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Abstract 

Phenological studies of grassland/ pastures have attracted increased attention for 

their sensitivity to climate change with associated impacts on allergenic pollen 

release and public health. Allergenic pollen exposure is expected to increase with 

global warming following extended grass growing and grass pollen seasons and the 

prevalence of allergic diseases in Australia is among the highest globally. The 

primary aims of this thesis were to integrate phenocam and satellite imagery with 

pollen concentration data, over subtropical to temperate grassland sites in Australia, 

in order to address critical knowledge gaps in our understanding of the ecological 

drivers of grass pollen aerobiology. 

Phenocams were used to investigate the diurnal and daily greenness variations 

across solar zenith angles, solar intensity, and direct/ diffuse sky conditions. This 

information was used to develop an optimised daily compositing methodology. 

Next, I successfully registered a 3×3 window of Sentinel-2 pixels at 10 m resolution 

with the phenocam measurement footprint to conduct upscaling analyses. The 

relationships between Sentinel-2 Enhanced Vegetation Index (EVI) and phenocam 

green chromatic coordinate (GCC) index were strong and independent of the time 

of year and grass phenophases. This enabled the more sparse temporal sampling of 

Sentinel-2 greenness to be converted to daily values.  

Relationships between seasonal grass pollen concentrations and phenocam GCC 

and satellite EVI phenology were also strong with pollen concentration peaks in 

phase with grass greenness peaks, including multiple sub-seasonal pollen and 

greenness peaks. The grass greenness amplitudes, a surrogate of biomass, were 

found to be correlated with total pollen concentrations. Finally, I investigated grass 

pollen sources at more detailed, 10 m resolution, by generating a neural net grass 

map, from the Sentinel-2 sensor. This enabled urban, peri-urban and regional grass 

sources to be quantified based on distance and orientation to the pollen sampler, 

providing new insights for pollen forecasting. This thesis highlights the ability of 

near-surface and satellite remote sensing to achieve more accurate grassland/ 

pasture phenology to improve upon the understanding of ecologically relevant 

factors for grass pollen aerobiology in Australia.  
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1.1 Allergenic grass pollen 

Allergies are medically and economically important chronic diseases (Weinberg 

2011). The first description of the allergenic disease, hay fever, was published in 

1819 by John Bostock (Bostock 1819). A half-century later, Charles Harrison 

Blackley (1873) reported pollen as one of the major clinically important allergen 

sources. Since then, the relationship between airborne pollen and allergic epidemic 

has received wide attention from scientists, and the role of pollen in the pathogeny 

of major allergic diseases, like asthma, rhinitis and conjunctivitis, is now well 

established. Across Australia, grass pollen is a major aeroallergen source (e.g., for 

allergic rhinitis and asthma), and recent research has demonstrated that the 

prevalence and morbidity impact of hay fever and asthma in Australia and New 

Zealand are among the highest in the world (Asher et al. 2007). Three million 

Australians (15% of the Australian population) are affected by allergic diseases 

caused by grass pollen, resulting in an economic burden of A$7.8 billion annually 

in government health costs (Cook et al. 2007). Allergic diseases can considerably 

affect patients’ quality of life and reduce productivity (Bousquet et al. 2012; 

Meltzer et al. 2009; Walls et al. 2005). In addition, the relationship between the 

concentration of grass pollen in the atmosphere and hospital attendance for allergic 

diseases has been demonstrated (Darrow et al. 2012; Erbas et al. 2007). However, 

little is known about the timing and levels of human exposure to aeroallergen and 

spatial distribution of allergenic grass sources across Australia. Providing a 

thorough and comprehensive understanding of airborne pollen levels and accurately 

predicting pollen aerobiology patterns would improve health management for both 

individuals and medical institutions, and consequently reduce the health and 

economic burden of these diseases. 

Pollen is a container that holds the male gametophyte generation for the 

angiosperms and gymnosperms, and is an evolutionary adaptation to protect the 

male gametes from the adverse living environment (Moore & Webb 1983). There 

are two factors wildly used to determine the allergological properties of pollen 

grains: pollen potency and pollen abundance in the atmosphere. According to these 

factors, 12 pollen types are highly allergenic: ragweed, alder, mugwort, birch, 

goosefoots, hazel, yews, olive, plane tree, grass (Poaceae), oak and wall pellitory 

(Skjøth, Šikoparija & Ja̋ger 2013). In Australia, grass pollen and associated 
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cytoplasmic fragments have been demonstrated as the major causative allergen in 

thunderstorm asthma events (Bellomo et al. 1992; Howden, McDonald & 

Sutherland 2011; Marks et al. 2001; Moore & Webb 1983). The proportion of grass 

pollens to total pollen in Australia has been reported to range from 6–72% over any 

given year (Green et al. 2004; Tng et al. 2010). While a wide variety of grasses 

were observed across most Australia cities, the types of dominant grass vary across 

the different climate zones, from temperate ryegrass found in Melbourne, Canberra, 

Hobart and Sydney, to subtropical Bahia grass in Brisbane (Davies et al. 2012). 

There are large variations of grass pollen activity across Australia, and grass pollen 

may be present all year in some cities (e.g., Adelaide, Canberra, Hobart, 

Melbourne, Perth and Sydney) (Bass & Morgan 1997a; Ong, Singh & Knox 1995; 

Tng et al. 2010). In a study across six sites (Brisbane, Canberra, Darwin, Hobart, 

Melbourne and Sydney), Beggs found considerable differences in temporal 

variations in grass pollen concentration across different sites and different years for 

the same location. Similarly, the date of peak grass pollen and grass pollen season 

timing and length display similar variations (see Fig. 1.1) (Beggs et al. 2015a). 

However, a study in Hobart showed that the pattern in the timing of peak pollen 

was broadly similar across the research period of October (Tng et al. 2010). 

Numerous studies have shown that peaks in airborne grass pollen can appear at 

nearly any stage of the grass pollen season (Beggs et al. 2015a; Davies et al. 2012; 

Hamid et al. 2015; Ong, Singh & Knox 1995; Stevenson et al. 2007b; Werchan et 

al. 2017). Apart from the studies of spatial and temporal patterns in grass pollen 

loads, the relationship between climate change and aerobiology, with rising 

temperature or atmospheric CO2 level, may cause increases in allergenic pollen 

levels (Emberlin 1994; Singer et al. 2005; Ziska & Caulfield 2000). 

The grass pollen seasons appear to be distinct in the different climatic zones across 

Australia. In monsoon-tropical Darwin, the grass pollen seasons follow the dry 

season (April–May) with prominent pollen loads (Stevenson et al. 2007a). In 

subtropical Brisbane, the grass pollen peak has been observed from summer to 

autumn (December–April) (Green et al. 2002). In warm-temperate Sydney, the 

longest grass pollen season is from spring to autumn (October–May) (Bass, Baldo 

& Pham 1991; Bass & Morgan 1997b). In temperate Melbourne, the peak of grass 

pollen only occurs during November to January (spring to early summer) (Ong, 
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Singh & Knox 1995). Temperate Hobart has the same trend of grass pollen season 

as Melbourne (Tng et al. 2010). Moreover, there are secondary grass pollen peaks 

around March in Perth, Adelaide, Sydney and Canberra (Bass & Morgan 1997a; 

Ong, Singh & Knox 1995; Tng et al. 2010). 

  

Figure 1.1 Grass pollen density and seasonal pattern for six cities in Australia. The 

combination of the horizontal line (98% of the annual grass pollen loads in this 

time) and a horizontal box (98% of the annual grass pollen loads in this range) 

depict the grass pollen season for each year, with the corresponding curve. The 

asterisks in the box plots show peak grass pollen date. The vertical bars labelled 

‘start’ and ‘end’ indicate the start and end of pollen sampling. Source of image: 

Begges et al., 2015a. 

Ryegrass (Lolium perenne) is widely accepted as the most important source of grass 

pollen across most of Australia. In particular, ryegrass is considered a major cause 

of allergic hay fever and allergenic asthma in Melbourne (Batson 1998; Girgis et al. 

2000). On Monday 21 November 2016, a thunderstorm swept through Melbourne, 

with damaging winds, heavy rainfall and large hail. It triggered sudden asthma 

epidemics and led to ten deaths, and hospital admissions increased by 681 per cent 
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as thousands of patients sought asthma-related medical care over a very short 

period of time. The ryegrass pollen concentration was considered a risk factor 

‘trifecta’ for thunderstorm asthma with clinical allergic rhinitis and acute allergen 

exposure (Lee et al. 2017). According to the Pollen calendar issued by the 

Australasian Society of Clinical Immunology and Allergy (ASCIA), the pollen 

season of ryegrass is from August to March (Table 1.1). However, knowledge of 

ryegrass source and spatial distribution in Australia is incomplete, despite many 

studies using pollen transport models and land use maps to show grass source and 

transport under various meteorological factors (Beggs et al. 2015b; Devadas et al. 

2018; Girgis et al. 2000; Grundstein et al. 2017; McInnes et al. 2017; Stevenson et 

al. 2007b). 

Table 1.1 Pollen calendar of ryegrass in different states in Australia. 

 

Source: Australasian Society of Clinical Immunology and Allergy (ASCIA), 

https://www.allergy.org.au/patients/allergic-rhinitis-hay-fever-and-sinusitis/guide-

to-common-allergenic-pollen/267-ryegrass. 

1.2 ‘Near-surface’ remote sensing - phenocam 

1.2.1 Introduction 

‘Near-surface’ remote sensing – Phenocam provides an innovative approach to 

monitor rapid variations in ecological processes. A better record and understanding 

of ecological responses to environmental change globally requires an exponential 

increase in the quantity, diversity and resolution of field-collected data (Brown, 

Hultine & Steltzer 2016). Unlike conventional remote sensing, phenocams are 

installed in relatively close proximity to the land surface, provide images with high 
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temporal frequency and are relatively free of atmospheric aerosols effects. In 

addition, traditional field-based phenology observation is to record certain growth 

situations of separate plants, and data quality depends on observers’ experience. 

Further, direct phenological surveys provide observations that lack information on 

the phenology of a whole community. However, digital camera imagery offers the 

opportunity to integrally investigate the phenological signal across the whole 

individual plants canopy when the study object is forest, and also to conduct 

separate analyses across different species by distinguishing individual vegetation 

(e.g., single tree crowns). These advantages make up for the deficiency of coarse 

spatial resolution of satellite remote sensing imagery. 

The term ‘PhenoCam’ was proposed when a collaborative, regional-scale digital 

camera network in the USA was used to track seasonal variation in the phenology 

of forest ecosystems (Richardson, Braswell et al. 2009). The general conception of 

phenocam refers to any repeat digital camera used for repeat or time-lapse 

photography to research land cover phenology or other ecological changes (Brown, 

Hultine & Steltzer 2016). Phenocam is an approach that uses imaging sensors, 

typically installed on permanent structures (e.g., towers or other buildings) to 

observe and quantify variations in the surface land cover in a manner analogous to 

remote sensing technology, but at a higher spatial resolution and temporal 

frequency (Richardson, Klosterman & Toomey 2013). 

A considerable number of new camera models are released every year and, 

therefore, many different types of phenocams are now used globally. Even so, 

radiometric sensors and imaging sensors are the main two categories for near-

surface remote sensing technology (Richardson, Klosterman & Toomey 2013). 

Radiometric sensors are unable to provide information about spatial variability and 

cannot distinguish individual objects within the field of view (FOV) (Hilker et al. 

2011). Imaging sensors provide an opportunity to conduct spatial variability 

analysis, because they produce digital pictures of a land cover scene with sufficient 

temporal and spatial resolutions. Most digital cameras record RGB (red, green, 

blue) imagery, and then special chromatic coordinate indices (e.g., green chromatic 

coordinate, GCC) can be derived from these digital values to provide information 

on vegetation status. 
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In a typical phenocam system, a camera is installed on a structure taller than the 

research object (e.g., a forest) to have a view across the landscape. To minimise the 

lens flare and shadows and obtain ideal imagery, most cameras usually face to the 

north in the northern hemisphere or to the south in the southern hemisphere, and a 

reference panel is mounted to provide information about variation in illumination 

and sensor stability (Fig. 1.2) (Richardson, Klosterman & Toomey 2013). 

 

Figure 1.2 Schematic diagram showing phenocam deployment strategy for a 

forested ecosystem. Source: Richardson, Klosterman & Toomey (2013). 

For phenocam image processing, the lens projects the observed object onto a digital 

chip with light-sensitive structure (see Figure 3 a). Three separate layers (red, green 

and blue) are used to record colour information of the landscape. A digital number 

(DN) represents the intensity of each colour layer for each pixel in the image. The 

quantitative analysis of the image includes (1) selecting a region of interest (ROI) 

from a scene based on the research objective (e.g., an individual canopy crown, or 

the entire plant canopy at a certain location) and (2) extracting the DN values for 

the individual pixels, and then averaging the DN values over all the pixels within 

the ROI. However, RGB DN values are generally not used to conduct phenological 

analysis due to both external and internal factors—scene illumination is affected by 

clouds, aerosols, solar azimuth and so on, and control of exposure and colour 

balance adjustment could bring uncontrollability in image processing. In contrast to 

RGB brightness levels, Gillespie et al. (1987) reported a series of RGB chromatic 
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coordinates by a nonlinear transformation of RGB DNs that could describe the 

actual three primary colours red, green and blue as perceived by human vison 

(Gillespie, Kahle & Walker 1987; Sonnentag et al. 2012). To better track seasonal 

phenology variability, the respective chromatic coordinates of RGB DN values 

(RCC, GCC, BCC) are widely used (Brown et al. 2016; Klosterman et al. 2014; Liu 

et al. 2017; Migliavacca, Galvagno & Cremonese 2011; O'Connell & Alber 2016), 

with the nonlinear transformation shown in Eq. 1. 

  Eq. (1) 

Other colour indices have since been construed by nonlinear transformations of 

RGB DN values, including the VARI (Visible Atmospherically Resistant Index) 

(Sakamoto et al. 2012), grR (green-red ratio) and rbR (red-blue ratio) (Sonnentag et 

al. 2011). A widely used method to describe variations in the greenness of 

vegetation is the excess green (ExG) (Woebbecke et al. 1995), given in Eq. (2). 

      Eq. (2) 

Other external factors, like bad weather conditions, dirty lenses and low 

illumination, can also affect data quality. Therefore, data derived from phenocam 

images need robust filtering methods to reduce the noise in the time series of the 

colour indices (Julitta et al. 2014; Migliavacca, Galvagno & Cremonese 2011; 

Papale et al. 2006; Sonnentag et al. 2011). After filtering, data fitting is conducted 

to reduce the influence of single observations and better capture the seasonal 

behaviour (Filippa et al. 2016). Most consumer-grade digital cameras record 

common JPEG image format. This can reduce file size (allowing for more images 

to be captured) but also reduces image quality and accuracy. However, Sonnentag 

et al. (2012) showed that choice of camera and image file formats were of 

secondary importance for phenological research when they compared 11 digital 

repeat cameras at Harvard Forest. Fig. 1.3 c shows the various imaging sensors’ 

spectral responses. Typical camera sensors record overlapping bands of RGB 

wavelengths, with the near-infrared (NIR) and part of the red region beyond about 

650 nm often omitted in most economical cameras (dotted line in Fig. 1.3 c). The 

MODIS sensors have no band overlap and higher sensitivity to specific 

wavelengths compared to the cameras. 
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Figure 1.3 How camera sensors work (a and b) and typical spectral response for 

various imaging sensors (c). Source: Brown et al. (2016). 

1.2.2 Phenology research using phenocams 

To reduce uncertainties about the role of terrestrial ecosystems in global climate 

change studies and achieve a better understanding of the temporal and spatial 

variations of the ecological environment, large-scale phenocam networks have been 

developed and widely adopted for monitoring ecosystem dynamics over time 

(Richardson et al. 2018) - for example, the PhenoCam network 

(phenocam.sr.unh.edu) (Richardson et al. 2007b) and the Phenological Eyes 

Network (PEN; pen.agbi.tsukuba.ac.jp) (Nasahara & Nagai 2015). The U.S. 

National Ecological Observatory Network (NEON) and the European Union’s 

Integrated Carbon Observation System (ICOS) have also established phenocam 

networks. However, crucial issues related to data standardisation, open-access data 

and expanding phenocam networks are important for the development of phenocam 

technology, and coverage in under-represented ecosystems is a priority (Richardson 

et al. 2018). 

In recent decades, it has been demonstrated that phenocams can effectively be used 

to describe vegetation phenological dynamics in deciduous broadleaf forest 

(Ahrends et al. 2009; Hufkens et al. 2012), evergreen needleleaf forest (Liu et al. 

2020), agricultural (Meyer & Neto, 2008; Pérez et al. 2000) and grassland 

(Browning et al. 2017; Vrieling et al. 2018; Watson et al. 2019). In terms of 

grassland and rangeland ecological research, heterogeneity is a critical driver and 

can be used to directly quantify management success across landscapes 

(McGranahan et al. 2018). Spatial heterogeneity is a concept generally ascribed to a 

landscape and, sometimes, to a population. It defines the distribution of various 

https://phenocam.sr.unh.edu/webcam/
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concentrations of each species within a region. Heterogeneous disturbance patterns 

play a fundamental role in pasture conservation and management by creating patchy 

vegetation, broadening niche availability and increasing compositional dissimilarity 

(Limb et al. 2018; McGranahan et al. 2018; Wubs & Bezemer 2018). However, it 

increases the difficulty of quantitative analysis of grassland phenology, as one 

phenocam image usually contains several species or patchy vegetation. To reduce 

the influence of spatial heterogeneity on the phenological study of pasture and 

obtain more information from limited images, an innovative and robust processing 

method for phenocam images is necessary. 

A single ROI is chosen to analyse and track vegetation phenology in most studies. 

That ROI is a representation of the mean behaviour of the entire ecosystem (Elmore 

et al. 2012; Hufkens et al. 2012; Klosterman et al. 2014; Migliavacca, Galvagno & 

Cremonese 2011). To better understand phenological variations in regions with 

relatively high heterogeneity, use of more than one ROI is necessary to evaluate 

phenological differences between plants (Ahrends et al. 2008; Alberton et al. 2014; 

Henneken et al. 2013). 

Phenocams are ideal tools for recording plant phenological variations, animal 

migrations, and biotic and abiotic disturbance events (Richardson et al. 2007b). Use 

of phenocam images is promising for phenological studies in various ecosystems, 

including forests (Archetti et al. 2013; Baumann et al. 2017; Brown et al. 2017; 

Hufkens, Friedl, Sonnentag et al. 2012; Keenan et al. 2014; Richardson et al. 2012; 

Richardson, Hollinger et al. 2009; Richardson et al. 2007a; Toomey et al. 2015) and 

arid grasslands (Kurc & Benton 2010). In agricultural areas, several researchers 

have highlighted the potential to implement robotic weed control systems based on 

digital repeat photography with a high level of automation (Slaughter, Giles & 

Downey 2008). In recent studies, RGB images have been used to derive important 

information on snowmelt processes (Hinkler et al. 2002; Parajka et al. 2012). 

Recent studies have demonstrated that phenocams have great potential to 

investigate relationships between phenological variations and ecosystem processes 

(Elmore et al. 2012; Hufkens, Friedl, Keenan et al. 2012; Toomey et al. 2015) and 

assist in developing new phenology models (Hufkens et al. 2016; Melaas, Friedl & 

Richardson 2016). Colour indices derived from phenocam images are well 
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correlated with vegetation indices typically used to detect land-surface phenology 

via satellites, suggesting that digital repeat photography can provide high-quality 

ground measurement data for the verification of satellite phenology products 

(Hufkens, Friedl, Sonnentag et al. 2012; Klosterman et al. 2014; Sakamoto et al. 

2012; Shuai et al. 2013a). Phenocam data are usually combined with other 

ecological observation data, such as meteorology and surface-atmosphere fluxes, to 

characterise the responses of vegetation productivity to phenological variations 

(Toomey et al. 2015; Wingate et al. 2015) and thus depict the relationships between 

seasonal plant dynamics and ecosystem carbon budgets (Hufkens, Friedl, Keenan et 

al. 2012). Crimmins and Crimmins (2008) report that repeat digital photography 

provides a reliable, consistent observation of phenophases and changes in the 

fractional cover of green vegetation in annual or perennial plants. 

For the grassland ecosystem, phenocam has been used to analyse the role of plant 

species composition on phenology in complex subalpine and alpine grasslands 

(Toomey et al. 2015). Through combined phenocam technology with eddy 

covariance data at a subalpine grassland, digital camera imagery was demonstrated 

to have the potential for the development and parameterisation of phenological and 

radiation use efficiency (RUE) models (Migliavacca, Galvagno & Cremonese 

2011). Using the phenocam imagery obtained from the PhenoCam network and 

satellite data, Yan et al. (2017) evaluated the detection of vegetation phenology in 

savannas and grasslands. Their results showed that the PhenoCam Normalized 

Difference Vegetation Index (NDVI) was strongly correlated with the NDVI time 

series observed from satellites for two grassland ecosystems (Liu et al. 2017). 

1.2.3 Phenocams in Australia 

As previously stated, phenocams have the potential to greatly improve the current 

understanding of ecosystem processes. Compared to the promising applications of 

phenocam technology in North America, Europe and Asia, research progress was 

slow in Australia, a continent characterised by various ecosystem types with 

distinct differences in phenological characteristics compared to the temperate and 

boreal deciduous ecosystems of the northern hemisphere (Chambers et al. 2013). 

In Australia, the Australian Phenocam Network (APN) (https://phenocam.org.au/) 

was established to facilitate the sharing of phenocam data and research using this 

https://phenocam.org.au/
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novel technology. The APN is a collaboration that archives and distributes digital 

repeat images collected by phenocams of a wide range of Australian ecosystems. 

Two Australian National Collaborative Research Infrastructure Strategy (NCRIS) 

facilities, the Terrestrial Ecosystem Research Network (TERN) and Australian 

Plant Phenomics Facility (APPF), developed APN. Phenocams are a vital tool for 

establishing continental-scale ecosystem observation in TERN and can also assist 

APPF to achieve the goal of developing new and improved agricultural practices. 

Phenocam data collected at regional and landscape scales can be used in various 

ways. In TERN SuperSites (https://supersites.tern.org.au/), digital repeat 

photography provides a record of vegetation condition at a fine temporal resolution 

and aids ecosystem carbon and water research combined with TERN OzFlux eddy 

covariance towers. In addition, phenocam data is used to calibrate and validate 

observations from satellite platforms at TERN’s AusCover facility to effectively 

conduct upscale research from ground-based sites to the continental scale. 

