.0940 0.1201 0.1240 0.0914
Mean -0.0103 0.0269 0.0328 0.0388 0.0479 0.0222 0.0170 0.0272 0.0164 0.0371
Median -0.0414 0.0106 0.0163 0.0221 0.0380 0.0204 0.0048 0.0336 0.0149 0.0355
SVD 0.0646 -0.2356 -0.0683 -0.0136 -0.0679 -0.1238 -0.0452 -0.1518 -0.2042 -0.1258
D Tree -0.4749 -0.5938 -0.3477 -0.5437 -0.5723 -0.7351 -0.6618 -0.5034 -0.6851 -0.5317
EM -1.0655 -0.6016 -0.6802 -0.6567 -0.7098 -0.8089 -0.8377 -0.9948 -0.9702 -0.9862

Figure 6.7 and Table 6.7 shows the performances of the approaches in terms of the adjusted R-squared

metric. From the results, it can be seen that though there are approaches depicting lower values (i.e.,

lower proportion of variance is explained by the fits), T-NN fits relatively better than the others. The

negative values for the adjusted R-squared in the cases of EM, DT and SVD indicate that these models

have the worst fits on the datasets.

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

116

Figure 6.6 RMSE scores comparison on all imputed datasets with different missing percentages

Figure 6.7 Adjusted R-squared scores comparison on all imputed datasets with different missing

percentages

6.4.2 Scheme B

Dataset description

Initially the dataset is created following the steps in the pre-processing stage of our proposed solution

methodology that include the aggregated sentiment intensity scores for the services factors associated

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

117

with each SaaS product. The analysis indicates that, out of 3215 products, only 729 products have the

aggregated sentiment intensity scores for all the (9) service factors while the remaining products are

missing the aggregated sentiment intensity scores for one or more service factors.

As mentioned in earlier, in this study we had only 729 products which had an aggregated sentiment

intensity score for all the (9) service factors. For scheme B, we started with a dataset of 542 product

instances from the 729 available ones. The remaining 187 instances were kept for testing purposes as

explained later. As discussed in subsection, the main idea for scheme B is to introduce missing values

to the dataset by adding new data instances that contain missing values in random features and test

the accuracy of T-NN in imputing them.

Table 6.8. Datasets Description (scheme B)

Missing
percentage

Total
instances

Missing
instances

Number of missing values in each feature
A C E L M N O P R S

0 542 0 0 0 0 0 0 0 0 0 0 0
5 571 29 22 7 29 29 0 0 15 6 1 7
10 603 61 22 12 61 61 0 1 33 14 2 39
15 638 96 22 22 96 96 0 1 47 23 4 74
20 678 136 25 29 136 136 1 3 67 30 6 114
25 723 181 70 29 181 181 1 4 67 30 6 159
30 775 233 112 59 231 209 1 6 96 51 30 189
35 834 292 135 90 290 268 7 10 140 74 44 225
40 904 362 140 119 360 338 13 17 195 103 60 295
45 986 444 222 140 442 420 13 22 230 123 66 377
50 1084 542 317 170 539 504 17 30 291 147 89 469

Tunning for optimal threshold

Tables 6.8 shows the different level/s of missing instances and features used in schemes B. For each

dataset, we need to determine the threshold parameter T. We do that by tuning and determining the

optimal threshold value for parameter T according to the following steps:

Step 1: We consider each dataset that has different percentages of missing values i.e., 0, 5, 10, 15, 20,

25, 30, 35, 40, 45 and 50.

Step 2: We define a possible set of T as {0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20,

0.22, 0.24, 0.26, 0.28, 0.30, 0.32, 0.34, 0.36, 0.38 and 0.40}. In other words, the possible set represents

the range from which the value of T is chosen.

Step 3: For each value of the possible set of T, apply the proposed T-NN approach to impute the

missing values in each of the datasets from step 1. This result in 11 x 21 imputed datasets.

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

118

Step 4: Using SVR, run the 10 x 3 folds cross-validation on each of the imputed datasets from step 3

(using RMSE as the evaluation criteria).

Step 5: Select that T value that results in the lowest RMSE score aggregated over all the datasets with

different missing percentages.

Figure 6.8 RMSE values averaged on all the datasets with different missing percentages of Scheme

B

Tables 6.9 depict the RMSE scores on each set of the imputed datasets used in Schemes B. The RMSE

value decreases with an increase in the T value before increasing again, as shown in Figure 6.8. From

Table 6.9, it can be seen that the lowest aggregated RMSE score of 0.15543 is observed at the

threshold of 0.16 before rising again. In the next section, using the lowest values of T in each scheme,

the performance results of the proposed T-NN approach in imputing the missing features is compared

with the results of other approaches.

 T-N
N

: A Threshold-based N
earest N

eighbour approach for Im
puting m

issing values of SaaS service
factors

119

Table 6.9. R
M

SE values by increasing the threshold values (schem
e B

)

0.4

0.134
2

0.137
4

0.140
3

0.148
2

0.151
6

0.156
1

0.162
8

0.166
7

0.174
2

0.179
0

0.185
0

0.157
8

0.38

0.134
2

0.137
3

0.140
1

0.148
1

0.151
4

0.155
9

0.162
6

0.166
5

0.174
0

0.178
9

0.184
9

0.157
6

0.36

0.134
2

0.137
3

0.140
1

0.148
0

0.151
2

0.155
7

0.162
5

0.166
2

0.173
6

0.178
6

0.184
6

0.157
4

0.34

0.134
2

0.137
3

0.140
1

0.147
9

0.150
8

0.155
3

0.162
0

0.165
9

0.173
3

0.178
1

0.184
1

0.157
2

0.32

0.134
2

0.137
3

0.140
0

0.147
9

0.150
7

0.155
3

0.161
9

0.165
8

0.173
1

0.177
9

0.183
9

0.157
1

0.3

0.134
2

0.137
2

0.139
9

0.147
8

0.150
7

0.155
2

0.161
9

0.165
8

0.172
9

0.177
7

0.183
9

0.157
0

0.28

0.134
2

0.137
2

0.139
9

0.147
6

0.150
5

0.154
9

0.161
6

0.165
5

0.172
6

0.177
3

0.183
3

0.156
8

0.26

0.134
2

0.137
2

0.139
8

0.147
5

0.150
0

0.154
4

0.161
3

0.165
0

0.172
0

0.176
8

0.182
8

0.156
5

0.24

0.134
2

0.137
1

0.139
7

0.147
4

0.149
7

0.154
1

0.160
9

0.164
8

0.171
7

0.176
9

0.182
9

0.156
3

0.22

0.134
2

0.137
3

0.139
7

0.147
2

0.149
2

0.153
4

0.160
6

0.164
0

0.170
8

0.176
0

0.181
7

0.155
8

0.2

0.134
2

0.137
3

0.139
7

0.147
2

0.149
3

0.153
6

0.160
6

0.164
2

0.170
5

0.175
5

0.180
8

0.155
7

0.18

0.134
2

0.137
3

0.139
8

0.147
2

0.149
3

0.153
7

0.160
5

0.163
9

0.170
4

0.175
5

0.180
5

0.155
7

0.16

0.134
2

0.137
2

0.139
7

0.146
9

0.148
8

0.153
3

0.160
0

0.163
6

0.170
4

0.175
5

0.180
1

0.155
4

0.14

0.134
2

0.137
3

0.139
9

0.147
0

0.149
1

0.153
6

0.160
7

0.163
9

0.170
7

0.176
0

0.180
5

0.155
7

0.12

0.134
2

0.137
1

0.140
2

0.147
0

0.149
2

0.154
0

0.160
6

0.164
4

0.171
3

0.176
2

0.180
4

0.155
9

0.1

0.134
2

0.137
1

0.140
4

0.147
0

0.148
9

0.153
4

0.160
3

0.164
5

0.171
6

0.176
9

0.181
4

0.156
0

0.08

0.134
2

0.137
0

0.140
3

0.146
9

0.148
8

0.153
1

0.160
8

0.164
6

0.171
2

0.176
5

0.181
1

0.155
9

0.06

0.134
2

0.137
0

0.140
4

0.146
7

0.148
7

0.152
6

0.161
0

0.164
6

0.171
0

0.175
6

0.180
7

0.155
7

0.04

0.134
2

0.137
1

0.140
7

0.148
3

0.150
1

0.154
5

0.161
9

0.165
9

0.172
9

0.177
3

0.182
1

0.156
8

0.02

0.134
2

0.137
7

0.141
2

0.148
6

0.149
7

0.153
8

0.162
5

0.166
8

0.174
2

0.178
6

0.183
4

0.157
3

0

0.134
2

0.137
1

0.141
0

0.148
7

0.150
5

0.155
4

0.162
9

0.167
0

0.174
7

0.178
5

0.182
7

0.157
5

0

5

10

15

20

25

30

35

40

45

50

Av

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

120

Performance evaluation

As discussed earlier, in scheme B, the datasets are generated by adding instances with missing values

to the complete dataset. Each generated dataset has different percentages of missing values with

different total number of instances. The datasets are then imputed using the selected imputation

approaches in this study. In scheme B, as the actual values for the missing datapoints are unknown,

the imputed datasets by the selected approaches are evaluated using cross-validations and test dataset.

The cross validation and test performances on the imputed datasets highlights the effectiveness of the

imputation approaches on unseen data.

Figure 6.9 Cross-validation results from Linear and RBF kernels (RMSE) on T-NN imputed

datasets

SVR kernel selection
Similar to the procedure applied in threshold tuning earlier, the cross-validation in scheme B is also

performed using SVR. All the experiments are performed using SVR with a linear kernel and a non-

linear (RBF) kernel and compared to a baseline implementation using a zero rule. The zero rule is

implemented using the central tendency (mean values) of each variable. However, the results from

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

121

our experiments show that the RBF kernel performs better than the linear kernel with higher

performance scores in Figures 6.9 and Figure 6.10. Therefore, we are reporting the results from the

SVR with the RBF kernel only. In the next subsections, we show the results by performing cross-

validation and test results.

Figure 6.10 Cross-validation results from Linear and RBF kernels (Adjusted R-squared) on T-NN

imputed datasets

Cross-validation results performed on the training dataset
As mentioned in earlier, the imputed datasets by all the selected approaches in this study are evaluated

with 10 x 3 folds cross-validation. Table 6.10 shows the RMSE scores for all the approaches during

the cross-validation. The results show that the proposed T-NN outperforms all the other imputation

approaches with lowest RMSE scores on the datasets with different missing value percentages. Just

as with the results in scheme A, the performance of the EM approach is the worst among the other

imputation approaches. Overall, an increase in the RMSE error can be observed with the gradual

addition of missing values as seen in Figure 6.11. The adjusted R-squared from Table 6.11 also shows

that the proposed T-NN fits better compared to the other approaches consistently throughout the

datasets used (although a lower proportion of variance is explained by the fits). Figure 6.12 shows a

decrease in the adjusted R-squared scores with the increase in the number of missing values in the

datasets.

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

122

Table 6.10. Cross-validation results with RMSE values using SVR on imputed datasets (scheme B)

Imputers Missing values percentage
0 5 10 15 20 25 30 35 40 45 50

T-NN 0.1342 0.1371 0.1397 0.1469 0.1488 0.1533 0.1600 0.1636 0.1704 0.1754 0.1801
K-Neighbors 0.1342 0.1373 0.1400 0.1474 0.1499 0.1543 0.1617 0.1655 0.1713 0.1758 0.1811
SVD 0.1342 0.1374 0.1395 0.1472 0.1502 0.1538 0.1594 0.1638 0.1705 0.1759 0.1815
SGD 0.1342 0.1373 0.1400 0.1479 0.1509 0.1555 0.1617 0.1658 0.1727 0.1776 0.1832
Median 0.1342 0.1376 0.1407 0.1494 0.1536 0.1578 0.1648 0.1691 0.1765 0.1822 0.1884
Mean 0.1342 0.1376 0.1407 0.1494 0.1535 0.1577 0.1648 0.1691 0.1767 0.1825 0.1887
Decision Tree 0.1342 0.1367 0.1397 0.1467 0.1540 0.1542 0.1612 0.1641 0.1737 0.1781 0.1888
EM 0.1342 0.1371 0.1403 0.1499 0.1544 0.1581 0.1670 0.1732 0.1814 0.1898 0.1927

Table 6.11. Cross-validation results with Adjusted R-squared values using SVR on imputed datasets

(scheme B)

Imputers Missing values percentage
0 5 10 15 20 25 30 35 40 45 50

T-NN 0.2536 0.2638 0.2711 0.2735 0.3092 0.2983 0.2975 0.2962 0.2674 0.2706 0.2655
K-Neighbors 0.2536 0.2628 0.2687 0.2683 0.3004 0.2900 0.2819 0.2823 0.2638 0.2693 0.2601
SVD 0.2536 0.2612 0.2731 0.2702 0.2970 0.2932 0.3015 0.2979 0.2698 0.2688 0.2565
SGD 0.2536 0.2617 0.2686 0.2641 0.2909 0.2792 0.2818 0.2778 0.2480 0.2519 0.2412
Decision Tree 0.2536 0.2681 0.2710 0.2749 0.2631 0.2906 0.2881 0.2985 0.2571 0.2677 0.2167
Median 0.2536 0.2592 0.2614 0.2487 0.2658 0.2597 0.2552 0.2493 0.2147 0.2140 0.1969
Mean 0.2536 0.2583 0.2611 0.2485 0.2667 0.2603 0.2553 0.2488 0.2129 0.2116 0.1942
EM 0.2536 0.2639 0.2653 0.2461 0.2600 0.2596 0.2366 0.2197 0.1832 0.1543 0.1656

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

123

Figure 6.11 RMSE scores comparison on all imputed datasets with different missing percentages

during cross-validation

Figure 6.12 Adjusted R-squared scores comparison on all imputed datasets with different missing

percentages during cross-validation

In scheme B, it must be noted here that, in each dataset the imputed values are estimates which means

that these values have corresponding errors associated to them. Any predictions made using the

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

124

imputed datasets propagates these errors with them. The interpretation and adjustment of this

additional error is not within the scope of this study.

Table 6.12 Test results with RMSE values using SVR on imputed datasets (scheme B)

Imputers Missing values percentage
0 5 10 15 20 25 30 35 40 45 50

T-NN 0.2783 0.2776 0.2759 0.2757 0.2753 0.2750 0.2737 0.2744 0.2730 0.2720 0.2717
SGD 0.2783 0.2783 0.2771 0.2761 0.2763 0.2755 0.2745 0.2757 0.2745 0.2731 0.2733
SVD 0.2783 0.2783 0.2767 0.2761 0.2762 0.2757 0.2746 0.2758 0.2757 0.2753 0.2768
K-Neighbors 0.2783 0.2783 0.2773 0.2759 0.2757 0.2755 0.2754 0.2755 0.2746 0.2728 0.2725
Decision Tree 0.2783 0.2772 0.2765 0.2762 0.2789 0.2770 0.2756 0.2776 0.2779 0.2765 0.2772
Mean 0.2783 0.2785 0.2773 0.2768 0.2774 0.2778 0.2768 0.2774 0.2769 0.2761 0.2763
Median 0.2783 0.2784 0.2771 0.2768 0.2775 0.2780 0.2770 0.2775 0.2766 0.2762 0.2765
EM 0.2783 0.2784 0.2771 0.2764 0.2773 0.2763 0.2773 0.2807 0.2804 0.2817 0.2798

Table 6.13 Test results with Adjusted R-squared using SVR on imputed datasets (scheme B)

Imputers Missing values percentage
0 5 10 15 20 25 30 35 40 45 50

T-NN 0.2913 0.2954 0.3043 0.3062 0.3086 0.3109 0.3177 0.3147 0.3226 0.3278 0.3301
K-Neighbors 0.2913 0.2920 0.2973 0.3049 0.3069 0.3085 0.3092 0.3095 0.3143 0.3239 0.3259
SGD 0.2913 0.2920 0.2983 0.3039 0.3036 0.3081 0.3137 0.3085 0.3150 0.3225 0.3221
Mean 0.2913 0.2910 0.2975 0.3007 0.2982 0.2965 0.3022 0.2998 0.3031 0.3077 0.3072
Median 0.2913 0.2915 0.2987 0.3006 0.2975 0.2958 0.3011 0.2993 0.3047 0.3073 0.3060
SVD 0.2913 0.2917 0.3007 0.3041 0.3043 0.3072 0.3136 0.3080 0.3091 0.3118 0.3048
Decision Tree 0.2913 0.2972 0.3016 0.3036 0.2902 0.3009 0.3082 0.2986 0.2978 0.3056 0.3027
EM 0.2913 0.2914 0.2985 0.3024 0.2986 0.3045 0.2996 0.2833 0.2854 0.2792 0.2895

Validation on test dataset
In scheme B, the approaches, once trained on the imputed datasets, are tested on a validation dataset.

This validation step is like scheme A, in that the actual target values for which the predictions are

made are known. The difference between these schemes as discussed earlier is that the models are

trained on complete data in scheme A, whereas in scheme B, the models are trained on partially

imputed datasets. The RMSE scores on the test dataset imputed by all the selected approaches is

depicted in Table 6.12 and Figure 6.13. The SVR model trained on the datasets imputed by the

proposed T-NN approach has lower RMSE score compared to the models trained on the imputed

datasets by the other approaches. The RMSE scores from the datasets imputed by the EM approach

is the highest. Similarly, the adjusted R-squared scores from Table 6.13 and Figure 6.14 show that

SVR model fits better on the datasets imputed with T-NN compared to the datasets imputed by the

other approaches (although a lower proportion of variance is explained by the fits).

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

125

Figure 6.13 RMSE scores comparison on all imputed datasets with different missing percentages on

test dataset

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

126

Figure 6.14 Adjusted R-squared scores comparison on all imputed datasets with different missing

percentages on test dataset

The performance comparison of the SVR model with the baseline is depicted in Table 6.14. Table

6.14 shows the results from the experiments on datasets imputed with the T-NN approach. SVR

performs better than the baseline with lower RMSE scores as shown in Figure 6.17 and higher

adjusted R-squared scores in Figure 6.18.

Table 6.14. SVR vs Baseline performance with RMSE and Adjusted R-Squared

Estimators Missing percentage (Scheme B)

0 5 10 15 20 25 30 35 40 45 50

R
M

SE

C
V

 SVR 0.1342 0.1372 0.1397 0.1469 0.1488 0.1533 0.1600 0.1636 0.1704 0.1755 0.1801

Baseline 0.1612 0.1645 0.1682 0.1780 0.1836 0.1883 0.1956 0.1986 0.2030 0.2088 0.2137

Te
st SVR 0.2783 0.2776 0.2759 0.2757 0.2753 0.2750 0.2737 0.2744 0.2730 0.2720 0.2717

Baseline 0.3375 0.3378 0.3377 0.3381 0.3382 0.3379 0.3374 0.3376 0.3382 0.3381 0.3376

A
dj

us
te

d
R

-
sq

ua
re

d
C

V
 SVR 0.2536 0.2638 0.2711 0.2735 0.3092 0.2983 0.2975 0.2962 0.2674 0.2706 0.2655

Baseline -0.0531 -0.0485 -0.0522 -0.0427 -0.0429 -0.0382
-
0.0375

-
0.0303

-
0.0351

-
0.0251

-
0.0294

Te
st

SVR 0.2913 0.2954 0.3043 0.3062 0.3086 0.3109 0.3177 0.3147 0.3226 0.3278 0.3301

Baseline -0.0425 -0.0436 -0.0420 -0.0433 -0.0436 -0.0408
-
0.0365

-
0.0373

-
0.0396

-
0.0380

-
0.0347

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

127

Figure 6.15 RMSE scores comparison on imputed datasets using T-NN

Figure 6.16 Adjusted R-squared scores comparison on imputed datasets using T-NN

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

128

Figure 6.17 SVR and Baseline evaluation comparison on T-NN imputed and test datasets

Figure 6.18 SVR and Baseline evaluation comparison on T-NN imputed and test datasets

A comparison of the performance of the SVR model from training and test results is depicted in

Figure 6.15 and Figure 6.16. From the experiments it can be concluded that the proposed T-NN

approach outperforms the other selected imputation approaches such as EM, SGD, SVD, DT, kNN

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

129

and univariate mean and median imputations. The evaluation using both the schemes shows lower

RMSE scores by the T-NN and higher adjusted R-squared scores compared to the others. However,

in all cases, a lower proportion of variance is explained by fitting the SVR on the datasets imputed

by all the selected imputation approaches. This can be attributed to the nature of the dataset used in

this study.

The RMSE scores in scheme A are relatively lower than the RMSE scores observed in scheme B. This

difference between the RMSE scores is due to the fact that the datasets in scheme B contain more

instances with missing values compared to the datasets in scheme A. Hence, based on the number of

missing feature values and instances in the dataset, it is important to ascertain the value of T

accordingly as it impacts on the performance accuracy.

6.5 IMPUTING SENTIMENT INTENSITY SCORE OF A SERVICE FACTOR: AN
EXAMPLE CASE STUDY

A subset of the services from the dataset having 15% of the instances with missing values from

scheme A is selected for this case study. The sample dataset is shown in Table 6.15 that contains SaaS

products with random missing values in different service factors. The aim of this case study is to

demonstrate how the imputation of a missing value in SaaS product P586 for the service factor R is

performed using the proposed T-NN imputation approach.

6.5.1 Finding donor instances

In the first step, the task is to find the potential donors that have sentiment intensity scores available

in the service factor R. Table 6.15 shows a sample of the dataset where, rows have the service instance,

columns show the service factors and the intersecting cell of the service factor with the instance show

the sentiment intensity value for that instance in that service factor. Let us assume that service P586

is the candidate instance whose sentiment intensity value in feature R needs to be imputed. The donor

instances in this case are all service instances except P247, and P949 which does not satisfy both the

conditions for selecting a donor instance i.e., as P247 does not have the value in the feature R and

P949 does not have values for the features that is required by the candidate instance.

𝑋 = {𝑃2, 𝑃586, 𝑃2843, 𝑃942, 𝑃949, 𝑃247, 𝑃114} (6.26)
For the candidate SaaS product P586, the set of donors using Equation 6.18 is given by:

𝐷 = {𝑃2, 𝑃2843, 𝑃942, 𝑃114} (6.27)

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

130

Table 6.15. Sample dataset with the sentiment intensity value SaaS service quality pillars (service

factors)

PID A C E L M N O P R S

P2 0.62 0.36 0.01 -0.08 0.25 0.06 0.17 0.00 0.24 0.06

P586 0.62 0.60 0.54 0.63 0.54 0.47 0.41 0.72 N/A N/A
P2843 0.49 0.63 0.16 0.24 0.54 0.45 0.62 0.71 0.79 0.02
P942 0.18 0.00 0.10 0.46 0.17 0.19 -0.54 0.02 0.00 0.02
P949 N/A 0.51 N/A N/A N/A N/A N/A N/A 0.42 0.07
P247 N/A 0.39 N/A N/A 0.45 0.31 0.53 0.40 N/A N/A
P114 0.16 0.34 0.40 0.57 0.41 0.24 0.67 0.66 0.57 0.80

6.5.2 Calculating Pearson’s correlation coefficient

As we are only demonstrating few samples for the dataset in this case study, the Pearson’s correlation

coefficient must be calculated for the entire dataset. Table 6.16 shows the correlation coefficients

among the features calculated using Equation 6.12 from the base dataset that has no missing values.

We use the PCC values from Table 6.16 in this case study. As we intend to impute a missing value

that belong to service factor R, therefore, we need the PCC values between the feature R and other

features. These coefficients are used to calculate the weights for each feature when determining the

distance between the features of the candidate and the donor instances in the next step. Table 6.15

shows the PCC values between R and others. It also shows the PCC value of R with itself is 1 which

indicates a full positive correlation.

Table 6.16. Correlation values among the features

 A C E L M N O P R S

R 0.2095 0.0681 0.2556 0.0818 0.3652 0.3635 0.2749 0.2547 1.0000 0.2829

6.5.3 Calculating weighted distance

After the correlation between feature R and other features are calculated in the previous step, these

values are used to calculate weights for each feature using Equation 6.17. Table 6.17 shows the

weights assigned to each feature.

Table 6.17. Service factors with correlation values and weights

 A C E L M N O P R S

R 0.2095 0.0681 0.2556 0.0818 0.3652 0.3635 0.2749 0.2547 1.0000 0.2829

Weights 0.7905 0.9319 0.7444 0.9182 0.6348 0.6365 0.7251 0.7453 0 0.7171

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

131

The distances between the candidate instance P586 and the donor instance P2 is calculated using

Equation 6.16 as:

𝑑(𝑃586, 𝑃2)

= √
0.79 ∗ (0.62 − 0.62)2 + 0.93 ∗ (0.60 − 0.36)2 + 0.74 ∗ (0.54 − 0.01)2 + 0.92 ∗ (0.63 − 0.08)2 + 0.63 ∗ (0.54 − 0.25)2 +

0.64 ∗ (0.47 − 0.06)2 + 0.73 ∗ (0.41 − 0.17)2 + 0.75 ∗ (0.72 − 0.0)2

𝑑(𝑃586,𝑃2) = √0 + 0.05 + 0.21 + 0.28 + 0.05 + 0.11 + 0.04 + 0.39

𝑑(𝑃586, 𝑃2) = √1.13
𝑑(𝑃586,𝑃2) = 1.06

Similarly, the distances between the candidate instance P586 and the other donor instances is

calculated and are shown in Table 6.18.

Table 6.18. Forming a subset D ̅ from the donor instances

PID A C E L M N O P R S 𝒅(𝒙𝒊, 𝒙𝒋)
Distance from the

closest donor

P2 0.62 0.36 0.01 -0.08 0.25 0.06 0.17 0.00 0.24 0.06 1.06 0.52

P586 0.62 0.60 0.54 0.63 0.54 0.47 0.41 0.72 N/A N/A - -
P2843 0.49 0.63 0.16 0.24 0.54 0.45 0.62 0.71 0.79 0.02 0.54 0

P942 0.18 0.00 0.10 0.46 0.17 0.19 -0.54 0.02 0.00 0.02 1.35 0.81

P949 N/A 0.51 N/A N/A N/A N/A N/A N/A 0.42 0.07 - -
P247 N/A 0.39 N/A N/A 0.45 0.31 0.53 0.40 N/A N/A - -
P114 0.16 0.34 0.40 0.57 0.41 0.24 0.67 0.66 0.57 0.80 0.58 0.04

As shown in Table 6.18, P2843 is closest donor to the candidate with a weighted distance of 0.54.