Researchers are trying to expand APN to a collaborative network of volunteer sites, 

at which image data can be downloaded free of charge through an open license, the 

SuperSites BioImage Data Portal. Fig. 1.4 shows understory phenocams at the 

Litchfield Savanna SuperSite and photos before and after a fire. Expansion of the 

current spatial distribution of phenocams in Australia will contribute to enhancing 

our understanding of the diversity of phenological variations in Australia 

ecosystems. Further, combined with satellite techniques, phenocams can provide a 

novel insight for interpreting the function of Australia’s ecosystem within our Earth 

system (Moore et al. 2016). 

 

Figure 1.4 Phenocams at Litchfield Savanna SuperSite (left) and before and after 

fire photos from July 2013 (middle and right). Source: https://phenocam.org.au/. 

https://supersites.tern.org.au/
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1.3 Remote sensing of grasslands and pastures 

1.3.1 Remote sensing of grassland 

Grasslands are regions dominated by grass species and contain other non-woody 

plants. They occur naturally in many biomes and are also included in other areas by 

livestock grazing. As an important terrestrial ecosystem, grasslands play an 

important role in regulating global carbon cycle and climate (Zhang et al. 2018). 

Grasslands span much of Earth’s latitudes, elevations and climate zones, and are 

dominated by a single plant family (Poaceae) (Borer et al. 2017). In addition, the 

grassland biome is highly sensitive to climatic change and human activity 

(primarily agriculture) (Axelrod 1985; Ellis & Ramankutty 2008; Holling 1992). 

Various research designs for investigating grassland ecosystems and the 

environmental conditions of surrounding areas have been reported in recent years 

(Aldous et al. 2011; Piao et al. 2011; Zhou et al. 2015). 

In Australia, temperate grasslands represent areas of species composition, diverse 

land uses and ecological conditions. Moreover, they historically and currently 

coexist with pastoral agriculture and urbanisation (McDougall et al. 2005; Ross 

1999). The perennial grasses can be classified as C3 and C4 plants that use C3 or C4 

photosynthetic pathway, and all species have the more primitive C3 pathway. C3 

species are adapted to cooler climates and C4 species have greater advantages in 

warmer, dryer conditions (Baldocchi 2011). The responses shown by C3 and C4 

grasses’ phenology to future climate variations, such as increased CO2, higher 

temperature and modified rainfall regimes, are important for researching variations 

in ecological condition and agricultural productivity (Korner 2006; Morgan et al. 

2011). 

Using satellite-based remote sensing, vegetation characteristics can be consistently 

assessed at a landscape scale (Huete 2012). Several studies relating to grassland 

ecosystems have been reported using remote sensing technology. For example, 

estimating primary productivity (Gu, Wylie & Bliss 2013; Psomas et al. 2011), 

identifying land cover types and changes (Geerken, Zaitchik & Evans 2005; 

Henebry 1993; Wylie et al. 2002) and quantifying ecological threats (Zhou et al. 

2017). Using remote sensing to evaluate grassland phenological variables that 

connect flowering and pollen release is an opportunity to provide more accurate 

information in the development of airborne pollen forecast (Khwarahm et al. 2017). 
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Vegetation Index (VI) is a spectral transformation of reflectance at two or more 

bands designed to enhance the contribution of vegetation properties and allow 

reliable spatial and temporal inter-comparisons of terrestrial photosynthetic activity 

and canopy structural variations. The NDVI and Enhanced Vegetation Index (EVI) 

are frequently used in ecological research (Huete et al. 2002; Huete et al. 2006; 

Tucker 1979). Given the low sensitivity of NDVI when detecting dense canopies, 

the EVI has a larger dynamic range and is also more resistant to atmospheric and 

soil background effects (Huete et al. 2002). 

The Advanced Very High Resolution Radiometer (AVHRR) and MODIS, which 

have acquired observations since 1981 and 2000, respectively, have been 

successfully utilised to monitor diverse land-surface phenology of various 

ecosystems globally (de Beurs & Henebry 2004; Gray et al. 2014; Liang et al. 

2014; Moulin et al. 1997; Myneni et al. 1997; Shuai et al. 2013b; Zhang 2015). To 

address the issue that land-surface phenology metrics derived from coarse spatial 

resolution satellite data (e.g., MODIS) and in-situ observations of phenology 

provide different information, increasing researches have focused on moderate 

spatial resolution imagery from Landsat for monitoring and mapping phenology 

(Fisher and Mustard, 2007, Baumann et al. 2017, Liu et al. 2017, Bolton et al. 

2020). Besides these traditional satellite product datasets, recent data from the 

Sentinel-2 mission guarantees a more frequent and systematic coverage to sustain 

the mapping of land use and accurate estimation of biophysical parameters 

(Immitzer, Vuolo & Atzberger 2016). A new generation of Japanese geostationary 

meteorological satellite, Himawari 8/9, is supporting plentifully climatic application 

and monitors landscape dynamics associated with rainfall events, drying/droughts, 

fires and burnt area mapping. It provides a valuable opportunity for improving 

analysis of seasonal phenology, because of its 10-min temporal resolution. For 

vegetation phenological modelling, there are several satellites that can be used to 

conduct long-term studies with their time series capability (Table 1.2). 
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Table 1.2 Summary of common satellites used for remote sensing of vegetation 

phenology. 

Satellite Sensor Operation Spatial resolution Frequency 

Landsat MSS 1973-1985 79 m 18 days 

Landsat TM 1984-present 30 m 16 days 

Landsat ETM+ 1999-present 30 m 16 days 

SPOT Vegetation 1999-present 1 km 1-2 days 

NOAA AVHRR 1982-present 8 km twice monthly 

NOAA AVHRR 1989-present 1 km biweekly 

Terra MODIS 2000-present 250 m, 500 m, 1 km 1-2 days 

Aqua MODIS 2002-present 250 m, 500 m, 1 km 1-2 days 

Envisat MERIS 2002-present 300 m 1-3 days 

Sentinel-2 MSI 2013-present 10 m, 20 m, 60 m 5 days 
Himawari-8 AHI 2015-present 500 m, 1 km, 2 km 10 minutes 

 

1.3.2 Pasture in Australia 

‘Pasture’ means an enclosed tract of farmland grazed by domestic stock. The 

vegetation of pasture consists mainly of legumes and other forbs (non-grass 

herbaceous plants) (Hughes 1958). Pasture in a wider sense includes rangelands, 

other unenclosed pastoral systems and land cover types used by wild animals for 

browsing. In Australia, pasture can be divided into ‘native pasture’ and ‘exotic 

pasture’. Native pasture refers to natural ecosystems dominated by naturally 

occurring grasses and other herbaceous species and grazing by livestock or wildlife, 

whereas exotic pasture means non-native pasture consisting of exotic grasses and 

other introduced pasture species (Watson 2016). 

Pastures have a number of different values in Australian ecological and sociometric 

aspects, and their importance will vary depending on the goals of the manager. For 

example, (1) habitat for endangered animals, (2) adapted to the diverse Australian 

climate, (3) carry stock but require fewer inputs, (4) provide shelter for livestock, or 

(5) provide drought feed (source: Agriculture in Department of Primary Industries, 

https://www.dpi.nsw.gov.au/agriculture/pastures-and-rangelands/native-pastures). 

Currently, the landscape in Australian temperate areas is a mosaic of exotic and 

native pastures. 

To meet the requirement of graziery during British colonisation, most parts of the 

Australian south-eastern temperate grasslands were stocked with sheep by the mid-

1830s (Soeterboek 2011). Shortly thereafter, a large number of exotic species 

https://www.dpi.nsw.gov.au/agriculture/pastures-and-rangelands/native-pastures
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became common, either through introductions of exotic species to improve pasture 

productivity or involuntary release (Watson 2016). Currently, exotic pastures are 

difficult to remove from the landscape for conservation purposes (Zerger et al. 

2011) and are still common across Australian graziery. However, native pastures 

play an increasingly important role in sustainable land management practices 

(Wong & Dorrough 2015). 

Presently, remote sensing technology is mainly used to investigate and estimate 

pasture growth rate (PGR) across Australian pasture ecosystems. Growth rate and 

biomass of pastures are reflected by vegetation indices such as the NDVI and Leaf 

Area Index (LAI). Studies performed in Western Australia (WA) have 

demonstrated that spatial variations of the NDVI within a paddock are robustly 

related to the spatial distribution of pasture biomass (Edirisinghe et al. 2002; 

Edirisinghe et al. 2000; Hill et al. 1998). Hill et al. (2004) used a time series of 

NDVI derived from the AVHRR combined with coincident climate data in a light 

use efficiency (LUE) model to generate PGR maps across WA, and the results 

showed that this approach could readily be applied to improve the basis for feed 

management in WA (Hill et al. 2004). A feasibility research for measuring Pasture 

Growth Rate and Feed-on-Offer with satellite imagery in the dairy region of south-

west WA has been established with the support and funding by the Commonwealth 

Scientific and Industrial Research Organisation (CSIRO), WA Department of 

Agriculture, Landgate and Western Dairy. The focus of this project is to test the 

effectiveness of the remotely sensed pasture information and commence delivering 

it directly to end-users (http://www.pasturesfromspace.csiro.au/index.asp). 

1.3.3 Mapping grassland and land cover use 

Currently available global land cover maps, such as MODIS Land Cover Type 1 

(MCD12Q1) - International Geosphere-Biosphere Programme (IGBP) land cover 

classification data, can be effectively used for monitoring land cover dynamics 

(Friedl et al. 2002; Friedl et al. 2010; Sidhu, Pebesma & Wang 2017; Yang et al. 

2017; Zhang et al. 2017). However, according to the IGBP classification, the 

Sydney region presently includes no grass vegetation type. This abnormal result 

indicates that a land cover product with a finer scale is necessary for ecological 

processing research across Australia. In contrast, national- and regional-scale land 

cover maps have a higher spatial resolution but fail to resolve grass functional types 

http://www.pasturesfromspace.csiro.au/index.asp
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and do not have information to distinguish C3 and C4 grass species, native or exotic 

types of grass, or understory grass cover in forests. Given the complexity of 

grassland dynamics, there is an urgent need to obtain a stronger understanding of 

grassland compositional variation to provide context to grassland phenology 

information. Yu et al. (2018) reported that grassland is one of the most common 

land cover types and also one of the most difficult to classify. They analysed seven 

maps produced with different approaches but using the same classification system 

and failed to correctly classify the grasslands (Yu et al. 2018). 

Besides global-scale land cover maps, regional-scale datasets have also been used 

to distinguish and map vegetation spatial distribution. For instance, using the Centre 

for Ecology and Hydrology (CEH) Land Cover Map 2007 (LCM 2007), a 25 m 

resolution raster map of Great Britain, Mclnnes et al. (2017) created a grass map 

and coupled it with health data, such as respiratory hospital admissions, to fill a 

need for detailed vegetation mapping of allergenic plant species across the UK 

(McInnes et al. 2017). 

Geoscience Australia and the Australian Bureau of Agricultural and Resource 

Economics and Sciences (ABARES) has developed a Dynamic Land Cover Dataset 

(DLCD) (Fig. 1.5) for Australia based on analysing a EVI composite collected by 

MODIS for the period 2000–2008, aiming to provide nationally consistent land 

cover information to governments and the general public (Tan et al. 2013). It can be 

used to assess the land cover dynamics of rangelands, woodlands, forests and 

cropping systems. The Australian Collaborative Land Use and Management 

Program (ACLUMP) partners have also developed a series of land use maps to 

manage issues affecting soils, water and vegetation at the catchment scale 

(Guidelines for land use mapping in Australia: principles, procedures and 

definitions - A technical handbook supporting the Australian Collaborative Land 

Use and Management Program 2011). Three kinds of maps were developed from 

this program: (1) the catchment-scale land use maps with optional scales, which 

vary according to the intensity of land use activities; (2) the most recent catchment-

scale land use map created by remapping some jurisdictions based on first type 

maps and completing the continental coverage; and (3) the national-scale land use 

map (1:2500000). These maps are of relatively low cost and provide an opportunity 

for time series mapping. 
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Figure 1.5 Map compiled from the National Dynamic Land Cover Dataset from 

2000–2008. Source: http://www.ga.gov.au/scientific-topics/earth-obs/accessing-

satellite-imagery/landcover. 
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1.4 Grassland phenology 

1.4.1 Grassland phenology in Australia 

Phenology is the study of the seasonal progression of periodic biological 

occurrences from leaf emergence and flowering to animal migrations and breeding 

patterns, all of which vary between and within species and are influenced to a 

certain degree by the climate (Lanza 1976; Moore et al. 2017; Richardson et al. 

2013). A better understanding of the phenology of vegetation will contribute to 

understanding variations in terrestrial ecosystems under a warming climate. 

Vegetation phenology is directly related to productivity, disturbances and 

vegetation type, and is thus an important input parameter for climate models 

(Watson 2016). An earlier occurrence of spring phenology has been observed in the 

northern hemisphere, which was related to warmer temperatures, either using in-

situ measurements (Dai, Wang & Ge 2014; Ma & Zhou 2012; Menzel & Fabian 

1999; Menzel et al. 2006) or satellite observations (A. et al. 2009; Cong et al. 2013; 

Myneni et al. 1997). 

To quantify phenological variations, phenological metrics, such as start and end of 

growing season, peak period of the growing and length of growing season, are used 

for detecting phenological spatial-temporal patterns across various ecosystems. 

Many methods have been developed to monitor vegetation phenology using 

satellite data, including the threshold-based average (Lloyd 1990; White, Thornton 

& Running 1997), curve fitting and derivative average (Kaduk & Heimann 1996), 

backward-looking moving average (Reed et al. 1994) and empirical equations 

(Moulin et al. 1997). However, given that ecosystems comprise multiple growth 

cycles, these methods have some limitations on their application on a global scale. 

Zhang et al. (2003) provided a new methodology based on a series of piecewise 

logistic functions to simulate vegetation growth that was successful in monitoring 

vegetation phenology. Fig. 16 shows how to define spring phenology using this 

approach. This method is currently being used to conduct the global phenological 

project (Collection 5) based on EVI time series derived from MODIS (Frenguelli et 

al. 2010; Ghitarrini et al. 2017; Zhang, Friedl & Schaaf 2006). For grassland 

ecosystems, there are some uncertainties in logistic curve fitting when determining 

GUD from VI time series, due to the fact that the VI profiles from spring to summer 

do not necessarily follow an ideal sigmoid curve (Cao et al. 2015). This limitation 
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of Collection 5 might could be solved by upgraded version. Recently, the 

Collection 6 MODIS Land Cover Dynamics Product was created to map global 

land surface phenological metrics at 500 resolution using the time series of the 2-

band EVI calculated from MODIS nadir BRDF adjusted surface reflectance 

(NBAR-EVI2). Comparing with Collection 5, Collection 6 product was designed to 

better capture phenological metrics in ecosystem with multiple vegetation cycles 

per year, and consequently to increase the reliability of retrieved phenological 

metrics in arid, semi-arid, and tropical ecosystems (Friedl et al., 2019).  

 

Figure 1.6 A schematic diagram of how to determine the vegetation green-up date 

(GUD) using the logistic fitting method (Zhang et al. 2003). The fitted logistic 

curve is shown as a solid line, and the dashed line indicates the rate of change in 

curvature of the fitted logistic curve. GUD is defined as the first local maximum of 

the dashed curve, and point B (the second local maximum) is identified as the onset 

of plant maturity. The ‘Local range’ means the range where the vegetation index 

begins to increase rapidly in the time series data. (Cao et al., 2015)  

A fundamental part of grass pollen aerobiological investigations is a precise 

understanding of the spatial and temporal patterns of pollen phenophase, such as 

flowering (Tng et al. 2010). There is an increasing importance of this knowledge, 

especially given that climate change has been demonstrated to have significant 

implications for plant phenology. As touched on in the above review, most studies 

focus on the development of strategies for long-term phenological monitoring of 

tree species (Ahrends et al. 2008; Busetto et al. 2010; Fontana et al. 2008; 

Migliavacca et al. 2008; Moser et al. 2010), while only a few studies on grassland 
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phenology have been reported (Cernusca et al. 2008; Fonti et al. 2010; Jonas et al. 

2008). This is primarily due to the difficulty in developing a protocol for field 

observation of grassland phenology focused on the whole canopy, instead of on a 

single species (Migliavacca, Galvagno & Cremonese 2011). In Australia, 

phenology studies have been limited because of the high climatic variability that 

produces subtle phenology changes, and there is also a lack of the long-term 

datasets necessary for trend analysis of vegetation phenology (Gallagher, Hughes & 

Leishman 2009). 

Nevertheless, grassland phenological studies in Australia have a long history. For 

example, Chan (1980) mapped natural grasslands in the Canberra region using 

infrared colour and natural colour photography and also listed their flowering times, 

with the peak flowering occurring in October to November (Chan 1980). Most of 

these studies have focused on vegetative phenology responses to climate factors. 

For example, Biddiscombe and Hutchings (1954) investigated species' responses to 

changes in seasonal climatic conditions and found that moisture and temperature 

are the principal factors controlling seasonal vegetation dynamics. Recently, a two-

year study in southern Tasmania demonstrated that the mean time of 

commencement of flowering in native grasslands was sensitive to warming 

temperature but not to elevated CO2 (Hovenden et al. 2008). 

1.4.2 Grassland phenology and environmental drivers 

The major climate zones in Australia range from equatorial and tropical in the north 

to subtropical, desert, and temperate in the south (Stern & Dehani 2013). Long-term 

mean annual rainfall and temperature distinctly vary across the Australian continent 

due to this wide-ranging climatic variability. This relative complex climatic 

conditions causes an irregular phenological pattern in the Southern Hemisphere, 

especially in Australian grasslands (Ganguly et al. 2010). Same as the temperate 

deciduous and boreal ecosystems in the Northern Hemisphere, temperature is an 

important phenological driver in Australian ecosystems (Chambers, Altwegg & 

Barbraud 2013). However, because deserts and grasslands make up 70% of 

Australian land, water plays a stronger role in affecting Australia’s ecosystem 

dynamics (Andela et al. 2013; Donohue, McVicar & Roderick 2009; Ellis & Hatton 

2008; Specht & Brouwer 1975). 
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A majority of the research on the relationship between vegetation phenology and 

climate factors has been conducted in the Northern Hemisphere moist temperate 

climate zones, and most has focused on deciduous forest or cropland (Ahrends et al. 

2008; Chen et al. 2016; Huete ; Moulin et al. 1997; Reed et al. 1994; Richardson et 

al. 2007a; Wang et al. 2017). However, there are vast areas of the Earth covered by 

temperate and tropical savannas, grasslands and other dryland habitats in which 

precipitation plays a much more crucial role in controlling ecological variations 

(Chambers, Altwegg & Barbraud 2013; Primack & Miller-Rushing 2011). 

Grassland phenology is evidently sensitive to environmental conditions. For 

example, frosts can induce widespread senescence in temperate grassland systems, 

and rainfall following a drought will promote the growth season of grasses and 

forbs (Watson 2016). 

C3 and C4 grass species composition, with different phenological characteristics, 

influence airborne pollen transportation and thus seasonal pollen counts variations. 

The multiple secondary peaks in grass pollen observed during summer in Sydney 

are considered to be due to the flowering of C4 species (Medek et al. 2016). Besides 

the difference in phenology for C3 and C4 grass species, the phenological drivers 

are also different. C3 grass species are more productive in cooler regions, whereas 

C4 grass species have a greater advantage in warmer regions, due to C4 grass 

species generally have higher temperature optima for growth (Baldocchi 2011, 

Berry & Bjorkman 1980, Watson 2016). Additionally, lower available moisture is 

expected to favor C4 grass species because C4 species generally have higher water 

use efficiency as compared to C3 species (Hattersley et al., 1983; Morgan et al., 

2011).  

As another vegetation phenophase, the seasonal flowering variations are also 

influenced by diverse meteorological factors. Climate change, warming 

temperatures and increased CO2 levels have been demonstrated to be associated 

with variations in flowering times (Fitter & Fitter 2002). Increasing CO2 levels have 

also been reported to cause increasing plant biomass and consequently raise the 

pollen production of ragweed (Rogers et al. 2006). Temperature and precipitation 

have dominant roles in controlling flowering conditions of several tree species. In a 

study comparing the course of flowering and occurrence of pollen grains, Kasprzyk 

(2003) reported that no rainfall and high temperature caused an intense flowering of 
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birches over a large area. For other species, flowering was mainly in coincidence 

with the relatively low temperatures of late winter and early spring (Latorre 1997). 

A long-term trend analysis of daily weather conditions with daily pollen 

concentrations showed that an earlier onset of the flowering period for grasses was 

associated with the rates of change in several meteorological factors such as 

temperature, radiation, humidity and rainfall (Bruffaerts et al. 2018). 

1.4.3 Grassland flowering and airborne pollen 

The seasonal progression of periodic biological occurrences in plants, like budburst 

and senescence, is generally referred to as vegetation phenology. Flowering, 

pollination and pollen release are important phenology stages of the grass life cycle 

and grass pollen is a major trigger for aeroallergens. Most phenology studies in 

Australia have investigated impacts on flowering time. In south-east Australia, the 

flowering time of native plants shifts earlier or later depending on different species 

(Keatley & Hudson 2010). Hovenden (2008) showed that the flowering of 

grassland species responded to warming in Tasmania (higher temperatures resulted 

an average earlier flowering time). Flowering had the same response to temperature 

changes in the south-eastern alpine regions (Hovenden et al. 2008). 

The presence of pollen in the atmosphere follows a clear seasonal pattern in 

response to the seasonal flowering of the plant sources (Tormo et al. 2011). Linking 

grassland phenological information with airborne pollen records has shown that 

phenology (i.e., flowering season) almost coincides with the occurrence of 

maximum pollen concentrations (Romero-Morte et al. 2018). Such studies have 

been performed in Europe; for example, Leon-Ruiz et al. (2011) found that the 

flowering phenology of most grass species in Spain showed shorter durations in 

years with warmer springs and longer durations in colder years. The association 

between grassland flowering and airborne pollen counts for some pollen types has 

been demonstrated, though there are species, such as Cupressaceae and Poaceae, 

that do not show the coincidence between flowering and pollen peaks, with up to 

one week difference in phase (Tormo et al. 2011). Fig. 1.7 shows the pollen 

concentration of Poaceae species and flowering phenology at Badajoz, Spain, for 

2007, 2008 and 2009 (Tormo et al. 2011). Combining MODIS EVI products with 

grass pollen concentrations, Devadas et al. (2018) found that peak pollen activity 

lagged behind peak grass cover greenness on average by 2–3 weeks and 4–7 weeks 
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in temperate sites in France and Australia, respectively. Further, numerous studies 

have shown that not all the pollen grain records can be explained by flowering of 

local vegetation; for example, studies for Betula pollen in Finland (Ranta et al. 

2006), Denmark (Skjoth et al. 2007) and Spain (Jato, Rodriguez-Rajo & Aira 

2007), as well as other pollen types in Germany (Estrella et al. 2006). 
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Figure 1.7 Flowering phenology and airborne pollen counts of Poaceae species in 

Badajoz, Spain, for (a) 2007, (b) 2008 and (c) 2009. Source: Tormo et al. (2011). 
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1.5 Thesis aim and structure 

Grass pollen is the major outdoor aeroallergen source across Australia. Although 

the prevalence and morbidity impact of outdoor aeroallergen (e.g. hay fever and 

asthma) in Australia are among the highest in the world, the aerobiology of grass 

pollen in Australian cities are not well understood. This knowledge gap arises in 

part because of the lack of grass ecological information with finer temporal and 

spatial resolutions on complex land cover conditions and very little is known of the 

spatial distribution of grass pollen sources over time. Yet, such information is vital 

to understand the ecological drivers of pollen aerobiology and to aid predict pollen 

future trends in Australia. In other words, fundamental aspects of an accurate grass 

pollen forecast system are the improved understanding of the spatial and temporal 

patterns of the grass phenology and their relationships with grass pollen seasons, as 

well as a land cover map with fine spatial resolutions, which could be used to 

identify and characterize sources of grass pollen surrounding pollen samplers.   

The primary aim of this thesis is to address these critical knowledge gaps in our 

understanding of the ecological driver of grass pollen aerobiology integrating near-

surface and satellite-based satellite imagery with grass pollen concentration data at 

subtropical to temperate grassland sites in Australia.  

Chapter 2 characterizes diurnal patterns of phenocam observed grass greenness (i.e. 

GCC) as influenced by solar zenith angle-related and weather-related changes in 

scene illumination in phenocam images archives. And thus, a diurnal-to-daily GCC 

compositing methodology is proposed to mitigate the influence of changes in solar 

radiation intensity on phenocam-derived GCC in pastures and grasslands. 

Phenocam observations can offer grass greenness dynamics with sub-daily 

frequency and are reliable ground surface validation data for satellite observations. 

Therefore, the study in this chapter is a foundation for further utilization of 

phenocam in next chapters.  

Chapter 3 examines the ability of multi-resolution satellites (i.e. Sentinel-2, 10 m; 

MODIS, 250 m; and Himawari-8 AHI, 1000 m) to accurately obtain grass 

greenness information from heterogeneous landscapes by comparing with 

phenocam observations. The interrelationships between in-situ grass pollen 
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concentrations and grass greenness as measured by phenocams and satellites were 

investigated to explore how do differences in spatial and temporal resolution of 

satellites influence the grass greenness – pollen relationships across sites with 

different types of land cover. The reason why Landsat data was not applied in this 

chapter is that though Landsat data provides great temporal resolution for 

comparison with phenocam observation, I would have had to use 90 m (3x3 pixels) 

scale of analyses, which is coarser than Sentinel-2 data, instead of 30 m (single 

pixel). Also, even I had have to use single Landsat pixel, it would most likely not be 

centered in field of view of phenocam and consequently be hard to co-locate with 

the phenocam footprint.  

Chapter 4 details the differences in filtering grass information from complex 

landscapes between developed land cover/use maps and a grass map with 10 m 

resolution, generated by neural net from the Sentinel-2 image. Using this finer 

resolution grass map, variations in grass phenology and relationships between grass 

pollen concentrations across different distances and orientations are investigated. 

Finally, grass pollen sources are mapped with a pixel-wise scale (10 m) using the 

Sentinel-2 grass map to inform the seasonal variations in spatial distributions of 

pollen sources.  

Chapter 5 provides a summary of the findings of the overall thesis and concludes 

with a discussion of how multiple remote sensing tools offer an avenue to our 

understanding of grass pollen aerobiology and contribute to better inform the 

aerobiology of grass pollen in Australia.  
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2.1 INTRODUCTION 

Near-surface remote sensing based on time-lapse digital cameras – phenocams – 

has been commonly adopted in ecological observatory networks around the world 

(Moore et al., 2016; Nagai et al., 2016a; Richardson et al., 2018a; Templ et al., 

2018). It has been demonstrated that phenocams can effectively describe vegetation 

phenological dynamics in a variety of ecosystems (Ahrends et al., 2009; Ide and 

Oguma, 2010; Julitta et al., 2014; Luo et al., 2018; Seyednasrollah et al., 2019).  

The traditional method of field observations for phenology states is based on human 

observers (Rutishauser et al., 2007; Sparks and Menzel, 2002; Templ et al., 2018). 

However, inherent subjectivity, the lack of consistent monitoring with the high 

temporal resolution, and insufficient spatial representativeness of the larger 

landscape (Richardson et al., 2018b) restrict the observer records to characterize 

vegetation phenology at the regional scale. In contrast, satellite remote sensing 

provides historical time-series images to track the vegetation seasonality and assist 

in revealing the ecosystem responses to climate change at the global scale 

(Morisette et al., 2009; Zhang et al., 2003). Nevertheless, the description of the 

subtle ecological activities for landscapes with high spatial heterogeneity and brief 

phenological transition using satellite data is limited by the coarse temporal and 

spatial resolution (Fisher and Mustard, 2007; Zeng et al., 2020). As the technology 

develops, long-term phenology observations with cost-effective phenocam sensors 

can potentially overcome these limitations and bridge the gap between vegetation 

monitoring at the scale of individual organisms and satellite regional observations 

(Liu et al., 2017; Richardson et al., 2018b; Watson et al., 2019). 

Furthermore, large-scale phenocam networks have been developed within the last 

decade. In North America and Japan, the PhenoCam network (Richardson et al., 

2009) and the Phenological Eyes Network (PEN) (Nagai et al., 2016b) have been 

developed, respectively. The US National Ecological Observatory Network 

(NEON) and the European Union’s Integrated Carbon Observation System (ICOS) 

also established a phenocam network. In Australia, to facilitate the sharing of 

phenocam data and research using this novel technology, researchers established 

Australian Phenocam Network (APN) (Moore et al., 2016). As a result, there has 
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been an increased interest in effectively utilizing digital repeat camera data for 

purpose of monitoring vegetation activity at the in-situ scale. 

Technologically, visible-light phenocam sensors store color information into three 

primary colour layers, i.e. red, green and blue (RGB). Thus, each image pixel 

possesses an RGB digital number (DN) triple, i.e. pixel value (Richardson et al., 

2018a). By altering the intensity of RGB DN triples, any given color could be 

represented in any individual pixel. Due to camera sensors usually feature a 

variable aperture lens that responded to ambient light levels (Richardson et al., 

2007), the red-green-blue brightness of each pixel are subjected to scene 

illumination changes caused by weather conditions, daily rotation of the earth, and 

sun-camera geometry (Sonnentag et al., 2012).  

To suppress high correlation among the three color space components (Cheng et al., 

2001) and to conduct further quantitative analysis, color indices were transformed 

from RGB DN values. These indices were designed for minimizing the effects of 

illumination by normalising the RGB DNs to RGB chromatic coordinates, e.g. 

green chromatic coordinate (GCC) (Gillespie et al., 1987), or for enhancing the 

green signal from vegetation canopies, e.g. excess green index (ExG) (Woebbecke 

et al., 1995). As a widely used phenocam color index, GCC has been extensively 

used to describe canopy greenness and extract phenological information in 

agricultural (Meyer and Neto, 2008; Pérez et al., 2000), deciduous broadleaf forest 

(Ahrends et al., 2009; Hufkens et al., 2012; Liu et al., 2020), and grassland 

(Browning et al., 2017a; Vrieling et al., 2018; Watson et al., 2019). Despite the 

extensive use of these phenocam indices, scene illumination variations related to 

solar illumination geometry and weather (i.e. sky condition) cause day-to-day 

fluctuations in the diurnal profile of these colour indices (Ahrends et al., 2009; 

Brown et al., 2017; Ide and Oguma, 2010; Sonnentag et al., 2012; Toomey et al., 

2015), consequently, creating outliers in the seasonal trajectories and hampering the 

derivation of phenological metrics from these colour indices time series 

(Richardson et al. 2009, 2018a, Wingate et al. 2015). Given this, better 

understanding of the roles of scene illumination changes, which is controlled by 

solar radiation intensity, on diurnal phenocam greenness measurements is critical 



 

55 

 

for mitigating their influences on the monitoring of diurnal and seasonal pasture/ 

grassland dynamics. 

The variations of scene illumination conditions are attributed to many external 

factors, including diurnal variations in solar geometry. Previous studies focused on 

forested canopies reported diurnal course of GCC values increased and then 

decreased over a day with the maximum value were reached around solar noon time 

(Ahrends et al., 2008; Sonnentag et al., 2012). By contrast, the diurnal GCC profiles 

of winter wheat experienced a concave trend with minimum values appeared about 

12:00 pm (local time) (Li et al., 2019). Also, the diurnal scene illumination is 

subjected to diffuse/direct solar radiation due to changes in weather conditions, i.e. 

sunny or overcast. For example, studies at deciduous forest sites showed GCC and 

ExG values were higher in sunny days dominated by direct solar radiation than in 

overcast conditions when diffuse solar radiation turned to be dominated (Ahrends et 

al., 2008; Mizunuma et al., 2013; Sonnentag et al., 2012). Another phenocam study 

conducted on evergreen conifer canopies, however, showed GCC values under 

sunny days generally decreased comparing with days under sub-optimal 

illumination conditions (Richardson et al., 2009). To suppress these illumination-

related impacts on tracking seasonal vegetation phenology, previous studies often 

use images from mid-day (Ahrends et al., 2009; Kurc and Benton, 2010; 

Richardson et al., 2009; Richardson et al., 2007) or mid-morning time (Sonnentag 

et al., 2011) as the daily value. Also, in phenocam networks around the world, there 

is a widely used approach for compositing daily values, i.e. per90 (Sonnentag et al., 

2012).  

Compared with forests, the impact of solar radiation intensity in pasture/ grassland 

phenocam images is less understood. A study focused on grazed peatland showed 

RGB DNs exhibited convex patterns with an asymmetrical manner over the course 

of the day (Sonnentag et al., 2011). However, the metrics extracted from imagery 

were absolute channel brightness, rather than colour chromatic coordinates. As for 

impacts of weather conditions, O’Connell and Alber (2016) demonstrated GCC 

values under cloudy scenes higher than sunlit illumination images at the salt marsh 

ecosystem, but the canopy character of salt marsh is different with grassland/ 

pasture. Since there is no phenocam GCC compositing method, which proposed by 
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analyses on grassland ecosystem, grassland/ pasture phenology studies using 

phenocam image have to adopt diurnal-to-daily compositing method, which 

proposed by the forested canopy, to mitigate the impact of scene illumination 

changes on diurnal greenness values (Browning et al., 2017b; Cui et al., 2019; 

Julitta et al., 2014; Yan et al., 2019). As a result, two pressing questions needed to 

be answered in grassland/ pasture phenocam research. Are there differences 

between forest and grassland/ pasture in the responses of diurnal GCC values to 

solar intensity changes? And consequently, whether these differences should be 

taken into account for diurnal data compositing?  

In this study, we focused on the pasture/ grassland ecosystems across eastern 

Australia to explore the effects of solar radiation intensity related to diurnal solar 

zenith angle (SZA) variations and weather-related changes in direct/ diffuse 

radiation to phenocam-derived GCC values. The objectives of this study are to:  

(1) characterize how the diurnal GCC changes with the variations in SZA within 

one day at different phenophases stages;  

(2) assess the diurnal differences between pasture GCC values under sunny and 

overcast weather conditions (i.e. the sky conditions dominated by direct and 

diffuse solar irradiation, respectively) at different phenophases stages; and 

(3) propose a diurnal-to-daily GCC compositing methodology to mitigate the 

influence of changes in solar radiation intensity on phenocam-derived GCC in 

pastures and grasslands.  

2.2 METHOD 

2.2.1 Study areas and site description 

The study was conducted at four phenocam sites, located at the state of Victoria 

(VIC), New South Wales (NSW) and Queensland (QLD) across the southeast 

Australian pasture/ grassland ecosystem (Fig. 2.1). The climate types in the study 

area are mainly Temperate with warm summer (i.e. VIC site and NSW site) and 

Subtropical with no dry season (i.e. two QLD sites), according to climate 

classification maps released from Bureau of Meteorology (http://www.bom.gov.au). 

These four sites encompass a wide range of climate and grassland types, i.e. 

temperate grasses in NSW and VIC sites, and subtropical grasses in QLD sites. 

http://www.bom.gov.au/
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Detailed descriptions of these sites are given in Table 2.1 including their land cover 

type from Dynamic Land Cover Dataset product (DLCD) and dominant pasture 

species in phenocam field of view.  

 

Figure 2.1 Spatial distribution of phenocam sites used in this study. Land cover 

types were according to Dynamic Land Cover Dataset (DLCD, 

https://data.gov.au/dataset/1556b944-731c4b7f-a03e-14577c7e68db) 

  

https://data.gov.au/dataset/1556b944-731c4b7f-a03e-14577c7e68db


 

58 

 

Table 2.1 Descriptions of research sites in this study.  

1 The all of land cover types of study sites referred to DLCD (Dynamic Land Cover Dataset) product (https://data.gov.au/dataset/1556b944-

731c-4b7f-a03e-14577c7e68db).  

 

Table 2.2 Overview of time-laps digital cameras used in this study. 

Sites Manufacturer: model Resolution Max 

aperture 

Temporal coverage 

(h AEST); interval 

Observation period View direction: 

depression angle 

Redesdale Bushnell, Aggressor No 

Glow HD trophy Cam; 

119776C 

4416 x 3312 2.8 8:00 – 17:00; 30 min 2018.12 – 2020.2 ~NE; ~10° 

Campbelltown Ltl Acorn; Ltl-6310WMC 4000 x 3000 3.2 8:00 – 17:00; 15 min 2018.10 – 2019.6 190° due North; ~5° 

Rocklea Bushnell, Aggressor No 

Glow HD trophy Cam; 

119776C 

4416 x 3312 2.8 9:00 – 17:00; 15 min 2018.7 – 2019.7 140° due North; ~10° 

Mutdapilly Bushnell, Aggressor No 

Glow HD trophy Cam; 

119776C 

4416 x 3312 2.8 9:00 – 17:00; 15 min 2018.7 – 2019.7 54° due North; ~10° 

 

 

State Sites Name Latitude; Longitude (°) Elevation (m) Land Cover Type 1 Dominant pasture species 

VIC Redesdale -37.0194; 144.5203 290 Rain fed pasture Canary grass 

NSW Campbelltown -34.067; 150.796 112 Rain fed pasture Oat grass 

QLD Rocklea -27.536; 152.993 7 Rain fed pasture Rhodes grass 

 Mutdapilly -27.750; 152.644 21 Rain fed pasture Panicoideae genera 

https://data.gov.au/dataset/1556b944-731c-4b7f-a03e-14577c7e68db
https://data.gov.au/dataset/1556b944-731c-4b7f-a03e-14577c7e68db
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2.2.2 Digital time-lapse camera data 

A set of phenocams was deployed at four study sites (Fig. 2.1) with different 

observation periods, and time intervals (15 or 30 min). Two brands of time-lapse 

digital camera, i.e. Ltl Acorn Scouting Camera (model: Ltl-6310WMC) and 

Bushnell Aggressor No Glow HD trophy Cam (model: 119776C), were used in this 

study. The cameras all used automatic white balance and exposure setting. The 

differences between the two camera types are mainly in resolution and maximum 

aperture. Phenocams faced mostly south with an oblique view angle. The reason 

why cameras were deployed with different azimuthal orientations is to ensure the 

camera’s FOV would capture the most pasture area, without obstruction from trees 

or other non-target objects. Detailed descriptions of these phenocams are given in 

Table 2.2. 

To describe the pasture greenness dynamics, the green chromatic coordinate (GCC) 

was derived from phenocam imagery as following steps. Firstly, the region of 

interest (ROI) was selected at each site to sample the most representative pasture 

area in the FOV of the camera (Fig. 2.2); secondly, RGB DNs for each pixels 

within the ROI were extracted and converted to GCC by Eq. (2.1); and then the 

GCC value for each pixel was averaged across ROI.  

𝐺𝐶𝐶 =
𝐺

𝑅+𝐺+𝐵
                                                                                                (2.1) 

Where R, G and B are the red, green and blue pixel digital numbers. 

 

Figure 2.2 Phenocam example RGB images at each site. The red polygons denoted 

the regions of interest (ROIs) selected for green chromatic coordinate (GCC) 

calculation. 

2.2.3 Solar zenith angle data 

Though the diurnal changes in solar elevation and azimuth caused the variations in 

GCC (and overall brightness) over the course of a day (Richardson et al., 2009), 
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there is a lack of quantitative analyses for their specific relationships. Therefore, we 

obtained the solar zenith angle (SZA) for each image, according to the time when 

that image was taken, as the quantified value of solar elevation to assist the 

understanding for variations in diurnal GCC profiles related to solar geometry. The 

SZA values were calculated by “oce” R package (https://cran.r-

project.org/web/packages/oce/oce.pdf). 

2.2.4 Hourly solar irradiation data 

The Australian hourly solar radiation dataset provided by the Bureau of 

Meteorology Australia (BOM) 

(http://www.bom.gov.au/climate/how/newproducts/IDCJAD0111.shtml) was used 

in this study to quantify the diurnal variations in solar radiation caused by SZA 

changes and assist distinguish sunny and cloudy days for all phenocam observation 

periods. The product includes two gridded hourly solar irradiance fractions - solar 

global horizontal irradiance (GHI) and solar direct normal irradiance (DNI). They 

were estimated by hourly visible images from geostationary meteorological 

satellites using the Australian Bureau of Meteorology’s computer radiation model 

(Gautier et al., 1980).   

We extracted the hourly GHI and DNI from this product for each phenocam site. 

And then, the hourly solar diffuse horizontal irradiance (DHI) was calculated 

followed Eq. (2.2).  

Global Horizontal irradiance (GHI) = Direct Normal irradiance (DNI) x cos (SZA) 

+ Diffuse Horizontal irradiance (DHI)                                                               (2.2) 

Where SZA is the solar zenith angle at the specific time, which corresponding to 

the timing of hourly solar irradiations for each phenocam location.  

The GHI values are usually the highest in the middle of the day and vary with 

atmospheric condition changes, e.g. cloudiness. Compared with DNI values, which 

are usually the highest in cloud-free conditions, DHI values are usually the 

dominant solar irradiation fraction under cloudy sky condition (Nann and Riordan, 

1991). According to this characteristic, we plotted the hourly solar radiation for 

each day to recognize sunny and cloudy days across the entire growing season for 

each phenocam site. Fig. 2.3 illustrates the schematic example of hourly GHI, DNI 

https://cran.r-project.org/web/packages/oce/oce.pdf
https://cran.r-project.org/web/packages/oce/oce.pdf
http://www.bom.gov.au/climate/how/newproducts/IDCJAD0111.shtml
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x cos (SZA), and DHI under cloudy (Fig. 2.3 a) and sunny (Fig. 2.3 b) sky 

conditions at Rocklea site. For example, the DHI dominated the overall solar 

radiation on May-4-2019 with extremely low DNI x cos (SZA) values through a 

day (Fig. 2.3 a). Therefore, we classified this day as a cloudy (or overcast) day. 

Inversely, a specific day was be recognized as a sunny day when the DHI values are 

dramatically low and DNI x cos (SZA) become the dominant fraction over this day, 

such as May-5-2019 (Fig. 2.3 b). Considering the coarse resolution of the hourly 

solar radiation product, we did the visual inspection for phenocam imagery to make 

sure the sky conditions are 100% cloud-free or overcast. 

 

Figure 2.3 The schematic representation for recognizing sunny and cloudy days 

based on diurnal profiles of solar direct normal irradiance (DNI) x cos (SZA) and 

diffuse horizontal irradiance (DHI) at Rocklea.  

2.2.5 Analysis strategy 

2.2.5.1 Solar radiation effects on diurnal phenocam GCC values 

To understand how diurnal variations in solar irradiation due to diurnal SZA 

changes impact the GCC values, we plotted diurnal GCC alongside SZA and DNI x 

cos(SZA) values on the same day at Campbelltown site. Considering cloudy sky 

condition can introduce uncertainties in phenocam imagery scene illumination, we 

performed this study on four sunny days. They are located at different phenophases, 

i.e. “peak greenness”, “green-up”, “brown-down” and “dry pasture”.   

Also, we compared diurnal GCC values under sunny and overcast days at different 

phenophases at Campbelltown site to examine the effects of diffuse/direct solar 

radiation-related changes in scene illumination on diurnal GCC values. Note that 

the criterion for selecting example days, in which analyses were conducted, is to 
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ensure selected sunny and overcast days are adjacent as much as possible so that the 

growing stages of pasture on these days are similar. 

2.2.5.2 Compositing methodology 

We applied a moving-window approach based on minimum SZA time with three-

day step-size to composite diurnal GCC values into daily values. Firstly, a four-

hour window was selected centred at minimum SZA time. And then we calculated 

the 10th percentile of all four-hour window GCC values for three days so that to 

pick the bottom of diurnal GCC profile. Finally, in this four-hour window across 

three days, we averaged all GCC values that were smaller than the 10th percentile 

and assigned this average as the daily value of the window centre day. Also, we 

composited diurnal GCC values to daily scale using per90 method by assigning the 

90th percentile of all daytime GCC values within a three-day window to the centre 

day as its daily values. More details are described in Sonnentag et al. (2012).   

According to previous studies (Ma et al., 2015; Wang and Liang, 2008), the SSA-

Pheno (singular spectrum analysis for phenology) algorithm was used to fit time-

series of daily GCC profiles derived from per90 and min SZA method, as well as 

retrieve phenological metrics, including the start of growing season (SGS), peak of 

growing season (PGS), end of growing season (EGS), and length of growing season 

(LGS) from fitted GCC time series. The timing was defined as PGS when GCC 

reaches its seasonal maximum; the SGS and EGS were then detected when 

smoothed curves of daily GCC first and last reached 10% of the seasonal 

amplitude, respectively; and then the difference between SGS and EGS is the LGS 

(Ma et al., 2020). 