Selecting final donors and imputing the missing value in candidate

The threshold value is used to select the final donors to impute the missing value in service factor

(feature) R of the candidate P586. For this case study I am using the threshold value calculated for

scheme A i.e., T=0.22.

The threshold value defines the closeness among the selected donor instances. Table 6.18 in the

column 𝑑(𝑥𝑖, 𝑥𝑗), shows the distance between candidate instance P586 and the other donor instances.

Donor instance P2843 is the most relevant donor with the closest distance to the candidate instance.

The last column in Table 6.18 computes the distance between P2843 and the other donor instances.

Using the last column, considering the value of T=0.22, then only P2843 and P114 from the donor

instances is used to impute the value of feature R as both fall within the threshold value.

Finally, the missing value in service factor R of P586 is imputed using Equation 6.19 as:

𝑃2843𝑅 =
0.79 + 0.57

2
= 0.68

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

132

here, n=2 as only two instances are within the threshold range.

The complete steps of the imputation process using T-NN is shown in Algorithm 6.1.

Algorithm 6.1: TNN-Impute (X)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Input: Dataset X with random missing values
Output: Imputed dataset
Let V be a set of feature variables, V = {v1, v2, …, vn}
Let T be the selected threshold value
Calculate Pearson’s correlation coefficient PCC[X] among all variables in
Find all missing values indexes, MI[X]
for each i ϵ MI[]: do
 If donor instances from X contain the value for missing for candidateInstance[v]
 Select donor instance, donorIndexes[] = i
end for
for each d ϵ donorIndexes[]: do
 Use weights relative to MI[v] and other variables from PCC[]
 Calculate weighted Euclidean distance instances d using only the variables
without NaN
end for
Sort the distances of the selected donor instances
for each d ϵ donors[]: do
 if d[distance] – d[with least Distance to candidate] <= T
 Select donor instance
 end if
Calculate the aggregated value from the selected variable i of donor instances d[]
Assign the aggregated value to the variable i of the candidate instance

6.6 CONCLUSION

In this chapter, I discussed the importance of the imputation techniques for missing values in datasets.

I discussed the most commonly used imputation methods, their strengths and weaknesses. I presented

the details of a novel approach for the solution of the missing sentiment intensity scores in the service

factor of SaaS. The proposed approach called the T-NN which stands for Threshold-based nearest

neighbours, is an extension of the famous non-parametric method k-nearest neighbours. One of the

main contributions of T-NN is that, it uses the weighted distance among the candidate instance and

donors. The weights for each service factor are calculated using the Pearson’s correlation coefficient

among features. The relative service factors to the factors with missing value gets higher weights

when they are highly correlated and vice versa. The second contribution of the T-NN approach is

using a threshold value to select the final donors for imputation. Using the threshold value helps to

reduce the error between the actual and imputed sentient intensity scores.

T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service
factors

133

I have used two different implementation schemes to validate the performance of T-NN approach. In

the first scheme called scheme A, 10 datasets with different number of missing values is generated

from a base dataset with complete observations. The imputed values by the T-NN is validated against

the actual observations and error is calculated. The validation results by T-NN is scheme A is

compared with the imputation results by the other implemented methods such as Traditional k-NN,

SVD, SGD, Decision trees, EM, Mean and median. In the second scheme called scheme B, 10 datasets

are generated with different among of missing values. The main difference between the datasets used

in scheme A and scheme B is the total number of instances in each dataset. In scheme A, the total

number of instances in each dataset remains the same while the number of factors with missing values

are increased incrementally by 5 in each generated dataset. Whereas, in scheme B, the base dataset

with complete observations is part of all the generated datasets while in each dataset, extra instances

with missing values are added incrementally by 5. These extra instances are also true observations

having missing values in random features. The goal of scheme B is validating the performance of the

predictive methods on the datasets which are imputed by T-NN. I have implemented the Support

Vector for Regression (SVR) method to for this purpose using the datasets imputed by T-NN and

other methods implemented in this part of my studies.

The results from the experiments shows that the proposed T-NN approach outperforms the other

famous approaches implemented and discussed in this chapter. Furthermore, the implementation of

T-NN and the resulting imputed datasets are crucial when forecasting the future values for these

service factors as the missing values in any factor create a bottleneck for the forecasting model which

is discussed in the next chapter.

A methodology for time series Forecasting of SaaS service factors

134

Chapter 7:
A methodology for time series
Forecasting of SaaS service factors

7.1 INTRODUCTION

In the previous chapter, I discussed the importance of sentiment intensity scores for each of the

identified service factors of SaaS products and the potential hinderance faced by the trust model in

computing the trust scores for the SaaS products due to the missing sentiment intensity scores for any

of the service factors. I presented a method for imputing such missing sentiment intensity scores along

with the implementation details. The next component of the trust management framework, discussed

briefly in chapter 4, is the ability of the trust model to accurately forecast the trust scores of SaaS

products for a point in time in the future. This is particularly important when a SaaS service is

intended to be acquired for a particular duration of time in the future and an expected trust level is

required by the signed service level agreement (SLA). As a precursor to the trust assessment model

discussed and implemented in next chapter, the trust model can only be capable to compute and infer

the trust score of SaaS products at a future point in time by having the capability to forecast each trust

factor for the future time spots. The proposed methodology presented in this chapter brings the

forecasting capability into the trust model for all the considered trust factors.

The trust factors, considered as the service factors of the SaaS products in this thesis, is forecasted

for future time slots based on the historical observations of each service factor at different timeslots

in the past. The observations for each service factor are in the form of timeseries and the forecasting

of the values for these services factors is framed as a time series problem in this chapter. Time series

analysis and forecasting techniques is well known in literature and are extensively applied in different

problem domains with variety of data in nature. However, as discussed in the previous chapters, time

series analysis and forecasting techniques has not been investigated for sentiment intensity scores of

the SaaS service factors. As part of the methodology proposed in this chapter, I investigate and

implement different time series forecasting techniques ranging from classical approaches to some of

the latest and most popular ones. The techniques are investigated using the sentiment intensity dataset

for SaaS service factors and the results are compared to identify the most suitable method that is used

for the forecasting component of the proposed trust model.

A methodology for time series Forecasting of SaaS service factors

135

The rest of the chapter is organized as follows. In Section 7.2, I present a background on time series

and the related concepts. In Section 7.3, I discuss the timeseries forecasting techniques investigated

in this study. I discuss the in details, each stage of the proposed forecasting methodology in Section

7.4. I present the details of the experiments and evaluation results of the selected timeseries

forecasting techniques in Section 7.5. Section 7.6 concludes the investigation in this chapter.

7.2 BACKGROUND

In this section I will briefly explain the key concepts related to time series data modelling and

forecasting.

7.2.1 Time series

The data that is collected sequentially over fixed intervals is called time series (Box, Jenkins, &

Reinsel, 2008). Generally, time series is the numerical result of observations of an object or multiple

objects over certain period of time. Throughout this chapter, I write Yn as a variable representing a

series of length n for one of the SaaS service factors observed at times t = 1, 2, …. n and an observation

at time t is written as yt. Mathematically the series can be written as:

𝑌𝑛 = {𝑦𝑡|𝑡 = 1,…𝑛} (7.1)

7.2.2 Regular and irregular series

A typical time series data is regular in nature. Regular time series data are evenly spaced sequence of

observations having constant intervals whereas in many cases, a series of data can be observed at

irregular time stamps and the observations are unevenly spaced without constant intervals. Examples

of regular time series are daily temperature observations and hourly monitoring signals in industrial

setups. On the other hand, irregular series are observations such as earthquakes and aftershocks,

process triggers in internet of things (IoT) setups and user feedbacks and ratings for online systems.

Regular time series values are observed at predefined settings which can be spaced naturally or setup

artificially at fixed intervals. Whereas, irregular series are likely to be event-driven observations with

irregular timestamps. Most of the time series modelling and forecasting techniques work better with

the time series data observed at constant intervals. Series of observations at irregular time stamps may

affect the performance of the data modelling and forecasting. An irregular series can be transformed

into a regular time series using techniques such as interpolation (Bayen & Siauw, 2015) and Last

Observation Carried Forward (LOCF) (Kenward & Molenberghs, 2009).

A methodology for time series Forecasting of SaaS service factors

136

7.2.3 Time series components

A time series data can portray different behaviours such increasing or decreasing trends, seasonality

or simply a random without any pattern. A time series can be decomposed into three components

namely: trend, seasonal and irregular. The seasonality in a time series data is the periodic repetition

of a particular pattern that is systematic and follow a calendar related movement such as seasons of

the year. The trend component in a time series is the long-term movement in the form of increase or

decrease of observed values such as the growth in world population. The random or residual

component results from short term fluctuations that do not follow any pattern and they are neither

predictable nor systematic. Figure 7.1 shows the decomposition of a time series into the components.

A time series can be decomposed into the constituent components using two decomposition models

namely: the additive and the multiplicative decomposition model. The additive decomposition model

is suitable for time series in which, the seasonal and random variation do not change along the trend.

In simple words, it assumes that the series is the sum of its constituent components.

For an observed time series Y, the additive model assumes Y to be the sum of the seasonal component

S, the trend component T and random component R, which can be written as:

𝑌𝑡 = 𝑆𝑡 + 𝑇𝑡 + 𝑅𝑡 (7.2)

The multiplicative decomposition model is suitable for time series in which, the seasonal and random

variations increase along the trend. The multiplicative decomposition assumes that the observed series

is the product of its constituent components and can be written as:

𝑌𝑡 = 𝑆𝑡 × 𝑇𝑡 × 𝑅𝑡 (7.3)

A methodology for time series Forecasting of SaaS service factors

137

Figure 7.1 Components of time series

7.2.4 Stationary and non-stationary series

Stationarity is a characteristic of time series data. Stationarity of a time series is observed through its

statistical properties such as mean, variance and covariance. The mean and variance of stationary

time series remains constant over time and its covariance remains independent of time. Ideally, time

series modelling and forecasting techniques works better when the time series data is stationary.

Which means that the series must be adjusted for its constituent component discussed in the previous

sections.

As discussed in the previous sections, time series can be decomposed into its constituent components

using additive or multiplicative decomposition. After the decomposition of a series, a line plot for

each of the constituent can help to visually observe their presence. In many cases the components of

a time series are not visually observable and using unit root tests can help to identify the non-

stationarity of the series and the components of time series can be adjusted accordingly. One of the

well-known statistical tests for testing time series stationarity is called the augmented Dicky-Fuller

test (Dickey & Fuller, 1979) also known as unit root testing.

A methodology for time series Forecasting of SaaS service factors

138

A typical seasonally adjusted series can be achieved by removing the estimated seasonal component

from the series. For an additive model it can be expressed as:

𝑌𝑆𝑡 = 𝑋𝑡 − �̂�𝑡 = 𝑇𝑡 + 𝑅𝑡 (7.4)

Where, 𝑌𝑆𝑡 is the seasonally adjusted series and �̂�𝑡 represents the seasonally adjusted estimates.

Similarly, for a multiplicative model, the seasonal adjustment can be expressed as:

𝑌𝑆𝑡 = 𝑌𝑡 ÷ �̂�𝑡 = 𝑇𝑡 × 𝑅𝑡 (7.5)

7.2.5 Univariate and multivariate time series

Time series data can be univariate that is collected for a single numerical variable over a period of

time or it can be multivariate or vector time series. A multivariate time series has numerical

observations for multiple variables where instances in each variable share the same time stamps. In

some cases, the vector time series can provide more insight into events at specific time stamps.

Working with multivariate time series provides better forecasting results as it is capable to capture

and describe any dynamic behaviour of the time series data.

7.2.6 Time series forecasting

Using time series data, a model can be created that, based on the past behaviours in the time series,

can forecast the future values in continuation to the existing series. The forecasted value at time t for

the next timestep t+1 is represented as �̂�𝑡+1 and is called single step forecasting. Time series

forecasting can be performed for multiple time steps ahead in the future �̂�𝑡+𝑛 where n is the number

of timesteps in the future. Some of the well-known timeseries forecasting methods are explained

briefly in the next section.

7.2.7 Correlations

Correlation defines the dependency between entities. In the context of time series, correlation can be

of two types namely: serial correlation and cross correlation.

Serial correlation also known as autocorrelation, measures the relationship between observations at

different point in time within the same series. Whereas the cross correlation is the relationship

between the observed values in two separate series. Capturing autocorrelations is useful when

modelling a series with AR to determine the number of lags.

A methodology for time series Forecasting of SaaS service factors

139

Autocorrelation provides useful insight into the time series data and is helpful in time series modelling

and forecasting. Cross correlation is used when time series forecast models are build using

multivariate time series data. Some of the timeseries forecasting models discussed in the next section

are capable to work with both univariate and multivariate time series data.

7.2.8 Interpolation

Interpolation is an estimation process for creating new data points between two known ones.

Interpolation is useful in many problems where time series is involved such as, imputing for missing

values in a series and transforming an irregularly observed series with time stamps into a regular time

series.

7.3 TIMESERIES FORECASTING APPROACHES

Time series modelling and forecasting is an extensively research area. There are a number of

techniques to model time series for forecasting that range from traditional approaches such as moving

average, auto regression and exponential smoothing, to advanced methods such as artificial neural

networks and deep neural networks. I briefly describe the most well-known and commonly used time

series modelling and forecasting techniques in the following subsection.

7.3.1 Autoregressive model (AR)

The Autoregressive model use the observations in a series at prior time steps to regress for a value at

current time spot or to forecast the value in the next step using a linear function.

The autoregressive model takes a single parameter p for the linear function. The parameter p defines

the order of regression also known as order-p which represents the number of observations from the

previous time steps to be considered for regression. An AR(p) model can be written as:

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝+ 𝜖𝑡 (7.6)

Where 𝑦𝑡is the value for the time spot t, c is the intercept or constant term, 𝜙 is coefficient of lag of

y, p is the number of preceding observations used and 𝜖𝑡 is the error term.

The AR models are suitable for stationary series without any seasonal and trend components. The AR

model is also used to forecast univariate time series.

𝑦𝑡+1 = 𝑐 + 𝜙1𝑦𝑡 + 𝜙2𝑦𝑡−1 +⋯+ 𝜙𝑝𝑦𝑡−𝑝+ 𝜖𝑡 (7.7)

where 𝑦𝑡+1 is the forecasted value for the next time step t+1.

A methodology for time series Forecasting of SaaS service factors

140

A vector version of AR model called the Vector Autoregression (VAR) is used to model multivariate

time series (Ltkepohl, 2007). Similar to AR model, the VAR method takes the order of AR(p) as

parameter to the linear function and is suitable for timeseries series without trend and season

components.

In VAR model, each variable is a linear function of past values of itself and the past values of the

other variables.

A VAR model of two variables with lag order 1 VAR(1) can be written as:

𝑦𝑡,1 = c1 + 𝜙11𝑦𝑡−1,1 + 𝜙12𝑦𝑡−1,2+ 𝜖𝑡,1 (7.8)
𝑦𝑡,2 = c2 + 𝜙21𝑦𝑡−1,1 +𝜙22𝑦𝑡−1,2+ 𝜖𝑡,2 (7.9)

An n variable, p-lag VAR model can be written as:

𝑌𝑡 = c + Π1𝑌𝑡−1 + Π2𝑌𝑡−2 +⋯+ Π𝑝𝑌𝑡−𝑝+ 𝜖𝑡 (7.10)

where 𝑌𝑡is a vector of time series variables 𝑌𝑡 = (𝑦𝑡,1, 𝑦𝑡,2, … 𝑦𝑡,𝑛), c = (c1, c2, … c𝑛), Π𝑗represents

AR coefficient matrices with (n x n) dimensions where, j= (1, …, p) and 𝜖𝑡 is the error matrix of (n x

1) dimensions. VAR is suitable for multivariate stationary time series in which variables influence

each other.

7.3.2 Moving Average model (MA)

Moving average is the simplest technique to model time series. As the name suggest, it calculates the

next observation in a given series using the average of the past observations. In a given series, the

MA models the next step as a linear function of the residual errors from mean at the previous steps.

The number of past observations also known as the order q, can be adjusted to get the best forecast

results using the window method. Generally, a larger window size produces a smoother forecast. The

first order moving average can be written as:

𝑦𝑡 = 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 (7.11)

where 𝜀𝑡is the white noise and 𝜃is the moving average term. Similarly, the qth order moving average

model MA(q) is written as:

𝑦𝑡 = 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 (7.12)

The moving average model is also suitable for stationary series without seasonal and trend component

and is used to model and forecast univariate time series.

A methodology for time series Forecasting of SaaS service factors

141

7.3.3 Autoregressive Moving Average model (ARMA)

The Autoregressive Moving Average (ARMA) method combines both the Autoregressive (AR) and

Moving Average (MA) models. It models the next step in a series as a linear function of both the

observations and residual errors at the previous time steps. The ARMA model takes two parameters,

the order of AR(p) and MA(q) and is written as ARMA(p, q).

𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 (7.13)

The ARMA model is suitable for series without trend and seasonal components. It is used for

modelling and forecasting univariate time series. However, a generalized vector version of ARMA

called the Vector Autoregression Moving-Average (VARMA) can model and forecast for the next

time step of each series in a multivariate series using the ARMA model. The VARMA models take

as parameter the order of AR(p) and MA(q) for the function VARMA(p, q). Similar to ARMA model,

the VARMA model is also suitable for stationary time series without trend and seasonal components.

A vector autoregressive model of order 1 for three variable series is written as:

𝑌𝑡 = c + Π1𝑌𝑡−1 + Π1𝑌𝑡−2 +⋯+ Π𝑝𝑌𝑡−𝑝 + 𝜀𝑡 + Θ1𝜀𝑡−1 + Θ2𝜀𝑡−2 +⋯+ Θ𝑞𝜀𝑡−𝑞 (7.14)

where 𝑌𝑡is a vector of time series variables 𝑌𝑡 = (𝑦𝑡,1, 𝑦𝑡,2, … 𝑦𝑡,𝑛), c = (c1, c2, … c𝑛), Π𝑗represents

AR coefficient matrices with (n x n) dimensions where, j=(1, …, p), Θ𝑘represents MA coefficient

matrices with (n x n) dimensions where, k=(1, …, q) and 𝜖𝑡 is the error matrix of (n x 1) dimensions.

VAR is suitable for multivariate stationary time series in which variables influence each other.

A one step ahead forecast with the VARMA model is given by:

�̂�𝑡+1 = c + Π1𝑌𝑡 + Π1𝑌𝑡−1 +⋯+ Π𝑝𝑌𝑡−𝑝 + 𝜀𝑡 + Θ1𝜀𝑡 + Θ2𝜀𝑡−1 +⋯+ Θ𝑞𝜀𝑡−𝑞 (7.15)

7.3.4 Auto Regressive Integrated Moving Average (ARIMA)

The ARIMA approach explains a time series by capturing the autocorrelation in its past observations.

Similar to the ARMA model explained in the previous subsection, ARIMA model combines the AR

and MA models in modelling and forecasting a time series. The main difference between the ARMA

model an ARIMA model is that ARMA models work with stationary time series. The seasonal and

trend components are adjusted using differencing then used with ARMA models. Whereas in ARIMA

model, the differencing process is integrated in the model. An ARIMA model is denoted as

ARIMA(p, d, q) where the term p represents the order of AR, d represents number of differencing

and q represents the order of MA. An ARIMA model with particular order in its terms are similar to

A methodology for time series Forecasting of SaaS service factors

142

the other models such as, an ARIMA(p,0,0) model is the same as the Autoregressive AR(p) model,

an ARIMA(0,0,q) model equals a Moving Average MA(q) model and an ARIMA(p,0,q) is equivalent

to an ARMA model. An ARIMA model with first order differenced series can be written as:

𝑦’𝑡 = 𝑐 + 𝜙1𝑦’𝑡−1 + 𝜙2𝑦’𝑡−2 +⋯+ 𝜙𝑝𝑦’𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯

+ 𝜃𝑞𝜀𝑡−𝑞
(7.16)

where𝑦’𝑡is the first order differenced series. For a one step ahead forecast, the ARIMA model can be

written as:

�̂�𝑡+1 = 𝑐 + 𝜙1𝑦’𝑡 + 𝜙2𝑦’𝑡−1 +⋯+ 𝜙𝑝𝑦’𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡 + 𝜃2𝜀𝑡−1 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 (7.17)

7.3.5 Exponential Smoothing

Exponential Smoothing (ES) is similar to the moving average modelling technique with an added

weight factor (Gardner Jr., 1985). In exponential smoothing, a decreasing weight is assigned to the

past observations as it moves further from the current observations.

A Simple Exponential Smoothing (SES) method can be written mathematically as:

𝑦𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑦𝑡−1, 𝑡 > 0 (7.18)

Where, 𝛼 is a smoothing factor that determines the rate of decrease in weights for the previous

observations. The values for the smoothing factor 𝛼 are taken between 0 and 1. Generally, lower

values of 𝛼 produces a smoother forecast.

The Simple exponential smoothing method suitable for series without the trend and seasonal

component and can only work with univariate time series. A one step ahead forecast using the SES

is given by:

�̂�𝑡+1 = 𝛼𝑦𝑡 + (1 − 𝛼)�̂�𝑡 (7.19)

The 𝑦𝑡is selected as the initial level for the SES.

To support the trend component in a time series, the Double Exponential Smoothing method is used

instead of SES. The Double Exponential Smoothing is also called the Holt’s linear trend model (Holt,

2004) named after the original developer of the model, deals with the additive or linear trend

component of the series.

A methodology for time series Forecasting of SaaS service factors

143

Besides the 𝛼 smoothing parameter, the Holt’s linear trend method takes another parameter β which

controls the influence of the trend component in a series. A one step ahead forecast equation for Holt’s

linear model is given by:

�̂�𝑡+1 = 𝑙𝑡 + 𝑏𝑡 (7.20)

where

𝑙𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) (7.21)

and

𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1 (7.22)

The level and trend components at time t is represented as 𝑙𝑡 and 𝑏𝑡 respectively.

The extension of Exponential Smoothing with added support for seasonality in a time series is called

the triple exponential smoothing or Holt-Winters Exponential Smoothing (HWES) (Holt, 2004)

(Winters, 1976). The new parameter 𝛾 that controls the seasonal component st in a time series. It

models the next time step of a series as an exponentially weighted linear function of the observed

values at previous time steps. Similar to Simple Exponential Smoothing, the HWES can work with

univariate time series only. Like the other SES models, the HWES model also have additive and

multiplicative models. The equation for additive Holt-Winters Exponential Smoothing model is given

by:

�̂�𝑡 = 𝑙𝑡 + 𝑏𝑡−1 + 𝑠𝑡−𝑝 (7.23)

where

𝑙𝑡 = 𝛼(𝑦𝑡 + 𝑠𝑡−𝑝) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1) (7.24)

𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1 (7.25)

and

𝑠𝑡 = 𝛾(𝑦𝑡 − 𝑙𝑡) + (1 − 𝛾)𝑠𝑡−𝑝 (7.26)

Both the additive and multiplicative ES models, a damping parameter is used to control the constant

growth of the trend over time. The damping coefficient is represented by 𝜙.

A methodology for time series Forecasting of SaaS service factors

144

7.3.6 Multilayer Perceptron (MLP)

The Multilayer Perceptron (MLP) is an Artificial Neural Network (ANN) with multiple layers of

neurons (Murtagh, 1991). The core component of artificial neural networks is the artificial neuron. A

neuron also called a node, is a simple computational unit that takes some inputs, process the

information and outputs the results. All the inputs to the neuron are weighted. Similar to the weights,

each neuron also has bias values. The neuron sums up these weighted inputs and maps them to the

output using an activation function given by:

𝑌 = 𝑓(𝑋) (7.27)

where X and Y are the input and output vectors respectively. The function f is optimized by adjusting

the weights during a training process till an optimal mapping from X to Y is reached.

The most common activation functions are:

• sigmoid function: a non-linear function that outputs values between 0 and 1

• tanh function: a hyperbolic tangent function which is also non-linear in nature and outputs

values between -1 and 1.

As the name suggest, neurons are organized into networks at different layers. The three types of

network layers are:

• Input layer: where the input values are received by the network and passes these values

onto the other layers of the network

• Hidden layer: the hidden neurons of the network which receives the values from the input

layer

• Output layer: responsible for the outputting the computed values by the network

A methodology for time series Forecasting of SaaS service factors

145

Figure 7.2 A multilayer perceptron with two hidden layers

Figure 7.2 depicts an MLP with two hidden layers. The training process of a neural network includes

passing forward all the data samples through the network, from input to the output layer. Because of

this forward directed process the MLP is also called feed-forward network. A complete pass of the

entire dataset through the network is called an epoch. A neural network is normally trained over many

epochs and the network weights are updated during this process either for prediction errors after each

sample or at the end of an epoch. The training continues till a desired mapping from network inputs

to the outputs is achieved. As part of the learning by the network, the network errors also known as

the prediction error is propagated back through the network layers and the weights are updated

accordingly. This approach for training a neural network is called backpropagation.

7.3.7 Long Short-term Memory (LSTM)

LSTM is a type of Recurrent Neural Network introduced by (Hochreiter & Schmidhuber, 1997). In

RNN a given output not only depends on the current input but also considers the previous state. The

main problem faced by the RNN is its inability to capture long-term dependencies due to the vanishing

gradients. LSTM is designed to learn long-term dependencies by intelligently solving the problem of

vanishing gradients. This is achieved by the introduction of a memory cell that can maintain its state

A methodology for time series Forecasting of SaaS service factors

146

over time. The LSTM memory cell consists of a memory unit called the cell state vector for

memorizing previous states and a set of gates responsible for the flow of information through the cell.

Figure 7.3 Overview of a LSTM cell

Figure 7.3 depicts the relationship between the units of LSTM memory cell and the flow of

information through the cell. At the top of the diagram, the cell state, represented by C is passed from

one cell to another and t represents a given time stamp. Xt represents the input and ht is the output for

the time stamp t. Inside the LSTM memory cell, the information in the cell state is updated using the

gates. Gates are composed of sigmoid neural network layer with a pointwise multiplication operator.