To compare the differences between two compositing methods, we used least-

squares linear regression to calculate coefficients of determination (R2) and p-value 

for all-sites GCC values. Meanwhile, the root mean square error (RMSE) was 

calculated to assess the differences of two methods in retrieving phenological 

metrics from GCC time series. 
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2.3 RESULTS 

2.3.1 Diurnal GCC, green channel, and overall brightness variations with incident 

direct solar radiation in relation to solar zenith angle 

We explored the temporal variations in diurnal GCC values with changed SZA and 

solar irradiation at Campbelltown under clear sky conditions for four phenophases 

(Fig. 2.4). The diurnal SZA profiles were characterized as concave shapes with 

minimum values that occurred around 12:00 pm (local time). Consequently, the 

incident direct solar radiation (i.e. cos (SZA) x DNI) increased and reached the 

highest value around noon and then decreased alongside the increased SZA after 

noon time. The diurnal GCC profiles varied synchronously with diurnal SZA and 

showed a characteristic concave shape as well, with higher values occurring in the 

morning and late afternoon and the minimum values appeared around noon at all 

phenophases. However, influences of diurnal SZA on diurnal GCC values are 

phenological dependent with near-flat temporal GCC profiles under ‘dry pasture’ 

(Fig. 2.4 d). Diurnal GCC profiles at ‘Green-up’ and ‘Dry pasture’ possessed the 

largest and least amplitudes, respectively (Fig. 2.4 a and d).  

 

Figure 2.4 Diurnal profiles of green chromatic coordinate (GCC), solar zenith angle 

(SZA) and direct horizontal irradiance (cos (SZA) x DNI) under different four 

phenophases at example days with clear-sky condition, Campbelltown. The specific 
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dates for ‘Peak greenness’ is 25-Dec-2018, for ‘Green-up’ is 26-Mar-2019, for 

‘Dry-down’ is 11-Feb-2019, and for ‘Dry pasture’ is 17-Feb-2019.   

2.3.2 Differences in diurnal GCC under direct and diffuse solar radiation 

conditions 

Diurnal patterns in GCC and solar radiation components for sunny and overcast 

days were significantly different in all phenophases at Campbelltown, especially 

during mid-day hours (Fig. 2.5).  

The incident direct irradiance (cos (SZA) x DNI, red solid points and lines) were 

dramatically higher than diffuse horizontal irradiance (DHI, red hollow points and 

lines) under sunny days, with highest values around noon time. However, cos 

(SZA) x DNI values closely reached zero and DHI values were higher than them 

under overcast days (blue points and lines in Fig. 2.5 e - h). As expected, it 

indicates that direct and diffuse solar radiation were dominant solar radiation 

components under sunny (clear-sky) and overcast weather conditions, respectively.   

The GCC values in overcast days (i.e. under diffuse solar radiation) were generally 

higher than sunny days (i.e. under direct solar radiation) at all phenophases with the 

differences were smaller in the morning and late afternoon (Fig. 2.5 a - d). As 

compared with direct solar condition, GCC values extracted from images under 

diffuse solar condition experienced a more complicated diurnal variation. 

Moreover, the temporal structure of diurnal GCC was flipped from concave to 

convex (Fig. 2.5 c and d) or varied more flatted (Fig 2.5 a and b), besides overall 

GCC values increased under diffuse solar condition. The difference in GCC values 

between direct and diffuse conditions was the smallest at ‘dry pasture’ among four 

phenophases. 
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Figure 2.5  Diurnal GCC profiles (a - d) and solar radiance components (DHI and cos (SZA) x DNI) (e - h) under sunny and cloudy weather 

conditions for different phenophases at Campbelltown. Red and blue points and lines denote GCC values and solar radiance components under 

sunny days and overcast days, respectively. The temporal locations of these example days at the seasonal GCC profile throughout the entire 

study period were shown in Fig 2.A1.
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2.3.3 Diurnal GCC compositing using min SZA method and per90 

To reduce the influence of diurnal and weather-related variations in scene 

illumination on GCC values for seasonal GCC dynamic analyses, we needed to 

design a method to composite diurnal GCC values from optimal and stable 

illumination images for daily representation of pasture greenness. According to the 

results shown in Figs. 2.4 to 2.5, the images taken under optimal illumination 

conditions (e.g. noon-time or sunny days) always had lower GCC values as 

compared with sub-optimal illumination (e.g. early morning and afternoon, or 

overcast days). Therefore, we proposed a three-day moving window method based 

on the timing of minimum SZA, i.e. min SZA method. It assigns the average GCC 

values, which less than the 10th percentile of GCC values within a four-hour 

window centered at the minimum SZA time, to the center day.  

We compared compositing results of min SZA method and per90 at four sites (Fig. 

2.6). Comparisons with per90-GCC values (black points in Fig. 2.6) that followed 

the upper envelope of diurnal GCC profiles, daily GCC values obtained by the min 

SZA method tracked the bottom envelope of the seasonal GCC trajectory (green 

point in Fig. 2.6). Moreover, differences between two methods are more obvious 

during greenness transition periods compared with other phenophases (see red 

dotted lines in Fig. 2.6). For example, the differences in two methods sharply 

increased before the grass dried down at Rocklea and Campbelltown (Fig. 2.6 a and 

b), as well as before the grass reached the peak greenness at Redesdale and 

Mutdapilly (Fig.2.6 c and d). Though the shape of GCC profiles composited by two 

methods was similar, the variations in the amplitude of per90-GCC profiles were 

more obvious than min SZA method-GCC and their differences in magnitude 

greater during the greenness-transition periods. Even so, both two methods could 

efficiently filter outliers caused by non-phenological reasons, for example, 

abnormal GCC values caused by the worse illumination at dusk or lens problems 

around July 2019 at Campbelltown site and April o August 2019 at Redesdale site. 

(Fig. 2.6 b and c). 
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Figure 2.6 Compositing diurnal GCC as daily values by per90 and min SZA 

method at research sites. Grey small points represent diurnal GCC with 15 or 30 

min time intervals; black and green points denote composting values by per90 and 

min SZA method, respectively. The red dotted lines represent the ‘per90 – min SZA 

method’ difference.  
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2.3.4 Differences in phenological metrics between min SZA method and per90 

The specific phenological transition dates (i.e. SGS, PGS, and EGS) at each site 

were labelled in Fig. 2.7 and listed in Table 2.3. Across all four sites, we obtained 

10 growing seasons and consequently 29 phenological transition dates (3 

phenophases x 10 seasons, but no EGS at the last season for Campbelltown due to 

the lowest GCC values were at the end of the season and couldn’t be assessed). 

There were five SGS and PGS, respectively, extracted from per90-GCC that 

occurred before those extracted from min SZA method-GCC time series. However, 

seven PGS from min SZA method-GCC were ahead of those from per90-GCC 

among all 10 seasons. This indicates that our compositing method based on min 

SZA tracked earlier PGS as compared with per90 method. Also, for SGS and EGS, 

their differences between two methods were site dependent.  

Fig. 2.8 presents the cross-site relationships and uncertainties (RMSE) between 

phenological transitional dates retrieved from SSA-reconstructed per90-GCC and 

min SZA method-GCC time series. We set our min SZA method as the x-axis to 

use it as a reference. Though all phenophases showed significant correlations 

between two methods with R2= 0.99 across all sites, the response of GCC values on 

poor solar intensity introduced non-negligible uncertainties on phenological 

transitional dates retrieved from two methods. The uncertainties (RMSE) of using 

per90-GCC time series for retrieving SGS, EGS, PGS and LGS, as compared to the 

use of min SZA method-GCC, were 5.18, 4.07, 3.79, and 3.27 days respectively 

(Fig. 2.8).  
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Figure 2.7 Seasonal GCC trajectories, which composited by min SZA method 

(green color) and per90 (black color) and then fitted by SSA method, at all sites. 

Phenological transition dates are labelled on each time series, including the start of 

growing season (SGS, solid circles), the peak of growing season (PGS, solid 

triangles), and the end of growing season (EGS, hollow circles).  
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Figure 2.8 Cross-site comparison between the phenological transitional dates 

extracted from seasonal GCC trajectories obtained by min SZA method and per90 

at four sites. SGS: Start of Growing Season; PGS: Peak of Growing Season; EGS: 

End of Growing Season; LGS: Length of Growing Season. *** denotes correlation 

significant at the 0.0001 p-value level. 
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Table 2.3 Comparison of differences in each phenological transition dates between min SZA method and per90 at all sites. Bold font shows the 

earliest date for SGS, PGS, and EGS among two methods, as well as the longest LGS extracted from time series of daily GCC composited by 

min SZA method and per90, respectively. SGS: Start of Growing Season; PGS: Peak of Growing Season; EGS: End of Growing Season; LGS: 

Length of Growing Season. Phenological transition dates are corresponding to Fig. 2.8.  

  Campbelltown Mutdapilly Rocklea Redesdale 

  Min SZA method per 90 Min SZA method per 90 Min SZA method per 90 Min SZA method per 90 

Season 1 SGS 334, 2018 333, 2018 290, 2018 292, 2018 242, 2018 245, 2018 202, 2019 187, 2019 

 PGS 359, 2018 360, 2018 324, 2018 325, 2018 298, 2018 300, 2018 316, 2019 313, 2019 

 EGS 19, 2019 21, 2019 340, 2018 338, 2018 328, 2018 332, 2018 360, 2019 351, 2019 

 LGS 50 days 53 days 50 days 46 days 86 days 87 days 158 days 164 days 

Season 2 SGS 25, 2019 26, 2019 347, 2018 346, 2018 100, 2019 105, 2019   

 PGS 34, 2019 35, 2019 359, 2018 359, 2018 138, 2019 126, 2019   

 EGS 60, 2019 58, 2019 25, 2019 22, 2019 167, 2019 168, 2019   

 LGS 35 days 32 days 43 days 41 days 67 days 63 days   

Season 3 SGS 74, 2019 74, 2019 35, 2019 34, 2019     

 PGS 93, 2019 94, 2019 44, 2019 45, 2019     

 EGS 143, 2019 144, 2019 61, 2019 58, 2019     

 LGS 69 days 70 days 26 days 24 days     

Season 4 SGS   75, 2019 74, 2019      

 PGS   116, 2019 118, 2019     

 



 

72 

 

2.4 DISCUSSION 

In this study, we investigated the influence of scene illumination changes, related to 

diurnal solar zenith angle changes and direct/diffuse solar radiation under different 

weather conditions, on the diurnal GCC values (Figs. 2.4 and 2.5). Our results 

showed scene illumination changes had pronounced effects on GCC values, despite 

this widely used index being designed for suppressing the effects of illumination. 

As such, we proposed a diurnal-to-daily compositing method to further suppress the 

illumination-effects on GCC calculated from pasture/ grassland phenocam images. 

By comparing with the prevalent approach, per90, our method has the ability to 

composite diurnal GCC values obtained from more optimal scene illumination 

conditions (Fig. 2.6). Although the difference between the two methods is small in 

the numerical value, there is still significant uncertainties in retrieving phenological 

transitional dates using per90 when min SZA method was used as a reference (Fig. 

2.7 and 2.8). 

2.4.1 Effects of solar radiation intensity changes on diurnal pasture GCC 

An interesting finding in this study is that the diurnal pattern of pasture GCC is 

concave (Fig. 2.4) and it is opposite to results from previous studies conducted in 

forest canopies. For example, Using digital camera images collected from 

deciduous and coniferous-dominated forests, a study showed GCC values started to 

increase around 6:00 am (local time) followed by stable values, and then decreased 

around 6:00 pm (local time) (Sonnentag et al., 2012). Similarly, diurnal GCC 

profiles were convex shaped from morning to afternoon, influenced by illumination 

changes and self-shading within forest canopies (Ahrends et al., 2008). Though the 

change in sun geometries caused by the earth’s daily rotation was considered as a 

critical factor to influence phenocam scene illumination (Richardson et al., 2009; 

Sonnentag et al., 2012), there are fewer efforts to quantify the response of diurnal 

GCC profiles to scene illumination changes, especially in grassland/ pasture 

ecosystem. The solar zenith angle (SZA) corresponding to each image is included 

in the North America PhenoCam dataset. However, it was only used as an image 

quality-control filter (Richardson et al., 2018b). In this study, choosing SZA and 

cos (SZA) x DNI corresponding to each GCC value as quantitative metrics of 

diurnal sun angle and solar intensity changes, the comparison of diurnal GCC with 
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SZA and cos (SZA) x DNI profiles at an example site (Fig. 2.4) showed a clear 

pattern of the noontime images with smaller SZA and larger solar intensity had 

lower GCC values over a day than morning and afternoon images, which were 

under sub-optimal illumination due to larger SZA and lower solar intensity. Our 

result is consistent with responses of diurnal vegetation indices derived from 10-

min Himawari-8 AHI sensor to diurnal range of solar zenith angles (Tran et al., 

2020). In other words, our results demonstrated the diurnal pasture/ grassland GCC 

observed by phenocam also experienced significant BRDF (bidirectional 

reflectance distribution function) influences throughout the day, which was widely 

exhibited among geostationary (GEO) satellite derived vegetation indices (Ma et 

al., 2020; Proud et al., 2014).   

In terms of weather-related illumination changes, we found lower illuminated 

images under diffuse illumination conditions led to higher GCC values compared to 

brighter images taken from direct illumination condition (Fig. 2.5). This finding is 

independent on grass phenophase stages. It is opposite to the conclusion drawn by 

previous studies conducted at forest ecosystems, where GCC values under sub-

optimal illumination conditions (cloudiness and precipitation), were smaller than 

those under sunny sky condition (Sonnentag et al., 2012). Also, compared with 

sunlit conditions, GCC values generally decrease under shadowy conditions in 

forested canopies (Ide and Oguma, 2013). As for non-forested canopies, however, 

the situation was more consistent with our results. The diurnal GCC of the winter 

wheat under the case of diffuse atmospheric scattering was higher than those of the 

direct illumination condition (Li et al., 2019). Moreover, images collected from 

cloudy days had slightly greater GCC values than optimal illumination images at 

salt marsh canopy (O’Connell and Alber, 2016). This indicates the response of 

diurnal phenocam GCC on weather-related illumination changes varied among 

different types of vegetation. Also, the diurnal GCC patterns were less pronounced 

in overcast days, when diffuse solar radiation is more dominant. This is due to 

overcast conditions with weak and relatively stable solar intensity during the whole 

day, so the sun-angle effect has less impact on diurnal GCC pattern.  

The physical reasons that near solar noon and clear-sky observations, related to 

greater solar radiation intensities, resulted in lower GCC values, while the larger 
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SZA conditions and overcast sky yielded higher GCC values are not fully clear at 

present, but here we provided some clues for our results. The changes in the 

proportion of sunlit grass and background materials, e.g., bare soil and standing 

litters, in phenocam imagery might be one of the potential causes. In forest 

canopies, larger SZA tends to cause lots of inter-crown shadows and consequently 

lower GCC, while smaller SZA around solar noon causes the maximum sunlit 

leaves and thus higher GCC values. In grass canopies, however, there is more sunlit 

background and less unlit grass at noontime with smaller SZA, hence lowering 

GCC values. In contrast, sunlit grasses dominate the images with soil background 

materials covered by shadows in early morning and late afternoon with larger SZA, 

so GCC values are higher. For example, a previous study showed the Normalized 

Difference Vegetation Index (NDVI) observed from an incomplete cotton canopy 

using multimodular radiometer also has the same response to diurnal SZA changes 

like our phenocam GCC did (Huete, 1987). That is a higher proportion of sunlit soil 

caused by small SZA tended to lower NDVI values. Considering the functional 

differences between NDVI and GCC, however, there needs to be more research 

carried out to determine if these explanations are accurate or plausible to interpret 

diurnal GCC patterns in pasture/ grasslands.  

2.4.2 Statistical methodology of compositing GCC over pastures 

Current temporal compositing schemes for phenocam greenness observations are 

designed to minimize the influence of variations in scene illumination on diurnal 

greenness indices. A prevalent GCC compositing method used by most phenocam 

researchers (Luo et al., 2018; Peter et al., 2018; Richardson et al., 2018b; 

Seyednasrollah et al., 2019; Vrieling et al., 2018) is the per90 technique, proposed 

from extensive analyses at many forest canopy sites (Sonnentag et al., 2012). It 

assigns the 90th percentile of all daytime GCC values within a three-day window to 

the centre day as its daily value. As with most of the maximum value compositing 

(MVC) methods, the logic behind this method is to restrict the sun-angle effect by 

selecting observations near solar noon where they maintain moderate variations. 

The results in this study presented, however, show lower GCC values found at 

smaller SZA and stronger solar intensities encountered at local solar noon and clear 

sky conditions, with the higher GCC values occurring at the beginning/ end of a day 
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and overcast days (Figs. 2.4 and 2.5). These findings motivated us to propose an 

alternative approach that only considered images collected around the time of 

minimum SZA when compositing diurnal GCC to daily value at grassland/ pasture 

ecosystem, in which images were taken under optimal illumination and moderate 

sun angle variations.  

An ideal diurnal-daily compositing method should select GCC values from images 

taken under optimal illumination condition to represent the vegetation greenness on 

that day. According to Fig. 2.6, composited GCC values by per90 kept firmly 

tracked the upper envelope of diurnal GCC trajectories, or opposite to the min SZA 

method. This indicates the per90 method tends to choose GCC values from early 

morning or late afternoon images, in which the scene illumination is more 

susceptible to uncertain factors (i.e. the shadows caused by surrounding objectives 

due to large SZA and camera geometry). Also, considering GCC values under 

diffuse radiation (i.e. cloudy scene) tend to be higher than under direct radiation 

(i.e. sunlit scene) (Fig. 2.5), the per90 approach selected GCC values from cloudy 

scenes instead of sunny images. However, our method based on minimum SZA 

timing can avoid these impacts. First, GCC from morning and afternoon images can 

be excluded by opening a 4-hour window centred at minimum SZA timing. And 

then, by averaging GCC less than the 10th percentile of all GCC values within this 

4-hour window, GCC extracted from images under diffuse radiation condition 

could be excluded further. Additionally, it is the difference between our method and 

widely used mean mid-day (mmd, e.g. mean GCC values between 10:00 and 14:00 

h local time), that is we didn’t consider all GCC values around minimum SZA 

timing (i.e. around noon-time) but only values less than the 10th percentile among 

these values. In the other words, though phenocam images under high SZA (i.e., 

early morning and late afternoon) could be excluded by opening time window 

centred on minimum SZA (i.e., solar noon), sub-optimal illumination images 

remain mixed with optimal illumination images (e.g., cloudy vs. clear-sky) within 

the minimum SZA-window, especially at cloudy days. Therefore, using the 10th 

percentile as an empirical threshold could further select as small as possible GCC 

values, with optimal illumination conditions, as the daily extraction of grass 

greenness. The result from a phenocam study conducted at a salt marsh site is 
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consistent with our finding. They also found the per90 approach introduced 

considerable noise to GCC time series profiles by selecting data from cloudy scenes 

and substituting these for data with optimal scene illuminations (O’Connell and 

Alber, 2016). Moreover, the per90 method demonstrated that it is more susceptible 

to outliers than to ideal values because it closely tracks the extreme upper values in 

the data (Richardson et al., 2018a). Furthermore, the per90 method caused around 

3-5 days uncertainty in retrieving pasture phenological metrics (using our method 

as reference), especially for SGS (quantitatively, with the highest RMSE = 5.18 

days) and PGS (qualitatively, with 70% per90-PGS lagged behind min SZA 

method - PGS) (Fig. 2.8 and Table 2.3). These uncertainties are non-negligible for 

pasture/ grassland ecosystems, which generally experienced subtle phenological 

transition during a short-term period.   

2.5 CONCLUSION 

An important finding in this study is the structure of diurnal pasture GCC profiles, 

characterized as a concave pattern over the course of a day, with smaller SZA and 

greater solar intensities resulting in lower GCC values; while larger SZA and 

weaker solar intensities of early morning and afternoon yielded higher GCC values. 

This was opposite with diurnal greenness indices derived from forested canopies. 

Additionally, the comparison of GCC under various weather conditions and 

variable diffuse and direct illumination conditions showed a clear pattern of diffuse 

illumination providing larger GCC values than direct illumination condition.  

Considering the unique diurnal GCC temporal pattern at pasture canopy as 

compared with forest, the maximum value compositing (MVC) method would no 

longer be applicable since the highest GCC value may occur at the largest SZA near 

sunrise and sunset periods with sub-optimal illumination conditions. Given this, we 

proposed a compositing approach based on minimum SZA to suppress the effects 

of scene illumination changes on diurnal GCC and highly recommend using this 

method as a diurnal-to-daily compositing approach for phenocam observations in 

grassland/ pasture canopy. As the applications of the digital camera for monitoring 

the phenological status of grassland and agriculture have increased in recent 

decades, in future studies, the technical analyses about the response of camera 
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observations to external non-biotic impact factors at canopies dominated by non-

forest vegetation types should receive much more attention. 
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2.7 APPENDIX 

 

Figure 2.A 1 Seasonal time series of GCC with 15 min interval at Campbelltown. 

The sunny and cloudy days are highlighted by red and blue colours, respectively. 

The four pairs of adjacent days with clear and cloudy sky conditions were selected 

to compare their diurnal GCC values at different phenophases.  
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grassland greenness observations from 

phenocam to satellites and relationships 
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3.1 INTRODUCTION 

Grass pollen is the primary outdoor aeroallergen source, one which triggers allergic 

rhinitis and asthma across Australia (Davies et al., 2015). The prevalence of allergic 

rhinitis in Australia was the highest in a study conducted in adults aged between 20 

and 44 across 15 countries. Meanwhile, Australia also has the highest prevalence of 

asthma around the world (Beggs et al., 2015). In terms of respiratory health, the 

impact of grass pollens on our next generation, a correlation between allergic 

rhinitis and asthma in children exhibiting sensitisation to grass pollen in late 

summer was observed in northern New South Wales (Bass et al., 2000). Therefore, 

increasingly studies have paid attention to the management of pollen allergen 

exposure to reduce the health and socioeconomic burden caused by these allergic 

diseases in Australia (Beggs et al., 2015; Devadas et al., 2018; Tng et al., 2010).  

A valuable indicator for both current and future trends in allergenic grass pollen 

exposure, long-term grass pollen concentration records, measured using volumetric 

spore collection traps at sites, are suffering limitations pertaining to a sparsity of 

within-site pollen trap sampling and the requirement for intensive labour (Devadas 

et al., 2018). To further assist in the management of symptoms and disease, pollen 

forecast models have been developed to predict local pollen aerobiology using 

empirical or process-based approaches. Empirical forecast models, such as 

statistical approaches, aim to understand the effect of relevant factors such as 

temperature, precipitation, and relative humidity in influencing the patterns of 

pollen release based on their empirical interrelationships pollen concentrations 

(Laaidi 2001; Smith & Emberlin, 2006; Stach et al., 2008). Process-based models 

predict pollen release through modelling the processes of plant pollen phenology as 

influenced by changing weather conditions (Li et al., 2019; Zhang et al., 2015). 

However, both empirical and process-based models are focused on explanatory 

factors (e.g., metrological conditions) that impact the pattern and concentrations of 

pollen, rarely considering the available ecological information or phenological 

status (i.e., the timing of key plant phenophases) of allergenic plants. Actually, such 

information is vital to understanding the ecological and climate drivers of pollen 

aerobiology and to further predict its future trends (Devadas et al., 2018). On the 

other hand, the spatial representation of these forecast models is low due to the fact 
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that grass pollen concentrations are usually obtained from a fixed and relatively 

small number of pollen sampling stations (Khwarahm et al., 2017). Ecological 

information on the phenology of allergenic plants with finer spatial resolution over 

larger areas would therefore be deemed essential and useful.  

Over the last half-century, the development of new satellite sensors and the 

increased availability of satellite remote sensing data of ecologically relevant 

landscape variables has provided a unique opportunity to estimate the phenological 

dynamics of vegetation on both a regional and a global scale (Crowley & Cardille, 

2020; Lloyd, 1990; Ma et al., 2013; Reed et al., 1994; Watson, Restrepo-Coupe & 

Huete, 2019). This, therefore, would augment the coverage currently restricted to 

extant in-situ pollen trap networks. Increasingly studies have used satellite-driven 

vegetation indices to characterise important phenological variables related to pollen 

release. For example, the Normalised Difference Vegetation Index (NDVI) has 

been shown to be closely associated with the onset of birch flowering in Norway 

(Karlsen et al., 2009). A standard phenology product that used the Enhanced 

Vegetation Index (EVI) captured strong seasonal Juniperus greenness activity 

which is useful in the analysis of the preconditions for the timing and magnitudes of 

pollen release (Jeffrey et al., 2011). Similarly, there has been a strong 

correspondence of EVI greenness correlating with observations of grass pollen 

aerobiology data over sites in eastern Australia and northern France (Devadas et al., 

2018). Moreover, the start of birch and grass pollen release was defined using the 

Medium Resolution Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index 

(MTCI) and showed large positive correlations with in-situ ground reference data 

across the UK (Khwarahm et al., 2017). This indicates that the greenness dynamics 

of allergenic plant species could be used to determine the timing of pollen release.  

It is well known that satellite remote sensing has the advantage of examining 

vegetation changes consistently at both regional and global levels, but its ability in 

phenological studies is constrained by spatial resolution (i.e. pixel size) and 

temporal limitations (i.e. time intervals of satellite revisits) (Riihimäki, Luoto & 

Heiskanen, 2019; Watson, Restrepo-Coupe & Huete, 2019). Most of the vegetation 

phenology-pollen studies are thus based on coarse resolution satellite data such as 

Advanced Very-High Resolution Radiometer (AVHRR; 8 km, sub-daily) (Hogda et 
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al., 2002a); or MERIS; ~1 km, ≥ 3 days) (Khwarahm et al., 2017); Moderate 

Resolution Imaging Spectrometer (MODIS; ≥ 250 m, ≥ 8 days) (Devadas et al. 

2018); or Medium Resolution Satellite (e.g. Landsat; 30 m, 16 days) (Li et al., 

2019). However, some allergenic plant species, such as subtropical grass species in 

Australia, typify spatially heterogeneous and dramatically variable landscapes as 

their phenological dynamics are strongly driven by rainfall (Ma et al., 2013). The 

heterogeneity of the land surface (can potentially) influence the accuracy of 

allergenic grass phenology indicators derived from coarse spatial resolution satellite 

data (Devadas et al., 2018). For example, the grass may not be the dominant species 

in a 1x1 km pixel grid or even in a 250 m grid, especially for those urban domains 

in which pollen traps are often situated. Higher spatial resolution satellite data, such 

as Landsat, might be appropriate to describe such heterogeneous regions (Lugonja 

et al., 2019; Rapinel et al., 2019; Vrieling et al., 2018). However, finer resolution 

satellite acquisitions usually come at the cost of longer revisiting intervals (Vrieling 

et al., 2018). Such images generally result in relatively low temporal resolution and 

these sensors may only capture a small number of cloud-free images over the entire 

growing season (Liu et al., 2017). Some important phenological transition records 

in allergenic plant species might be lost due to the big data gap within or between 

growing seasons and, consequently, it is difficult to reconcile this incomplete 

phenological information with daily pollen concentration data. Thus, finer spatial 

and temporal resolution satellite data, as well as novel methods, are needed to 

bridge the gaps arising between scales.  

In terms of the drawback of finite spatial resolution, the utility of Multi-Spectral 

Instrument (MSI) of Sentinel-2 mission with 10 m resolution (in four spectral 

bands) for retrieving vegetation phenology is good news, particularly for those 

scattered and relative tiny distributions of allergenic grass located in backyards or 

urban green spaces. Recent studies indicate the great advantages of Sentinel-2 data 

in retrieving phenology from semi-arid shrublands (Peng et al., 2021) and mapping 

tree and grass species (Rapinel et al., 2019). Vrieling et al. (2018) reported, as 

compared with commonly used medium resolution sensors, that Sentinel-2 data 

allows the retrieval of vegetation phenology with higher accuracy in those areas 

with intensive spatial heterogeneity (e.g., grasslands in Dutch barrier islands). As 
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for the limitations in effective temporal resolutions of moderate resolution and 

polar-orbiting satellite sensors, the hyper-temporal data (with 10 min intervals) 

from the Advanced Himawari Imager (AHI) aboard the Himawari-8 satellite has 

demonstrated great potential in improving the characterisation of vegetation 

phenology (Miura et al., 2019; Yan et al., 2019). Meanwhile, the improved spectral 

and spatial resolution (1000 m), as compared with previous geostationary satellite 

data, means that the Himawari-8 AHI attains comparable results to the commonly 

used and developed MODIS product, but with the added advantage of much finer 

temporal resolution (Tran et al., 2020). However, the utility of Sentinel-2 and 

Himawari-8 AHI data to characterise the relationships arising between grass 

phenology and grass pollen dynamics remains poorly investigated. 

Compared with traditional satellite-based remote sensing, near-surface remote 

sensing using a consumer-grade visual camera (phenocam) can provide a 

continuous record of vegetation phenology with a high frequency (sub-daily; Fig. 

3.1). One of the advantages that cannot be ignored is that the vegetation of interest 

can be directly monitored via phenocam. Therefore, a growing body of research has 

used phenocam images as a reference for surface vegetation dynamics to evaluate 

remote sensing phenology products and model simulations (Chen, Jin & Brown, 

2019; Liu et al., 2017; Moore et al., 2016; Richardson et al., 2007; Zhang et al., 

2020). In the northern hemisphere, phenocams have shown great promise in 

capturing phenological information about vegetation in a deciduous broadleaf forest 

(Hufkens et al., 2012a; Klosterman et al., 2014; Nagai et al., 2011), equatorial 

mangroves (Songsom et al., 2021), Brazilian cerrado (Alberton et al., 2014), and a 

regularly-flooded salt marsh (O’Connell & Alber, 2016). In Australia, phenocam 

data was demonstrated to be useful for monitoring temperate grassland dynamics 

and showed strong correlations with biomass estimates and satellite-based 

phenology (Watson, Restrepo-Coupe & Huete, 2019). In general, phenocam data 

provides a unique opportunity to bridge the gap between field observations and 

those from multiple resolution satellites, thereby improving our ability to quantify 

and predict the vegetation ecological dynamics across a range of biomes.   

In this study, we use greenness observations from a set of phenocams in eastern 

Australian grasslands/pasture ecosystems as a surface grassland dynamics 
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reference, together with multiple sources of satellite data including Sentinel-2, 

MODIS, and Himawari-8 AHI (Fig. 3.1), as well as the grass pollen concentrations 

collected by pollen traps co-located with phenocam sites to investigate the 

following questions:  

(1) To what extent does multi-resolution satellite data, at a pixel scale, obtain grass 

greenness information in heterogeneous landscapes?  

(2) Whether Sentinel-2 data of finer resolution can obtain more accurate grass 

greenness information from heterogeneous landscapes than satellite data with 

coarse resolution, and whether such an advantage can be maintained at 

increased scales? 

(3) What are the interrelationships between in-situ grass pollen concentrations and 

grass greenness as measured by phenocams and satellites across sites with 

different types of land cover? 

(4) How do the spatial resolutions of satellites influence the relationship between 

grass pollen seasonality and satellite-observed grass greenness dynamics?  

(5) How do temporal resolutions of satellite data influence the above relationships?  

 

Figure 3.1 Scales of field observation, spatial and temporal resolution for remote 

sensing multi-sensors as used in this study.  

3.2 MATERIALS AND METHODS 

3.2.1 Research sites and land cover types 

We conducted this study at three phenocam sites, specifically Campbelltown, 

Mutdapilly, and Rocklea. Their locations and other related information are 
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described in greater detail in Chapter 2, Fig. 2.1 and Table 2.1. These sites were 

chosen for their relatively long-term phenocam observations. Also, these sites are 

characterised as having urban and rural types of land cover. Therefore, we could 

explore our research questions at different sites with both long-term and in-situ 

grassland greenness information as well as varied spatial heterogeneity.  

The Dynamic Land Cover Dataset Version 2 (DLCDv2.1) 

(http://www.ga.gov.au/scientific-topics/earth-obs/accessing-satellite-

imagery/landcover) with 250 m spatial resolution was used to assess the land cover 

type surrounding each site. We defined five composite classes based on the original 

land cover type of Dynamic Land Cover Dataset (DLCD) to perform a more direct 

comparison for vegetation dynamic variation at different spatial scales. These are:  

[Grassland & Pasture]: Rain-fed pasture, closed tussock grassland, open tussock 

grassland, open hummock grassland, scattered shrubs and grasses and irrigated 

pasture. 

[Urban & Built-up]: Mines and quarries and urban areas 

[Cropland & Shrubland]: Rain-fed cropping, irrigated cropping, irrigated sugar, 

rain-fed sugar, and dense shrubland.  

[Forest]: Open forest, closed forest, open woodland and woodland. 

[Water body & wetland]: Lakes and dams, salt lakes and wetland. 

The land cover distributions and percentage of the five composite classifications 

surrounding a research site within a 10 square kilometre area are shown in Fig. 3.2. 

Significant differences in the proportion of grass cover, considered a potential 

source of grass pollen, was proven to exist among these sites. The surroundings of 

the Mutdapilly site principally consisted of grassland and pasture cover, with the 

percentage of [Grassland & Pasture] being 73.11%; while the [Urban & Built-up] 

class is primarily present around the Rocklea site, with the percentage of grass 

being only 20.81%. Unlike the extreme situations presented in Mutdapilly and 

Rocklea, the [Grassland & Pasture] and [Urban & Built-up] classes are relatively 

evenly distributed around Campbelltown, with the percentage of grass cover at 

30.21%.  

http://www.ga.gov.au/scientific-topics/earth-obs/accessing-satellite-imagery/landcover
http://www.ga.gov.au/scientific-topics/earth-obs/accessing-satellite-imagery/landcover
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Figure 3.2 An overview of the heterogeneity of composite classes derived from 

DLCD within a 10 km × 10 km square area as demarcated by black lines 

surrounding the phenocam sites for Mutdapilly (a), Rocklea (b), and Campbelltown 

(c). The percentage land cover (%) is plotted as a colour-coded bar chart beneath 

every panel.  

3.2.2 Phenocam greenness data 

The phenocam imagery data used for this study has previously been described in 

detail in Chapter 2, including camera setup and imagery data processing. As for 

Chapter 2, we used the green chromatic coordinate (GCC) as the metric to represent 

pasture/grassland greenness at the in-situ scale. Using the minimum SZA method 

proposed in Chapter 2, we composited diurnal phenocam GCC to daily values to 

track the seasonal dynamics of pasture greenness. Furthermore, seasonally fitted 

GCC curves were obtained using the SSA (Singular Spectrum Analysis) method 

(Golyandina & Korobeynikov, 2014).  

3.2.3 Multi-scale satellite data 

Satellite data was used in this study, which was obtained from three sensors, 

namely the Sentinel-2 MSI aboard the Sentinel-2 satellite; the MODIS sensor 

aboard the Terra satellite; and the AHI aboard the Himawari-8 satellite. The 

satellite sensor spectral bands, wavelengths, temporal and spatial resolution used in 

this study are shown in Table 3.1.  
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3.2.3.1 Sentinel-2 data 

The Sentinel-2 mission includes two satellites and frequent revisits of every single 

Sentinel-2 satellite occurs with a periodicity of every 10 days and thus the 

combined constellation revisiting interval is 5 days. The MSI has 13 spectral bands 

spanning from the visible to short wave infrared, and its spatial resolution varies 

from 10m to 60m depending on the particular spectral band viewed (Drusch et al., 

2012). 

We downloaded all available (partially) cloud-free acquisitions of Sentinel-2A data 

over specified research areas from 2018 to 2020 

(https://scihub.copernicus.eu/dhus/#/home). A Sen2Cor processor (Louis et al., 

2016) was used to perform atmospheric corrections to Top-Of-Atmosphere (TOA) 

Level-1C product and then the Level-2A (L2A) surface reflectance product was 

obtained which includes 10m, 20m and 60m spatial resolution bands. After this, for 

each image, L2A outputs were resampled at 10m spatial resolution for all bands 

also using Sen2Cor. Then the EVI was calculated from the 10m resolution spectral 

bands as follows: 

( )
2.5

( 6 7.5 1)

NIR RED
EVI

NIR RED Blue


 

                                                                   (3.1) 

where NIR, RED and Blue represent near-infrared, red and blue bands in terms of 

the L2A surface reflectance product. The EVI is thus a spectral surrogate of the 

vegetation greenness seasonal dynamic and is characterised by an improved 

sensitivity in high biomass regions and enhanced vegetation monitoring ability 

(Huete et al., 2002). 

3.2.3.2 MODIS data 

Another satellite data source was the 16-Day Terra MODIS Vegetation Indices 

product (MOD13Q1, 250m) which was acquired from the Oak Ridge National 

Laboratory Distributed Archive Center (DAAC) website 

(https://modis.ornl.gov/globalsubset/). The data were filtered based on the quality 

assurance (QA) flags provided in the quality control (QC) layers of the product. 

This product is processed for both atmospheric effects and BRDF (Bidirectional 

Reflectance Distribution Function) to standardise differences arising due to 

https://scihub.copernicus.eu/dhus/#/home
https://modis.ornl.gov/globalsubset/
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variations in viewing and illumination angles. The 16-day composite data reduces 

the impact of clouds on long-term datasets. The EVI is derived from 

atmospherically corrected reflectance within the red, near-infrared, and blue 

wavebands. The MODIS EVI has been demonstrated to have a good dynamic range 

and sensitivity for monitoring spatial and temporal variations in vegetation, 

including grassy areas (Huete et al., 2002).  

3.2.3.3 Himawari-8 AHI data 

The AHI onboard the Himawari-8 geostationary (GEO) satellite offers observation 

data every 10 minutes for Full Disk (across the Asia-Pacific region) with spatial 

resolutions of 500m for the red spectral band, 1000m for visible and near-infrared 

bands, and 2000m for infrared bands, respectively (Bessho et al., 2016).  

The gridded TOA reflectance data product was collected and processed by the 

NASA GeoNEX project (https://www.nasa.gov/geonex/about). The Multi-Angle 

Implementation of Atmospheric Correction (MAIAC) algorithm was used to derive 

the top-of-canopy directional surface reflectance with 10-min intervals (Lyapustin 

et al. 2012). The 500 m red band data was aggregated to match the 1000 m spatial 

resolution of the NIR and blue bands, and then, the EVI was calculated using 

equation 3. To further capture the clearly seasonal dynamics for H-8 AHI EVI from 

noisy daily values we employed the SSA method to obtain a fitted curve.  

Table 3.1 Satellite sensor spectral bands, wavelength, temporal resolution, and 

spatial resolution used for the calculation of EVI within the established data period 

for this study. 

Sensors Band Wavelength 

Band (µm) 

Temporal 

Resolution 

Spatial 

Resolution 

Data period 

Sentinel-2 4 (Red) 0.634 – 0.696 5 days 10 m 2018 – 2020 

MSI 8 (NIR) 0.727 – 0.939  10 m  

 2 (Blue) 0.426 – 0.558  10 m  

MODIS 1 (Red) 0.620 – 0.670 16 days 250 m 2018 – 2020 

 2 (NIR) 0.841 – 0.876  250 m  

 3 (Blue) 0.459 – 0.479  250 m  

H-8 AHI 3 (Red) 0.63 – 0.66 10 min 500 m 2018 

 4 (NIR) 0.85 – 0.87  1000 m  

 1 (Blue) 0.43 – 0.48  1000 m  
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3.2.4 Grass pollen concentrations 

Grass pollen traps are co-located with phenocams at Mutdapilly and Rocklea. The 

daily (24-hour period) atmospheric grass pollen concentrations (grains/m3) recorded 

during observations for the period 2018 to 2020 were collected from the Mutdapilly 

and Rocklea sites following the most common method in Australia with Hirst-type 

volumetric pollen and spore trappers (Burkard Scientific Ltd, Uxbridge, UK), an 

approach that is described in detail in previous research (Haberle et al. 2014). We 

used the SSA method with window length L = 10 to smooth daily values so as to 

obtain the season90al trajectory of grass pollen concentrations for each site. 

Following this, the grass pollen peaks were extracted from these reconstructed 

seasonal profiles to conduct the analyses for time intervals arising between grass 

pollen peaks and grass greenness peaks as derived from the phenocam GCC and 

satellite EVI time series.  

3.2.5 Analysis strategy  

In this study, using spatial and temporal multi-scale remote sensing data in addition 

to grass pollen concentrations data, we explore the capacity of multi-scale satellite 

data to capture the seasonal grass greenness dynamics as compared with traditional 

in-situ phenocam grass cover observations and also the relationships arising 

between grass pollen seasons and these greenness observations across different 

remote sensing sensors (using the same scales for different sensors) and scales 

(same sensors for different scales).  

To identify the phenocam view footprint in Sentinel-2 image, we first created a 

‘fishnet’ with a 10m×10m grid-scale based on a Sentinel-2 image so that this 

fishnet can maintain the same geographic coordinate system with each subsequent 

Sentinel-2 image. Each grid in this fishnet corresponded to each pixel of a Sentinel-

2 image. Then, we input this fishnet into Google Earth Pro to locate Sentinel-2 

pixels surrounding the phenocam site. Combining hyper-resolution Google map and 

phenocam images we were able to identify a set of 3×3 Sentinel-2 pixels that were 

co-localised with the field of view of the phenocam. Finally, we used these 3×3 

pixels to calculate grass EVI as a grass greenness value as measured by the 

Sentinel-2 at a phenocam footprint scale for subsequent comparisons with a 

phenocam GCC. 
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We also calculated EVI values from the MODIS and H-8 AHI images at their 

respective pixel scale to explore their performance in terms of recording grass 

greenness dynamics at their smallest scales (i.e., 250m and 1000m, respectively) by 

correlating their EVI to in-situ phenocam GCC. However, the one-pixel data 

obtained for MODIS and H-8 AHI could be impacted by non-ecological factors 

such as data QC or the existence of clouds within any given pixel. Therefore, we 

compared the agreements arising between phenocam GCC and satellite EVI at 

extensive scales. For Sentinel-2 and MODIS, research scales were extended to 10 

km at all three sites (i.e., 1km, 3km, 5km, and 10km). Sentinel-2 and MODIS EVI 

values were calculated by averaging all pixels for each research scale. However, for 

Himawari-8 AHI, the research scale only extended to 3km (i.e., 1km and 3km) at 

Mutdapilly and Rocklea due to the issue of data availability at the Campbelltown 

site.  

 

Figure 3.3 The research scales and overlap of MODIS pixels (green grids) and H-8 

AHI pixels (blue grids) within study scales for Rocklea, Mutdapilly and 

Campbelltown (a, b, and c). The 3x3 Sentinel-2 pixels co-located with the 
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phenocam footprint (i.e., field of view depicted by yellow squares) at each site (b, 

d, and f). The small red grid for each site is the Sentinel-2 pixel fishnet with 10m 

spatial resolution. The red and yellow points represent the coordinates of 

phenocams and centres of footprint pixels, respectively. The phenocam sample 

image is depicted at the bottom-left corner for each site. The red square is the 

Region of Interest (ROI) from which the phenocam GCC is calculated.  

We plotted the time series of Sentinel-2, MODIS, and Himawari-8 AHI EVI values 

with phenocam GCC across different research scales and compared the day of year 

(DOY) of greenness peaks derived from each greenness profile. It is worth noting 

that the DOY of greenness peaks from non-daily satellites observations is not the 

accurate peak DOY as the phenocam GCC tracked, but the reason why we 

compared non-daily satellite EVI with the daily phenocam GCC profile is that 

satellite images with big data gaps are unsuitable for reconstructing seasonal curves 

within the short timeframe of this research (~ 1 year) or some phenological 

transition information would be lost. To compare the relationships arising between 

in-situ phenocam GCC and EVI derived from multi-resolution satellites across 

various research scales we used a least-squares linear regression to calculate the 

coefficients of determination (R2) and p-values.  

In addition, to evaluate the relationships arising between grass pollen 

concentrations and grass greenness dynamics derived from multi-resolution near-

surface and satellite-based remote sensing, we compared their respective time series 

and correlations by conducting least-squares quadratic polynomial regression 

analyses to calculate coefficients of determination (R2) and p-values. The reason 

why we adopted polynomial regression is that the simple linear regression model is 

not suitable to fit the curvilinear shape between grass pollen concentrations and 

grass greenness. In my pilot study at pasture sites, mature flowers associated with 

grass seed maturity and pollination were observed after grass greenness peaks by 

half month (The specific contents and figures of this pilot study are shown in 

Section 3.7 Appendix). Furthermore, previous studies reported that airborne grass 

pollen concentrations usually appeared after grass flowering time (Estrella et al., 

2006; Tormo et al., 2011). In the other words, grass pollen tended to be released 

after grass reached the greenness peak. Similarly, a study adopted a polynomial 
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regression model to describe the relationships between pollen concentrations and 

asthma hospital admissions because admissions increased following increasing 

pollen concentrations (Gowrie et al. 2016). As in our study, grass greenness peaks 

generally triggered grass pollen concentrations increase. Additionally, although 

polynomial regression fits a nonlinear model to the data, as a statistical estimation 

problem it is linear. For this reason, R2 is a robust statistic for polynomial 

regression (Fan et al., 1996) and is widely used in previous studies adopted 

polynomial regression (Oteros et al., 2015; Sadeh et al., 2021). Further, we 

extracted grass greenness peaks from original EVI and reconstructed GCC time 

series and grass pollen peaks from reconstructed grass pollen concentration 

trajectories. By comparing grass pollen-greenness correlations and intervals arising 

between peaks across remote sensing sensors, we evaluated the spatial and temporal 

scale effects on grass phenology-pollen relationships. The study framework of this 

study is shown in Fig. 3.4. 