A single LSTM memory cell has three gates named as forget gate (ft), input gate (it) and output gate

(ot). The output from the sigmoid layer controls the amount of information flowing through the cell.

To completely block the flow of information, the sigmoid layer outputs a value of 0 while a value of

1 let all the information to pass though. The sigmoid layer can also regulate partial flow of information

through the cell by its output values between 0 and 1.

For a given input xt, the memory cell uses the forget gate to decide, the amount of information to let

through the cell state Ct-1 by looking at the values in xt and output from the previous cell ht-1.

Mathematically it is written as:

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 (7.28)

A methodology for time series Forecasting of SaaS service factors

147

where Wf is the weight matrix for the forget gate and bf represent the bias.

The memory cell then decides about the new information to be stored in the cell state. It first uses the

input gate layer to identify the value to be updated, then a vector of the new candidate values 𝐶�̃� are

created by the tanh layer. These two steps are given by:

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖 (7.29)

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 (7.30)

where Wi and WC are the weight matrices for the input and cell state, bi and bc are their respective

biases.

Once the candidate vector is ready and the values to be updated are identified, the memory cell then

updates the cell state Ct-1 into the new cell state Ct. The update is written as:

𝐶𝑡 = 𝑓𝑖 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (7.31)

After the cell state is updated, the LSTM memory cell decides about the output. The cell uses a

sigmoid layer to decides about the parts of the cell state for the output and using a tanh layer, the cell

state is transformed and multiplied by the output of the tanh layer.

𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜 (7.32)

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) (7.33)

where ot is the output for time stamp t, Wo is the weight matrix for the output gate and bo represent

the bias.

LSTM has many advantages compared to the other forecasting approaches such as the ability to work

with non-linear and non-stationary time series and without the need to provide information on lagged

observations. Apart from the strengths and benefits of LSTM, overfitting is one major challenge for

LSTM models. However, this issue can be prevented by ignoring the randomly selected neurons

during training with the use of dropout layers (Srivastava et al., 2014).

All of the time series methods discussed in this section is capable to work with multivariate time

series except exponential smoothing. In the next section, I explain the details of all the stages of the

proposed forecasting methodology for SaaS service factors.

A methodology for time series Forecasting of SaaS service factors

148

7.4 A METHODOLOGY FOR TIME SERIES FORECASTING OF SAAS SERVICE
FACTORS

7.4.1 Overview of sentiment intensity forecasting methodology

The sequence of steps of the proposed forecast methodology for the SaaS service factors is depicted

in Figure 7.4. As discussed in Chapter 4, the sentiment intensity forecasting component is responsible

to provide forecast values for each of the SaaS service factor for future timeslots. These forecasted

values are then utilized by the trust model to compute the overall trust values.

Figure 7.4 Sequence of steps for the SaaS service factors forecasting methodology

The proposed methodology for the development of the forecast component comprises of the following

four stages:

1. Data preparation stage

2. Model selection stage

3. Parameter estimation stage

A methodology for time series Forecasting of SaaS service factors

149

4. Model evaluation stage

In the data preparation stage, a set of tasks are performed to prepare the sentiment intensity timeseries

data for the forecasting techniques. Initially, the timeseries for the past observation of each of the

service factor of the SaaS products is aligned on a common historic timestamp. Once the dataset is

prepared, resampling of the same timeseries is performed to transform the data into supervised input

format as some of the forecasting methods are trained and fitted on such input format.

In the model selection stage, a preliminary investigation is conducted by studying various

characteristics of the sentiment intensity time series data. This will help to identify the suitable

timeseries forecasting technique for the timeseries problem framed in this study. For example,

identification of correlation among the SaaS service factors, identification of non-stationary features

is performed as part of the preliminary investigation. This step is important as some of the forecasting

techniques performs optimally on stationary data. The time series data is then transformed into

stationary if required. Based on the preliminary investigation, a number of suitable timeseries

forecasting methods are selected along with the relevant error measures used for the evaluation of

these methods.

After the timeseries forecasting methods are selected, in the parameter estimation stage, the

parameters of each selected model that fits the best on the timeseries data is identified through

rigorous tests. In the final stage of the methodology, the selected timeseries forecasting methods with

their optimal parameters are evaluated on the test dataset. Finally, the technique with the best

performance on the sentiment intensity timeseries dataset is selected for the forecasting component

of the trust model which will be used to generate forecasts for the each of service factors (trust factors)

in the future time slots.

7.4.2 Data preparation

The dataset used for the forecast component of the proposed trust management framework contains

the sentiment intensity scores for each service factor of the SaaS products obtained over the lifetime

of SaaS products. For the experiments with the selected models, a random service is selected that has

sentiment intensity scores for all the service factors. For all the SaaS, the initial dataset contains

sentiment intensity scores calculated at irregular time stamps. The initial dataset needs to be in the

form of regular time series for modelling and forecasting by the time series forecast models. In the

initial dataset, the series of observations for each of the SaaS service factors are associated with time

stamps, however, the distance among the values are not consistent, hence, lacking a unit time length.

A methodology for time series Forecasting of SaaS service factors

150

It is very important for a series to have a constant interval between each consecutive observation as

it defines a specific unit also known as ‘step’ for which time series is modelled and forecasted. To

overcome this challenge, following tasks are performed:

• a new time stamp is created by using the first observed date and the last observed date from

the initial dataset. This creates a regular time stamp with a single solar day as a unit.

• the observations from the initial dataset is inserted on the relevant time stamp of the new

time series. This results in sparse series for all the service factors.

• linear interpolation approach is applied using to impute the missing values between the

observed values. The missing values at the start of each series is imputed using the first

observed value in the series by filling backwards and the missing values at the end of the

series is imputed by carrying forward the last observed value in the series.

Interpolation is the process of finding a value between two known points on a line or curve and is

written as:

𝑦 = 𝑦1 + (𝑥 − 𝑥1)
𝑦2 − 𝑦1
𝑥2 − 𝑥1

 (7.34)

where, x represents the numerical indexes on the time stamp and y represents the observed or missing

values on x. The start and end indexes are represented by x1 and x2, and the observed values are

represented as y1 and y2.

The interpolation can be univariate or multivariate. A univariate interpolation is performed on the

function of a single variable whereas, multivariate interpolation is performed on multiple variables.

Figure 7.5 depicts the time series dataset created during the data preparation stage.

A methodology for time series Forecasting of SaaS service factors

151

Figure 7.5 Time series of each service factor

Further to the transformation process to time series format, it should be noted that, some of the

approaches used for time series forecasting use a supervised method of learning on the training data

such as in sequence learning using MLP and LSTM. In such cases, each series must be transformed

into features (independent) and target (dependent) format. A series can be transformed for supervised

learning models by deciding on the number of input values as features also known as time lag (l) and

the number of output values (o) or targets. The number of output values can be adjusted for multistep

forecast settings. For a given series Yn, from time t, a supervised observation can be created with

independent features as [𝑦𝑡 , 𝑦𝑡+𝑙] and the dependent target(s) as (𝑦𝑡+𝑙 , 𝑦𝑡+𝑙+𝑜].

A methodology for time series Forecasting of SaaS service factors

152

Figure 7.6 shows the result of the transformation of a series for service factor M into supervised data

with input features X1 and X2 and a target Y1.

Figure 7.6 Time series transformation into supervised data

7.4.3 Model selection

In this stage, the most suitable approaches are selected for forecasting the sentiment intensity time

series for the service factors. The initial selection of the approaches is mainly based on the nature of

the sentiment intensity time series. A number of statistical tests are performed on the time series data

to identify its statistical properties. The results from these tests help to select the suitable approaches

to model the time series data for forecasting. The statistical tests for data analysis used in this chapter

is explained in the preliminary investigation subsection.

Preliminary investigation

In the preliminary investigation the sentiment intensity time series data explained in the previous

subsection is examined for its properties by using different tests. The results of these test are plotted

and their summary statistics are used to identify for stationarity of the series and the amount of

differencing required to convert the data into stationary series. The plots from the statistical test also

help to identify any seasonality, trend and the correlation between the service factors and between the

observations in each series.

Stationarity test
In the preliminary investigation, the time series for the sentiment intensity of SaaS service factors is

tested using the Augmented Dickey-Fuller test (Dickey & Fuller, 1979). Like most of the statistical

A methodology for time series Forecasting of SaaS service factors

153

tests, the Dickey-Fuller tests the null hypothesis that a unit root is present and the series is not

stationary with p-value greater than the significance threshold (p > 0.05). On the other hand, the series

is considered to be stationary if p < 0.05 and null hypothesis is rejected.

If the ADF test results on any of the series fails to reject then, the time series data can be easily

transformed from non-stationary to stationary using different techniques.

One of the well-known approaches for removing the trend and seasonal components from a time

series and to transform it into a stationary series for modelling and forecasting is called differencing

(Hyndman, 2018). Differencing is a simple process where a new series is constructed in which each

value is the result of subtracting the observed value at the previous time stamp from each observation

in the time series. Mathematically it be expressed as:

𝑦’𝑡 = 𝑦𝑡 − 𝑦𝑡−1 (7.35)

After the differencing process is performed on a series, the unit test is applied on the newly created

differenced series. If the results of the unit test show that the trend component still exist, then the

differencing is performed again on the differenced series from previous operation until the series

become stationary. The number of repetitions of the difference is called the order of differencing. A

second-order differencing process in which the differencing is performed twice can be expressed:

𝑦’’𝑡 = 𝑦’𝑡 − 𝑦’𝑡−1 (7.36)

Table 7.1. Augmented Dickey-Fuller Test (Significance level 0.05)

 A C E L M N O P R S

Test Stats -10.950 -6.524 -1.928 -2.599 -14.917 -9.989 -6.797 -12.421 -12.883 -2.399

p-value 0.000 0.000 0.319 0.093 0.000 0.000 0.000 0.000 0.000 0.142

No. of lags 1.000 16.000 1.000 23.000 0.000 12.000 7.000 1.000 1.000 21.000

No. of Obs. 1931.000 1916.000 1931.000 1909.000 1932.000 1920.000 1925.000 1931.000 1931.000 1911.000
Critical Value
(1%) -3.434 -3.434 -3.434 -3.434 -3.434 -3.434 -3.434 -3.434 -3.434 -3.434
Critical Value
(5%) -2.863 -2.863 -2.863 -2.863 -2.863 -2.863 -2.863 -2.863 -2.863 -2.863
Critical Value
(10%) -2.568 -2.568 -2.568 -2.568 -2.568 -2.568 -2.568 -2.568 -2.568 -2.568

Conclusion
Stationar
y

Stationar
y

Non-
Stationar
y

Non-
Stationar
y

Stationar
y

Stationar
y

Stationar
y

Stationar
y

Stationar
y

Non-
Stationar
y

The results of Augmented Dickey-Fuller test on all the service factors are shown in Table 7.1. At the

significance level of 0.05, the ADF statistics shows the p-values for most of the service factors are

below the significance level indicating the associated series are stationary. However, the p-values of

A methodology for time series Forecasting of SaaS service factors

154

0.319, 0.093 and 0.142 for the service factors E, L and S respectively, are greater than the threshold

(0.05) and indicates that the series are non-stationary.

As explained in earlier, differencing is used to transform a non-stationary time series into stationary.

Based on the ADF test results, the first order differenced stationary series for all the service factors

is depicted in Figure 7.7. Applying a first order differencing transforms the series for E, l and S service

factors into stationary series. A repeated ADF test confirms the successful transformation. The initial

non-stationary series for the service factors E, L and S is further investigated by breaking them down

into their constituent components.

Figure 7.7 Stationary series after 1st-order differencing

A methodology for time series Forecasting of SaaS service factors

155

The constituent components of the series for the service factors E, L and S are depicted in Figure 7.8,

Figure7. 9 and Figure 7.10 respectively. In all the three series we can see that the entire series was

taken as the trend component. There are no seasonal component and residual plot shows a straight

horizontal line. This breakdown will help in selecting the suitable approach that can handle additive

trend in a time series.

Figure 7.8 Components of service factor E

Figure 7.9 Components of service factor L

A methodology for time series Forecasting of SaaS service factors

156

Figure 7.10 Components of service factor S

Causation test
When modelling multivariate time series for forecast purposes, it can occur that the observations in

one series may be causing the values in another series. This insight into multiple parallel time series

can help to select an appropriate modelling approach. The causality between a pair of series can be

captured by using the Granger’s causality test (Granger, 1969). Given two series X and Y, the

Granger’s causality tests the null hypothesis that the series in X does not cause the series in Y. The

output p-values from the test are tested against the significance level of 0.05. The null hypothesis can

be rejected if the p-values from the test falls below the significance level. Hence, suggesting that the

observations in X does have statistically significant effect on values in Y. In this case a vector model

can prove to be useful for modelling the series for forecasting. As part of the preliminary

investigation, the Granger’s causality is performed on all the service factors.

The Granger causality test is applied on the dataset and the test results are shown in Table 7.2. The

results of the Granger causality test are the output p-values on all the service factors where, the

columns represent the predictors X and the rows Y are the response variables.

The results in Table 7.2 shows the presence of granger causality between some of the service factors.

For example, the predictor A from Table 7.2 is causing the responses C, N, O and P while for the

remaining service there is no significant causation by A. Similar is the case with the other service

factors where there is causation between some of the variables. Based on the outcome of the Granger’s

causality the selection of a vector time series modelling may or may not be suitable for forecast. In

A methodology for time series Forecasting of SaaS service factors

157

this case, the suitable model can be identified with extensive experiments with both univariate and

multivariate time series modelling approaches.

Table 7.2. Granger Causality test (Significance level = 0.05)
 X

 A C E L M N O P R S

Y

A 1 0.3274 0.6029 0.0515 0.0977 0.0081 0.0489 0 0.0088 0.2818
C 0.0135 1 0 0.0081 0.0007 0.3939 0.0624 0.033 0.1603 0.6469
E 0.2418 0.1629 1 0.776 0 0.0001 0.1105 0 0.7783 0.0361
L 0.1947 0.0017 0.5855 1 0.0125 0.0575 0.6562 0.0032 0.024 0.5943
M 0.2523 0.0138 0.7087 0.0006 1 0.0577 0.0337 0.1688 0.0028 0.8314
N 0.0194 0.0541 0.0002 0 0.0744 1 0 0.2756 0.001 0.8826
O 0.0002 0.3362 0.3235 0.7652 0.0531 0.0016 1 0.0019 0.1928 0.9311
P 0.034 0.0036 0.0189 0.0369 0.347 0.0787 0.0225 1 0.6686 0.5655
R 0.0567 0.0396 0.1727 0.0002 0.5392 0.3783 0.2254 0.0012 1 0.1092
S 0.9089 0.6238 0.8652 0.3692 0.1892 0.7995 0.3358 0.657 0.1296 1

Cross-Correlations test:
Cross-correlation test is performed next to find the correlation among the different service factors.

This step is important in the selection of appropriate category of the models. As discussed in Section

7.3, the time series forecasting approaches can works with univariate time series as well as with

multivariate series. In the absence of a significant correlation among the service factors, the vector

version of the time series forecasting approaches are not suitable and forecast models for each service

factor is designed separately. However, a significant presence of relationship between service factors

can prove to be useful in modelling and forecasting the sentiment intensity values for the SaaS service

factors. In this step, I have applied Pearson’s correlation coefficient (Lee Rodgers & Nicewander,

1988) which is a well-known measure for computing the linear relationship between two variables.

The correlation between the values of two service factors x and y is calculated as the covariance of

the two series divided by the product of the standard deviations of x and y, written as:

𝑟𝑥𝑦 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)
𝑛
𝑖=1

√∑ (𝑥𝑖 − �̅�)2
𝑛
𝑖=1 √∑ (𝑦𝑖 − �̅�)2

𝑛
𝑖=1

(7.37)

where rxy represents the correlation coefficient between the variables x and y with n number of

observations, xi and yi are the ith values of the variables x and y, and �̅� and �̅� are the mean values of x

and y. The result of the correlation test is a value between -1 and 1. A correlation value of 1 means a

perfect positive correlation between x and y and indicates an increase with the same magnitude in the

value of y when x increases. A correlation value of -1 is a perfect negative relationship and indicates

A methodology for time series Forecasting of SaaS service factors

158

a decrease in the value of y when x decreases with the same magnitude. A correlation value of 0

means the complete absence of any relationship between x and y.

Besides the importance of cross-correlation between the service factors, the series correlation or the

correlation among the observations of the same series can be utilized to find the appropriate forecast

model. Further to cross-correlation test, serial correlation tests for autocorrelation and partial

autocorrelation for the series in each service factor is performed.

The correlation between the series in different service factors plays an important part in the model

selection and parameter estimation. A correlation between two series also known as cross-correlation,

can help in the selection of an individual or vector version of the forecast models. The results of the

cross-correlation test using Pearson’s Correlation Coefficient method is shown in Table 7.3. The

correlations between the service factors are calculated using Equation 7.37 and the results are shown

in Table 7.3. The correlation results from Table 7.3 shows no significance correlation between any

of the service factors as all the values are closer to 0. The absence of a strong correlation between the

service factors suggests that the modelling the series for each service factor is more suitable compared

to a vector version of modelling using all the service factor under a single model.

Table 7.3. Correlation results between service factors

 A C E L M N O P R S
A 1.0000 0.0699 0.1209 -0.1092 0.1044 0.0413 0.0525 -0.0217 0.0132 0.0515
C 0.0699 1.0000 0.0921 -0.1812 0.0139 -0.0924 0.1433 0.0398 0.0617 0.1091
E 0.1209 0.0921 1.0000 -0.1054 -0.0731 -0.0467 -0.0210 0.1301 0.1615 -0.1819
L -0.1092 -0.1812 -0.1054 1.0000 -0.0191 -0.0001 -0.0939 -0.0082 0.0107 -0.2892
M 0.1044 0.0139 -0.0731 -0.0191 1.0000 -0.0429 -0.0525 0.0912 0.0622 0.0084
N 0.0413 -0.0924 -0.0467 -0.0001 -0.0429 1.0000 -0.0797 -0.0202 -0.0658 -0.0483
O 0.0525 0.1433 -0.0210 -0.0939 -0.0525 -0.0797 1.0000 -0.0032 0.0818 0.1368
P -0.0217 0.0398 0.1301 -0.0082 0.0912 -0.0202 -0.0032 1.0000 0.0844 -0.0481
R 0.0132 0.0617 0.1615 0.0107 0.0622 -0.0658 0.0818 0.0844 1.0000 0.0421
S 0.0515 0.1091 -0.1819 -0.2892 0.0084 -0.0483 0.1368 -0.0481 0.0421 1.0000

Serial-Correlations test:
The correlation can also exist between the observations of the same time series also known as the

serial correlation. Multiple linear regression models can fail to provide an optimal fit on the series if

these correlations are not captured. The significant level of correlation between a given value in a

time series with its preceding values can help to find the optimal fit for a linear regression model.

A methodology for time series Forecasting of SaaS service factors

159

The coefficient of correlation between two observations in a time series is called the autocorrelation

function (ACF). The ACF measures the relationship between a given observation yt with an

observation from prior time step yt-n (direct correlation) and also with all the observations between

the time steps t and t-n (indirect correlation). The partial autocorrelation function (PACF) can be seen

as the subset of ACF in which, the correlation between a given observation yt and an observation at

the prior time step yt-n is calculated without including the relationships of yt with the intervening

observations.

The ACF and PACF helps in understanding the time series for better selection of the autoregression

order AR(p) and the order for moving average MA(q) models. A series generated by AR process

considers the p previous observations also called lags in its regression process. This entails that for a

given series y, finding the best estimate for the value of p can help to capture the relationship among

the observations and fit the optimal AR model on y. In case of MA(q) models, a series can be

generated by using the time series of residual errors from prior values where, q is the number of prior

time steps considered in the MA process. This means that, estimating the best value for q can help to

build an optimal MA(q) model.

For the time series forecast model performance, it is important to find the model’s optimal parameter

and ACF and PACF in that regard.

The autocorrelation and partial-autocorrelation between the observations are depicted in Figure 7.11

and Figure 7.12. The significance threshold also known as the confidence intervals are set to 95%

and the correlation values for the lags outside these thresholds is considered significant. Figure 7.11

shows the Autocorrelation plot of all the service factors up to the first 40 lags.

The ACF graphs in Figure 7.11 shows significance autocorrelations at multiple lags for each service

factor. In this case, selecting the most suitable lag order for the models such AR is challenging and

the models has to be fit with different lag orders to identify the best fit.

From the PACF graphs in Figure 7.12, for each of the series, there are partial autocorrelations

significantly different from 0 and are above the significant threshold. The results from the PACF

graph are used in selecting the best parameter for the model estimation in the next section.

A methodology for time series Forecasting of SaaS service factors

160

Figure 7.11 Autocorrelations within the series for each service factor

Figure 7.12 Partial-autocorrelations within the series for each service factor

A methodology for time series Forecasting of SaaS service factors

161

The preliminary investigation of the time series data for SaaS sentiment intensity scores for model

selection suggest that:

• The results of the Granger’s causality test suggest that there is significant causation

between some of the service factors. However, most of the service factors do not show any

significant causation. Therefore, experimental results from both univariate and multivariate

forecasting models will be decisive.

• There is no significant cross-correlation between the service factors. Therefore, modelling

the series for each service factor separately is more suitable compared to modelling of all

the service factors a vector.

• Both the ACF and PACF graphs show multiple significance series correlation between the

series of most of the service factors. Therefore, an extensive parameter estimation using

different lag values is needed to find the optimal fit for the models.

• The ADF test suggest that the series for the service factors E, L and S are non-stationary in

nature and for forecasting models such as ARIMA, these series should be converted to

stationary with first order differencing. Figure 7.8, Figure 7.9 and Figure 7.10 shows the

breakdown of the series for service factors E, L and S into its components. There is no

observable long-term trend, however, these series contain smaller short-term trends. For

exponential smoothing models Holt’s linear is more suitable for modelling the service

factors E, L and S.

Error measures

In this subsection I explain the error measures used for evaluating the time series forecasting models.

The error measure, as the name suggest, are used to measure the difference between the observed

sentiment intensity values and the forecasted values by the fitted time series forecasting models.

These error measures also used in tunning the parameters of the time series forecasting approaches

such as MLP and LSTM. For every permutation of the parameters, the model is fitted to the time

series data and forecasts are recorded by the fit model. The forecast errors are computed using the

error measures for each permutation and are compared to select the best permutation. The selected

error measures for the proposed methodology are briefly explained below.

• Mean Absolute Error (MAE)

• Root Mean Squared Error (RMSE)

A methodology for time series Forecasting of SaaS service factors

162

The MAE measures the error between two observations. Generally, one of the values belong to the

actual observed variable the other is a predicted value for the same variable. It is measured as the

arithmetic average of absolute errors. Mathematically it is written as:

𝑀𝐴𝐸 =
∑ |�̂�𝑖 − 𝑦𝑖|
𝑛
𝑖=1

𝑛

(7.38)

where �̂�𝑖is the predicted and 𝑦𝑖is the ith actual observed value.

The RMSE is the square root of the mean squared error which is calculated as:

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

𝑛

(7.39)

The lower error values from the MAE and RMSE indicates high performance by the forecast models.

Measures for model selection

As discussed in the previous subsection, for some of the forecasting model such as MLP and LSTM,

the optimal parameters for the best fit is identified by using the error measure RMSE. Beside these

error measures, the best fit for the time series forecasting models such as ARIMA and Exponential

smoothing, can be identified using the following measures.

• Akaike’s Information Criterion (AIC)

• Bayesian Information Criterion (BIC)

AIC is a maximum likelihood-based measure for the best fit of a model. It is calculated as:

𝐴𝐼𝐶 = 2𝑘 − 2ln (�̂�) (7.40)

Where k is the number of model parameters and �̂� is the maximum value of the likelihood function.

Lower values of AIC indicate a better model-fit for forecasting.

BIC is another similar measure to find best model fit. BIC is calculated as:

𝐵𝐼𝐶 = 𝑘 ln(𝑛) − 2ln (�̂�) (7.41)

Where k represents the number of model parameters and n is the number of data points.

7.4.4 Parameter estimation

In this stage of the proposed SaaS sentiment intensity forecast methodology, the optimal fit for the

selected models is estimated using the measures for model selection and error measures described in

the previous subsection. The parameter estimation for all the selected time series forecasting methods

A methodology for time series Forecasting of SaaS service factors

163

is performed by using a training dataset which consists of 70% of observations from the time series

dataset described in Section 7.4.1. The remaining 30% of the observations is used as test data in the

model evaluation stage discussed in the next section.

Based on the outcome of the preliminary investigation performed in the previous subsection, four

time series forecasting approaches are selected and their parameters are estimated as follows:

ARIMA model:

In the parameter estimation of ARIMA models I perform a fitting procedure to find the coefficients

of the regression model. For the ARIMA(p, d, q) model, since the series for service factor E, L and S

is not stationary therefore, an ARIMA(p, 1, q) is fitted on these service factors. For the rest of the

service factors ARIMA(p, 0, q) is fitted. The models are fitted with different permutations of the p and

q. The p-orders for ARIMA models are fitted with p = (0, 1, 2, 3, 4, 5, 6) and the range of values for

the q-order is from q = (0, 1, 2, 3, 4, 5, 6). This extensive parameter estimation is important as the

ACF and PACF may suggest multiple lags with significant correlations. Each fitted model is cross-

compared using the AIC and BIC measure and the model parameters with the lowest AIC is selected

for further evaluation. For the multivariate implementation (VARMA), the models are fitted with

similar permutations on stationary time series data.

Table 7.4. ARIMA optimal parameter for each service factor

Factor p d q AIC BIC HQIC LLF Sigma
A 2 0 1 -2073.77 -2047.72 -2064.02 1041.886 0.012532
C 6 0 4 -2275.62 -2213.1 -2252.21 1149.812 0.010667
E 6 1 5 -17113.4 -17045.7 -17088 8569.693 1.81E-07
L 6 1 5 -12224.7 -12157 -12199.3 6125.352 6.78E-06
M 5 0 2 -1109.19 -1062.29 -1091.63 563.5928 0.025371
N 5 0 4 -1276 -1218.69 -1254.54 648.9983 0.022339
O 4 0 2 -4070.13 -4028.45 -4054.52 2043.063 0.002838
P 6 0 5 -1635.65 -1567.92 -1610.28 830.8237 0.017119
R 6 0 4 -1844.5 -1781.98 -1821.09 934.2485 0.014613
S 5 1 6 -16793.2 -16725.5 -16767.8 8409.588 2.31E-07

As discussed in the previous section, both the ACF and PACF graph show autocorrelations and partial

autocorrelation that are above the significant threshold line. In this scenario it is challenging to find

the suitable lag term p for the autoregressive q for the moving average part of ARIMA model.