 

Figure 3.4 The study framework of this study. 



 

101 

 

3.3 RESULTS 

3.3.1 Matching in-situ phenocam GCC with satellite-derived EVI across pixel 

scales 

3.3.1.1 Matching in-situ phenocam GCC with Sentinel-2 EVI at phenocam footprint 

scale  

Figure 3.5 shows the temporal trajectories and correlations arising between 

phenocam GCC and Sentinel-2 EVI at the Mutdapilly, Rocklea and Campbelltown 

sites. Phenocam GCC was compared with Sentinel-2 EVI from 3x3 pixels, which 

was co-located with the phenocam footprint. There is a notable seasonality in 

pasture greenness observations from both phenocam GCC and Sentinel-2 EVI at 

phenocam footprint scales for all three sites. The pasture greenness observations at 

all sites exhibit two major peaks. Though the specific dates varied among sites, 

their first major peak appeared from November to January and the second around 

May (Fig. 3.5 a, c, and e). The detailed dates of two major greenness peaks for all 

three sites is presented in Table 3.2. 

The daily GCC values obtained varied from 0.33 to 0.42, 0.34 to 0.42, and 0.34 to 

0.44 at Mutdapilly, Rocklea and Campbelltown, respectively. Sentinel-2 EVI 

values, however, obviously exhibited a degree of variance between sites (i.e. 0.10 to 

0.38 at Mutdapilly; 0.17 to 0.67 at Rocklea; and 0.21 to 0.77 at Campbelltown). 

Even so, the Sentinel-2 EVI data at a phenocam footprint scale maintained highly 

synchronised temporal variations with the in-situ phenocam GCC. We found 

significant correlations between phenocam GCC and Sentinel-2 EVI at Mutdapilly 

(Fig. 3.5 b) and Campbelltown (Fig. 3.5 f) with an R2 of 0.95 and 0.96, 

respectively. The correlation coefficient between the two metrics at Rocklea was 

lower (R2 = 0.75) than for the other two sites, although still statistically significant 

(Fig. 3.5 d). 

The differences of major peak dates arising between phenocam GCC and Sentinel-2 

EVI varied among peaks and sites. For the first peak, Rocklea has a 7 day gap 

between phenocam and Sentinel-2 greenness observations, although they took place 

on the same day at Campbelltown. Comparing the first peak at all three sites, 

phenocam GCC and Sentinel-2 EVI recorded larger gaps for the second peak of 12 

days at Mutdapilly and Rocklea and 6 days at Campbelltown. Phenocam GCC 
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peaks arose before Sentinel-2 EVI peaks at Mutdapilly and Campbelltown, but 

occurred behind at Rocklea (Table 3.2).  

Also, the Sentinel-2 EVI at the phenocam footprint did not catch other minor GCC 

peaks due to a lack of data. For example, there is a minor grass greenness peak 

around the end of February at Mutdapilly and this was characterised by phenocam 

GCC, yet we could not find it within the Sentinel-2 EVI profile as there is only one 

available Sentinel-2 image during the period from January to the middle of March 

(Fig 3.5. a). Similarly, phenocam GCC values decreased despite a series of 

fluctuations from December to April at Rocklea, yet Sentinel-2 EVI could not catch 

the subtle greenness observations owing to insufficient data around that period (Fig 

3.5. c). Also, the phenocam data at the Rocklea site is very noisy, while that 

obtained from Sentinel-2 is not. It might be because cloud-related illumination 

changes impact the amplitude of sub-daily GCC values.  
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Figure 3.5 The relationships arising between phenocam GCC and Sentinel-2 EVI 

data at the phenocam footprint scale (3x3 pixels) for Mutdapilly (a and b); Rocklea 

(c and d); and Campbelltown (e and f), respectively.  

Table 3.2 The DOY of grass greenness peaks derived from phenocam GCC and 

Sentinel-2 EVI at a phenocam footprint scale for Mutdapilly, Rocklea and 

Campbelltown sites. ∆ days = (GCC peak date – EVI peak date) 

  Mutdapilly Rocklea Campbelltown 

Peak1 Phenocam GCC 358 299 360 

 Sentinel-2 EVI 355 306 360 

 ∆ days 3 -7 0 

Peak 2 Phenocam GCC 117 138 96 

 Sentinel-2 EVI 105 150 90 

 ∆ days 12 -12 6 
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3.3.1.2 Matching in-situ phenocam GCC with MODIS EVI at its pixel scale (250m). 

Figure 3.6 shows the temporal trajectories and correlations arising between 

phenocam GCC and one-pixel MODIS EVI at the Mutdapilly, Rocklea and 

Campbelltown sites. We found significant correlations arising between phenocam 

GCC and MODIS EVI at Mutdapilly (Fig. 3.6 a) with an R2 of 0.72. The correlation 

coefficient between these two values at Rocklea and Campbelltown are lower (R2 = 

0.50 and 0.57, respectively) than for Mutdapilly (although still statistically 

significant, Fig. 3.6 d and f). 

Though the notable seasonality in grass greenness dynamics is also captured by 

MODIS EVI, peaks of grass greenness observations inevitably vary between 

phenocam and MODIS data. At Mutdapilly, the MODIS EVI peaks lagged with 

advanced phenocam GCC by 16 and 12 days for the first and second greenness 

peaks, respectively (Fig. 3.6 a and Table 3.3). The MODIS EVI peaks also lagged 

behind the phenocam GCC at the first peak for the other two sites, yet the ∆ days 

(i.e., phenocam peak dates – MODIS peak dates) at Campbelltown were smaller 

than for Rocklea at this peak (Table 3.3). For the second peak, however, the 

MODIS EVI peak significantly lagged behind the phenocam GCC peak, with 

differences of over one month (41 days) observed in Campbelltown (Fig 3.6 e, 

Table 3.3). Also, the MODIS EVI experienced a sudden drop around January and 

then increased from January to March at Rocklea. This trend is diametrically 

opposite to the phenocam GCC trajectory over the same period (Fig. 3.6 c). All of 

these non-conformities in seasonal trajectories arising between phenocam GCC and 

MODIS EVI can be attributed to the mixed pixel effect arising in coarse MODIS 

data. One MODIS pixel is viewing an area almost 70 times that of the phenocam. 

As revealed in Fig. 3.2, when compared with Mutdapilly (the rural site), the 

Rocklea and Campbelltown sites (which are situated in urban areas with more 

complicated land cover types) inevitably lead to a more evident mixed pixel effect.  
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Table 3.3 The DOY of grass greenness peaks as derived from phenocam GCC and 

one-pixel MODIS EVI at Mutdapilly, Rocklea and Campbelltown sites. ∆ days = 

(GCC peak date – EVI peak date). 

  Mutdapilly Rocklea Campbelltown 

Peak1 Phenocam GCC 358 (2018) 299 299 

 MODIS EVI 9 (2019) 313 300 

 ∆ days -16 -14 -1 

Peak 2 Phenocam GCC 117 138 96 

 MODIS EVI 105 121 137 

 ∆ days 12 17 -41 

 

 

Figure 3.6 The temporal trajectories and correlations arising between phenocam 

GCC and MODIS EVI at the MODIS pixel scale (250m) for Mutdapilly (a and b), 

Rocklea (c and d) and Campbelltown (e and f) from 2018 to 2019.  
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3.3.1.3 Matching in-situ phenocam GCC with Himawari-8 AHI EVI at its respective 

pixel scale (1000m). 

Figure 3.7 shows the temporal trajectories and correlations between phenocam 

GCC and one-pixel H-8 AHI EVI at the Mutdapilly and Rocklea sites from August 

to December 2018 (note that this period spans only 5 months and not 12 months as 

per the Sentinel-2 and MODIS analyses). We found significant correlations 

between phenocam GCC and H-8 AHI EVI at both sites with an R2 of 0.86 and 

0.63 (Fig. 3.7 b and d). As with the Sentinel-2 and MODIS EVI, H-8 AHI EVI also 

maintained highly synchronised temporal variations with in-situ phenocam GCC 

seasonal dynamics at both sites.  

As compared with non-daily Sentinel-2 and MODIS EVI peaks, the peak of the 

daily H-8 AHI EVI time series at both sites also exhibited large time intervals 

relative to phenocam GCC peaks. The H-8 AHI EVI peak was 15 days in advance 

of the phenocam GCC peak at Mutdapilly yet lagged behind it by 6 days at Rocklea 

(Fig. 3.7 a and d, Table 3.4). This arises because the coarse spatial resolution 

inherent in H-8 AHI data offsets its advantage in terms of temporal resolution. For 

example, the grass cover proportion is 43.75% within 1km around the Rocklea site 

according to DLCD. Even if the grass cover proportion were 87.50% within 1km of 

the Mutdapilly phenocam site, according to DLCD, we still cannot exclude the 

possibility that grasses within this 1 km radius have a different phenology. 

Therefore, one-pixel H-8 AHI EVI values cannot accurately represent the grass 

greenness dynamics as recorded by phenocam at an in-situ scale.  

Table 3.4 The DOY of grass greenness peaks derived from phenocam GCC and 

one-pixel Himawari-8 AHI EVI at the Mutdapilly, Rocklea and Campbelltown sites 

from August to December 2018. ∆ days = (GCC peak date – EVI peak date). 

  Mutdapilly Rocklea 

Peak 1 Phenocam GCC 324 299 

 Himawari-8 AHI EVI 309 305 

 ∆ days 15 -6 
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Figure 3.7 The temporal trajectories and correlations arising between phenocam 

GCC and Himawari-8 AHI EVI at its pixel scale (1km) for Mutdapilly (a and b) 

and Rocklea (c and d) for the period from August to December 2018. 

3.3.2 Changes in phenocam GCC-satellite EVI relationships across research scales 

at sites with varied spatial heterogeneity 

The correlations between in-situ phenocam GCC and multi-sensor satellites EVI 

with increasing scales were analysed for each site. At all three sites, we compared 

the correlations between phenocam GCC and EVI derived from the Sentinel-2 and 

MODIS satellites between August 2018 and August 2019 at Mutdapilly and 

Rocklea. Also, H-8 AHI EVI was analysed at these two sites during the period 

spanning from August to December 2018. For the Campbelltown site we performed 

the same analyses between phenocam and satellites (i.e., Sentinel-2 and MODIS) 

from November 2018 to July 2019, although there were no H-8 AHI analyses due 

to restricted data access (Fig. 3.8 and Table 3.5).   
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Figure 3.8 Correlations between phenocam GCC and satellites EVI across sensors (i.e., Sentinel-2, MODIS, Himawari-8 AHI) and spatial scales 

(i.e. 1, 3, 5, and 10km). The R2 (coefficient of determination) and grass cover proportion within each research scale are summarised in Table 3.5.  
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Table 3.5 The coefficient of determination (in terms of R2) derived between 

phenocam GCC and multi-sensor satellite EVI at increased study scales for 

Mutdapilly, Rocklea, and Campbelltown. Note that H-8 AHI EVI did not 

participate in the comparison due to it only having five months of data.  

 Scales Grass% Sentinel-2 MODIS Himawari-8 

AHI 

Mutdapilly 1 km 87.50 0.93 *** 0.92 *** 0.86 *** 

 3 km 92.31 0.95 *** 0.93 *** 0.83 *** 

 5 km 85.89 0.93 *** 0.92 ***  

 10 km 73.11 0.94 ** 0.92 ***  

Rocklea 1 km 43.75 0.46 *** 0.32 0.63 *** 

 3 km 37.06 0.34 0.15 0.52 *** 

 5 km 30.86 0.28 0.12  

 10 km 20.81 0.23 0.10  

Campbelltown 1 km 93.75 0.76 *** 0.66 **  

 3 km 54.55 0.70 *** 0.59 **  

 5 km 36.84 0.72 *** 0.55 *  

 10 km 30.21 0.64 *** 0.44 *  
Note: Grass % is defined as the percentage of [grassland + pasture] composite classes at 

each study scale. The asterisks *, **, and *** denote correlations significant at the 0.01, 

0.001, and 0.0001 p-value levels, respectively. Underline highlights the highest grass % 

among all study scales and the highest correlations arising among all study scales for the 

same satellite sensor (the same sensor was used for different scales). Bold font indicates the 

highest correlation arising between Sentinel-2 and MODIS data within the same study scale 

(again the same scale was used for different sensors).  

All Sentinel-2 and MODIS data showed significant correlations with in-situ 

phenocam GCC measurements at increased study scales besides Rocklea (Table 

3.5).  For Sentinel-2 EVI, the data significantly correlated with that of phenocam 

GCC at both Mutdapilly and Campbelltown, with R2 values ranging from 0.64 to 

0.95 (Fig 3.8, a to d and i to l). Phenocam GCC-satellite EVI correlations at 

Rocklea, however, were weaker than for either Mutdapilly or Rocklea, with the 

smallest R2 values recorded among the three sites. For MODIS data, the 

relationships between its regional mean EVI determined with the in-situ phenocam 

GCC had the same trend as for Sentinel-2 data (i.e., the highest R2 values were 

recorded at Mutdapilly, and the lowest values at Rocklea). For the H-8 AHI sensor, 

only five months of EVI data were analysed with in-situ phenocam GCC. However, 
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we still found significant correlations, with R2 values ranging from 0.52 to 0.86, 

although there were weaker correlations at Rocklea as compared with Mutdapilly. 

As for the correlations of greenness metrics between phenocam and certain sensors 

among increased study scales (i.e., 1, 3, 5 and 10km), the highest R2 value was 

usually found at the study scale revealing the highest percentage of grass cover (i.e., 

grass %). For example, the grass % at Campbelltown was 93.75% within 1km and 

this was the highest percentage of grass coverage among all study scales. On the 

other hand, both Sentinel-2 and MODIS EVIs showed the strongest correlations, 

with in situ phenocam GCC (R2 = 0.76 and 0.66, respectively) recorded at the 1km 

scale (Table 3.5). This indicates the spatial heterogeneity observed around 

phenocam sites which affected the performance of satellites with various spatial 

resolutions in observing grass greenness dynamics.   

3.3.3 Characterising relationships arising between grass pollen concentrations and 

grass/landscape greenness observations from phenocam and multi-resolution 

satellites 

Grass pollen concentrations are plotted alongside the time series data recorded by 

phenocam GCC and satellites EVI for the two growing seasons at the Mutdapilly, 

Rocklea and Campbelltown sites. Also, we cross-plotted them for each site to 

reveal how grass pollen concentrations varied with data depicting grass greenness 

seasonal dynamics as derived from multi-scale remote sensing (Fig. 3.9 to Fig. 

3.10). 

The grass pollen concentrations at these three sites exhibited different seasonal 

dynamics within the growing seasons studied. At the Mutdapilly site, grass pollen 

concentration peaks occurred during the late spring month (November in Australia) 

and late autumn months (April to May). The second autumn peak is higher than the 

first (Fig. 3.9 a). In contrast, Rocklea exhibited more complicated grass pollen 

concentration peak patterns over the two grass growing seasons studied. There are 

three major peaks at Rocklea within a short period and they occurred during the 

summer and early autumn months (i.e., January to March) and middle autumn 

months (April). At Campbelltown, a similar grass pollen pattern was observed as 

Mutdapilly, where grass pollen peaks occurred from November to January and in 

May. However, at this site, the November peak was the major one rather than the 
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May peak. It was the opposite for Mutdapilly. In terms of the magnitude of grass 

pollen concentrations for each site, Rocklea and Campbelltown have the highest 

and lowest magnitudes among the three sites, respectively. The major January peak 

at Rocklea was 13.5-fold higher than the one that occurred in November in 

Campbelltown (459.68 vs. 34.03, respectively).  

3.3.3.1 Relationships between grass pollen concentrations as measured with 

phenocam GCC and Sentinel-2 EVI at the phenocam footprint scale 

The temporal profiles and cross plots between grass pollen concentrations and grass 

greenness values observed at in-situ scale using phenocam and Sentinel-2 sensor at 

Mutdapilly, Rocklea, (from August 2018 to August 2019) and Campbelltown (from 

October 2018 to August 2019) are shown in Fig. 3.9. 

At the Mutdapilly site, seasonal grass pollen concentrations corresponded well with 

phenocam GCC and grass Sentinel-2 EVI at the phenocam footprint scale, with 

peak grass activity (greenness) arising in November, January, March, and May. The 

highest grass pollen peak corresponded to the highest grass greenness peak which 

occurred in May. Among these four grass greenness peaks, no grass pollen activity 

corresponded with the March greenness peak. Although the GCC and EVI values at 

the November peak were higher than that of the January peak, the grass pollen 

concentrations at these two peaks were similar to each other (i.e., 18.96 and 16.93 

grains/m3, respectively; Fig. 3.9 a).  

In contrast, major grass greenness peaks did not correspond well with grass pollen 

activities at Rocklea (Fig. 3.9 b). The first grass greenness peak was 69 days earlier 

than the first grass pollen peak and, although the second grass greenness peak 

corresponded well with a slight grass pollen peak around June, this was 62 days 

later than the third grass pollen peak. A notable observation is that grass pollen 

reached its second peak on 16/02/2019 and its third on 29/03/2019, even though 

grass greenness values continuously declined over the same period. A possible 

reason for this is that the grass pollens recorded in these two pollen peaks came 

from grass situated beyond the phenocam footprint scale.  

Grass GCC and EVI peaks did not correspond well with the grass pollen peaks 

observed at Campbelltown, with the greenness peak lagging behind the major grass 
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pollen peak by almost a month (Fig. 3.9 c). However, an obvious increase in the 

pollen concentration profile coincided with the grass greenness trajectories reaching 

their first peak in November. In contrast, the second greenness peak in April did not 

trigger a steep increase in grass pollen as it did in November. Note that, although 

phenocam GCC values at each of the two sites were similar (the mean GCC at 

Mutdapilly was 0.36 while the mean GCCs at Rocklea and Campbelltown were 

0.37), the Sentinel-2 EVI value at Campbelltown was the highest, followed by 

Rocklea and Mutdapilly (0.46, 0.36, and 0.18, respectively).  

We found that grass pollen concentrations showed significant non-linear 

correlations with Sentinel-2 EVI data at Mutdapilly and Rocklea (R2 = 0.92 and 0.2, 

respectively; Fig. 3.9 d and e). The grass pollen concentration only showed a 

significant correlation with phenocam GCC (R2 = 0.63) at the Mutdapilly site (Fig. 

3.9 d), yet there were no significant correlations arising between them for the other 

two sites (Fig. 3.9 e and f). In general, Sentinel-2 EVI data at a phenocam footprint 

scale and in-situ phenocam GCC data correlated well with grass pollen activity at 

Mutdapilly, although this pattern was not established for the other two sites, and the 

non-linear correlations indicate that significant time intervals arose between grass 

pollen and greenness dynamics.  
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Figure 3.9 Time series plots (a - c) and polynomial relationships (d - f) of grass 

pollen concentrations and phenocam GCC and Sentinel-2 EVI at a phenocam 

footprint scale (3x3 pixels) for Mutdapilly, Rocklea and Campbelltown (from 

August 2018 to August 2019). The asterisks ***, **, and * denote significance at p-

values of 0.0001, 0.001, and 0.01, respectively. NS denotes ‘no significant 

relationship’. 

3.3.3.2 Relationships arising between grass pollen concentrations with grass EVI 

derived from Sentinel-2 and MODIS satellites at the 250m scale 

Fig. 3.10 shows the time series and cross plots of MODIS EVI (at a 1 pixel scale) 

and grass pollen concentrations at Mutdapilly, Rocklea, and Campbelltown. To 

compare capacities in observing landscape greenness between Sentinel-2 and 

MODIS satellites at the same study scale, we averaged all Sentinel-2 EVI data 

within 250m and also correlated these mean Sentinel-2 EVI data with grass pollen 

concentrations at each of the three sites. Seasonal grass pollen concentrations 

corresponded well with the one-pixel MODIS EVI time series at Mutdapilly, with 
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peak grass activity (greenness) occurring at the end of October, in January, and the 

end of April (Fig. 3.10 a). Comparing these findings with Sentinel-2 EVI data, the 

first and second MODIS EVI peaks occurred before and after the corresponding 

grass pollen peaks, respectively. Further, the highest grass pollen peak 

corresponded to the highest grass greenness peak (Fig. 3.10 a). Similar to the 

phenocam GCC and Sentinel-2 data at both in-situ and 250m scales, major MODIS 

EVI peaks were characterised by clear asynchronicity with grass pollen peaks at 

Rocklea (Fig. 3.10 b). The time interval between the highest grass pollen peak and 

the MODIS EVI peak was 55 days. However, the MODIS EVI values decreased 

around the month of January and then increased from January to March. Sentinel-2 

EVI did not capture the same pattern due to the big data gap arising during this 

period. At the Campbelltown site (Fig. 3.10 c), both MODIS and Sentinel-2 EVI 

values reached their first peak concomitantly yet lagged behind the major grass 

pollen peak. In contrast, MODIS EVI data exhibited a later second peak as 

compared with Sentinel-2 EVI of one and half months. We found significantly non-

linear correlations between grass pollen and EVI at Mutdapilly (Fig. 3.10 d). As for 

the other two sites, only Sentinel-2 EVI data significantly correlated with grass 

pollen peaks at Rocklea (Fig.3.10 e).  
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Figure 3.10 Time series plots (a - c) and polynomial relationships (d - f) of grass 

pollen concentrations and Sentinel-2, MODIS EVI data at MODIS pixel scale 

(250m) for Mutdapilly, Rocklea and Campbelltown (period from August 2018 to 

August 2019). The asterisks ***, **, and * denote significant correlations at p-

values of 0.0001, 0.001, and 0.01, respectively. NS denotes ‘no significant 

relationship’. 

3.3.3.3 Relationships arising between grass pollen time series with landscape 

greenness observations from Himawari-8 AHI data at a 1000m scale 

The Himawari-8 AHI EVI time series are plotted alongside grass pollen 

concentrations at the Mutdapilly and Rocklea sites for the entirety of 2018 (Fig. 

3.11 a and c). Their respective correlations were also analysed (see Fig. 3.11 b and 



 

116 

 

d) to reveal how grass pollen concentrations trapped by in-situ sites varied with 

Himawari-8 AHI EVI at a 1km spatial resolution.  

There was a major grass pollen peak around April and a secondary peak that 

occurred around December during the annual cycle at Mutdapilly. Meanwhile, the 

one-pixel resolution H-8 AHI EVI time series reached its first peak on the 7th of 

January (Australian summertime), while the second peak occurred around the 

middle of March (early autumn). H-8 AHI EVI data decreased continuously from 

March to September and thereafter increased from October, reaching its third peak 

around November (Fig. 3.11 a). For the H-8 AHI EVI January peak, it is not 

altogether clear whether it corresponded to the grass pollen peak due to the limited 

grass pollen data availability. For the other two EVI peaks, they arose 5 and 10 days 

in advance of grass pollen peaks, respectively. The significant correlation arising 

between grass pollen and H-8 AHI EVI data (R2 = 0.34) also confirmed our 

findings from the time series analyses.  

The grass pollen concentration profile had two obvious peaks in March and at the 

end of December at the Rocklea site. For the first grass pollen peak at Rocklea, it 

appeared earlier than for Mutdapilly, by around a month, yet its EVI peak came 19 

days later than Mutdapilly (Fig. 3.11 a and c). This means that the EVI peak 

happened after the first grass pollen peak at Rocklea. Even so, this EVI peak indeed 

occurred within the active grass pollen period (i.e., January to May). It is risky to 

say that no EVI peak caused this grass pollen peak around March, as we only 

plotted data from January. For another peak period, the EVI peak preceded the 

grass pollen peak by one and a half months (Fig. 3.11 c). In contrast with 

Mutdapilly, there was no significant correlation (R2=0.13), between H-8 AHI EVI 

data at one-pixel resolution and the grass pollen concentrations. The pattern of the 

cross-plot revealed, even though the H-8 AHI EVI values were very low, that the 

grass pollen still reached high values (Fig. 3.11 d).  
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Figure 3.11 Temporal trajectories (a and c) and polynomial relationships (b and d) 

of grass pollen concentrations and H-8 AHI EVI data at a 1000m scale for 

Mutdapilly (a and b) and Rocklea (c and d). Asterisks *** denote statistical 

significance in p-values of 0.0001. 

3.3.4 Changes in relationships arising between grass pollen concentrations and 

grass/landscape greenness observations across sensors and study scales. 

To determine whether the differences arising in grass greenness, as observed by 

phenocam and satellite sensors across a range of study scales, and, by extension, if 

the relationships arising between grass pollen and greenness values were impacted 

by sensors, we plotted phenocam GCC and satellite EVI alongside the grass pollen 

concentrations over the equivalent period (from August to December 2018) for 

Mutdapilly and Rocklea (Fig. 3.12). Four study scales (i.e., 30m, 250m, 1km, and 

3km) were adopted to conduct this analysis. The first three scales corresponded to 

the phenocam footprint scale, MODIS, and H-8 AHI pixel scales, respectively.  

For the time series of grass greenness values and grass pollen levels, their temporal 

dynamic patterns, and interrelationships varied across sensors and research scales. 

In general, grass pollen concentration peaks corresponded to grass greenness values 
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peaks at Mutdapilly (Fig 3.12 a- d), yet significantly lagged behind grass greenness 

observations at the Rocklea site (Fig 3.12 e-h).  

At the 30m study scale (Fig. 3.12 a and e), we could only obtain accurate grass 

greenness information from in-situ phenocam and fine-resolution Sentinel-2 data. 

The 3x3 pixel Sentinel-2 EVI trajectories closely tracked phenocam GCC values at 

both sites. Their peak dates, however, exhibited an interval of almost one week. 

Sentinel-2 EVI peaks occurred 6 and 8 days later than the GCC peaks at Mutdapilly 

and Rocklea, respectively. Grass pollen concentrations at Mutdapilly conformed 

consistently with grass greenness values, as the GCC and EVI peaks lagged the 

grass pollen peak by only 7 and 13 days, respectively. However, the peaks for GCC 

and EVI fell in advance of the grass pollen peak by more than two months (i.e., 70 

and 62 days, respectively) at Rocklea. Note that there is an obvious secondary GCC 

peak at Rocklea around the middle of December, one that corresponded with grass 

pollen peaks, yet the 3x3 pixel Sentinel-2 EVI data did not exhibit a peak during the 

same period (Fig 3.12, e). 

At the MODIS pixel scale, we compared EVI derived from one-pixel MODIS data 

and mean Sentinel-2 EVI data within 250m scales as centred on study sites (Fig. 

3.12 b and f). The EVI values and seasonal patterns varied among sensors at this 

study scale, notably at Mutdapilly. MODIS EVI peaks advanced and lagged behind 

Sentinel-2 EVI peaks at Mutdapilly and Rocklea, respectively, and therefore impact 

upon their temporal relationships between grass pollen peaks. At Mutdapilly, 

MODIS EVI reached its first major peak on the 16th October and then its secondary 

peak on the 17th November. Sentinel-2 EVI data at this site appeared as two peaks 

on the 1st November (secondary peak) and the 26th November (major peak). Both 

peaks in the MODIS EVI profile arose 15 and 9 days in advance of the Sentinel-2 

EVI time series, respectively. As compared with grass greenness trajectories at the 

30m scale, only the Sentinel-2 EVI peak maintained synchronicity with the grass 

pollen peak at 250m for Mutdapilly, with the first MODIS EVI peak appearing 28 

days before the grass pollen peak at the 250m scale (Fig. 3.12 b). For the Rocklea 

site, the intervals between the two sensors’ EVI peaks was only 9 days. The 

MODIS EVI peak happened before the grass pollen peak by 63 days, and the time 

interval for Sentinel-2 EVI was 72 days (Fig. 3.12 f).  



 

119 

 

At the H-8 AHI 1km pixel scale (Fig. 3.12 c and g), we compared seasonal EVI 

patterns derived from both Sentinel-2 and MODIS data that centred on the study 

sites, as well as one H-8 AHI EVI pixel at each site. At the Mutdapilly site, 

Sentinel-2 and MODIS EVI values reached their peaks at the same time (1st 

November), 4 days ahead of the H-8 AHI EVI. All EVI peaks from all three sensors 

occurred before the grass pollen concentration peak recorded at Mutdapilly, with 

intervals of 12 and 8 days, respectively (Fig. 3.12 c). MODIS EVI did not keep a 

consistent seasonal dynamic with the Sentinel-2 and H-8 AHI EVI data at Rocklea. 

Its peak was almost half a month ahead of the EVI peaks derived from the other 

two sensors (Fig. 3.12 g).  

EVI values and seasonal patterns obtained from Sentinel-2, MODIS, and H-8 AHI 

sensors at the 3km scale were similar to those observed at the 1km scale at both 

sites (Fig. 3.12 d and h). At the Mutdapilly site, Sentinel-2 and MODIS EVI peaks 

appeared on the same day, although the H-8 AHI EVI peak lagged by 5 days. 

Meanwhile, all EVI peaks occurred before the grass pollen peak by around 10 days 

(Fig. 3.12 d). In contrast, the MODIS EVI peak lagged behind the Sentinel-2 EVI 

peak by 15 days at the Rocklea site, and peak date for the H-8 AHI EVI was the 

same as that of Sentinel-2 EVI (Fig. 12 h).  

We cross-plotted the grass pollen concentrations with grass/landscape greenness 

values at Mutdapilly and Rocklea (Fig. 3.13), with the regression functions and R2 

values derived summarised in Table 3.6. As for the correlations in temporal patterns 

arising between grass pollen and grass greenness metrics, these varied across 

sensors and scales. Phenocam GCC and multi-sensors EVI exhibited significant 

correlations between grass pollen concentrations at all study scales for Mutdapilly 

(Fig 3.13 a – d, Table 6). In contrast, only EVI derived from Sentinel-2 and H-8 

AHI satellites showed significant correlations, although the R2 values were lower 

for Mutdapilly than for grass pollen at Rocklea (Fig 3.13 e to h, Table 3.6).  

Phenocam GCC showed significant non-linear relationships with grass pollen at 

Mutdapilly (R2=0.54), yet there was no significant correlation at Rocklea (Table 

3.6). Compared with the other two satellites with coarser resolutions, the 

relationships arising between grass pollen and Sentinel-2 EVI had the highest R2 

values, ranging from 0.64 to 0.76 at Mutdapilly and from 0.32 to 0.38 at Rocklea. 
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The seasonal MODIS EVI dynamics across various scales were more closely 

correlated to grass pollen dynamics than H-8 AHI EVI at Mutdapilly, but did not 

show significant correlations with grass pollen levels at Rocklea (Table 3.6). For H-

8 AHI EVI at different scales, all were significantly correlated with grass pollen at 

two sites, but with the lowest R2 values (0.36 and 0.38) observed at Mutdapilly (in 

contrast to 0.1 and 0.31 at Rocklea) among the various sensors. We also found that 

the grass pollen concentrations usually had the highest R2 values, with EVI values 

derived from large research scales at both sites (see bold font in Table 6). 
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Figure 3.12 Time series plots of grass pollen concentrations and grass/landscape greenness values observed by phenocam, Sentinel-2, MODIS, 

and H-8 AHI at increased study scales (i.e., 30m, 250m, 1km and 3km) for Mutdapilly (a to d) and Rocklea (e to h) (data shown from August to 

December 2018).  
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Figure 3.13  Cross plots between grass pollen concentrations and grass/landscape greenness values as observed by phenocam, Sentinel-2, 

MODIS, and H-8 AHI at increasing study scales (i.e., 30m, 250m, 1km and 3km) for Mutdapilly (a to d) and Rocklea (e to h) (data shown from 

August to December 2018).   
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Table 3.6 The statistics of polynomial relationships arising between grass pollen concentrations and grass/landscape greenness as observed by 

phenocam, Sentinel-2, MODIS, and Himawari-8 AHI across various study scales (30m, 250m, 1km and 3km) for Mutdapilly and Rocklea over 

the period from August to December 2018. 

 Scales Phenocam Sentinel-2 MODIS Himawari-8 AHI 

M
u
td

a
p
il

ly
 

30 m y = 6587.11x – 

9101.23x2 – 1184.6732 

R2 = 0.54***  (n = 159) 

y = 178.18x – 366.95x2 – 15.96 

R2 = 0.64*  (n = 13) 

  

250 m  y = 232.62x – 465.84x2 – 22.66 

R2 = 0.72*  (n = 13) 

y = 411.91x – 828.03x2 – 44.34 

R2 = 0.71 (n = 10, p = 0.01) 

 

1 km  y = 224.99x – 439.96x2 – 21.79  

R2 = 0.76**  (n = 13) 

y = 204.97x – 363.51x2 – 22.94 

R2 = 0.65  (n = 10, p = 0.02) 

y = 145.40x – 216.75x2 – 19.24 

R2 = 0.36***  (n = 107) 

3 km  y = 273.99x – 556.21x2 – 26.86 

R2 = 0.76**  (n = 13) 

y = 209.31x – 372.92x2 – 23.51 

R2 = 0.63  (n = 10, p = 0.03) 

y = 128.23x – 161.00x2 – 18.84 

R2 = 0.38***  (n = 124) 

R
o
ck

le
a
 

30 m NS y = 240.38x – 259.28x2 – 37.73 

R2 = 0.32  (n = 20, p = 0.04) 

  

250 m  y = 380.89x – 437.36x2 – 63.03 

R2 = 0.37  (n = 20, p = 0.02) 

NS  

1 km  y =1028.89x–1800.93x2- 126.04 

R2 = 0.38  (n = 20, p = 0.02) 

NS y = 416.97x – 515.89x2 – 68.12 

R2 = 0.10*  (n = 105) 

3 km  NS NS y = 2963.58x – 1704.25x2 – 

248.89 

R2 = 0.31***  (n = 126) 

Note: NS indicated that the correlation is not significant. Asterisks *, **, and *** denote significant correlation at p-values of 0.01, 0.001, and 

0.0001, respectively. The bold font shows the highest correlation arising across scales for a certain sensor. The red font shows the highest 

correlation among sensors for a certain scale.  
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3.3.5 Comparing temporal relationships arising between grass pollen 

concentrations and satellite grass EVI across sensors and study scales. 

3.3.5.1 Temporal profiles and relationships arising between grass pollen 

concentrations and Sentinel-2 and MODIS grass EVI at a regional scale. 

Multiple-year grass pollen concentrations were plotted alongside the grass cover 

EVI cover time series at 10km study scales for Mutdapilly, Rocklea and 

Campbelltown (Fig. 3.14). Both grass pollen concentrations and grass cover EVI 

time series exhibited strong interannual variability across sites.  

At the Mutdapilly site, seasonal grass pollen concentrations corresponded well with 

satellite EVI profiles, with peaks in grass pollen concentrations and landscape 

greenness occurring during the Australian late summer to early winter period 

(February to June) and dormant grass (with minimal greenness values) associated 

with no grass pollen during the July to January cycle (Fig. 3.14 a, S1 and S3). Upon 

comparing grass pollen seasons in 2020 and 2018, however, bimodal peaks in 

satellite EVI were observed from November 2018 to June 2019, which 

corresponded with bimodal grass pollen peaks (Fig. 3.14 a, S2). Although we were 

unable to establish whether slight grass pollen peaks occurred around the season 

from November to January between 2020 and 2021, owing to missing data, we can 

clearly observe that no grass pollen activity was observed during September 2020 

even though the satellite EVI recorded a secondary peak. This indicates that this 

slight grass EVI within the study scale increased around September 2020, yet did 

not trigger any substantial grass pollen activity.  

The satellite EVI and grass pollen phenology profiles exhibited much stronger 

interannual variability at Rocklea as compared to Mutdapilly (Fig. 3.14 b). The 

Rocklea site had a strong pollen release period from the end of December to June 

(Australian summer to late autumn), yet this was associated with complicated 

temporally variability in grass pollen concentration values across the years. For the 

2018-2019 grass pollen season (Fig. 3.14 b, S2), grass pollen concentration 

increases were preceded by a sustained increase in satellite EVI, with peak EVI 

values observed 57 days, on average, before grass pollen peaks. Satellite EVI 

profiles then reached another peak around the Australian autumn (usually May), 

corresponding to a grass pollen peak. The interesting finding is that, unlike for other 
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seasons, the major grass pollen concentration peak did not correlate with major 

satellite EVI peaks, occurring during a decreasing period of EVI (Fig. 3.14 b, S2). 

For the 2019-2020 grass pollen season (Fig. 3.15 b, S3), however, increases in 

satellite EVI values and grass pollen concentrations showed a strong synchronicity. 

Also, no secondary satellite EVI peaks occurred when the grass pollen 

concentrations increased around May. 

At the Campbelltown site, the grass pollen concentrations exhibited their lowest 

values across season one (from January to May) as compared with the other two 

seasons (Fig. 3.14 c, S1). For the 2018-2019 grass pollen season (Fig. 3.14 c, S2), 

grass pollen concentrations increased sharply with EVI, increasing around 

November, and then decreasing. There were other two EVI peaks within this 

season, although these did not trigger grass pollen peaks as the November EVI peak 

had done. Moving on to the 2019-2020 season (Fig. 3.14 c S3), the two grass pollen 

peaks correlated closely with grass EVI peaks, which occurred around November 

and April, respectively. However, although EVI values during the April peak were 

much higher than for the November peak, the magnitude of grass pollen 

concentrations was apparently inverted.  

Both Sentinel-2 and MODIS grass EVI display significantly positive correlations 

with grass pollen concentrations at all sites (although R2 values varied; Fig. 3.14 d, 

e, and f). We found the strongest correlations between grass EVI and grass pollen 

concentrations at Mutdapilly (R2=0.86 and 0.56 for MODIS and Sentinel-2, 

respectively). This finding was in line with temporal patterns of seasonal dynamics 

arising between EVI and grass pollen at Mutdapilly (Fig. 3.14 a). However, the 

correlations were significant, though weak at Rocklea and Campbelltown. As 

compared with Sentinel-2 EVI, MODIS grass EVI showed a much better predictive 

ability for grass pollen exposures, with higher R2 values obtained for all three sites.  
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Figure 3.14 Temporal trajectories of grass pollen concentrations and grass EVI 

from Sentinel-2 and MODIS satellites (as filtered by DLCD grass mask) and 

relationships between grass pollen concentrations and grass EVI at the 10km scale 

for Mutdapilly (a and d), Rocklea (b and e), and Campbelltown (c and f) for the 

period 2018 to 2020. Three grass pollen seasons are highlighted by light yellow 

rectangles. ‘S1’ means ‘grass pollen season 1’, and so forth. The specific dates for 

each of the grass pollen seasons are shown in Table 7. The polynomial relationships 

between grass EVI and grass pollen concentrations, as shown in panels (d), (e), and 

(f), were conducted during periods where both satellite EVI values were available. 

Although the increase in grass pollen was closely associated with the increase of 

EVI values, the value of grass pollen concentrations and the length of time varied 

over years and between sites. For example, S2 (grass pollen season 2) at Mutdapilly 

lasted longer than others, yet it had the lowest sum and average values of grass 

pollen concentrations (sum=1,978.92 grains/m3; mean = 8.39 grains/m3 as 

presented in Table 3.7 and Fig. 3.14 a) among all grass pollen seasons recorded. In 

contrast, S3 at Rocklea was over shorter duration than S2, but grass pollen 

concentrations during the pollen activity period were dramatically higher than those 

at S2 (Table 3.7 and Fig. 3.14 b). It is however interesting to note that the 
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percentages of grass cover at Mutdapilly and Campbelltown were higher than at 

Rocklea (Fig. 3.2, Table 3.2), and the sum of grass pollen concentrations trapped 

from Rocklea were 2.5, 4.6 and 2.6-fold higher than from Mutdapilly for S1 to S3; 

and 94.3, 10.6, and 15.4 times higher than Rocklea for S1 to S3, respectively (Table 

3.7). These findings are consistent with the grass pollen collected at Rocklea 

deriving from areas beyond the 10×10 km grid and hence the Sentinel-2 and 

MODIS grass EVI may not correlate well with grass pollen activities.  

Table 3.7 The sum and mean values of grass pollen concentrations and 

corresponding mean EVI derived from satellites for each grass pollen season. S1 

represents grass pollen season 1, and so on. They correspond to the light yellow 

areas marked in Fig. 14. The term g% represents the percentage of grass cover 

within 10 km for each site. The bold font denotes the highest values for each 

column.  

 Grass pollen seasons Grass pollen 

con. (grains/m3) 

Sentinel-2 

grass EVI 

MODIS 

grass EVI 

  SUM AVE   

Mutdapilly 

g% = 73.11% 

S1 (1/01/2018 – 15/06/2018) 3128.61 25.03  0.36 

S2 (23/10/2018 – 15/06/2019) 1978.92 8.39 0.28 0.28 

S3 (1/02/2020 – 31/05/2020) 4823.31 40.53 0.32 0.37 

Rocklea  

g% = 20.81% 

S1 (1/01/2018 – 14/05/2018) 7836.40 65.30  0.34 

S2 (23/10/2018 – 15/06/2019) 9145.66 39.25 0.32 0.31 

S3 (14/12/2019 – 6/06/2020) 12542.18 76.95 0.29 0.34 

Campbelltown 

g% = 30.21% 

S1 (1/01/2018 – 14/05/2018) 83.13 0.62 0.21 0.24 

S2 (23/10/2018 – 15/06/2019) 864.31 7.97 0.31 0.32 

S3 (23/09/2019 – 9/05/2020) 813.75 7.28 0.32 0.31 

 

3.3.5.2 Summary of time intervals for peaks between grass greenness profiles and 

grass pollen concentrations across sensors and study scales 

We compared time intervals between grass pollen concentration peaks and the 

nearest grass greenness peaks across all sensors (phenocam, Sentinel-2, and 

MODIS) and study scales (30m, 250m, and 10km) at Mutdapilly (Fig. 3.15), 

Rocklea (Fig. 3.16), and Campbelltown (Fig. 3.17). The black and red dashed lines 

in Fig. 3.15 -17 denote the grass pollen concentration peaks derived from fitted 

curves of grass pollen time series for each location. The difference between the 

solid and dashed lines is that there were greenness peaks that either occurred before 

or after grass pollen peaks denoted by the black lines, yet no greenness peak 
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corresponded to grass pollen peaks which are denoted by the dashed red lines. For 

each of the grass pollen peaks, we used coloured bars to denote different sensors so 

as to represent the time intervals arising between pollen peak and the grass 

greenness peaks across our study scales. When the bar is located to the left of the 

grass pollen peak line, it indicates that the greenness peak preceded the grass pollen 

peak, and vice versa. We highlighted 30m and 10km scales using a green colour 

due to the EVI values at these two scales being averaged from grass pixels (as 

filtered by the DLCD land cover map with 250m resolution at 10km and so there is 

an inevitable mixed pixel effect), whereas the EVI were mean values from all pixels 

at the 250m scale. Tables 3.8, 3.9 and 3.10 summarise the DOY for each peak at the 

three sites. Also, the time intervals of peaks (in days) between grass greenness and 

grass pollen are shown in brackets.  

In general, most of the greenness peaks occurred before grass pollen peaks at all 

sites. However, the durations of time intervals for all seasons at Rocklea were 

dramatically longer than for those at the other two sites, especially grass pollen 

peak 2 which occurred on 3 DOY, 2019 (Table 3.9), where the mean days of time 

intervals were 12.14, 44.75, and 12.59 days at Mutdapilly, Rocklea, and 

Campbelltown, respectively. Meanwhile, Rocklea had the lowest greenness peaks 

and these appeared before the grass pollen peaks across the three sites, and the 

percentage of ‘before’ greenness peaks (red font in Table 3.8 to 3.10) were 76.19%, 

50.00% and 85.00% among all greenness peaks at Mutdapilly, Rocklea and 

Campbelltown, respectively.  

There were obvious variations in the time intervals recorded across sensors and 

study scales at Mutdapilly (Fig. 3.15 and Table 3.8). At the in-situ scale, the time 

interval between peaks as recorded by Sentinel-2 EVI and the grass pollen were 

consistent with phenocam GCC at two peaks yet were opposite at another major 

grass pollen peak (Fig. 3.15 a). At the 250m scale, the patterns between EVI peaks 

and pollen peak 2 were contradictory between Sentinel-2 and MODIS (the MODIS 

EVI peak is over a month ahead of the peak of Sentinel-2 EVI) yet was consistent 

at peaks 3 and 4 (Fig. 3.15 b). However, inverse patterns arose between the two 

sensors at grass pollen peak 4 when the study scale increased to 10km (Fig. 3.15 c). 

As for the same sensor at increased scales, MODIS EVI peaks kept a consistent 
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interval pattern with pollen peaks at the 250m and 10km scales, but Sentinel-2 EVI 

peaks shifted across scales (e.g., peaks 2 and 4).  

 

Figure 3.15 Changes in time intervals arising between grass pollen concentration 

and grass greenness peaks derived from multi-sensors (phenocam, Sentinel-2, and 

MODIS) across various study scales at Mutdapilly. The black lines denote the dates 

of grass pollen concentration peaks occurring from 2018 to 2020. The coloured bars 

denote time intervals in days between peaks in greenness profiles and grass pollen 

concentrations.  