Therefore, I have fitted different ARIMA models up to the p and q orders of 6, and selected the model

with the lowest AIC. The optimal parameter for the selected ARIMA models is shown in Table 7.4.

A methodology for time series Forecasting of SaaS service factors

164

For each service factor, a separate ARIMA model is fitted by thoroughly investigating with different

orders for p and q terms. As discussed in the previous subsection, the series for service factors E, L

and S are non-stationary. Therefore, ARIMA models with first order differencing ARIMA(p, 1, q) is

fitted on these series. Based on ADF test results reported in the previous subsection, the series for the

rest of the service factors are stationary and need to differencing. ARIMA model ARIMA(p, 0, q) is

fitted on the rest of series. The ARIMA models for each service factor with the lowest AIC values

are presented in Table 7.4.

Figure 7.13 shows the residuals plots from the fitted ARIMA models. Beside some irregular

fluctuations, the residual plots show no significant trend or seasonality in the model residuals. The

model residuals for the service factors E, L and S are flat and the ARIMA models captured all the

information in these series. Keeping in mind that the actual observations for these service factors

were initially identified as non-stationary. The variance in the model residuals of all service factors

can be treated as constant as there is no significant variance in the residual data.

A methodology for time series Forecasting of SaaS service factors

165

Figure 7.13 ARIMA model residuals

The ACF and PACF of the model residuals for all the service factors, depicted in Figure 7.14 and

Figure 7.15, shows few significant autocorrelations and partial autocorrelations at random lags above

the significance threshold. This indicates that a small amount of data is not captured by the fitted

models. However, the ACF and PACF shows that the fitted ARIMA models have captured significant

amount of data correctly. Therefore, it can be stated that the parameters selected for the ARIMA

models in this stage of methodology is optimal.

A methodology for time series Forecasting of SaaS service factors

166

Figure 7.14 Autocorrelations in ARIMA model residuals

A methodology for time series Forecasting of SaaS service factors

167

Figure 7.15 Partial autocorrelations in ARIMA model residuals

The Kernel Density Estimate (KDE) plots of the residuals is shown in Figure 7.16. The probability

density of the residuals for all the service factors are normally distributed with less spread that shows

good predictive quality of the models with less bias.

A methodology for time series Forecasting of SaaS service factors

168

Figure 7.16 KDE of the ARIMA model residuals

Exponential smoothing model:

Simple exponential smoothing models (SES) are fitted for the service factors with stationary series

by estimating the optimal value for model parameter α = [0, 1]. Alpha (α) is the smoothing coefficient

for the level. These SES models are also known as (N, N) model which means that the model does

not consider any tend and seasonal component in the series during modelling and forecasting.

For the service factors E, L and S with non-stationary series, the Holt’s linear trend method (A, N) is

used and the optimal values for the parameters α and β are estimated for each model. Beta (β) is the

smoothing coefficient to control trend.

The exponential smoothing model parameters with optimal fit are depicted in Table 7.5. The fitted

models for the service factors A, C, O, P and R have the maximum value (1) for α parameter which

indicates that these models only consider the most recent observations in the exponential smoothing

process for forecasting. However, these models will be computationally very efficient. For the models

fitted on the series of service factors E, L and S, Table 7.5 shows the optimal smoothing coefficient

A methodology for time series Forecasting of SaaS service factors

169

β used for the Holt’s linear trend models. The fitted exponential smoothing models with the optimal

parameters from Table 7.5 is selected for further evaluation in the next stage.

Table 7.5. Exponential Smoothing model fit parameters

 AIC BIC α β l0 b0
A -5772.96 -5762.54 1 0.571874
C -6047.64 -6037.22 1 0.440405
E -20560.7 -20539.8 0.9999 0.999904 0.339261 0.00963
L -15938.7 -15917.9 0.999901 0.999904 0.152361 0.00963
M -4803.8 -4793.38 0.866299 0.864914
N -4962.11 -4951.69 0.733976 0.631641
O -7560.48 -7550.06 1 0
P -5347.88 -5337.46 1 0.28595
R -5559.6 -5549.18 1 0.4201
S -20201.7 -20180.8 0.9999 0.999904 0.879961 0.00963

The exponential smoothing model residuals for each service factor depicted in Figure 7.17, shows no

significant trend or seasonality. The ACF and PACF of the exponential smoothing model residuals

are shown in Figure 7.18 and Figure 7.19. Similar to the ARIMA models, the exponential smoothing

model residuals also show few significant correlations at different lags which indicates that the

models failed to capture the series completely. However. Most of the correlations are below the

significance threshold.

The KDE plots for the exponential smoothing model residuals in Figure 7.20, shows the residuals

have less bias with normal distribution.

A methodology for time series Forecasting of SaaS service factors

170

Figure 7.17 Exponential smoothing model residuals

A methodology for time series Forecasting of SaaS service factors

171

Figure 7.18 Autocorrelations in exponential smoothing model residuals

A methodology for time series Forecasting of SaaS service factors

172

Figure 7.19 Partial autocorrelations in exponential smoothing model residuals

Figure 7.20 KDE of the exponential smoothing model residuals

A methodology for time series Forecasting of SaaS service factors

173

MLP:

The MLP is fitted on the sentiment intensity time series data in a supervised setting for sequence

learning as discussed in Section 7.4.1. The MLP models are fitted with different permutations of the

parameters depicted in Table 7.6.

Table 7.6. MLP and LSTM parameters

Parameters Value
Lags as Features 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
Nodes 20, 40, 60, 80, 100, 120, 140, 160, 180, 200
Epochs 50, 100, 150, 200, 250
Batch size 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Activation ‘tanh’, ‘relu’

The parameters of the fitted MLP model with the lowest RMSE scores are selected and the selected

model is used for further evaluation in the next step.

The parameters of the fitted MLP model with the least RMSE score on the training time series data

is shown in Table 7.7. The summary of the MLP forecast model is shown in Figure 7.21. In the next

section, these optimal model parameters are used for further evaluation on the model’s forecast

performance on the test data.

Table 7.7. Parameters of the fitted MLP model

Lags nodes epochs batch
size

activation

1 20 50 80 tanh

Figure 7.21. MLP model summary

LSTM:

A methodology for time series Forecasting of SaaS service factors

174

For LSTM models, the same parameter set is tuned to find the best fitted model on the SaaS sentiment

intensity data. The LSTM model with the lowest RMSE score is selected for further evaluation.

The parameters for each of the selected methods, involve a walk forward validation with single step

forecasting.

Table 7.8 shows the optimal parameters of the LSTM model fitted on the sentiment intensity time

series data. Similar to the MLP parameter estimation process, the LSTM models are fitted on the time

series data of each SaaS service factor. Each of the fitted model use different permutations of the

parameter values. Figure 7.22 shows the summary of the LSTM model.

Table 7.8. Parameters of the fitted LSTM model

Lags nodes epochs batch
size

activation

1 60 200 10 tanh

Figure 7.22 LSTM model summary

For both MLP and LSTM, I have selected the ‘tanh’ activation function due to the reason that, by

default it works with input and output ranges of [-1, 1] which fits best for our problem.

7.4.5 Model evaluation

During the model evaluation stage of the proposed methodology, the performance of the fitted models

from the previous stage with optimal parameters are evaluated on test data. As discussed in the

previous section, during the parameter estimation stage, the models are fitted on the training dataset

A methodology for time series Forecasting of SaaS service factors

175

which consists of 70% of the time series dataset prepared for the models in this chapter. Each selected

forecast models are evaluated in four settings as follows:

1. single-step forecasts with univariate series

2. multi-steps forecast with univariate series

3. single-step forecasts with multivariate series

4. multi-step forecasts with multivariate series

Apart from the Exponential smoothing models, the rest of the fitted models are evaluated in both

univariate and multivariate settings.

A comparative analysis of the selected models based on their forecast performances is conducted at

the end of this stage. The comparative analysis helps to identify the best forecast model for the trust

management framework for SaaS products.

In the next section, I present the implementation details of each stage of the proposed methodology

along with relevant results.

7.5 EXPERIMENTS AND EVALUATION RESULTS

In this section I discuss the details of the in-depth results during the experiments. I discuss the initial

form of the dataset used to develop a forecast model for the sentiment intensities of each SaaS service

factor and the details of the approach to transform the dataset into regular time series. This is followed

by the implementation and results of the data analysis methods used to study the sentiment intensity

time series dataset. The details of the parameters estimated for each approach is discussed with the

summary of the fitted model in a model estimation subsection. At the end of this section, the forecast

results from each of the selected model is presented and a comparative analysis is performed to

identify the best performing forecast model.

7.5.1 Data preparation and Pre-processing

As discussed in Section 7.4.1, the time series forecasting approaches work with regular time series

data where the values are observed at constant intervals throughout the series. The dataset used int

this chapter consist of sentiment intensity scores observed at irregular time stamps. Converting the

irregular sentiment intensity series brought sparsity in the series with missing values. This sparsity is

imputed by linear interpolation using Equation 7.34. The time series for the SaaS service factors

obtained after the linear interpolation process is depicted in Figure 7.5. The detailed descriptive

A methodology for time series Forecasting of SaaS service factors

176

statistics of the time series data used in this chapter is shown in Table 7.9. The mean statistics for

each service factor time series is not similar to each other. The mean and median of each series show

less skewed for most of the service factors. As discussed previously, each series contains the

sentiment intensity scores between the values of -1 and 1. The statistics from Table 7.9 for mean, min

and max shows that that most sentiment scores are positive and towards the maximum statistics. The

count indicates daily observations of 1933 days from 23-3-2012 to 7-7-2017 (approximately above 5

years and 3 months) for the selected SaaS product.

Table 7.9. SaaS sentiment intensity time series data description

Factor Count Mean Std Min 25% 50% 75% Max
A 1933 0.4294 0.2892 -0.6249 0.2300 0.4787 0.6449 0.9607
C 1933 0.4715 0.2727 -0.5312 0.2997 0.5217 0.6808 0.9805
E 1933 0.7536 0.2594 0.3400 0.3400 0.9198 0.9198 0.9198
L 1933 0.3404 0.2134 -0.3595 0.2732 0.3550 0.4812 0.8779
M 1933 0.4646 0.2420 -0.7003 0.3445 0.4988 0.6354 0.9432
N 1933 0.3549 0.2140 -0.5994 0.2048 0.3685 0.5140 0.9633
O 1933 0.0337 0.3176 -0.6597 -0.2253 0.0000 0.2576 0.9459
P 1933 0.3965 0.2715 -0.7146 0.2010 0.4044 0.6154 0.9632
R 1933 0.4180 0.2259 -0.5093 0.2940 0.4252 0.5756 0.9270
S 1933 0.6487 0.1586 0.3400 0.5155 0.6689 0.7881 0.8807

7.5.2 Model evaluation and comparative analysis

In this section, the fitted models using the selected approaches are evaluated on their forecasting

capabilities and the results are cross-compared.

Table 7.10. Single-step forecast errors

 ARIMA ES MLP LSTM
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

A 0.1025 0.0526 0.0978 0.0397 0.1015 0.0601 0.0999 0.0558
C 0.0865 0.0588 0.0771 0.0384 0.0835 0.0531 0.0910 0.0638
E 0.0000 0.0000 0.0000 0.0000 0.0030 0.0030 0.0404 0.0404
L 0.0002 0.0002 0.0000 0.0000 0.0046 0.0045 0.0178 0.0178
M 0.1410 0.1052 0.1128 0.0550 0.1136 0.0724 0.1135 0.0720
N 0.1223 0.0629 0.1237 0.0689 0.1176 0.0753 0.1203 0.0802
O 0.0357 0.0218 0.0355 0.0212 0.0430 0.0327 0.0379 0.0246
P 0.1167 0.0869 0.0949 0.0507 0.0976 0.0632 0.0959 0.0622
R 0.1099 0.0602 0.1070 0.0567 0.1051 0.0638 0.1043 0.0606
S 0.0051 0.0022 0.0021 0.0002 0.0456 0.0390 0.0289 0.0238

A methodology for time series Forecasting of SaaS service factors

177

The single-step forecast errors for the selected models for all the service factors are shown in Table

7.10. The RMSE scores for the ARIMA model are at acceptable level when compared with RMSE

scores of the other models. The RMSE scores for the service factors E, L and S are significantly better

compared to the other service factors. The main reason behind this low RMSE scores on the time

series for these service factors is that, the number of actual observations for these factors were

significantly lesser than the observations in the other factors. The interpolation process on the initial

series specifically for service factors E, L and S, resulted in a well-defined pattern of distribution.

The ARIMA and the Exponential smoothing models captured these patterns in high precision with

lowest errors compared to MLP and LSTM. As explained in earlier, due to the interpolation on the

initial dataset, the series for the service factors E, L and S showed additive trend. Hence, the Holt

linear trend model is fitted on these three series which captured the trend component with the lowest

error rates. However, for the rest of the service factors, the forecast performance of MLP and LSTM

are relatively better than then ARIMA and ES models.

Table 7.11. Multi-steps forecast errors

 ARIMA ES MLP LSTM
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

A 0.2851 0.2421 0.2643 0.2106 0.2699 0.2257 0.2709 0.2265
C 0.2625 0.2244 0.5776 0.5190 0.2521 0.2130 0.2532 0.2142
E 0.0755 0.0729 0.0000 0.0000 0.0043 0.0033 0.0058 0.0042
L 0.1761 0.1557 0.0329 0.0175 0.0605 0.0542 0.0720 0.0707
M 0.2200 0.1716 0.4393 0.3969 0.2210 0.1720 0.2212 0.1711
N 0.2006 0.1618 0.2198 0.1723 0.2007 0.1636 0.1942 0.1579
O 0.2563 0.1957 0.6555 0.5971 0.2372 0.1935 0.2395 0.1925
P 0.2845 0.2494 0.5056 0.4379 0.2746 0.2381 0.2756 0.2388
R 0.2255 0.1755 0.2698 0.2298 0.2250 0.1719 0.2240 0.1707
S 0.1277 0.0925 0.2523 0.1608 0.1840 0.1616 0.1802 0.1591

Table 7.11 show the multi-step forecast error results of each service factor by the selected univariate

models. The RMSE scores for the multi-steps forecast by the ES models shows relatively poor

forecast performance compare to the others. The MLP and LSTM models show similar errors on each

series.

The average forecast errors on all the service factors for the selected univariate models is shown in

Table 7.12. As discussed in the previous sections, the error scores are on the same scale as the

sentiment intensity scores that ranges from -1 to 1. Therefore, a fractional difference in the forecast

errors by the models is considered for the selection of best performing model.

A methodology for time series Forecasting of SaaS service factors

178

Table 7.12. Average forecast errors

Single-step Multi-steps

RMSE MAE RMSE MAE
ARIMA 0.09 0.05 0.22 0.17
ES 0.08 0.03 0.38 0.27
MLP 0.08 0.05 0.21 0.16
LSTM 0.08 0.05 0.21 0.16

Table 7.12 shows that in single-step forecast settings, the ARIMA models show the highest errors

compared to the other models. The average forecast errors for ES, MLP and LSTM model are similar

in the single-step forecast setting. In multi-steps forecasting, the performance of the MLP and LSTM

models are similar and better than the ARIMA and ES models with lower error rates. Figure 7.23

depicts the LSTM model single-step forecasts along with the actual observed sentiment intensity

values. The forecasted values are promising when considering the amount of noise in the data.

Figure 7.23 LSTM Single-step (Actual vs. Forecast)

A methodology for time series Forecasting of SaaS service factors

179

The multi-steps forecasts by the LSTM model depicted in Figure 7.24 are significantly better than the

forecast by ARIMA and ES models. From the plots for each service factor, the multi-step forecast

can be does follow the patterns to a considerable extent. This makes the LSTM model ideal for multi-

steps forecasting on SaaS sentiment intensity data.

Figure 7.24 LSTM Multi-steps (Actual vs. Forecast)

The forecast results in this section so far are from the models fitted on the univariate series of each

service factor. As discussed in section 7.4.3, the statistical tests on the series for each service factors

suggest causality and cross-correlations between some of the service factors. Therefore, I have also

fitted the selected models apart from the ES models, on the multivariate series as well. The

multivariate models are fitted on the combined series in vector form. Figure 7.25 depicts the forecast

error comparison among the selected multivariate forecast models. The plot on the left-hand side in

Figure 7.25 shows the RMSE scores on the single-step forecasts. The plot shows that the VARMA

model performs better on the service factors E, L and S with lower RMSE scores compared to MLP

and LSTM multivariate models. This low error rates by VARMA is attributed to the nature of these

A methodology for time series Forecasting of SaaS service factors

180

high interpolated series. However, for the rest of the service factors the VARMA model performed

adversely. The plot on the right-hand side of Figure 7.25 shows the comparison among the RMSE

scores for multi-steps forecasts by the selected multivariate forecast models. Apart from the RMSE

score for service factor E, the VARMA model performed poorly with higher RMSE scores. The

performances of multivariate MLP and LSTM models are better comparing to VARMA model with

lower RMSE scores. The performance of MLP and LSTM model in both univariate and multivariate

modelling are identical.

Single-step Multi-steps

Figure 7.25 Multivariate models forecast errors

Single-step Multi-steps

Figure 7.26 Univariate models forecast errors

The comparative analysis in terms of RMSE scores for each service factor by the selected univariate

forecast models is depicted in Figure 7.26. From Figure 7.26, for the service factor E, L and S all the

A methodology for time series Forecasting of SaaS service factors

181

forecast models have high performance with lower RMSE scores. The main reason behind this

relatively lower RMSE scores for some service factors is the lesser number of observations. As

discussed in the Section 7.4.3, the initial dataset used for this part of the thesis contains irregular

series of sentiment intensity observations over a SaaS lifetime. To model and forecast the sentiment

intensity scores of the SaaS service factors, I have converted them into a regular time series using

linear interpolation. This resulted the most of the values to be imputed using linear interpolation

method creating a certain pattern that the models captured with least errors. The more interpolated

values a service factor contains, the easier it is to be captured by the models, hence the lower errors.

The average RMSE scores of the selected forecast models are in univariate and multivariate settings

are compared in Figure 7.27. The solid-coloured boxes represent the univariate model errors while

the dashed boxes represent the errors for the multivariate models. In both the single-step and multi-

step forecasting, the univariate versions of the models have lower RMSE scores compared to their

vector versions. The causations and cross-relations between the service factors proved less useful in

modelling and forecasting the sentiment intensity data for SaaS products.

Figure 7.27 Univariate vs. Multivariate models average forecast errors

The nature of the time series forecasting models is discussed in details in the previous sections. Time

series modelling approaches such as ARIMA works better with stationary series in both univariate

and multivariate implementations. The same is the requirement for SES models. However, the other

A methodology for time series Forecasting of SaaS service factors

182

forecasting methods such as MLP and LSTM are well known to work with non-stationary data. As

part of model evaluation, I have fitted the MLP and LSTM models on both the stationary and non-

stationary form of the same series. Figure 7.28 depicts the plots of the forecast errors by the MLP and

LSTM models on stationary and non-stationary series. The solid-coloured boxes represent the RMSE

scores for single-step forecast and the dashed boxes represent the RMSE scores for the multi-steps

forecasts. The blue colour is used for the non-stationary (original) series and red colour is used for

stationary series. For multivariate models, both the MLP and LSTM models have lower RMSE scores

on original non-stationary series. This difference is highly significant in multivariate LSTM models.

MLP Univariate LSTM Univariate

MLP Multivariate LSTM Multivariate

Figure 7.28 Forecast errors comparison (Actual vs. Differenced)

As mentioned earlier, the RMSE scores for the forecasting approaches are in fractions since they are

on the same scale as the sentiment intensity scores that ranges between -1 and 1. In the next chapter,

the trust levels and trust scores in SaaS products are computed by using the sentiment intensity scores

and small fractional differences result in a different trust score.

A methodology for time series Forecasting of SaaS service factors

183

Based on the in-depth analysis of the SaaS sentiment intensity dataset and the performance of the

forecasting approaches, the performance results can be summarized as:

• Modelling each service factor separately compared to vector approach of modelling

achieves lower RMSE scores by all the selected approaches in this study. Each service

factor should be separately modelled as there is lack of correlation among all of them (as

depicted in Table 7.3)

• Time series forecasting approaches such as MLP and LSTM achieve relatively lower error

scores when used with series in original form as observed compared to stationary series.

• Time series forecasting approaches such as ARIMA and Exponential Smoothing performs

better with lesser RMSE scores when used with highly interpolated series compared to

MLP and LSTM.

• The performance of ARIMA model on series with higher amount of noise is worse

compared to the other selected approaches in this study.

• In a univariate modelling for a single step forecast, there is no significance difference

among the performances of MLP, LSTM and ES. ARIMA model’s performance is

relatively lesser compared to the other approaches.

• In univariate multi step forecasting, MLP and LSTM achieves lower error scores compared

to ARIMA and ES approaches with ES being the worst in performance. However, there is

no significance different between the performances of MLP and LSTM in the univariate

multi step forecasting setup.

The key selection criteria from the forecasting models are based in the ability to forecast with least

error for multi-steps in the future. Though the results in this study shows the approaches perform well

in a single-step forecast settings, I select the forecasting approach with the least error scores in multi-

step settings. Based on the above-mentioned criteria, the LSTM forecasting model is most suitable

for the SaaS trust model. Besides the relatively higher performance of LSTM over the other

approaches, it also requires less effort in data preparation such as conversion of data into stationary

series. The results in this study suggest that LSTM forecasting model works better on the dataset in

its actual observed format. Although, both MLP and LSTM showed similar performance based on

their forecast error scores, the performance of LSTM models can be improved by including more

parameters in the parameter estimation stage.

A methodology for time series Forecasting of SaaS service factors

184

7.6 CONCLUSION

In this chapter, I presented a novel methodology for forecasting sentiment intensities of SaaS service

factors. I used well-known time series modelling and forecasting methods such as ARIMA,

Exponential smoothing, MLP and LSTM for understand the behaviour of the sentiment intensity data

to develop a forecast model.

I used techniques such as linear interpolation to transform the irregular series of observations for the

SaaS service factors into regular time series data. I performed statistical tests on the time series data

to learn and identify its characteristics. Based on the results of these tests, I have selected the

appropriate methods to model and forecast the sentient intensity series. The fitted models are

evaluated for their forecast performance both in single-step and multi-steps settings. I have also

implemented the multivariate versions of the selected models on the sentiment intensity data.

The forecast results by the models in different settings suggest that the classic time series forecasting

models such as ARIMA and Exponential smoothing captures the highly interpolated series with lower

error rates. However, MLP and LSTM have lower error rates for multi-step forecasting.

In the next chapter, I develop a trust model that dynamically computes the trust levels and scores for

SaaS products by utilizing the sentiment intensity scores of each service factor.

A Fuzzy-based Trust model for SaaS

185

Chapter 8:
A Fuzzy-based Trust model for SaaS

8.1 INTRODUCTION:

In this chapter, an approach is proposed for modelling the trustworthiness of the cloud services i.e.,

SaaS products. The service factors that are based on the pillars of well-architected frameworks (AWS,

2018) (Azure, 2018) are considered as the key trust factors that impact the trustworthiness of cloud

services specifically SaaS. The proposed trust model is based on Mamdani fuzzy inference system

which takes as input, the sentiment intensity scores of the SaaS products service factors discussed in

Chapter 3 and 4. The output trust values obtained from the fuzzy-based trust model is both in the form

of numeric values and also in linguistic terms. As discussed in section 2.2, trust is subjective in nature

and its interpretation varies with the methods used in modelling. Fuzzy sets and fuzzy inference

systems are also well-known in modelling the solutions rooted in subjectivity (discussed in section

2.5). Fuzzy inference systems are easy to implement and practical in nature. Therefore, in this study,

a fuzzy inference system is used to model the trust in SaaS. However, fuzzy inference systems are

not dynamic in nature and it is important that a fuzzy based trust model must adapt with time. A

dynamic component for the fuzzy-based trust model is presented in section 8.3 that is capable to

capture the changes in the service aspect preferences over time. As explained in Chapter 4, the

software quality pillars in the well-architected framework (AWS, 2018) (Azure, 2018) (also termed

as the service factors in this study) is considered as the key factors in the computation of the

trustworthiness of SaaS products. As explained in Chapter 4, the fuzzy trust model is the final

component in the framework of our proposed approach and is developed to achieve the fourth

objective of this study. The proposed fuzzy trust model is capable to compute the trustworthiness

levels of SaaS products on both the aggregated historic sentiment intensity scores of SaaS products

(proposed in Chapter 6) and the trust levels at a given timestep based on sentiment intensity scores

from all the service factors for a given SaaS product (proposed in Chapter 7). As explained in Chapter

3, to compute the trust values of a SaaS product, it is very important to identify the key factors that

contribute to the trustworthiness of the SaaS and also, the relative importance of these factors.

In this chapter, I describe the components of the proposed fuzzy trust model, the detailed explanation

of steps involved and the implementation of the trust model using the SaaS products sentiment

intensity dataset. In the next section, I explain the concept of trust and its application in cloud services.

A Fuzzy-based Trust model for SaaS

186

The overview of the propose approach for modelling trust in SaaS products is presented in Section

8.3. The details of the novel MDR weight metrics are presented in Section 8.4. I describe the details

of the fuzzy-based trust model for SaaS products in Section 8.5 followed by its implementation and

an example case study in Section 8.6. Section 8.7 concludes this chapter.

Table 8.1. SaaS service factors used as Trust factors for the fuzzy-based trust model

Label Service factor/
Trust Factor

description Values
range

AWS well-architected framework
C Cost optimization Cost-aware system development [-1, 1]
O Operational

excellence
Running and monitoring systems and continually
improving processes and procedures to deliver
business value

[-1, 1]

P Performance
efficiency

Focuses on efficient resource utilization and
maintaining that efficiency as business needs evolve

[-1, 1]

R Reliability Quick recovery from failures to meet business and
customer demands

[-1, 1]

S Security Protecting system and information [-1, 1]
Azure architectural framework

C Cost Cost management in relation to product value [-1, 1]
M DevOps

(Management)
Process in operations that keep a system running in
production

[-1, 1]

E Resiliency The ability to recover from failure and returning an
application to fully functional state

[-1, 1]

L Scalability The ability to handle increased load and adapt to
changes

[-1, 1]

S Security Application and data protection throughout the
Lifecyle of the application

[-1, 1]

A Availability
(Previous version)

Measured as a percentage of uptime. The availability
of software system on the cloud is described as the
proportion of time that the software system is
functional and working.

[-1, 1]

8.2 OVERVIEW OF THE FUZZY-BASED TRUST MODEL FOR SAAS:

The overview of our proposed fuzzy-based trust model in depicted in Figure 8.1. The input variables

for the model is shown in Table 8.1 which comprises of the service factors of SaaS products having

the sentiment intensity scores as their values.

A Fuzzy-based Trust model for SaaS

187

Figure 8.1 Overview of the framework for fuzzy-based trust model

Initially, the detailed information is collected regarding the SaaS products that include customer

textual reviews, review dates, reviewer information. This information is kept in the core dataset

explained and used in Chapter 5, Chapter 6 and Chapter 7. For the proposed solution addressed in

this chapter, the core dataset is processed again to extract information particular to the problem here.

The service factors are identified and extracted from the reviews using the method proposed in

Chapter 5 and for each identified service factor, the sentiment intensity is computed using the solution

proposed in Chapter 6. The MDR weight metrics is developed and the service factors are weighted

and ranked based on their importance by using the metrics. The MDR weight metrics is explained in

details in the next section. Using the MDR metrics, the fuzzy rules are generated for the fuzzy trust

model. The output of the fuzzy trust model is the is a crisp trust value along with five levels of

trustworthiness of the SaaS products. The detailed steps of the fuzzy-based trust model are shown in

Figure 8.7.

8.3 MDR WEIGHT METRIC

In order to compute trust value for SaaS products, it is crucial to consider the most important service

factors in this computation. Each service factor can play different role in the overall trustworthiness

of a SaaS product. For example, a service factor for which a very small amount of information is

available is more likely to be less helpful compared to another service factor with relatively more

information. Moreover, as we are using these service factors as input variables for the proposed fuzzy

trust model, the importance of each service factors is very helpful in determining the strength of fuzzy

rules which will compute the five different levels of trustworthiness for the SaaS products. Generally,

the ranking and selection of the input variables are left at customers choice. However, dynamically

selecting weights for these input variables will reduces the overhead on customer side of decision

making.

A Fuzzy-based Trust model for SaaS

188

MDR stands for Maturity, Density and Reviewers of the SaaS products. The basic purpose of the

MDR metrics is to identify the importance of each input variables (service factor) for the generation

of fuzzy rules for our trust model using different combination of these input variables. As discussed

earlier, each input variable has different level of importance in decision making and can be weighted

and ranked based on these weights. This will help us to dynamically select and generate rules with

proper combination of these input variables. Moreover, MDR will help in optimal ranking of the input

variables by assigning them different weights. This is due to the fact that the input variables represent

the SaaS service factors and contains the aggregated sentiment intensity scores over a long period

which is based on reviews of multiple customers.

The main advantages of using MDR weight metrics to rank the input variables are:

• Identifies the relative importance of input variables among them

• Assign different preference level to each input variable

• Helps to reduce the biases among the input variable values

• Helps to reduce the number of the fuzzy rules in the rule base.

• An alternative to the static domain-based rulesets creation.

Figure 8.2 Graphical representation of the individual metric in MDR

Following are the detailed explanation and collection of MDR weight metrics.

A Fuzzy-based Trust model for SaaS

189

8.3.1 Maturity:

Maturity is defined as the total amount of time since the first review is made for a given service factor

of a SaaS product, till the latest review date. Figure 8.2 depicts the maturity of a given service factor.

The unit of maturity is a solar day. For a given SaaS product, the maturity for each identified service

factor can be different. For example, reviewers might be providing their written feedbacks for the

‘Cost’ service factor for the last 400 days and compared to that, for the ‘Performance’ factor of the

same SaaS product, the reviews are made just in the past 30 days. In this scenario, the information

regarding the ‘Cost’ service factor is less likely to give a biased view of the SaaS product compared

to the ‘Performance’ service factor. This makes even more sense when the information regarding

each service factor is based on the sentiment intensity scores. For a given SaaS product, when an

aggregated sentiment intensity scores for each service factor is calculated, the service factor with high

maturity will produce relatively less bias and can be preferred over the others during the decision-

making process. During the calculation of the MDR scores for each service factor, we are using an

average maturity score over 542 SaaS products. The average maturity scores for each service factor

are depicted in Table 8.6. If P represents n SaaS products P = {p1, p2, p3, …., pn} and A represents m

service factors A = {a1, a2, a3, …., am}, then the maturity value for the jth service factor of the ith SaaS

product is calculated as:

𝑚𝑖𝑗 = 𝑓𝑑𝑖𝑗 − 𝑙𝑑𝑖𝑗 (8.1)

where fdij represent the first review date for the jth service factor of the ith SaaS product and ldij

represent the last recorded review date for the jth service factor of the ith SaaS product. The average

maturity of service factor j for all the SaaS products in the dataset X is calculated as:

𝑀𝑗 =
∑ 𝑚𝑖𝑗
𝑛
𝑖=1

𝑛

(8.2)

where n represents the total number of SaaS products in the dataset.

8.3.2 Density:

The Density metric is defined as the total number of reviews since the first review for a given service

factor, till the latest review date as depicted in Figure 8.2. For a given service factor, the value for the

density metric is increment by 1 each time a review is made for that service factor. The density for

each service factor of a given SaaS product can be different. For example, for a given SaaS product

P1000, the reviewers have provided 100 written feedbacks regarding the service factor ‘Cost’ since

the first feedback date for this service factor. While for the same SaaS product, there are 20 written

A Fuzzy-based Trust model for SaaS

190

feedbacks for the ‘Performance’ service factor. In the above example, the information regarding the

‘Cost’ service factor is relatively less likely to lead to a biased decision compared to the information

from the ‘Performance’ service factor. Also, service factor with higher density will be preferred in

the decision-making especially when modelling the trustworthiness of the SaaS product. In this study,

during the calculation of the MDR scores, we are using an average density score for each service

factor over 542 SaaS products. Figure 8.2 shows the average density of each service factor. The

density value for the jth service factor of the ith SaaS product is calculated as:

𝑑𝑖𝑗 = 𝑡𝑟𝑖𝑗 (8.3)

where trij is the total number of reviews for the jth service factor of the ith SaaS product between the

first review date fdi and the last recorded review date ldi. The average density of service factor j for

all the SaaS products in the dataset X is calculated as:

𝐷𝑗 =
∑ 𝑑𝑖𝑗
𝑛
𝑖=1

𝑛

(8.4)

where n represents the total number of SaaS products in the dataset.

8.3.3 Reviewers:

The Reviewers or unique reviewers is defined as the total number of unique reviewers for a given

service factor as depicted in Figure 8.2. The value of Reviewers metric is incremented by 1 each time

a unique reviewer provides written feedback for a given service factor. The Reviewers metric helps

to reduces the bias in calculating the weights using the MDR which is not possible to capture by the

other two metrics. For example, there are 30 written feedbacks regarding the ‘Cost’ service factor of

a given SaaS product, by 10 unique reviewers. For the same SaaS product, 30 feedbacks are written

for the ‘Performance’ service factor but in this case by 3 unique reviewers. In the above example, the

feedback information regarding the ‘Cost’ service factor is relatively less likely to be biased compared

to the information provided by the reviewers regarding the ‘Performance’ service factor. Furthermore,

during the decision-making process the service factor with higher number of unique reviewers will

be preferred as compared to the others. The average number of reviewers for each service factor is

shown in Table 8.6. For the calculation of the final MDR scores for each service factor, we have used

the average number of unique reviewers over 542 SaaS products. Let U be the set of unique reviewers

{rw1, rw2, …, rwn} for the jth service factor of the ith SaaS product, then the number of unique reviewers

is given by:

𝑟𝑖𝑗 = |𝑈| (8.5)

A Fuzzy-based Trust model for SaaS

191

The average number of unique reviewers of service factor j for all the SaaS products in the dataset X

is calculated as:

𝑅𝑗 =
∑ 𝑟𝑖𝑗
𝑛
𝑖=1

𝑛

(8.6)

where n represents the total number of SaaS products in the dataset.

The MDR score is calculated as the weighted sum of the normalized values of maturity, density and

unique reviewers. If M represents the maturity values for n service factors {M1, M2, …., Mn}, then the

normalized maturity value �́� for the service factor j is calculated as:

�́�𝑗 =
𝑀𝑗 −min(𝑀)

max(𝑀) − min(𝑀)

(8.7)

Similarly, if D represents the density values for n service factors {D1, D2, …., Dn} and R represents

the unique reviewers for n service factors {R1, R2, …., Rn}, then for the service factor j, the normalized

density value �́� and normalized unique reviewer’s value �́� is calculated as:

�́�𝑗 =
𝐷𝑗 −min(𝐷)

max(𝐷) −min(𝐷)

(8.8)

�́�𝑗 =
𝑅𝑗 −min(𝑅)

max(𝑅) − min(𝑅)

(8.9)

Finally, the MDR score for service factor j is calculated as:

𝑀𝐷𝑅𝑗 = �́�𝑗 × 𝑤𝑚 + �́�𝑗 × 𝑤𝑑 + �́�𝑗 ×𝑤𝑟 (8.10)

where, wm, wd and wr represent the weights for the metrics and is assigned uniformly an equal value

of 0.33. This gives an equal importance to each metric in the final MDR score for a given SaaS service

factor. However, these weights can be assigned dynamically according to user preferences. The MDR

scores calculated for each service factor is depicted in Figure 8.2 and Table 8.6. Algorithm 8.1 shows

the steps by step procedure of the MDR weights calculation.

A Fuzzy-based Trust model for SaaS

192

Algorithm 8.1: MDR_scores(X)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Input: Dataset X having the sentiment intensity scores for service factors A of SaaS products
P
Output: Ranked MDR scores for each service factor
Let A be a set of m service factors, A= {a1, a2, …, am}
Let P be a set of n SaaS products, P= {p1, p2, …, pn}
for each a ϵ A do:
 for each p ϵ P do:
 Total_maturity += calculate_Maturity(pa[last_review_date], pa[first_review_date])
 Total_density += review_Count(pa[last_review_date], pa[first_review_date])
 Total_Unique_reviewers += unique_Reviewers(pa[last_review_date],
pa[first_review_date])
 end for
 Average_Maturity_of[a] = Total_maturity/n
 Average_Density_of[a] = Total_density /n
 Average_Reviewers_of[a] = Total_Unique_reviewers/n
 Scaled_Maturity = Min-Max_Scale(Average_Maturity_of[a])
 Scaled Density = Min-Max_Scale(Average_Density_of[a])
 Scaled_Reviewers = Min-Max_Scale(Average_Reviewers_of[a])
 WM = WD = WR = assign_Uniform_Weights(1/3)
 MDR[a] = Scaled_Maturity * WM + Scaled Density * WD + Scaled_Reviewers * WR
end for
Ranked_Service_Factors[] = sort(A, MDR(A))

8.4 FUZZY-BASED TRUST MODEL:

In order to compute the trust values and trustworthiness levels for the SaaS products, the fuzzy

inference system takes as input the sentiment intensity scores for all the SaaS service factors. The

core concept of a fuzzy inference system (FIS) is to infer the values of fuzzy output variables from

the given input variables with the help of predefined inference rules. FIS is based on the concept of

the Fuzzy sets theory which were introduced by (Zadeh, 1965).

A Fuzzy-based Trust model for SaaS

193

Figure 8.3 Flowchart for the sequence of tasks in fuzzy-based trust model

Compared to the classical set theory in which an element can either be a member (entirely contained

having a value of 1) of a given set or not be a member (not contained having a value of 0), the elements

in a fuzzy set can have same or different degree of membership between the values of 0 and 1. The

degree of membership is followed by the fuzzy sets for both inputs and output. The fuzzy sets are

defined using membership functions. For example, a fuzzy set A defined through a membership

function µA that assigns the degree of membership to a given input element x can be written as:

𝐴: µ𝐴(𝑥) ∈ [0, 1] (8.11)

The operations on the fuzzy sets are facilitated by using the fuzzy operators which are similar to the

standard Boolean operations such as AND, OR and NOT. Figure 8.4 shows the main components of

the fuzzy inference system.

A Fuzzy-based Trust model for SaaS

194

Figure 8.4 Main component of a Fuzzy Inference System

One of the most famous and extensively used fuzzy inference system is proposed by (Mamdani &

Assilian, 1975). In this study, the proposed fuzzy trust model is developed using the Mamdani fuzzy

inference system (Mamdani & Assilian, 1975). Mamdani inference system is widely accepted due to

its intuitiveness and is exceptionally suited to human input. Figure 8.3 shows the flow of steps for

the proposed fuzzy inference system. Initially the system collects the sentiment intensity scores for

each SaaS factors (outcomes from chapter 5 and chapter 6). These service factors act as the trust

factors in the trust model and is used as inputs for the fuzzy inference system. For each input variable,

using the triangular membership function, three fuzzy sets are introduced which fuzzifies the crisp

values into fuzzy values (between the values of 0 and 1). The fuzzy rules are generated using the

MDR weight metrics. The fuzzy rules are then applied to the fuzzified inputs and the rule strengths

are calculated. The rule strengths are aggregated to get the fuzzy output and defuzzified using the

centroid defuzzification method. The final defuzzified value represents the overall trust value of a

given SaaS product. Figure 8.5 depicts the inputs and output of the Mamdani fuzzy inference system.

The inputs for the fuzzy inference system are the trust factors explained in Section 8.3.

8.4.1 SaaS service factors as Trust factors

The SaaS service factors which is based on the cloud services and application quality pillars (AWS,

2018) (Azure, 2018) is considered as the Trust factors for the proposed fuzzy trust model. Table 8.1

shows the complete list of the service factors. Chapter 5 and chapter 6 which addresses the first and

second objective of this study, identifies these service factors for the SaaS products from the customer

reviews. Furthermore, for each of the identified service factor, the sentiment intensity scores are also

computed.

A Fuzzy-based Trust model for SaaS

195

Figure 8.5 The input and output of Mamdani FIS

8.4.2 Fuzzification of input variables and input membership functions

The Second step in the implementation of the fuzzy trust model is to convert these crisp input values

into fuzzy inputs known as the fuzzification. The fuzzification is achieved using membership

functions. The membership functions define the membership degree of an input to the fuzzy sets. In

this study we have used the most commonly used triangular membership function. Among the others,

the triangular fuzzifier is simpler to compute and is famous for its tolerance against disruptions.

The proposed trust model in this study uses the sentiment intensity scores for each service factor as

antecedents or inputs. The sentiment intensity scores range between -1 to 1 and are crisp values,

where -1 represents a strongly negative customer sentiment and 1 represents a strongly positive

customer sentiment. Hence the universe of discourse for each of the input variable also known as the

universal set is written as:

𝑈 = {𝑟|−1 ≤ 𝑟 ≤ 1; 𝑟 ∈ ℝ} (8.12)

For each of the antecedents, three fuzzy sets named as Negative, Neutral and Positive is defined using

triangular membership functions as shown in Figure 8.6, that covers the entire domain of each our

A Fuzzy-based Trust model for SaaS

196

input variables. A triangular membership function takes three parameters (a, b, c) to specify its three

vertices. The details of each input fuzzy set generated by the triangular membership function and its

parameters is shown in Table 8.2. For example, using a triangular membership function, the degree

of membership in the fuzzy set Neutral is calculated as:

𝜇𝑁𝑒𝑢𝑡𝑟𝑎𝑙(𝑥) =

{

0, 𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
, 𝑎 < 𝑥 ≤ 𝑏

1, 𝑥 = 𝑏
𝑐 − 𝑥

𝑐 − 𝑏
, 𝑏 < 𝑥 < 𝑐

0, 𝑥 ≥ 𝑐

(8.13)

where µNeutral is the membership in the fuzzy set Neutral of crisp input x.

Table 8.2. Specifications of the triangular input fuzzy sets with their linguistic terms

Linguistic terms Triangular membership function
parameters (a, b, c) (Sentiment intensity
range)

Negative (-1, -1, 0)
Neutral (-0.25, 0, 0.25)
Positive (0, 1, 1)

Table 8.2 shows the fuzzy sets identified by their linguistic terms each with the associated range of

the sentiment intensity scores. As a result of the fuzzification of the values in a given input variable

using the membership functions, the fuzzy sets for that input variable will have a degree of

membership between 0 and 1.

The outputs or consequents of our fuzzy inference system is defined by using five fuzzy sets namely,

Very Trustworthy, Trustworthy, Neutral, Untrustworthy and Very Untrustworthy generated by using

the triangular membership function. The consequents in here represent the trust levels in linguistic

terms as shown in Table 8.3. Figure 8.7 shows the triangular membership functions with the

associated range of the trust scores.

A Fuzzy-based Trust model for SaaS

197

Figure 8.6 Input membership functions for all the input variables

A Fuzzy-based Trust model for SaaS

198

Table 8.3. Specifications of the triangular output fuzzy sets with their linguistic terms

Linguistic terms Triangular membership function
parameters (a, b, c) (Trust values
range)

Very Untrustworthy (1, 1, 2)
Untrustworthy (1, 2, 3)
Neutral (2, 3, 4)
Trustworthy (3, 4, 5)
Very Trustworthy (4, 5, 5)

Figure 8.7 Output membership functions for the fuzzy-based trust model

8.4.3 Fuzzy inference rules for the trust model

The fuzzy inference rules take the IF-THEN form where, the IF part checks the fuzzy values(s) in the

given input membership function(s) (antecedent(s)) and THEN part directs it to a given output

membership function (consequent). A fuzzy rule uses fuzzy operators such as AND, OR and NOT

when more than one condition is considered. The operations by these fuzzy operators are similar to

the ones used in Boolean operation. A simple example of a fuzzy rule can be written as:

𝐼𝐹 𝑥1 𝐼𝑆 𝐴1 𝐴𝑁𝐷 𝑥2 𝐼𝑆 𝐴2 𝑇𝐻𝐸𝑁 𝑦 𝐼𝑆 𝐵
where, x1 and x2 are input values, A1 and A2 are the linguistic values (fuzzy sets) for the input values,

y is the output variable and B represent the linguistic value of y.

In order to devise the most effective fuzzy rules for the trust model we have ranked the input variable

based on their importance. The importance of these input variables is computed using our proposed

MDR weight metrics. A set of fuzzy rules is generated with the help of MDR metrics as shown in

Table 8.4. For clarity, the remaining fuzzy rules are placed in Section 8.4.1. The fuzzy rules are

A Fuzzy-based Trust model for SaaS

199

organized into five different categories based on specific combinations of the input variables weights.

The following subsections explain the generation of rules in each of the five rule categories.

A Fuzzy-based Trust model for SaaS

199

Table 8.4. Fuzzy inference rules with MDR scores for each Trust factor

A Fuzzy-based Trust model for SaaS

200

Rule categories

A total of 159 rules are generated with the help of MDR scores which are divided into five different

categories. The high number of rules is due to the number of inputs and also based on wider range of

considerations by the fuzzy inference system. The rule categories are discussed in details in the

following subsections.

Rules category A:
In this category of rules, the selected input variables having their MDR scores above the average

MDR score. The average MDR score is calculated as:

𝑀𝐷𝑅𝑎𝑣𝑔 =
∑ 𝑀𝐷𝑅𝑗
𝑚
𝑗=1

𝑚

(8.14)

The above equation calculates the average MDR score, where m represents the total number of input

variables. If A is the set of all the input variables (service factors) and T is the set of MDR values for

the input variables, then the input variables for the rules in category I is selected as:

𝐶𝐴𝑇𝐼 = {𝑗|𝑗 ∈ 𝐴,𝑀𝐷𝑅𝑗 ≥ 𝑀𝐷𝑅𝑎𝑣𝑔} (8.15)

where j represents the input variables (service factors).

The rules in this category have no dependencies on the inputs having their MDR scores below the

average threshold. The selected the most effective variables will help to target precisely the Very

Trustworthy, Very Untrustworthy and Neutral output trust levels. For example, if in each of the

selected variable, the term ‘Negative’ has the highest membership value, then the rule will result into

the term ‘Very Untrustworthy’ (output fuzzy set). All the rules generated in this category is depicted

in Table 8.4.

Rules category B:
The rules in category B leaves one variable out from the set of input variables having MDR scores

above the average MDR and have no dependencies on the remaining inputs. This makes the strength

of rules in this category relatively weaker than the rules in category I. The rules in category II targets

the output trust levels of Trustworthy, Neutral and Untrustworthy represented by respective output

fuzzy sets.

Rules category C:

A Fuzzy-based Trust model for SaaS

201

Similar to category B, the strength of rules in category is also relatively weaker than the rules in

category I. The rules in category C follows the baseline strategy of categories A and B by considering

the input variables that have the MDR scores above the average MDR and have no dependencies on

the remaining inputs. The rules in this category targets the output trust levels of Trustworthy, Neutral

and Untrustworthy by restricting that, in half of the selected input variables, the term ‘Neutral’ must

have the highest membership value. For example, in half of the selected variables, the term ‘Negative’

is checked for its membership value and in the remaining half of the input variables, the term ‘Neutral’

is selected for its membership value, then the rule results in the term ‘Untrustworthy’ as the output

fuzzy set.

Rules category D:
The aim of the rules in this category is to target the ‘Neutral’ trust level in the output fuzzy set. This

category of rules also considers those variables that have the MDR scores above the average MDR.

The rules in this category dictates that, in half of the selected input variables, the term ‘Neutral’ must

be checked for its membership value and half of the remaining variables above the average MDR

must consider ‘Positive’ or ‘Negative’ with their membership value. The rules in this category have

no dependencies on the remaining inputs.

Rules category E:
Most of the rules in our ruleset belong to this category. This rules in this category considers the

combination of all the input variables in our dataset. Each rule in this category has different

dependencies on the inputs. The strength of rules in category is also relatively weaker than the rules

in category I and they target the output trust levels of Trustworthy, Neutral and Untrustworthy.

8.4.4 Rule aggregation and evaluation

In order to calculate the consequent or output of the fuzzy rules, first, for each fuzzy rule the fuzzified

inputs are combined (also known as T-norms) using fuzzy operators (also known as implication

operators) to identify the rule strength. The most commonly used operator is the fuzzy AND which is

written as:

µ𝐴∩𝐵 = 𝑇(µ𝐴(𝑥), µ𝑩(𝑥)) (8.16)

where µA is the membership of input x in class A and µB is the membership of input x in class B.

Similarly, the fuzzy OR operator is written as:

µ𝐴∪𝐵 = 𝑇(µ𝐴(𝑥), µ𝑩(𝑥)) (8.17)

A Fuzzy-based Trust model for SaaS

202

To calculate the rule strength by combining the fuzzy inputs, I have used the Zadeh’s fuzzy AND

operator (min) which computes the minimum of the given membership values given below:

𝑤𝑖 = min{µ𝐴1(𝑥1), … , µ𝐴𝒏(𝑥𝑛)} (8.18)

where wi represents the rule strength for fuzzy rule Ri, x represents the input vector and An represents

given input fuzzy sets. Once the rule strength for each rule is calculated using the fuzzy combinations,

then the rule strength is combined with the corresponding output membership function (consequent)

which returns a clipped output membership function given as:

𝜇𝐵𝑖́ (𝑦) = min(𝑤𝑖, 𝜇𝐵𝑖(𝑦)) (8.19)

where µB represents the output fuzzy set B (consequent of rule Ri).

Finally, to obtain a single fuzzy output distribution, the output of all the fuzzy rules are aggregated

using an aggregation operator. I have used the Zadeh’s fuzzy OR operator (max) which performs the

maximum operation on the output fuzzy sets.

𝜇�́�(𝑦) = max{𝜇𝐵1(𝑦),… , 𝜇𝐵𝑛(𝑦)} (8.20)

8.4.5 Defuzzification to crisp trust values

During the defuzzification step, the resultant membership function obtained from the aggregated

fuzzy outputs of the fuzzy rules, are converted into crisp trust values. In our proposed approach we

have used the well-known centroid defuzzification method. Among the other defuzzification

methods, centroid is simpler in terms of computation. Thus, a crisp output y representing a trust value

is computed through:

𝑦 =
∑ 𝜇𝐵(𝑥𝑖) ∙ 𝑆𝑖
𝑛
𝑖=1

∑ 𝜇𝐵(𝑥𝑖)
𝑛
𝑖=1

(8.21)

where n represents the number of fuzzy rules, µB(xi) represents the degree of membership of value xi

in class B (output fuzzy set) and Si represents the centroid point of the corresponding output

membership function.

8.5 IMPLEMENTATION AND CASE STUDY

As explained in Chapter 5, the primary data is collected for SaaS products reviews from 3 different

sources and for each SaaS product, the reviews are segmented, then, from each segment the service

A Fuzzy-based Trust model for SaaS

203

factors are identified and its sentiment intensity is computed (explained in chapters 5 and 6). From

the core dataset, the dataset for this section of our work is created which contains the aggregated

sentiment intensity values of each service factor for 542 SaaS products.

The rows in the dataset represent the SaaS products and the columns represent the aggregated

sentiment intensity scores for each service factor of these products. Each column representing the

service factor is used as input variables for the fuzzy trust model. Each data item in the dataset rows

represent the aggregated sentiment intensity values of n review segments for each service factor of a

given SaaS product. The aggregated sentiment intensity score for the jth service factor of the kth SaaS

product P is calculated as:

𝑃𝑘𝑗 =
∑ 𝑆𝑖𝑗
𝑛
𝑖=1

𝑛

(8.22)

where Sij represent the sentiment intensity value of ith review segment for the jth service factor. Table

8.5 shows samples of SaaS products from the dataset with the aggregated sentiment intensity scores

calculating using Equation 8.22 for each of the service factor (trust factors).

Table 8.5. Samples of SaaS products with the sentiment intensity scores for each input Trust factor

PID A C E L M N O P R S
P2760 0.48 0.32 0.36 0.24 0.59 0.54 0.78 0.64 0.61 0.47
P0 -0.34 0.67 -0.16 -0.19 0.11 -0.25 0.09 0.00 0.05 -0.05
P100 0.38 0.36 0.21 0.52 0.38 0.43 -0.57 -0.35 0.23 0.32
P1003 0.14 -0.07 0.34 0.18 0.26 0.04 0.00 0.34 0.29 0.25
P1004 0.25 0.25 0.20 0.94 0.47 0.23 0.32 0.20 0.39 0.00
P1015 0.34 0.28 0.19 0.69 0.44 0.25 0.32 0.35 0.44 0.26
P1024 0.64 0.43 0.44 0.95 0.43 0.28 -0.57 0.46 0.56 0.42
P103 0.78 0.01 0.47 0.54 0.47 0.51 0.26 0.17 0.49 0.58
P1035 0.23 -0.04 0.17 0.48 0.09 0.01 0.11 0.21 0.13 0.05
P1037 -0.08 0.31 0.11 0.37 0.15 0.23 0.03 -0.17 -0.04 0.21
P104 0.59 0.41 0.44 0.44 0.45 0.53 0.38 0.44 0.32 0.55

8.5.1 MDR scores calculation

After the dataset is prepared by following the previous step, the MDR weights are calculated for each

of the service factor. The MDR weight is crucial in ranking the trust factors (service factors) by

assigning them different weights which will help to generate the fuzzy rules. The step-by-step

implementation of MDR weight calculation is shown in Algorithm 8.1.

Table 8.6 shows the average maturity of each SaaS service factors, average density of reviews for

each service factor and the number of unique reviewers for each service factor of the selected 542

A Fuzzy-based Trust model for SaaS

204

SaaS services along with the average number of reviewers per service factor. For example, for the

service factor A (Availability factor), the average maturity of is calculated using Equation 8.2 as:

𝑀𝐴 =
183384

542
= 338.35

the averaged density of reviews is calculated using Equation 8.4 as:

𝐷𝐴 =
3089

542
= 5.7

the averaged unique reviewers for service factor A are calculated using Equation 8.6 as:

𝑅𝐴 =
2601

542
= 4.8

Before the final MDR score is calculated for service factor A, the values for metrics M, D and R is

normalized between the values of 0 and 1 using Equation 8.7, Equation 8.8 and Equation 8.9

respectively as:

�́�𝐴 =
338.35 − 13.51

824.46 − 13.51
= 0.4

�́�𝐴 =
5.7 − 0.17

70.51 − 0.17
= 0.08

�́�𝐴 =
4.8 − 0.14

27.49 − 0.14
= 0.17

Finally, the MDR score for service factor A is calculated using Equation 8.10 as:

𝑀𝐷𝑅𝐴 = 0.4 × 0.33 + 0.08 × 0.33 + 0.17 × 0.33
𝑀𝐷𝑅𝐴 = 0.22

Here, each metric is weighted uniformly. However, the weights for each of these metrics can be

adjusted based on the application domain and user preference. Similarly, the MDR scores for the

other service factors are calculated following the above example. The MDR scores of all the service

factors is shown in Table 8.6 along with the average MDR score and graphically depicted in Figure

8.8.

Table 8.6. Details of individual metric used in MDR score calculation

Metric A C E L M N O P R S
Sum/Av

g Values
Product

s

Maturity 338.35 466.29
13.5

1 73.14 803.19 824.46 414.92 498.73 378.99 30.02 3841.61
Average

d 542

Maturity
18338

4
25272

9 7325
3964

0
43532

8
44685

9
22488

7
27031

1
20541

5
1627

2 2082150 Count 542

Density 5.70 10.18 0.17 1.02 63.16 70.51 9.30 12.57 15.46 1.98 190.05
Average

d 542

Density 3089 5516 92 553 34233 38219 5038 6813 8381 1071 103005 Count 542
Reviewer

s 4.80 7.61 0.14 0.92 26.97 27.49 6.91 9.33 11.42 1.59 97.19
Average

d 542
Reviewer

s 2601 4126 77 500 14619 14900 3745 5058 6189 863 19864 Count 542

A Fuzzy-based Trust model for SaaS

205

MDR
Scores 0.22 0.32 0.00 0.04 0.95 1.00 0.29 0.37 0.36 0.03 0.358 542

Figure 8.8 MDR scores for all the service factor from the SaaS dataset

8.5.2 Fuzzy inference

After the detailed explanation of the proposed approach in the example in the previous subsection,

calculation of MDR scores for each service factor, a case study is presented in this subsection to

explain the working of the fuzzy trust inference model.

From the dataset explained in the previous subsection, a SaaS product with product ID: P2760 is

selected to demonstrate the computation of its trust score and trust level. Table 8.6 shows the averaged

sentiment intensity values for each of the service factor. Here, to remind ourselves, the service factors

are the actual trust factors for the proposed trust model with crisp values.

Table 8.7. Fuzzy membership in each of the input membership function for the input variables
PID N M P R C O A L S E

P2760

0.54 0.59 0.64 0.61 0.32 0.78 0.48 0.24 0.47 0.36 Crisp
0 0 0 0 0 0 0 0 0 0 Negative

Fu
zz

y
M

em
be

rs
hi

p

0 0 0 0 0 0 0 0.04 0 0 Neutral
0.54 0.59 0.64 0.61 0.32 0.78 0.48 0.24 0.47 0.36 Positive

A Fuzzy-based Trust model for SaaS

206

Fuzzification of sentiment intensity of trust factors (service factors):

Given the values of the vertices of the triangular membership function as:

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑎, 𝑏, 𝑐) = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(−1,−1, 0)
𝑁𝑒𝑢𝑡𝑟𝑎𝑙(𝑎, 𝑏, 𝑐) = 𝑁𝑒𝑢𝑡𝑟𝑎𝑙(−0.25, 0, 0.25)

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝑎, 𝑏, 𝑐) = 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(0, 1, 1)

Table 8.8. Rule strengths and output fuzzy set association
Rule Rule Strength (min) Output Fuzzy set
R3 0.54 Very Trustworthy
R6 0.54 Trustworthy
R9 0.54 Trustworthy
R12 0.54 Trustworthy
R15 0.59 Trustworthy
R54 0.24 Trustworthy
R57 0.24 Trustworthy
R60 0.24 Trustworthy
R63 0.32 Trustworthy
R66 0.32 Trustworthy
R69 0.48 Trustworthy
R72 0.24 Trustworthy
R75 0.24 Trustworthy
R78 0.24 Trustworthy
R81 0.32 Trustworthy
R84 0.32 Trustworthy
R87 0.48 Trustworthy
R90 0.24 Trustworthy
R93 0.24 Trustworthy
R96 0.24 Trustworthy
R99 0.32 Trustworthy
R102 0.32 Trustworthy
R105 0.48 Trustworthy
R108 0.24 Trustworthy
R111 0.24 Trustworthy
R114 0.24 Trustworthy
R117 0.32 Trustworthy
R120 0.32 Trustworthy
R123 0.48 Trustworthy
R126 0.24 Trustworthy
R129 0.24 Trustworthy
R132 0.24 Trustworthy
R135 0.32 Trustworthy
R138 0.32 Trustworthy
R141 0.48 Trustworthy
R144 0.24 Trustworthy
R147 0.24 Trustworthy
R150 0.24 Trustworthy
R153 0.32 Trustworthy
R156 0.32 Trustworthy
R159 0.48 Trustworthy
Max 0.59 Trustworthy

A Fuzzy-based Trust model for SaaS

207

the membership values (fuzzy values) for the trust factor A (Availability) in the fuzzy sets Negative,

Neutral and Positive are calculated using Equation 8.13 as:

𝑥 = 0.48
𝜇𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(0.48) = 0, (𝑥 ≥ 𝑐)
𝜇𝑁𝑒𝑢𝑡𝑟𝑎𝑙(0.48) = 0, (𝑥 ≥ 𝑐)

𝜇𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(0.48) =
0.48 − 0

1 − 0
= 0.48, (𝑎 ≤ 𝑥 ≤ 𝑏)

Table 8.7 shows the SaaS product (P2760) membership values in each of the input fuzzy sets for all

the trust factors with columns arranged from highest MDR weights to lowest moving from left to

right.

Fuzzy rules evaluation:

The fuzzy rules are evaluated in this step using the values from the Table 8.7 in the antecedents of

the rules. The following example shows some of the effective rules (resulting in non-zero output

memberships when the rule strength calculation using min operator):

Rule 3: If N is Positive and M is Positive and P is Positive and R is Positive then Trust Level is Very Trustworthy

The rule strength lR3 is calculated using Equation 8.18 as:

𝑙𝑅3 = min (0.54, 0.59,0.64,0.61) = 0.54

This will result in the output fuzzy set Very Trustworthy clipped at 0.54 membership degree (height).

Table 8.8 shows the rule strengths of all the effective fuzzy rules.

For clarity, the detailed calculation of the rule strengths of all the rules with a non-zero membership

in the output membership functions is placed in Section 8.4.2.

Aggregation of the fuzzy rules:

From the results in Table 8.8, the rules strengths are aggregated using Equation 8.20 to get a single

consequent (output fuzzy set) using the fuzzy OR (Maximum) operator. Figure 8.9 depicts the result

of the aggregation operation where it indicates that the degree of membership is larger in the

Trustworthy output fuzzy set. Hence, the trust level of the SaaS product P2760 is considered as

Trustworthy based on the sentiment intensity values in the input trust factors.

A Fuzzy-based Trust model for SaaS

208

Figure 8.9 Output membership functions for a given SaaS product's trust score and trust level

Defuzzification of the output distribution:

Finally, the output distribution is defuzzified to calculate a crisp output trust score for the example

SaaS product using Equation 8.21. For simplicity of calculation, here, I am using the centroid point

of each output fuzzy sets also known the First Infer, Then Aggregate (FITA) for the defuzzification.

This centroid calculation method calculates the product of centre of gravity of the consequent of each

rule with its membership degree first, then aggregate the to get the final centroid of the consequent

or defuzzified output value. The defuzzification returns a crisp trust value of 4.1 for the SaaS product.

8.5.3 Experiments and Simulation results:

The proposed fuzzy trust model is simulated using the dataset with 542 SaaS products. As depicted

in Figure 8.10, the simulation results show that 83.3 percent of the SaaS products in our dataset fall

under the Trustworthy level on the trust scale. This is followed by the 16.1 percent that are Neutral

on the trust scale. A very small number of SaaS products with the percentage of 0.2% are inferred as

Untrustworthy. The simulation found no such SaaS product which could either be scaled as Very

Trustworthy or Very Untrustworthy.

A Fuzzy-based Trust model for SaaS

209

Figure 8.10 simulation results on the SaaS dataset and the percentage distribution of SaaS products

based on their computed trust levels

Few of the computed results from the simulation is depicted in Figure 8.11 and Figure 8.12 with the

final trust scores of 2.5 and 3.5 respectively.

A Fuzzy-based Trust model for SaaS

210

Figure 8.11 Example output membership functions with trust levels and trust scores

Figure 8.12 Example output membership functions with trust levels and trust scores

Trust scores over given timesteps:

In the previous explanation and examples, the dataset used consist of aggregated sentiment intensity

scores for each trust factors for the available 542 SaaS products. The trust scores calculated indicates

the trust scores of the SaaS products based their entire lifespan. However, the proposed fuzzy trust

model is capable to compute the trust values of a given SaaS product at different historic timesteps.

To demonstrate this capability, we have utilized the dataset used in the discussion in Chapter 7. For

a given SaaS product P409, the sentiment intensity scores for all the input trust factors between 30-

01-2014 and 03-06-2017 is depicted in Figure 8.13. It can be observed from Figure 8.13 that the

sentiment intensity of service factor is different at a single timestamp. Thus, proving the importance

of a weighted fuzzy inference system to compute an acceptable trust value. Based on these input

values, the final trust scores computed by the proposed fuzzy trust model, for each timestep is depicted

A Fuzzy-based Trust model for SaaS

211

in Figure 8.14. It can be observed from the simulation results that the trust scores vary with the

changes in user sentiment towards different service factor.

Figure 8.13 Sentiment intensity scores for each service factor of a given SaaS product, used as trust

factors for inputs in fuzzy trust model

A Fuzzy-based Trust model for SaaS

212

Figure 8.14 The output trust scores at each time spot for which the input trust factors are observed

8.6 CONCLUSION

During the trust modelling stage, the solution to the core issues which are solved in the initial stages

that includes trust factor identification, sentiment intensity computation for each trust factor,

imputation of missing sentiment intensity scores for trust factors and efficient method to forecast the

trust factors, helps to make sure the fuzzy trust model is designed with high precision and strong

capability. In this chapter, a model is developed to compute the trust scores and trustworthy levels of

SaaS products using Mamdani fuzzy inference system. The model takes as an input the sentiment

intensity scores for the service factors of SaaS products which is utilized as trust factors to compute

the trust scores. The proposed model outputs the trust scores as well as the trustworthy levels of any

given SaaS product. The proposed fuzzy trust model has demonstrated the capability to precisely

compute trust scores for SaaS products both at current standings and at any point in time. To improve

the performance of the fuzzy inference system, a new method called the MDR is developed that ranks

the service factors by assigning them different weights. This ranking helps to choose the most

effective service factors in the computation of the final trust scores.

A Fuzzy-based Trust model for SaaS

213

The developed approach is demonstrated by using real dataset collected from different sources. A

case study is conducted that demonstrates the step-by-step implementation and working of the

developed technique. The simulation results on two different type of datasets shows promising results

by successfully capturing the fluctuating trust scores of different SaaS products.

Recapitulation and future work

214

Chapter 9:

Recapitulation and future work

9.1 INTRODUCTION

Cloud computing has become the core technological backbone for the businesses today. Among the

other cloud service delivery models, Software as a Service is the top priority solution for businesses

and individuals for their business needs. The adoption of SaaS is increasing at a rapid pace, however,

this change in the software marketplace brings a number of challenges such as the trustworthiness of

these SaaS products. The information technology infrastructures used by these SaaS products are also

advancing and bringing more strength and flexibility to the SaaS architectures. Moreover, the

economies of scale bring financial benefits for the SaaS providers. In such dynamic software

marketplace, the customers need to make timely decision in selecting the SaaS products meets their

business requirements and are trustworthy based on critical service factors. The SaaS customers do

not have significant visibility to structure and architecture of the offered SaaS products. An acceptable

level of trust towards a SaaS product is helpful in their decision to sign-up for a service.

As discussed in Chapter 2, the cloud service providers have more visibility to the deployed SaaS

architectures compared to the customers. Most of the providers consider the cloud applications and

SaaS architectural best practices in designing and maintaining their SaaS products. The SaaS

customers on the other hand can benefit in their decisions by utilizing the reliable information

regarding the SaaS architectures.

In this thesis, I presented a trust management framework that identifies the SaaS service factors that

is based on cloud applications architectural best practices and models the trust in SaaS products using

the customer past sentiment towards these service factors.

In the next section, I recapitulate the issues addressed in this thesis. In Section 9.3, I discuss the

contribution of this this thesis in solving the identified the research issues for different aspects of trust

modelling. In Section 9.4, I provide the future research directions of this study and Section 9.5

concludes the chapter.

Recapitulation and future work

215

9.2 RECAPITULATION

The aim of thesis is to facilitate the SaaS customer decisions during the selection of suitable SaaS

products. For this purpose, the thesis proposes a trust management framework that models the

trustworthiness in SaaS products. The concept of trust has been studied in several domain including

cloud computing. However, the nature of SaaS products differs from traditional software architectures

with more dependencies and dynamics. To provide a level of trust for the SaaS products that benefits

the SaaS customers, the SaaS products must be assessed through architectural best practice. In the

existing literature, the trust in SaaS products has not been studied in this context.

In order to model the trust in SaaS products, a number of challenges and issues arise. In this thesis, I

set separate objectives to solve the identified issues which are highlighted as follows:

1. To develop a method for the identification of the SaaS service factors automatically from

customer reviews

2. To develop a method for the imputation of unobserved information on the SaaS service factors

3. To develop a methodology for forecasting the information regarding each SaaS service factor

4. To develop a method for dynamically modelling the trust in SaaS products by utilizing the

information from the SaaS service factors

5. To validate all the developed techniques in this thesis

The novelty of each of the proposed solution in this thesis is summarized as:

1. This thesis considers the cloud applications and services architectural best practices as trust

factors which is not focused on in the existing literature.

2. The T-NN approach proposed in this thesis, imputes the missing or unobserved information in

the SaaS service factors which is not addressed in the existing literature.

3. Forecasting the SaaS service factors to compute trust in the future time is not addressed in the

existing literature. This thesis proposes a forecast model for SaaS service factors that exhibits

high performance.

4. The MDR approach proposed in this thesis, dynamically weights and ranks the trust factors which

is not addressed in the existing literature.

In the next section, a summary of the contributions by this thesis is provided.

Recapitulation and future work

216

9.3 CONTRIBUTION OF THE THESIS

This thesis will help to understand the relationship between the SaaS architectural best practices

customer experiences. This study will bring forward the most accurate approach that utilizes user

reviews to compute the trust values for SaaS products in cloud marketplaces. This thesis will help

SaaS consumers in their decisions to select SaaS products based on the strength of each service factor

according to the dynamic ranking of each service factors. This study will also help the SaaS providers

to focus on the key factors of their SaaS products which could result in better user experience and

increased revenue.

The key contribution of this thesis to the existing body of the literature on the trust models in SaaS

are discussed in the following subsections.

9.3.1 Contribution 1: A novel framework that establishes the root of trust in SaaS using
Architectural best practices

The first contribution of the thesis is a novel framework that utilizes the cloud applications and

services architectural best practices to identify the key SaaS service factors and obtains relevant

information for these service factors. The service factors are decided based on the pillars of well-

architected frameworks introduced by major cloud service providers such as Amazon Web Services

and Microsoft Azure.

As part of the first contribution of this thesis, the proposed framework identifies these service factors

from customer reviews based on their previous experience. The customer reviews are collected and

the reviews are labelled under the relevant categories of SaaS service factors. The details of proposed

framework are presented in Chapter 5. Initially, the labels are assigned manually by finding the

relevant words and phrases that hints a particular service factor. This contribution is significant and

different modelling techniques can be applied on the SaaS reviews dataset that provide solutions in

several problem domain.

9.3.2 Contribution 2: An ensemble model that automatically identifies SaaS service factors

The second contribution of this thesis is an ensemble model for text classification that is trained on

SaaS customer reviews. The development of the ensemble text classification model involves four

stages that starts with a data pre-preparation stage. The textual data prepared for the classification

models using techniques such as data cleansing, tf-idf vectorization and scaling and feature

normalization.

Recapitulation and future work

217

In the second stage of development, suitable machine learning methods are selected based on the

problem specification. The ML approaches both from the parametric and non-parametric categories

are selected in this stage. The selected ML approaches have the capability to learn in a supervised

setting, useful for multi-class text classification and can work with input data with high dimensions.

In the third stage the optimal parameters of the selected machine learning approaches are estimated

by cross-validating on the training data from the SaaS review dataset. Data resampling techniques

such as stratification and SMOTE are applied on the training data during the parameter estimation to

achieve the best fit of the ML models.

In the last stage of the ensemble model development, the performances of the selected ML models

are evaluated on test data from the SaaS review dataset. To select the ML models for ensemble

creation, their performances are cross-compared and Friedman’s statistical significance test with

Nemenyi’s post-hoc test is performed. Finally, the ensemble model is created from the best

performing ML models. The detailed steps for the development and validation of the ensemble model

are presented in Chapter 4. The proposed ensemble model for SaaS reviews is novel and is a

significant contribution to the existing literature.

9.3.3 Contribution 3: An imputation method for missing sentiment scores of SaaS service
factors

The third contribution of this is a novel method for imputing the missing information regarding the

service factors. In Chapter 6, the methodology is developed in four stages, Initially, the collected

customer reviews are segmented and for each text segment the SaaS service factor is identified using

the proposed method from the previous objective. In the second stage of methodology, the sentiment

intensity of each text segment is computed using VADER which is a rule-based valence computation

approach.

The novel Threshold-based Nearest Neighbour (T-NN) method for imputing the sentiment intensity

scores of the missing SaaS service factors is developed in the third stage of the methodology. T-NN

uses the correlation weights to calculate the distances and the donors are selected using a threshold

value.

In the final stage, the imputation performance of the T-NN is evaluated against the well-known

imputation approaches such as K-NN, SVD, Decision Tree, EM, SGD and the Mean and Median

imputations. The performance of T-NN is investigate and thoroughly validated under two different

schemes. In Chapter 6, I presented the details of each stage of the methodology along with the model

Recapitulation and future work

218

validation in both the schemes. To the best of knowledge, there is no such study that investigates and

imputes the missing sentiment intensities of SaaS service factors. The T-NN is a novel contribution

to the existing literature for imputing the sentiment intensity scores of missing SaaS service factors.

9.3.4 Contribution 4: A forecast model for SaaS service factors

The fourth contribution of this thesis is a methodology to forecast the sentiment intensity scores of

SaaS service factors. The detailed development steps of the proposed methodology are presented in

Chapter 7. The forecast model is capable to forecast SaaS sentiment intensity scores for future time

stamps with optimal performance. The forecasted values are used by the trust model to compute the

trust level and trust scores of SaaS products for future points in time. The methodology is developed

in four stages. The dataset used to develop the forecast model contained the irregular observations

for sentiment intensity scores of the SaaS service factor. The irregular series is transformed into

regular time series data using the Linear Interpolation and LOCF techniques in the first stage of the

methodology.

In the second stage, a preliminary investigation is performed through statistical tests such as

Augmented Dickey-Fuller test, Granger Causality test and Pearson’s Correlation Coefficient test to

understand the sentiment intensity time series for their statistical properties. Based on the preliminary

investigation, time series forecasting models are selected such as ARIMA, Exponential smoothing,

MLP and LSTM for evaluation on the time series data. All the selected models are evaluated for their

single-step and multi-steps forecasting capabilities on the SaaS sentiment intensity time series data. I

have also developed and evaluated the multivariate versions of the selected models for more in-depth

analysis of their performance. Based on the validation results of the selected models, I used the LSTM

model for the forecast component of the trust management framework. The details stages of

development and model validation is presented in Chapter 7. To the best of my knowledge, there is

no study in the existing literature that focuses on the development of forecast model for SaaS

sentiment intensities.

9.3.5 Contribution 5: A dynamic trust model for SaaS

In Chapter 8, a dynamic trust model is developed using Mamdani Fuzzy Inference approach. The

proposed trust model is capable to compute the trust levels and trust score for SaaS products at current

point in time and also for future time slots by utilizing the sentiment intensity scores of the SaaS

service factors. A novel dynamic weighing and ranking approach called MDR, is proposed to identify

Recapitulation and future work

219

the priority of trust factors in trust computation. The dynamic trust model is used to model the trust

levels of the SaaS products for further insight into current SaaS marketplace.

To the best of knowledge, there is such approach in existing literature that dynamically utilized the

sentiment intensity scores of SaaS service factors to model the trust in SaaS products.

9.4 FUTURE WORK

In this thesis, a trust management framework for SaaS products is introduced for supporting customer

decisions in adopting SaaS products. This thesis addressed the key issues during the development of

the proposed framework and presented solutions for the identified issues. However, during the

research process in this study, several directions for future research are identified in the relevant

research area. The key areas for the identified future research are:

1. The initial reviews were labelled directly by manual identification of service factors. I aim to

improve the labelling method of the SaaS customer reviews by adding more relevant terms

associated to each service factor. The current automated labelling method considers a limited

set of terms for the identification of the service factors. The results obtained from the ensemble

approach in Chapter 5, such as the confusion matrix and extended classification reports for

individual predicted classes to improve the labelling of the dataset which will result in better

prediction results

2. The proposed text classification methodology for SaaS reviews will further be compared with

the other approaches for text classification. The significant features will be incorporated in

the existing methodology to improve the classifiers performance.

3. The proposed imputation model for the sentiment intensity scores for SaaS service factors

will be applied on datasets from other application domains to further validate its performance.

Currently, the imputation approach uses valence-based sentiment intensity computation

method (VADER), to compute the sentiment intensity scores of SaaS review text. The

imputation model will be studied with other imputation methods such as LSTM to investigate

further performance improvement of the proposed imputation model.

4. For the forecast model, the results for more SaaS products time series data will be collected

to provide an aggregated result of the forecast model performance. Furthermore, the LSTM

approach is implemented with many parameters. In this thesis I have used few of the

parameters for the model estimation. As part of the future work of this thesis, I intend to

Recapitulation and future work

220

perform experiments using other parameters to further improve the LSTM model’s

forecasting performance.

5. The process of collecting the customer reviews for SaaS products will be automated to update

the review database with latest reviews for new and existing SaaS products.

9.5 CONCLUSION

In this chapter, I highlighted the objectives of this thesis and recapitulated the research conducted

during this study and discussed the key contributions. I described briefly, the future research

directions that is set by this study and highlighted the potential extensions of the proposed methods.

To data, a significant portion of this study has been published in peer-reviewed and well-reputed

international scientific journals. The remaining unpublished portions of this study is intended to be

sent for publication in peer-reviewed journals.

221

References

Abawajy, J. (2009, 14-16 Dec. 2009). Determining Service Trustworthiness in Intercloud Computing
Environments. Paper presented at the 2009 10th International Symposium on Pervasive Systems,
Algorithms, and Networks.

Abdelrazek, M. A., Grundy, J., & Ibrahim, A. S. (2015, 9-12 Dec. 2015). Improving Tenants' Trust in SaaS
Applications Using Dynamic Security Monitors. Paper presented at the 2015 20th International
Conference on Engineering of Complex Computer Systems (ICECCS).

Abdul-Rahman, A., & Hailes, S. (2000). Supporting Trust in Virtual Communities. Paper presented at the
Proceedings of the 33rd Hawaii International Conference on System Sciences-Volume 6 - Volume 6.

Alhamad, M., Dillon, T., & Chang, E. (2010, 14-16 Sept. 2010). SLA-Based Trust Model for Cloud
Computing. Paper presented at the 2010 13th International Conference on Network-Based Information
Systems.

Alhamad, M., Dillon, T., & Chang, E. (2011). A Trust-Evaluation Metric for Cloud applications. International
Journal of Machine Learning and Computing, 1, 416-421. doi:10.7763/IJMLC.2011.V1.62

Alshammari, S. T., Albeshri, A., & Alsubhi, K. (2021). Integrating a High-Reliability Multicriteria Trust
Evaluation Model with Task Role-Based Access Control for Cloud Services. 13(3), 492.

AWS. (2017). AWS Marketplace Retrieved from https://aws.amazon.com/marketplace
AWS. (2018). AWS Well-Architected Framework. Retrieved from

https://d1awsstatic.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf
Azure, M. (2018). Pillars of software quality. Retrieved from

https://docs.microsoft.com/enus/azure/architecture/guide/pillars
Baldi, P., Brunak, S., Chauvin, Y., Andersen, C., & Nielsen, H. (2000). Assessing the accuracy of prediction

algorithms for classification: An overview. Bioinformatics (Oxford, England), 16, 412-424.
Batista, G. E. A. P. A., & Monard, M. C. (2003). Experimental comparison pf K-NEAREST NEIGHBOUR

and MEAN OR MODE imputation methods with the internal strategies used by C4.5 and CN2 to treat
missing data.

Bayen, A. M., & Siauw, T. (2015). Chapter 14 - Interpolation. In A. M. Bayen & T. Siauw (Eds.), An
Introduction to MATLAB® Programming and Numerical Methods for Engineers (pp. 211-223).
Boston: Academic Press.

Ben-David, A. (2008). Comparison of classification accuracy using Cohen’s Weighted Kappa. Expert Systems
with Applications, 34(2), 825-832. doi:https://doi.org/10.1016/j.eswa.2006.10.022

Beth, T., Borcherding, M., & Klein, B. (1994, 1994//). Valuation of trust in open networks. Paper presented
at the Computer Security — ESORICS 94, Berlin, Heidelberg.

Billhardt, H., Hermoso, R., Ossowski, S., & Centeno, R. (2007). Trust-based service provider selection in
open environments. Paper presented at the Proceedings of the 2007 ACM symposium on Applied
computing, Seoul, Korea. https://doi.org/10.1145/1244002.1244298

Boughorbel, S., Jarray, F., & El-Anbari, M. (2017). Optimal classifier for imbalanced data using Matthews
Correlation Coefficient metric. PloS one, 12, e0177678. doi:10.1371/journal.pone.0177678

Box, G., Jenkins, G., & Reinsel, G. (2008). Time series analysis: forecasting and control (Vol. 4th): Willey.
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and Regression Trees: Taylor

& Francis.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees

(Second ed.): Wadsworth International Group.
Brownlee, J. (2016a). Machine Learning Algorithms From Scratch with Python: Machine Learning Mastery.
Brownlee, J. (2016b). Master Machine Learning Algorithms: Discover how They Work and Implement Them

from Scratch.
Buchegger, S., & Le Boudec, J.-Y. (2003). A Robust Reputation System for Peer-to-Peer and Mobile Ad-hoc

Networks. P2PEcon 2004.

222

Butticè, V., Colombo, M., & Wright, M. (2017). Serial Crowdfunding, Social Capital, and Project Success.
Entrepreneurship Theory and Practice. doi:10.1111/etap.12271

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation
Computer Systems, 25(6), 599-616. doi:https://doi.org/10.1016/j.future.2008.12.001

Canedo, E. D., Albuquerque, R. d. O., & de Sousa Junior, R. T. (2011). Trust model for file sharing in cloud
computing. Paper presented at the Second International Conference on Cloud Computing, GRIDs, and
Virtualization.

Canedo, E. D., Junior, R. T. d. S., Carvalho, R. R. d., & Albuquerque, R. d. O. (2012, 26-28 June 2012). Trust
model for private cloud. Paper presented at the Proceedings Title: 2012 International Conference on
Cyber Security, Cyber Warfare and Digital Forensic (CyberSec).

Castelfranchi, C., & Falcone, R. (2010). Trust Theory: A Socio-Cognitive and Computational Model: Wiley
Publishing.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-
sampling technique. J. Artif. Int. Res., 16(1), 321–357.

Cheng, J., Bernstein, M., Danescu-Niculescu-Mizil, C., & Leskovec, J. (2017). Anyone Can Become a Troll:
Causes of Trolling Behavior in Online Discussions. CSCW : proceedings of the Conference on
Computer-Supported Cooperative Work. Conference on Computer-Supported Cooperative Work,
2017. doi:10.1145/2998181.2998213

Chou, S.-W., & Chiang, C.-H. (2013). Understanding the formation of software-as-a-service (SaaS)
satisfaction from the perspective of service quality. Decision Support Systems, 56, 148-155.
doi:https://doi.org/10.1016/j.dss.2013.05.013

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological
Measurement, 20(1), 37-46. doi:10.1177/001316446002000104

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information
Theory, 13(1), 21-27. doi:10.1109/TIT.1967.1053964

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online Passive-Aggressive
Algorithms. 7, 551–585.

Crammer, K., & Singer, Y. (2003). Ultraconservative online algorithms for multiclass problems. 3(null %J J.
Mach. Learn. Res.), 951–991. doi:10.1162/jmlr.2003.3.4-5.951

Davidson, T., Warmsley, D., Macy, M. W., & Weber, I. (2017). Automated Hate Speech Detection and the
Problem of Offensive Language. CoRR, abs/1703.04009.

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series With a
Unit Root. Journal of the American Statistical Association, 74(366), 427-431. doi:10.2307/2286348

Fischer-Hübner, S. (2001). IT-Security and Privacy: Design and Use of Privacy-Enhancing Security
Mechanisms: Springer.

Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification. J. Mach.
Learn. Res., 3(null), 1289–1305.

Friedman, M. (1940). A Comparison of Alternative Tests of Significance for the Problem of m Rankings. The
Annals of Mathematical Statistics, 11(1), 86-92.

Gambetta, D. (2000). Can We Trust Trust? Diego Gambetta.
Ganeriwal, S., Balzano, L. K., & Srivastava, M. B. (2008). Reputation-based framework for high integrity

sensor networks. ACM Trans. Sen. Netw., 4(3), Article 15. doi:10.1145/1362542.1362546
García-Laencina, P. J., Sancho-Gómez, J.-L., & Figueiras-Vidal, A. R. (2010). Pattern classification with

missing data: a review. Neural Computing and Applications, 19(2), 263-282. doi:10.1007/s00521-009-
0295-6

Gardner Jr., E. S. (1985). Exponential smoothing: The state of the art. Journal of Forecasting, 4(1), 1-28.
doi:https://doi.org/10.1002/for.3980040103

Gelman, A., & Hill, J. (2006). Missing-data imputation. In A. Gelman & J. Hill (Eds.), Data Analysis Using
Regression and Multilevel/Hierarchical Models (pp. 529-544). Cambridge: Cambridge University
Press.

223

GetApp. (2017). GetApp. Retrieved from https://www.getapp.com/
Ghazanfar, M. A., & Prügel-Bennett, A. (2013). The Advantage of Careful Imputation Sources in Sparse Data-

Environment of Recommender Systems: Generating Improved SVD-based Recommendations.
Informatica (Slovenia), 37(1), 61-92.

Golbeck, J. A., & Hendler, J. (2005). Computing and applying trust in web-based social networks. University
of Maryland at College Park,

Gorodkin, J. (2004). Comparing two K-category assignments by a K-category correlation coefficient.
Computational Biology and Chemistry, 28(5), 367-374.
doi:https://doi.org/10.1016/j.compbiolchem.2004.09.006

Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods.
Econometrica, 37(3), 424-438. doi:10.2307/1912791

Habib, S. M., Hauke, S., Ries, S., & Mühlhäuser, M. (2012). Trust as a facilitator in cloud computing: a survey.
Journal of Cloud Computing: Advances, Systems and Applications, 1(1), 19. doi:10.1186/2192-113X-
1-19

Habib, S. M., Ries, S., & Muhlhauser, M. (2011, 16-18 Nov. 2011). Towards a Trust Management System for
Cloud Computing. Paper presented at the 2011IEEE 10th International Conference on Trust, Security
and Privacy in Computing and Communications.

Habib, S. M., Ries, S., & Mühlhäuser, M. (2010). Cloud Computing Landscape and Research Challenges
Regarding Trust and Reputation. 2010 7th International Conference on Ubiquitous Intelligence &
Computing and 7th International Conference on Autonomic & Trusted Computing, 410-415.

Habib, S. M., Ries, S., Mühlhäuser, M., & Varikkattu, P. (2014). Towards a trust management system for
cloud computing marketplaces: using CAIQ as a trust information source. Sec. and Commun. Netw.,
7(11), 2185–2200. doi:10.1002/sec.748

Habib, S. M., Varadharajan, V., & Mühlhäuser, M. (2013). A framework for evaluating trust of service
providers in cloud marketplaces. Paper presented at the Proceedings of the 28th Annual ACM
Symposium on Applied Computing, Coimbra, Portugal. https://doi.org/10.1145/2480362.2480727

Hang, C.-W., & Singh, M. P. (2011). Trustworthy Service Selection and Composition. ACM Trans. Auton.
Adapt. Syst., 6(1), Article 5. doi:10.1145/1921641.1921646

Hang, C.-W., Wang, Y., & Singh, M. P. (2009). Operators for propagating trust and their evaluation in social
networks. Paper presented at the Proceedings of The 8th International Conference on Autonomous
Agents and Multiagent Systems - Volume 2, Budapest, Hungary.

Haq, I. U., Alnemr, R., Paschke, A., Schikuta, E., Boley, H., & Meinel, C. (2010). Distributed Trust
Management for Validating SLA Choreographies, Boston, MA.

Hassan, H., El-Desouky, A. I., Ibrahim, A., El-Kenawy, E. M., & Arnous, R. (2020). Enhanced QoS-Based
Model for Trust Assessment in Cloud Computing Environment. IEEE Access, 8, 43752-43763.
doi:10.1109/ACCESS.2020.2978452

Hedabou, M., Azougaghe, A., & Bentajer, A. (2020). TPM Based Design for Enhanced Trust in SaaS Services.
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780.

doi:10.1162/neco.1997.9.8.1735
Hoerl, A. E., & Kennard, R. W. (2000). Ridge Regression: Biased Estimation for Nonorthogonal Problems.

Technometrics, 42(1), 80-86. doi:10.2307/1271436
Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages.

International Journal of Forecasting, 20(1), 5-10. doi:https://doi.org/10.1016/j.ijforecast.2003.09.015
Hussain, W., Hussain, F. K., & Hussain, O. K. (2014). Maintaining Trust in Cloud Computing through SLA

Monitoring, Cham.
Hutto, C. J., & Gilbert, E. (2015). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social

Media Text.
Huynh, T. D., Jennings, N. R., & Shadbolt, N. R. (2006). An integrated trust and reputation model for open

multi-agent systems. Autonomous Agents and Multi-Agent Systems, 13(2), 119-154.
doi:10.1007/s10458-005-6825-4

224

Hwang, K., Kulkareni, S., & Hu, Y. (2009, 12-14 Dec. 2009). Cloud Security with Virtualized Defense and
Reputation-Based Trust Mangement. Paper presented at the 2009 Eighth IEEE International
Conference on Dependable, Autonomic and Secure Computing.

Hyndman, R. J. A., George. (2018). Forecasting: Principles and Practice (2nd Ed.). Australia: OTexts.
Inc, G. (2017). Magic Quadrant for Cloud Infrastructure as a Service, Worldwide. Retrieved from

https://www.gartner.com/doc/reprints?id=1-2G2O5FC&ct=150519
Ittner, D. J., Lewis, D., & Ahn, D. D. (1995). Text categorization of low quality images.
Joachims, T. (1997). A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization.

Paper presented at the Proceedings of the Fourteenth International Conference on Machine Learning.
Joachims, T. (1998, 1998//). Text categorization with Support Vector Machines: Learning with many relevant

features. Paper presented at the Machine Learning: ECML-98, Berlin, Heidelberg.
Josang, A. (2009, 6-9 July 2009). Fission of opinions in subjective logic. Paper presented at the 2009 12th

International Conference on Information Fusion.
Jøsang, A., & Ismail, R. (2002). The Beta Reputation System. Paper presented at the 15th Bled Electronic

Commerce Conference.
Jøsang, A., Ismail, R., & Boyd, C. (2007). A survey of trust and reputation systems for online service

provision. Decision Support Systems, 43(2), 618-644. doi:https://doi.org/10.1016/j.dss.2005.05.019
Jurman, G., Riccadonna, S., & Furlanello, C. (2012). A Comparison of MCC and CEN error measures in

multi-class prediction. PloS one, 7, e41882. doi:10.1371/journal.pone.0041882
Kamvar, S. D., Schlosser, M. T., & Garcia-Molina, H. (2003). The Eigentrust algorithm for reputation

management in P2P networks. Paper presented at the Proceedings of the 12th international conference
on World Wide Web, Budapest, Hungary. https://doi.org/10.1145/775152.775242

Kanwal, A., Masood, R., Ghazia, U. E., Shibli, M. A., & Abbasi, A. G. (2013, 20-23 Aug. 2013). Assessment
Criteria for Trust Models in Cloud Computing. Paper presented at the 2013 IEEE International
Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber,
Physical and Social Computing.

Kenward, M. G., & Molenberghs, G. (2009). Last Observation Carried Forward: A Crystal Ball? Journal of
Biopharmaceutical Statistics, 19(5), 872-888. doi:10.1080/10543400903105406

Kesarwani, A., & Khilar, P. M. (2019). Development of trust based access control models using fuzzy logic
in cloud computing. Journal of King Saud University - Computer and Information Sciences.
doi:https://doi.org/10.1016/j.jksuci.2019.11.001

Khan, K. M., & Malluhi, Q. (2010). Establishing Trust in Cloud Computing. IT Professional, 12(5), 20-27.
doi:10.1109/MITP.2010.128

Kim, Y. B., Kim, J. G., Kim, W., Im, J. H., Kim, T. H., Kang, S. J., & Kim, C. H. (2016). Predicting
Fluctuations in Cryptocurrency Transactions Based on User Comments and Replies. PloS one, 11(8),
e0161197-e0161197. doi:10.1371/journal.pone.0161197

Kinateder, M., Baschny, E., & Rothermel, K. (2005). Towards a Generic Trust Model – Comparison of
Various Trust Update Algorithms, Berlin, Heidelberg.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection.
Paper presented at the Proceedings of the 14th international joint conference on Artificial intelligence
- Volume 2, Montreal, Quebec, Canada.

Latif, R., Afzaal, S., & Latif, S. (2021). A novel cloud management framework for trust establishment and
evaluation in a federated cloud environment. The Journal of Supercomputing, 77. doi:10.1007/s11227-
021-03775-8

Lee, A. J., Winslett, M., & Perano, K. J. (2009, 2009//). TrustBuilder2: A Reconfigurable Framework for
Trust Negotiation. Paper presented at the Trust Management III, Berlin, Heidelberg.

Lee, K. M., Hwang, K., Lee, J.-H., & Kim, H.-J. (2006). A Fuzzy Trust Model Using Multiple Evaluation
Criteria, Berlin, Heidelberg.

Lee Rodgers, J., & Nicewander, W. A. (1988). Thirteen Ways to Look at the Correlation Coefficient. The
American Statistician, 42(1), 59-66. doi:10.1080/00031305.1988.10475524

225

Levien, R. (2009). Attack-Resistant Trust Metrics. In J. Golbeck (Ed.), Computing with Social Trust (pp. 121-
132). London: Springer London.

Lewis, D. D. (1998, 1998//). Naive (Bayes) at forty: The independence assumption in information retrieval.
Paper presented at the Machine Learning: ECML-98, Berlin, Heidelberg.

Li, W., & Ping, L. (2009). Trust Model to Enhance Security and Interoperability of Cloud Environment,
Berlin, Heidelberg.

Li, X., & Du, J. (2013). Adaptive and attribute-based trust model for service-level agreement guarantee in
cloud computing. IET Information Security, 7(1), 39-50. doi:https://doi.org/10.1049/iet-ifs.2012.0232

Limam, N., & Boutaba, R. (2010). Assessing Software Service Quality and Trustworthiness at Selection Time.
IEEE Trans. Softw. Eng., 36(4), 559–574. doi:10.1109/tse.2010.2

Lin, C., Varadharajan, V., Wang, Y., & Pruthi, V. (2004). Enhancing Grid Security with Trust Management.
Paper presented at the Proceedings of the 2004 IEEE International Conference on Services Computing.

Little, R. J. A., & Rubin, D. B. (1986). Statistical analysis with missing data: John Wiley & Sons, Inc.
Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., & Leaf, D. (2011). NIST Cloud Computing

Reference Architecture. Special Publication (NIST SP). doi:https://doi.org/10.6028/NIST.SP.500-292
Ltkepohl, H. (2007). New Introduction to Multiple Time Series Analysis: Springer Publishing Company,

Incorporated.
Lynn, T., van der Werff, L., & Fox, G. (2021). Understanding Trust and Cloud Computing: An Integrated

Framework for Assurance and Accountability in the Cloud. In T. Lynn, J. G. Mooney, L. van der
Werff, & G. Fox (Eds.), Data Privacy and Trust in Cloud Computing: Building trust in the cloud
through assurance and accountability (pp. 1-20). Cham: Springer International Publishing.

Ma, A., & Needell, D. (2018). Stochastic Gradient Descent for Linear Systems with Missing Data. Numerical
Mathematics: Theory, Methods and Applications, 12(1), 1--20.
doi:https://doi.org/10.4208/nmtma.OA-2018-0066

Macías, M., & Guitart, J. (2012). Cheat-Proof Trust Model for Cloud Computing Markets, Berlin, Heidelberg.
Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller.

International Journal of Man-Machine Studies, 7(1), 1-13. doi:https://doi.org/10.1016/S0020-
7373(75)80002-2

Manchala, D. W. (2000). E-Commerce Trust Metrics and Models. IEEE Internet Computing, 4(2), 36–44.
doi:10.1109/4236.832944

Manuel, P. (2015). A trust model of cloud computing based on Quality of Service. Annals of Operations
Research, 233(1), 281-292. doi:10.1007/s10479-013-1380-x

Marsh, S. (1999). Formalising Trust as a Computational Concept.
Martínez-Rego, D., Fernández-Francos, D., Fontenla-Romero, O., & Alonso-Betanzos, A. (2015). Stream

change detection via passive-aggressive classification and Bernoulli CUSUM. 305(C %J Inf. Sci.),
130–145. doi:10.1016/j.ins.2015.01.022

Martucci, L. A., Zuccato, A., Smeets, B., Habib, S. M., Johansson, T., & Shahmehri, N. (2012, 4-7 Sept.
2012). Privacy, Security and Trust in Cloud Computing: The Perspective of the Telecommunication
Industry. Paper presented at the 2012 9th International Conference on Ubiquitous Intelligence and
Computing and 9th International Conference on Autonomic and Trusted Computing.

Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of T4 phage
lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure, 405(2), 442-451.
doi:https://doi.org/10.1016/0005-2795(75)90109-9

McKnight, D., & Chervany, N. (1996). The Meanings of Trust.
Mell, P., & Grance , T. (2011). The NIST Definition of Cloud Computing. Special Publication (NIST SP).

doi:https://doi.org/10.6028/NIST.SP.800-145
Molinaro, A. M., Simon, R. M., & Pfeiffer, R. M. J. B. (2005). Prediction error estimation: a comparison of

resampling methods. 21 15, 3301-3307.
Moyano, F., Fernandez-Gago, C., & Lopez, J. (2013). A framework for enabling trust requirements in social

cloud applications. Requirements Engineering, 18(4), 321-341. doi:10.1007/s00766-013-0171-x
Muller, A. C., & Guido, S. (2016). Introduction to Machine Learning with Python: O'Reilly Media, Inc.

226

Mullin, M., & Sukthankar, R. (2000). Complete cross-validation for nearest neighbour classifiers. Paper
presented at the Seventeenth International Conference on Machine Learning.

Murtagh, F. (1991). Multilayer perceptrons for classification and regression. Neurocomputing, 2(5), 183-197.
doi:https://doi.org/10.1016/0925-2312(91)90023-5

Nagarajan, R., Selvamuthukumaran, S., & Thirunavukarasu, R. (2017, 5-7 Jan. 2017). A fuzzy logic based
trust evaluation model for the selection of cloud services. Paper presented at the 2017 International
Conference on Computer Communication and Informatics (ICCCI).

Naseer, M. K., Jabbar, S., & Zafar, I. (2014, 18-20 Jan. 2014). A novel trust model for selection of Cloud
Service Provider. Paper presented at the 2014 World Symposium on Computer Applications &
Research (WSCAR).

Nemenyi, P. (1963). Distribution-Free Multiple Comparisons. (Ph. D), Princeton University,
Nunamaker, J. F., Chen, M., & Purdin, T. D. M. (1990). Systems Development in Information Systems

Research. Journal of Management Information Systems, 7(3), 89-106.
doi:10.1080/07421222.1990.11517898

Olmedilla, D., Rana, O., Matthews, B., & Nejdl, W. (2005). Security and Trust Issues in Semantic Grids.
Paper presented at the Semantic Grid.

Özgür, A., Özgür, L., & Güngör, T. (2005, 2005//). Text Categorization with Class-Based and Corpus-Based
Keyword Selection. Paper presented at the Computer and Information Sciences - ISCIS 2005, Berlin,
Heidelberg.

Pawar, P. S., Rajarajan, M., Dimitrakos, T., & Zisman, A. (2013). Trust Model for Cloud Based on Cloud
Characteristics, Berlin, Heidelberg.

Pawar, P. S., Rajarajan, M., Nair, S. K., & Zisman, A. (2012). Trust Model for Optimized Cloud Services,
Berlin, Heidelberg.

Qiang, G., Dawei, S., Guiran, C., Sun, L., & Wang, X. (2011, 18-20 Jan. 2011). Modeling and evaluation of
trust in cloud computing environments. Paper presented at the 2011 3rd International Conference on
Advanced Computer Control.

Rahman, M. G., & Islam, M. (2011). A Decision Tree-based Missing Value Imputation Technique for Data
Pre-processing.

Raschka, S. (2014). Naive Bayes and Text Classification I - Introduction and Theory.
doi:10.13140/2.1.2018.3049

Raschka, S., & Mirjalili, V. (2019). Python Machine Learning: Packt.
Rashidi, A., & Movahhedinia, N. (2012). A Model for User Trust in Cloud Computing. Paper presented at the

CloudCom 2012.
Raza, M., Hussain, F. K., Hussain, O. K., Zhao, M., & Rehman, Z. u. (2019). A comparative analysis of

machine learning models for quality pillar assessment of SaaS services by multi-class text
classification of users’ reviews. Future Generation Computer Systems, 101, 341-371.
doi:https://doi.org/10.1016/j.future.2019.06.022

Resnick, P., & Zeckhauser, R. (2002). Trust among strangers in internet transactions: Empirical analysis of
eBay' s reputation system. In M. R. Baye (Ed.), The Economics of the Internet and E-commerce (Vol.
11, pp. 127-157): Emerald Group Publishing Limited.

Richert, W., & Coelho, L. P. (2013). Building Machine Learning Systems with Python: Packt Publishing.
Ries, S. (2009a). Extending Bayesian trust models regarding context-dependence and user friendly

representation. Paper presented at the Proceedings of the 2009 ACM symposium on Applied
Computing, Honolulu, Hawaii. https://doi.org/10.1145/1529282.1529573

Ries, S. (2009b). Trust in ubiquitous computing. Retrieved from http://tuprints.ulb.tu-darmstadt.de/1948/

https://nbn-resolving.org/urn:nbn:de:tuda-tuprints-19486

http://d-nb.info/997932635

http://d-nb.info/998730459

227

Rizvi, S., Mitchell, J., Razaque, A., Rizvi, M. R., & Williams, I. (2020). A fuzzy inference system (FIS) to
evaluate the security readiness of cloud service providers. Journal of Cloud Computing, 9(1), 42.
doi:10.1186/s13677-020-00192-9

Rizvi, S., Ryoo, J., Liu, Y., Zazworsky, D., & Cappeta, A. (2014, 9-10 May 2014). A centralized trust model
approach for cloud computing. Paper presented at the 2014 23rd Wireless and Optical Communication
Conference (WOCC).

Rockel, T., Joenssen, D. W., & Bankhofer, U. (2017). Decision Trees for the Imputation of Categorical Data.
Rubin, D. B. (1976). Inference and Missing Data. Biometrika, 63(3), 581-592. doi:10.2307/2335739
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error

propagation. In Parallel distributed processing: explorations in the microstructure of cognition, vol.
1: foundations (pp. 318–362): MIT Press.

Sabater, J., & Sierra, C. (2002). Reputation and social network analysis in multi-agent systems. Paper
presented at the Proceedings of the first international joint conference on Autonomous agents and
multiagent systems: part 1, Bologna, Italy. https://doi.org/10.1145/544741.544854

Sakakibara, Y., Misue, K., & Koshiba, T. (1993, 1-5 March 1993). Text classification and keyword extraction
by learning decision trees. Paper presented at the Proceedings of 9th IEEE Conference on Artificial
Intelligence for Applications.

Salton, G. (1991). Developments in Automatic Text Retrieval. Science, 253(5023), 974-980.
Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information

Processing & Management, 24(5), 513-523. doi:https://doi.org/10.1016/0306-4573(88)90021-0
Saravanakumar, C., & Arun, C. (2014, 27-29 Nov. 2014). Survey on interoperability, security, trust, privacy

standardization of cloud computing. Paper presented at the 2014 International Conference on
Contemporary Computing and Informatics (IC3I).

Schapire, R. E., & Singer, Y. (1999). Improved Boosting Algorithms Using Confidence-rated Predictions.
Machine Learning, 37(3), 297-336. doi:10.1023/A:1007614523901

Schapire, R. E., & Singer, Y. (2000). BoosTexter: A Boosting-based System for Text Categorization. Machine
Learning, 39(2), 135-168. doi:10.1023/A:1007649029923

Schryen, G., Volkamer, M., Ries, S., & Habib, S. M. (2011). A formal approach towards measuring trust in
distributed systems. Paper presented at the Proceedings of the 2011 ACM Symposium on Applied
Computing, TaiChung, Taiwan. https://doi.org/10.1145/1982185.1982548

Scikit-learn. (2017a). sklearn.metrics.hamming_loss. Retrieved from http://scikit-
learn.org/stable/modules/generated/sklearn.metrics.hamming_loss.html

Scikit-learn. (2017b). sklearn.metrics.matthews_corrcoef. Retrieved from http://scikit-
learn.org/stable/modules/generated/sklearn.metrics

Scrapy. Scrapy. Retrieved from https://scrapy.org/
Selvaraj, A., & Sundararajan, S. (2017). Evidence-Based Trust Evaluation System for Cloud Services Using

Fuzzy Logic. International Journal of Fuzzy Systems, 19(2), 329-337. doi:10.1007/s40815-016-0146-
4

Serchen. (2017). Serchen. Retrieved from https://www.serchen.com
Shalev-Shwartz, S., & Singer, Y. (2005, 2005//). A New Perspective on an Old Perceptron Algorithm. Paper

presented at the Learning Theory, Berlin, Heidelberg.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks.

Information Processing & Management, 45(4), 427-437.
doi:https://doi.org/10.1016/j.ipm.2009.03.002

Soleymani, M., Abapour, N., Taghizadeh, E., Siadat, S., & Karkehabadi, R. (2021). Fuzzy Rule-Based Trust
Management Model for the Security of Cloud Computing. Mathematical Problems in Engineering,
2021, 6629449. doi:10.1155/2021/6629449

Somesh Kumar Prajapati, Suvamoy Changder, & Sarkar, A. (2013). Trust Management Model for Cloud
Computing Environment. Paper presented at the International Conference on Computing
Communication and Advanced Network, India.

228

Soucy, P., & Mineau, G. W. (2001). A Simple KNN Algorithm for Text Categorization. Paper presented at the
Proceedings of the 2001 IEEE International Conference on Data Mining.

Sportisse, A., Boyer, C., Dieuleveut, A., & Josse, J. (2020). Debiasing Stochastic Gradient Descent to handle
missing values.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way
to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1), 1929–1958.

Stanoevska-Slabeva, K., Wozniak, T., & Ristol, S. (2009). Grid and Cloud Computing: A Business
Perspective on Technology and Applications: Springer Publishing Company, Incorporated.

Sule, M., Li, M., & Taylor, G. (2016, 29 March-2 April 2016). Trust Modeling in Cloud Computing. Paper
presented at the 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE).

Sun, X., Chang, G., & Li, F. (2011, 21-24 Sept. 2011). A Trust Management Model to Enhance Security of
Cloud Computing Environments. Paper presented at the 2011 Second International Conference on
Networking and Distributed Computing.

Tan, L., Chi, C., & Deng, J. (2008, 28 July-1 Aug. 2008). Quantifying Trust Based on Service Level Agreement
for Software as a Service. Paper presented at the 2008 32nd Annual IEEE International Computer
Software and Applications Conference.

Tang, C., & Liu, J. (2015). Selecting a trusted cloud service provider for your SaaS program. Computers &
Security, 50, 60-73. doi:https://doi.org/10.1016/j.cose.2015.02.001

Toman, M., Tesar, R., & Jezek, K. (2006). Influence of Word Normalization on Text Classification.
Trabay, D. W., El-Henawy, I., & Gharibi, W. (2021). A Trust Framework Utilization in Cloud Computing

Environment Based on Multi-criteria Decision-Making Methods. The Computer Journal.
doi:10.1093/comjnl/bxaa138

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., . . . Altman, R. B. (2001).
Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6), 520–525.
doi:https://doi.org/10.1093/bioinformatics/17.6.520

Trstenjak, B., Mikac, S., & Donko, D. (2014). KNN with TF-IDF based Framework for Text Categorization.
Procedia Engineering, 69, 1356-1364. doi:https://doi.org/10.1016/j.proeng.2014.03.129

Tsoumakas, G., & Katakis, I. (2009). Multi-Label Classification: An Overview. International Journal of Data
Warehousing and Mining, 3, 1-13. doi:10.4018/jdwm.2007070101

Uusitalo, I., Karppinen, K., Juhola, A., & Savola, R. (2010, 30 Nov.-3 Dec. 2010). Trust and Cloud Services
- An Interview Study. Paper presented at the 2010 IEEE Second International Conference on Cloud
Computing Technology and Science.

Vapnik, V. (1999). The Nature of Statistical Learning Theory: Springer New York.
Vapnik, V. N. (1998). Statistical Learning Theory: Wiley-Interscience.
Varadharajan, V. (2009). A Note on Trust-Enhanced Security. IEEE Security & Privacy, 7(3), 57-59.

doi:10.1109/MSP.2009.59
Vateekul, P., & Sarinnapakorn, K. (2009). Tree-Based Approach to Missing Data Imputation.
Wang, L., & Wu, Z. (2014, 8-11 Dec. 2014). A Novel Trustworthiness Measurement Model for Cloud Service.

Paper presented at the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing.
Wang, T.-Y., & Chiang, H.-M. (2007). Fuzzy support vector machine for multi-class text categorization.

Information Processing & Management, 43(4), 914-929.
doi:https://doi.org/10.1016/j.ipm.2006.09.011

Wang, Y., & Singh, M. P. (2007). Formal trust model for multiagent systems. Paper presented at the
Proceedings of the 20th international joint conference on Artifical intelligence, Hyderabad, India.

Wang, Y., & Vassileva, J. (2003, 13-17 Oct. 2003). Bayesian network-based trust model. Paper presented at
the Proceedings IEEE/WIC International Conference on Web Intelligence (WI 2003).

Wang, Y., Wen, J., Zhou, W., & Luo, F. (2018, 1-3 Aug. 2018). A Novel Dynamic Cloud Service Trust
Evaluation Model in Cloud Computing. Paper presented at the 2018 17th IEEE International
Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE
International Conference On Big Data Science And Engineering (TrustCom/BigDataSE).

Whitby, A., Jøsang, A., & Indulska, J. (2004). Filtering Out Unfair Ratings in Bayesian Reputation Systems.

229

Winslett, M., Yu, T., Seamons, K. E., Hess, A., Jacobson, J., Jarvis, R., . . . Yu, L. (2002). Negotiating trust
in the Web. IEEE Internet Computing, 6(6), 30-37. doi:10.1109/MIC.2002.1067734

Winters, P. R. (1976). Forecasting Sales by Exponentially Weighted Moving Averages. In Mathematical
Models in Marketing: A Collection of Abstracts (pp. 384-386). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Wu, C.-H., Ho, J.-M., & Lee, D. (2005). Travel-Time Prediction With Support Vector Regression. Intelligent
Transportation Systems, IEEE Transactions on, 5, 276-281. doi:10.1109/TITS.2004.837813

Wu, X. (2011). A Stable Group-based Trust Management Scheme for Mobile P2P Networks. International
Journal of Digital Content Technology and Its Applications, 5, 116-125.
doi:10.4156/jdcta.vol5.issue2.13

Wu, X. (2012). A Fuzzy Reputation-based Trust Management Scheme for Cloud Computing. International
Journal of Digital Content Technology and Its Applications, 6, 437-445.

Xiao, Y., Lin, C., Jiang, Y., Chu, X., & Shen, X. (2010, 23-27 May 2010). Reputation-Based QoS Provisioning
in Cloud Computing via Dirichlet Multinomial Model. Paper presented at the 2010 IEEE International
Conference on Communications.

Xiong, L., & Liu, L. (2003). A reputation-based trust model for peer-to-peer ecommerce communities
[Extended Abstract]. Paper presented at the Proceedings of the 4th ACM conference on Electronic
commerce, San Diego, CA, USA. https://doi.org/10.1145/779928.779972

Yang, Y. (1999). An Evaluation of Statistical Approaches to Text Categorization. Information Retrieval, 1(1),
69-90. doi:10.1023/A:1009982220290

Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. Paper presented at the
Proceedings of the 22nd annual international ACM SIGIR conference on Research and development
in information retrieval, Berkeley, California, USA. https://doi.org/10.1145/312624.312647

Yang, Y., Zhang, J., & Kisiel, B. (2003). A scalability analysis of classifiers in text categorization. Paper
presented at the Proceedings of the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval, Toronto, Canada. https://doi.org/10.1145/860435.860455

Yang, Z., Qiao, L., Liu, C., Yang, C., & Wan, G. (2010, 14-16 April 2010). A collaborative trust model of
firewall-through based on Cloud Computing. Paper presented at the The 2010 14th International
Conference on Computer Supported Cooperative Work in Design.

Yu, P.-S., Chen, S.-T., & Chang, I. F. (2006). Support vector regression for real-time flood stage forecasting.
Journal of Hydrology, 328(3), 704-716. doi:https://doi.org/10.1016/j.jhydrol.2006.01.021

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. doi:https://doi.org/10.1016/S0019-
9958(65)90241-X

Zhang, J., & Yang, Y. (2003). Robustness of regularized linear classification methods in text categorization.
Paper presented at the Proceedings of the 26th annual international ACM SIGIR conference on
Research and development in informaion retrieval, Toronto, Canada.
https://doi.org/10.1145/860435.860471

Zhou, H., Shi, W., Liang, Z., & Liang, B. (2011). Using new fusion operations to improve trust expressiveness
of subjective logic. Wuhan University Journal of Natural Sciences, 16(5), 376. doi:10.1007/s11859-
011-0766-3

Zissis, D., & Lekkas, D. (2012). Addressing cloud computing security issues. Future Generation Computer
Systems, 28(3), 583-592. doi:https://doi.org/10.1016/j.future.2010.12.006

230

Appendices

Appendix A

Parameter tunning and CV results from Chapter 5

Naïve Bayes (Multinomial)

NB(M) - Cross Validation errors with different values of

alpha
NB(M) - Cross validation with different value of alpha

NB(M) - Training vs. Test performance comparison

231

Naïve Bayes (Bernoulli)

Errors with different values of alpha during cross validation

on training data. Binarize threshold is set to 0 (optimal)
Cross validation of Naive Bayes Bernoulli with different

metrics over Binarize threshold of 0

NB (B) - Training vs. Test performance comparison

Nearest Centroid (Rocchio)

232

Error values during cross validation of Nearest Centroid with

Euclidean and Manhattan measures
Cross Validation performance scores of Nearest Centroid with

different performance metrics

Nearest Centroid (Rocchio) - Training vs. Test performance comparison

Stochastic Gradient Descent (SGD)

233

Classification Error by increasing the number of iterations on

training dataset
Classification Error with decreasing learning rates during

training (n_iter=9)

SGD - Training vs. Test performance comparison

K-NN

234

Classification error by increasing the number (k) of N

Neighbours on training data
Performance scores with gradual increase in N Neighbours on

training data

k-NN - Training vs. Test performance comparison

Passive Aggressive

235

Classification error by increasing the number of iterations on

training data
Classification error by increasing the value of regularization

parameter 'C' on training data

Passive Aggressive - Training vs. Test performance comparison

Perceptron

236

Perceptron Classification errors by increasing the number of

iterations on training data
Perceptron Classification errors by decreasing the learning

rate during training

Perceptron - Training vs. Test performance comparison

Logistic Regression

237

Logistic Regression Classification errors by increasing the

inverse regularization parameter during training
Logistic Regression - Training vs. Test performance

comparison

Decision Tree

Decision tree classification error by increasing the depth of the

tree on training data
Decision tree - Training vs. Test performance comparison

Linear SVM (LSVC)

238

Linear SVC Classification errors during cross validation on

training data by increasing C
Linear SVC- Training vs. Test performance comparison

Ridge

Classification errors using Ridge - with increasing alpha Ridge - Training vs. Test performance comparison

240

Appendix B

Fuzzy Rules

Complete set of fuzzy rules generated using the MDR metrics in Chapter 8.

241

242

243

Appendix C

Fuzzy rules evaluation

The detailed calculation of the rule strengths for all the fuzzy rules that result in a non-zero

membership in the output fuzzy sets demonstrated in Section 8.5. The rule strengths are

calculated using equation 8.18.

Rule 3: If N is Positive and M is Positive and P is Positive and R is Positive then Trust Level is Very Trustworthy
𝑙𝑅3 = min (0.54, 0.59,0.64,0.61) = 0.54

Rule 6: If N is Positive and M is Positive and P is Positive then Trust Level is Trustworthy
𝑙𝑅6 = min (0.54, 0.59,0.64) = 0.54

Rule 9: If N is Positive and M is Positive and R is Positive then Trust Level is Trustworthy
𝑙𝑅9 = min (0.54, 0.59,0.61) = 0.54

Rule 12: If N is Positive and P is Positive and R is Positive then Trust Level is Trustworthy
𝑙𝑅12 = min (0.54,0.64,0.61) = 0.54

Rule 15: If M is Positive and P is Positive and R is Positive then Trust Level is Trustworthy
𝑙𝑅15 = min (0.59,0.64,0.61) = 0.59

Rule 54: If N is Positive and M is Positive and A is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅54 = min (0.54, 0.59,0.48,0.24,0.47,0.36) = 0.24
Rule 57: If N is Positive and M is Positive and O is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅57 = min (0.54, 0.59,0.78,0.24,0.47,0.36) = 0.24
Rule 60: If N is Positive and M is Positive and C is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅60 = min (0.54, 0.59,0.32,0.24,0.47,0.36) = 0.24
Rule 63: If N is Positive and M is Positive and C is Positive and O is Positive then Trust Level is Trustworthy

𝑙𝑅63 = min (0.54, 0.59,0.32,0.38) = 0.32
Rule 66: If N is Positive and M is Positive and C is Positive and A is Positive then Trust Level is Trustworthy

𝑙𝑅66 = min (0.54, 0.59,0.32,0.48) = 0.32
Rule 69: If N is Positive and M is Positive and O is Positive and A is Positive then Trust Level is Trustworthy

𝑙𝑅69 = min (0.54, 0.59,0.78,0.48) = 0.48
Rule 72: If N is Positive and P is Positive and A is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅72 = min (0.54, 0.64,0.48,0.24,0.47,0.36) = 0.24
Rule 75: If N is Positive and P is Positive and O is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅75 = min (0.54, 0.64,0.78,0.24,0.47,0.36) = 0.24
Rule 78: If N is Positive and P is Positive and C is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅78 = min (0.54, 0.64,0.32,0.24,0.47,0.36) = 0.24
Rule 81: If N is Positive and P is Positive and C is Positive and O is Positive then Trust Level is Trustworthy

𝑙𝑅81 = min (0.54, 0.64,0.32,0.78) = 0.32
Rule 84: If N is Positive and P is Positive and C is Positive and A is Positive then Trust Level is Trustworthy

𝑙𝑅84 = min (0.54, 0.64,0.32,0.48) = 0.32
Rule 87: If N is Positive and P is Positive and O is Positive and A is Positive then Trust Level is Trustworthy

𝑙𝑅87 = min (0.54, 0.64,0.78,0.48) = 0.48
Rule 90: If N is Positive and R is Positive and A is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅90 = min (0.54, 0.61,0.48,0.24,0.47,0.36) = 0.24

244

Rule 93: If N is Positive and R is Positive and O is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅93 = min (0.54, 0.61,0.78,0.24,0.47,0.36) = 0.24
Rule 96: If N is Positive and R is Positive and C is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅96 = min (0.54, 0.61,0.32,0.24,0.47,0.36) = 0.24
Rule 99: If N is Positive and R is Positive and C is Positive and O is Positive then Trust Level is Trustworthy

𝑙𝑅99 = min (0.54, 0.61,0.32,0.78) = 0.32
Rule 102: If N is Positive and R is Positive and C is Positive and A is Positive then Trust Level is Trustworthy

𝑙𝑅102 = min (0.54, 0.61,0.32,0.48) = 0.32
Rule 105: If N is Positive and R is Positive and O is Positive and A is Positive then Trust Level is Trustworthy

𝑙𝑅105 = min (0.54, 0.61,0.78,0.48) = 0.48
Rule 108: If M is Positive and P is Positive and A is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅108 = min (0.59, 0.64,0.48,0.24,0.47,0.36) = 0.24
Rule 111: If M is Positive and P is Positive and O is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅111 = min (0.59, 0.64,0.78,0.24,0.47,0.36) = 0.24
Rule 114: If M is Positive and P is Positive and C is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅114 = min (0.59, 0.64,0.32,0.24,0.47,0.36) = 0.24
Rule 117: If M is Positive and P is Positive and C is Positive and O is Positive then Trust Level is Trustworthy

𝑙𝑅117 = min (0.59, 0.64,0.32,0.78) = 0.32
Rule 120: If M is Positive and P is Positive and C is Positive and A is Positive then Trust Level is Trustworthy

𝑙𝑅120 = min (0.59, 0.64,0.32,0.48) = 0.32
Rule 123: If M is Positive and P is Positive and O is Positive and A is Positive then Trust Level is Trustworthy

𝑙𝑅23 = min (0.59, 0.64,0.78,0.48) = 0.48
Rule 126: If M is Positive and R is Positive and A is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅126 = min (0.59, 0.61,0.48,0.24,0.47,0.36) = 0.24
Rule 129: If M is Positive and R is Positive and O is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅129 = min (0.59, 0.61,0.78,0.24,0.47,0.36) = 0.24
Rule 132: If M is Positive and R is Positive and C is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅32 = min (0.59, 0.61,0.32,0.24,0.47,0.36) = 0.24
Rule 135: If M is Positive and R is Positive and C is Positive and O is Positive then Trust Level is Trustworthy

𝑙𝑅35 = min (0.59, 0.61,0.32,0.78) = 0.32
Rule 138: If M is Positive and R is Positive and C is Positive and A is Positive then Trust Level is Trustworthy

𝑙𝑅38 = min (0.59, 0.61,0.32,0.48) = 0.32
Rule 141: If M is Positive and R is Positive and O is Positive and A is Positive then Trust Level is Trustworthy

𝑙𝑅141 = min (0.59, 0.61,0.78,0.48) = 0.48
Rule 144: If P is Positive and R is Positive and A is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅144 = min (0.64, 0.61,0.48,0.24,0.47,0.36) = 0.24
Rule 147: If P is Positive and R is Positive and O is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅147 = min (0.64, 0.61,0.78,0.24,0.47,0.36) = 0.24
Rule 150: If P is Positive and R is Positive and C is Positive and L is Positive and S is Positive and E is Positive
then Trust Level is Trustworthy

𝑙𝑅150 = min (0.64, 0.61,0.32,0.24,0.47,0.36) = 0.24
Rule 153: If P is Positive and R is Positive and C is Positive and O is Positive then Trust Level is Trustworthy

𝑙𝑅153 = min (0.64, 0.61,0.32,0.78) = 0.32
Rule 156: If P is Positive and R is Positive and C is Positive and A is Positive then Trust Level is Trustworthy

𝑙𝑅156 = min (0.64, 0.61,0.32,0.48) = 0.32
Rule 159: If P is Positive and R is Positive and O is Positive and A is Positive then Trust Level is Trustworthy

𝑙𝑅159 = min (0.64, 0.61,0.78,0.48) = 0.48

	Title Page
	Certificate of Original Authorship
	Acknowledgements
	List of Publications
	Table of Contents
	List of Figures
	List of Tables
	Glossary of terms
	Abstract
	Chapter 1: Introduction
	1.1 Introduction
	1.2 Overview of cloud computing
	1.2.1 What is cloud computing?
	1.2.2 Cloud services deployment models
	1.2.3 Cloud services delivery models

	1.3 Key challenges in cloud computing
	1.3.1 Privacy
	1.3.2 Security
	1.3.3 Trust

	1.4 Trust related issues in SaaS
	1.4.1 Factors affecting trust in SaaS
	1.4.2 Missing information regarding trust factors
	1.4.3 Forecasting information regarding trust factors
	1.4.4 Modelling trust for Software as a Service

	1.5 Objectives of the thesis
	1.6 Scope of the thesis
	1.7 Significance of the thesis
	1.8 Plan of the thesis
	1.9 Conclusion

	Chapter 2: Literature Review
	2.1 Introduction
	2.2 Trust assessment and trust models
	2.2.1 Definition of Trust
	2.2.2 Trust modelling approaches
	2.2.3 Trust in different domain

	2.3 Trust assessment and Trust models in Cloud Computing
	2.4 Factors effecting Trust
	2.5 Fuzzy Trust models in cloud computing
	2.6 Critical Analysis
	2.7 Conclusion

	Chapter 3: Problem Definition
	3.1 Introduction
	3.2 Problem definition
	3.3 Research Issues
	3.4 Research Objectives
	3.5 Research approach
	3.6 Conclusion

	Chapter 4: Solution Overview
	4.1 Introduction
	4.2 Trust model for Software as a Service
	4.3 Overview of proposed solution
	4.4 Overview of solution for component 1: Identification of service factors
	4.5 Overview of solution for component 2: Imputing missing sentiment intensity scores for service factors
	4.6 Overview of solution for component 3: Forecasting sentiment intensity scores for service factors
	4.7 Overview of solution for component 4: Modelling trust levels in Software as a Service
	4.8 Conclusion

	Chapter 5: An Ensemble approach for identifying SaaS service factors
	5.1 Introduction
	5.2 Machine learning based text classification
	5.3 An Ensemble machine learning approach for multi-class text classification of SaaS reviews
	5.3.1 Overview of SaaS service factor identification from customer reviews
	5.3.2 Data preparation
	Pre-processing
	Feature Vectors creation
	Resampling

	5.3.3 Parameter estimation
	Hyper-parameter tunning
	Cross-validation

	5.3.4 Model evaluation
	Error measures
	Statistical significance test

	5.3.5 Creating Ensemble

	5.4 Experiments and Evaluation Results
	5.4.1 Dataset description
	5.4.2 Model evaluation
	5.4.3 Statistical significance test
	5.4.4 Performance of the Ensemble

	5.5 Conclusion

	Chapter 6: T-NN: A Threshold-based Nearest Neighbour approach for Imputing missing values of SaaS service factors
	6.1 Introduction
	6.2 Missing data mechanisms
	6.3 Threshold-based Nearest Neighbour approach
	6.3.1 Overview of Missing sentiment imputation methodology
	6.3.2 Data preparation stage
	Pre-processing
	SaaS service factor identification

	6.3.3 Sentiment intensity computation stage
	6.3.4 Inference stage
	Step 1: Finding donor instance(s) for the candidate instance
	Step 2: Determining the degree of correlation between features
	Step 3: Determine the correlation weighted distance between the donor instance(s) and the candidate instance
	Step 4: Finding the optimal value for the threshold parameter (T) to select donor instances for imputation
	Step 5: Imputing the missing values of the feature in the candidate instance from the donor instances within the threshold

	6.3.5 Validation stage
	Error Measures
	Scheme A
	Scheme B
	Performance evaluation with SVR:

	6.4 Experiments and Evaluation results
	6.4.1 Scheme A
	Dataset description
	Tunning for optimal threshold
	Performance evaluation

	6.4.2 Scheme B
	Dataset description
	Tunning for optimal threshold
	Performance evaluation
	SVR kernel selection
	Cross-validation results performed on the training dataset
	Validation on test dataset

	6.5 Imputing sentiment intensity score of a service factor: An example Case study
	6.5.1 Finding donor instances
	6.5.2 Calculating Pearson’s correlation coefficient
	6.5.3 Calculating weighted distance
	Selecting final donors and imputing the missing value in candidate

	6.6 Conclusion

	Chapter 7: A methodology for time series Forecasting of SaaS service factors
	7.1 Introduction
	7.2 Background
	7.2.1 Time series
	7.2.2 Regular and irregular series
	7.2.3 Time series components
	7.2.4 Stationary and non-stationary series
	7.2.5 Univariate and multivariate time series
	7.2.6 Time series forecasting
	7.2.7 Correlations
	7.2.8 Interpolation

	7.3 Timeseries forecasting approaches
	7.3.1 Autoregressive model (AR)
	7.3.2 Moving Average model (MA)
	7.3.3 Autoregressive Moving Average model (ARMA)
	7.3.4 Auto Regressive Integrated Moving Average (ARIMA)
	7.3.5 Exponential Smoothing
	7.3.6 Multilayer Perceptron (MLP)
	7.3.7 Long Short-term Memory (LSTM)

	7.4 A methodology for time series forecasting of SaaS service factors
	7.4.1 Overview of sentiment intensity forecasting methodology
	7.4.2 Data preparation
	7.4.3 Model selection
	Preliminary investigation
	Stationarity test
	Causation test
	Cross-Correlations test:
	Serial-Correlations test:

	Error measures
	Measures for model selection

	7.4.4 Parameter estimation
	7.4.5 Model evaluation

	7.5 Experiments and Evaluation results
	7.5.1 Data preparation and Pre-processing
	7.5.2 Model evaluation and comparative analysis

	7.6 Conclusion

	Chapter 8: A Fuzzy-based Trust model for SaaS
	8.1 Introduction:
	8.2 Overview of the Fuzzy-based trust model for SaaS:
	8.3 MDR weight metric
	8.3.1 Maturity:
	8.3.2 Density:
	8.3.3 Reviewers:

	8.4 Fuzzy-based Trust model:
	8.4.1 SaaS service factors as Trust factors
	8.4.2 Fuzzification of input variables and input membership functions
	8.4.3 Fuzzy inference rules for the trust model
	Rule categories
	Rules category A:
	Rules category B:
	Rules category C:
	Rules category D:
	Rules category E:

	8.4.4 Rule aggregation and evaluation
	8.4.5 Defuzzification to crisp trust values

	8.5 Implementation and Case study
	8.5.1 MDR scores calculation
	8.5.2 Fuzzy inference
	Fuzzification of sentiment intensity of trust factors (service factors):
	Fuzzy rules evaluation:
	Aggregation of the fuzzy rules:
	Defuzzification of the output distribution:

	8.5.3 Experiments and Simulation results:
	Trust scores over given timesteps:

	8.6 Conclusion

	Chapter 9: Recapitulation and future work
	9.1 Introduction
	9.2 Recapitulation
	9.3 Contribution of the thesis
	9.3.1 Contribution 1: A novel framework that establishes the root of trust in SaaS using Architectural best practices
	9.3.2 Contribution 2: An ensemble model that automatically identifies SaaS service factors
	9.3.3 Contribution 3: An imputation method for missing sentiment scores of SaaS service factors
	9.3.4 Contribution 4: A forecast model for SaaS service factors
	9.3.5 Contribution 5: A dynamic trust model for SaaS

	9.4 Future Work
	9.5 Conclusion

	References
	Appendices
	Appendix A
	Appendix B
	Appendix C