The pattern of time intervals arising in Rocklea is more complicated than that 

observed for Mutdapilly. This is not only because some greenness peaks lagged 

significantly behind grass pollen peaks, but also because some grass peaks did not 

correspond to greenness peaks (e.g., grass peaks 3, 5 and 7; Fig. 3.16 and Table 

3.9). At the in-situ scale (Fig. 3.16 a), Sentinel-2 EVI recorded consistent intervals 

between grass pollen peaks in relation to phenocam GCC, and the differences 

arising between them were around 10 days. At the 250m and 10 km scales (Fig. 

3.16 b and c), Sentinel-2 EVI peaks exhibited longer time intervals with respect to 

grass pollen peaks as compared with the MODIS EVI time series, yet they kept 

consistent interval patterns. For the grass pollen peaks 1, 4 and 6, all greenness 
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peaks lagged behind the respective pollen peaks. In contrast, all greenness peaks 

preceded grass pollen peak 2 by 55 to 72 days. Though the satellite EVI peaks were 

also in advance of pollen peak 8, the time intervals were shorter than for pollen 

peak 4. As for the same sensor at increased scales, Sentinel-2 EVI peaks tended to 

occur in close temporal proximity to grass pollen peak 4 (almost 1 month) at 30m to 

10km scales, yet maintained similar intervals across scales at pollen peak 2. As 

compared with Sentinel-2, MODIS EVI peaks shifted to a lesser extent around 

pollen peak 2 but to a greater degree around pollen peak 4.  

 

Figure 3.16 Changes in time intervals arising between grass pollen concentration 

peaks and grass greenness peaks derived from multiple sensors (phenocam, 

Sentinel-2, and MODIS) across varied study scales at Rocklea. The black and red 

(dashed) lines denote the dates of grass pollen concentration peaks during the 

seasons spanning from 2018 to 2020. The coloured bars denote the time intervals in 

days between peaks in greenness profiles and grass pollen concentrations. 

At the Campbelltown site, six grass greenness peaks correlated with grass pollen 

concentration peaks and most of them preceded pollen peaks with time intervals 

varying from 1 to 32 days (Fig. 3.17 and Table 3.10). Among all the pollen peaks 
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recorded, peak 4 (361 DOY, 2018) and peak 7 (112 DOY, 2019) had the shortest 

and longest intervals between grass greenness metrics and pollen peaks, 

respectively. Meanwhile, Sentinel-2 EVI maintained the same interval patterns 

across scales at peak 4, showing a slight difference in patterns at peak 7. In contrast, 

MODIS EVI exhibited opposite patterns pollen peaks at 250m and 10km for peak 

7. At the largest study scale (10 km), all satellite EVI peaks preceded pollen peaks 

at Campbelltown (Fig. 3.17 c) although this was not the case at the other two sites.  

 

Figure 3.17 Changes in time intervals arising between grass pollen concentration 

and grass greenness peaks as derived from multiple sensors (phenocam, Sentinel-2, 

and MODIS) across various study scales at Campbelltown. The black and red 

(dashed) lines denote the dates of grass pollen concentration peaks during the 

seasons spanning from 2018 to 2020. The coloured bars denote time intervals in 

days between peaks of greenness profiles and grass pollen concentrations.  
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Table 3.8  The DOY of grass pollen peaks and greenness observation peaks from multi-sensors remote sensing across study scales at Mutdapilly 

from 2018 to 2020.  

Sensors Scales Grass pollen peak 1 Grass pollen peak 2 Grass pollen peak 3 Grass pollen peak 4 Grass pollen peak 5 

88 (2018) 317 (2018) 2 (2019) 112 (2019) 89 (2020) 

Phenocam 30 m  324 (7)* 358 (2018) (-9) 117 (5)  

Sentinel-2  30 m  326 (13) 355 (2018) (-12) 105 (-7)  

 250 m  326 (13) 355 (2018) (-12) 95 (-17)  

 10 km  305 (-12) 355 (2018) (-12) 125 (13) 80 (-9) 

MODIS 250 m  289 (-28) 1 (-1) 97 (-15)  

 10 km 73 (-5) 313 (-4) 361 (-6) 89 (-23) 57 (-32) 

*: (days) = (DOY of grass pollen peak) – (DOY of greenness peak)  

Table 3.9 The DOY of grass pollen peaks and greenness observation peaks from multi-sensors remote sensing across study scales at Rocklea 

from 2018 to 2020.  

Sensors Scales Grass pollen peak 1 Grass pollen peak 2 Grass pollen peak 4 Grass pollen peak 6 Grass pollen peak 8 

73 (2018) 3 (2019) 91 (2019) 27 (2020) 340 (2020) 

Phenocam 30 m  298 (-70)* 138 (47)   

Sentinel-2  30 m  306 (-62) 150 (59)   

 250 m  296 (-72) 126 (35)   

 10 km  306 (-62) 126 (35)  325 (-15) 
MODIS 250 m  305 (-63) 113 (22)   

 10 km 121 (48) 313 (-55) 121 (30) 41 (14) 313 (-27) 
*: (days) = (DOY of grass pollen peak) – (DOY of greenness peak) 
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3.3.6 Changes in relationships arising between grass pollen concentrations and 

phenocam GCC and Himawari-8 AHI EVI across temporal scales (temporal scale 

effects) 

Using daily phenocam GCC and Himawari-8 AHI (H-8 AHI) EVI data, we 

compared those relationships arising between grass greenness observations and 

grass pollen concentrations across varied temporal scales (i.e., daily, 8 days, and 16 

days) at the Mutdapilly site to explore how the temporal scale effect impacts their 

interrelationships, asking whether the hyper-temporal scale is best suited for grass 

pollen forecasting via satellite. These analyses were conducted at the in-situ scale 

using phenocam GCC data from August 2018 to August 2019, and also at the 1km 

scale using Himawari-8 AHI EVI data in 2018 at Mutdapilly. These two datasets 

overlapped from August to December 2018 (Fig. 3.18). The reason why we 

conducted analyses at Mutdapilly is that the proportion of grass cover at 1km at 

Mutdapilly is 87.50% (Table 3.5), and thus the confounding mixed pixel effect in 

observing grass greenness using H-8 AHI data could be reduced.  

We averaged daily phenocam GCC and H-8 AHI EVI data to 8-day and 16-day 

mean values. The daily, 8-day and 16-day mean phenocam GCC and H-8 AHI EVI 

values are plotted alongside the grass pollen concentration time series in Fig. 18. 

Seasonal phenocam GCC and H-8 AHI EVI data corresponded well with grass 

pollen concentration profiles from 2018 to 2019 at all temporal scales, with peak 

grass activities (greenness) and pollen concentrations occurring during the autumn 

(March-May) and late spring to summer (November-January) seasons. The 

coloured lines at the bottom of the figures show the peak grass pollen 

concentrations and grass greenness metrics. Firstly, all peaks move forward as the 

temporal scale decreases (i.e., from daily to 16 days). Further, the time intervals 

arising between grass pollen and grass greenness peaks narrow as the temporal 

scale decreases. For example, the H-8 AHI EVI and phenocam GCC peaks even 

occur at the same time as pollen concentration peaks during the ‘April-May’ season 

when presented at the 16-day temporal scale (Fig. 3.18 c). As for the other two 

temporal scales, the pollen-greenness intervals for both phenocam GCC and H-8 

AHI EVI were longer at the 8-day scale than those at the daily scale (Fig. 3.18 a 

and b). Another factor that should not be ignored is the secondary or moderate grass 
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pollen peak triggered by an increase in grass greenness which duly disappeared in 

terms of its pollen trajectory with a temporal scale decrease. According to the red 

circle shown in Fig. 3.18, there was moderate grass pollen activity around January 

2019. However, it was ‘wiped’ from pollen profile when temporal scale was 

decreased from daily to a 16-day periodicity. If further research were to be 

conducted using the 16-day temporal scale, we would draw the incorrect conclusion 

that the January grass greenness peak did not correspond to an increase in grass 

pollen.  

 

Figure 3.18 Seasonal trajectories of daily (a) and average phenocam GCC and 

Himawari-8 AHI EVI (1km) at 8 day (b) and 16 day (c) temporal scales at 

Mutdapilly. The coloured lines at the foot of the figures denote peaks of grass 

greenness and grass pollen concentrations. The black, yellow and green colours 

represent pollen concentrations, H-8 AHI EVI, and phenocam GCC data, 

respectively. 
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Fig. 3.19 shows the interrelationships arising between grass pollen concentrations 

and grass greenness metrics across a range of temporal scales. In general, both 

phenocam GCC and H-8 AHI EVI data significantly correlate with grass pollen 

concentrations across all temporal scales. As the temporal scale decreases, 

correlations between grass greenness values and grass pollen concentrations 

increase, with values of R2 varying from 0.5 to 0.73 for H-8 AHI EVI (Fig. 3.19 a) 

and from 0.67 to 0.89 for phenocam GCC (Fig. 3.19 b). During the period of 

overlap (Fig. 3.20), phenocam GCC exhibits a stronger correlation with grass 

pollen concentrations than H-8 AHI EVI across all temporal scales. Similarly, the 

relationships varied across temporal scales (i.e., stronger correlations were observed 

at shorter temporal scales).  

 

Figure 3.19 Polynomial relationships between daily, 8-day, and 16 day average 

grass pollen concentrations and Himawari-8 AHI EVI data (1km) through the 
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entirety of 2018 (a), and phenocam GCC data from August 2018 to August 2019 (b) 

at Mutdapilly.  

 

Figure 3.20 Polynomial relationships between daily, 8-day, and 16 day average 

Himawari-8 AHI EVI (1km) (a) and phenocam GCC (b) and grass pollen 

concentrations with corresponding temporal scales during the period of study 

(August to December 2018) for Mutdapilly. 
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3.4 DISCUSSION 

This study exemplifies the potential for multiple scales in remote sensing imagery 

to detect grass cover phenology and their capacity to assist in our understanding of 

the relationships arising between grass cover phenology and grass pollen 

concentrations at three sites which characterise different types of land cover in 

terms of vegetation.  

In recent decades, various models and approaches have been introduced to explore 

the relationships arising between satellite observations of vegetation phenology and 

in-situ pollen data (Devadas et al., 2018; Hogda et al., 2002b; Karlsen et al., 2009; 

Khwarahm et al., 2017; Li et al., 2019). Despite these promising applications of 

satellite-based vegetation phenology in the study of pollen aerobiology, developing 

confident grass phenology-pollen relationships remains difficult owing to the 

limitations of the spatial and temporal resolutions of satellite imagery, especially 

when we consider complex land coverage in terms of the spatial heterogeneity of 

vegetation surrounding pollen traps. Therefore, in sections 3.3.1 and 3.3.2, our 

study assessed the performance in detecting grass greenness information across 

different land cover types from space based upon widely used satellite data with in-

situ phenocam observations serving as a land surface reference. 

To understand the grass pollen-greenness interrelationships and their observed 

differences across various sites and sensors, we conducted our analyses from two 

perspectives. The first was conducting quantitative correlations between grass 

greenness metrics (i.e., phenocam GCC and satellite EVI) and grass pollen 

concentrations. A second perspective was comparing grass pollen concentration 

peaks and grass greenness peaks following the methods adopted by previous studies 

(Devadas et al., 2018; Li et al., 2019). These analyses were included in sections 

3.3.3 to 3.3.5.  

To explore how differences in spatial resolution between each satellite impact grass 

pollen-greenness relationships, we compared the time series and correlations arising 

between satellite measures of grass/landscape and grass pollen concentrations over 

the same period for two sites (Figs. 3.13 and 3.14; Table 3.6). Given that grass 

cover proportions changed across research scales, a series of spatial windows were 
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opened that were centred on pollen traps to explore whether the grass pollen-

greenness relationships varied with changes in research scale. Finally, besides the 

spatial scale effect, the temporal resolution of satellite measures of grass cover is 

also an important factor in generating more accurate pollen forecast models. We 

began by exploring which temporal resolution in terms of grass greenness time 

series showed better performance in helping us to understand the dynamics of grass 

pollen concentrations (section 3.3.6).  

3.4.1 Grass phenology monitoring using multi-scale satellites 

Our results confirm that multi-scale satellite observations of grass/landscape 

greenness can be effectively linked to phenocam observations at the single-pixel 

level. However, their performance in detecting real land surface grass greenness 

information became weaker as research scales increased, especially at more 

heterogeneous sites.  

The Sentinel-2 EVI time series extracted from the phenocam footprint (i.e., 3x3 

pixels) correlated well with ground-based phenocam GCC, with the R2 values 

ranging from 0.75 to 0.96 across the three sites (Fig. 3.5). Thus, there is a good 

correlation between phenocam observations and fine-resolution Sentinel-2 data, in 

agreement with previous studies. For example, Gómez-Giráldez et al. (2020) found 

significant correlations between Sentinel-2 EVI time series data and phenocam 

GCC data (r > 0.7) in a savannah ecosystem. In the forested canopy, phenocam 

GCC and Sentinel-2 EVI were reported as following similar seasonal patterns and 

also showed good agreement as reflected in their high correlation coefficients (r = 

0.92; Thapa, Garcia Millan & Eklundh, 2021). On the other hand, the phenological 

transition dates derived from phenocam and Sentinel-2 were in close agreement in 

grassland ecosystems (Burke & Rundquist, 2021; Vrieling et al., 2018; Zhou et al., 

2019), shrubland ecosystems (Peng et al., 2021), and forest ecosystems (Lange et 

al., 2017; Zhang et al., 2020). 

Despite the Sentinel-2 EVI data showing statistically significant relationships (i.e., 

high values of coefficient of determination, presented as R2) with phenocam GCC, 

this was nonetheless limited by the revisit frequency and the capacity to acquire 

clear images when tracking subtle variations in grass greenness. According to Fig. 

3.5 a, there was only one available Sentinel-2 image within three months (from the 
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end of December 2018 to April 2019). Therefore, this sensor failed to capture the 

grass greenness activity around February as recorded by phenocam images with a 

daily temporal resolution. Similarly, the big data gap arising between January and 

March at Rocklea (Fig. 3.5 c) also caused the paucity of information in relation to 

grass greenness dynamics from Sentinel-2 EVI profiles, whereas phenocam GCC 

recorded a series of grass greenness fluctuations. This finding also could be used to 

partially explain why the statistical correlation between EVI and phenocam GCC 

data was the lowest among the three sites studied. Another obvious phenomenon is 

that Sentinel-2 images are usually clustered around ‘dry-grass’ growing seasons. 

For example, in Fig. 3.5 a and c, a cluster of Sentinel-2 EVI points was gathered 

from July to September, a period when grass greenness metrics were at their lowest 

levels within the growing season. We can attribute this phenomenon to the wet-

cloudy season as this hindered the acquisition of cloud-free images. These two sites 

(Mutdapilly and Rocklea) were located close to Brisbane where the climate is 

characterised as humid subtropical (Carver, Mikkelsen & Woodward, 2002), a 

region in which there is less precipitation from April to September and more 

intensive precipitation from October to March (sources: Climate statistics for 

Australian locations. Bureau of Meteorology). The chances of obtaining cloud-free 

Sentinel-2 images dramatically decreases during the wet-cloudy season, even 

though it is a critical period for grassland greenness shifts because previous studies 

have proved that Australia’s arid and semi-arid grassland dynamics are primarily 

derived from rainfall patterns (Ma et al., 2013; Petus, Lewis & White, 2013). As 

technology develops further, fusion of Visible Infrared Imaging Radiometer Suite 

(VIIRS) and the NASA Harmonized Landsat and Sentinel-2 (HLS) product (Zhang 

et al., 2020), which now routinely produce near real-time image feeds by combining 

Landsat-8 and Sentinel-2A/B observations at a 30m resolution, might provide us 

with an opportunity to solve this restriction for land surface phenology observations 

caused by irregular temporal sampling of data (Bolton et al., 2020; Peng et al., 

2021).  

When compared with Sentinel-2 EVI, the performance of MODIS EVI in detecting 

grass greenness dynamics at its single-pixel level (250m) decreased substantially, 

with lower R2 values being recorded, although still significant (Fig. 3.6). Also, 

https://en.wikipedia.org/wiki/Bureau_of_Meteorology
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although MODIS EVI and phenocam GCC recorded similar seasonal patterns, they 

obviously differed in terms of the peaks of greenness reported. Meanwhile, their 

correlations of seasonal patterns att the heterogeneous site (Rocklea) were lower 

than at the homogeneous site (Mutdapilly). Similarly, despite H-8 AHI EVI 

possessing hyper-temporal resolution, it still only weakly correlated with phenocam 

GCC data at Rocklea, with a slightly higher R2 than MODIS EVI (Fig. 3.7). These 

poor correlations could be due to the mixed pixel effect introduced by coarser 

resolutions at the heterogeneous site. A pixel in MODIS and H-8 AHI may contain 

non-grassy vegetation in terms of land cover types or else mixed grass species were 

included in the pixel which differed from the grass species observed by phenocam. 

A number of researchers reported the mixed pixel effect affecting the 

interrelationships arising between MODIS VIs and in-situ phenocam GCC 

(Browning et al., 2017; Hufkens et al., 2012b; Liu et al., 2017; Peter et al., 2018). 

For example, a study conducted on grassland reported a highly heterogeneous 

landscape of the MODIS pixel in which research site resided, thereby affecting the 

relationship between MODIS EVI and phenocam GCC (Cui et al., 2019). A more 

comprehensive study seeking agreement between phenocam and MODIS greenness 

metrics across various vegetation types also stated that landscape heterogeneity and 

a mismatch between the phenocam footprint and the associated MODIS pixel are 

recurring themes when interpreting the poor agreements between them (Richardson 

et al., 2018). The distinct differences arising in terms of the original time series 

between Himawari-8 AHI data and in-situ phenocam GCC data also was attributed 

to heterogeneous landscapes (Yan et al., 2019).  

Section 3.3.2 explores the research question as to whether the advantages of 

Sentinel-2 data can be maintained over extended research scales. According to our 

results (Fig. 3.8 and Table 3.5), Sentinel-2 EVI consistently provided stronger 

agreements with phenocam GCC across increased research scales as compared to 

MODIS EVI at the same study period. Also, more homogeneous research scales 

were associated with stronger correlations at both sites (i.e., 3km scale for 

Mutdapilly and 1km scale for Rocklea; Table 3.5). Because the study period for H-

8 AHI EVI was only a segment of that for MODIS and Sentinel-2 EVI, we cannot 

truly compare its performance with MODIS and Sentinel-2 directly. Even so, higher 
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R2 values between H-8 AHI EVI and phenocam GCC were obtained than for 

Sentinel-2 EVI at Rocklea (a heterogeneous site), which could lead us to think that 

the performance of H-8 AHI data could benefit from hyper-temporal resolution at 

such locations with a heterogeneous landscape (as opposed to a finer spatial 

resolution data with lower temporal resolution). In general, Sentinel-2 data of finer 

spatial resolution maintained its advantage in observing grass greenness across 

larger research scales. 

3.4.2 Relationships between grass pollen concentrations and grass/landscape 

phenology 

In general, the grass pollen concentrations showed considerable interannual and 

inter-site variability. Throughout the period from 2018 to 2020, although grass 

pollen seasons lengths and magnitudes of pollen concentrations varied across sites 

and years, three major grass pollen seasons were exhibited at each of these three 

sites. At the Mutdapilly and Rocklea sites (both located in Queensland), two 

autumnal pollen seasons occurred in 2018 and 2020 (S1 and S3 in Fig. 3.14 a and 

b), plus another long pollen season run from November 2018 to June 2019 

(Australian late spring to autumn; S2 in Fig. 3.14 a and b), exhibiting bimodal and 

trimodal patterns at Mutdapilly and Rocklea, respectively. At Campbelltown (New 

South Wales), two long grass pollen seasons lasted from October to May of the next 

year, yet it had the lowest concentrations among three sites. This variation is likely 

related to differences in grass species or other factors such as meteorological 

conditions including rainfall, temperature, and wind, which impacted grass growth 

(Chuine & Belmonte, 2011; Li et al., 2019; Rojo et al., 2015).   

In general, the time series of phenocam and satellite measurements of grass cover 

and landscape (for Himiawari-8 AHI) can interpret the seasonal dynamics of grass 

pollen concentrations at all sites. However, the correlations between the two metrics 

varied across sites, with coefficients of determination that were quite variable (Figs. 

3.9 – 3.14). For example, at the 10km scale, Sentinel-2 and MODIS data accounted 

for 56% and 86%, respectively, of the seasonal variation in grass pollen 

concentrations at Mutdapilly. In contrast, satellite data only accounted for 15% to 

31% of the pollen concentration dynamics at Rocklea and Campbelltown (Fig. 

3.14). These poor correlations can partly be correlated to asynchronous patterns 
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arising between satellite EVI peaks and pollen peaks during S2 at both sites (Fig. 

3.14 b and c). At Rocklea, the grass pollen peak around January 2019 significantly 

lagged behind the Sentinel-2 and MODIS EVI data by 62 and 55 days, respectively 

(Table 3.9). However, the major grass pollen peak at S2 arose in advance of the 

satellite EVI peaks and the increased grass greenness observed at Campbelltown 

(Fig. 3.14 c). Besides, time intervals between grass pollen and grass greenness 

peaks vary distinctly among sites, by 12.14 days (on average across peaks and 

sensors), 44.75 days, and 11.40 days at Mutdapilly, Rocklea, and Campbelltown, 

respectively (Figs. 3.15-17, Table 3.8-10). 

The contrasting results observed among sites may at least partly be attributed to 

land cover conditions, grass species diversity, and pollen source distributions. Land 

cover types and grass cover at the Mutdapilly site were otherwise relatively 

homogeneous and uniformly distributed (Fig. 3.2), resulting in good correlations 

and relatively short intervals in peaks between grass pollen and multi-sensor 

measures of grass greenness. Land cover conditions were more heterogeneous at 

Rocklea and Campbelltown with a number of buildings and roads surrounding 

pollen trap sites (Fig. 3.2). Therefore, the grass phenological profiles at these two 

sites included some non-grass information as a coarse grass map was adopted. Even 

the coarse grass map though accurately filtered grass components, although these 

grass classes might comprise diverse grass species, especially in regions around 

Sydney. According to previous studies, grassy areas in the Sydney region are 

comprised of mixed temperate cool season grasses (C3 grass) and subtropical or 

summer-flowering grasses (C4 grass; Davies et al., 2015; Medek et al., 2016), as 

well as native and exotic species that exhibit different phenology patterns (Watson, 

Restrepo-Coupe & Huete, 2019). It partly explains the broader grass phenology 

profiles and corresponding long pollination periods found at the Campbelltown site 

(located in the greater Sydney region). Another potential reason which cannot be 

overlooked is the long range transport of pollen (Hogda et al., 2002b; Holben, 

1986; Sauliene et al., 2013). This means that these grass pollens collected by in-situ 

traps likely come from grass sources which lie beyond the 10km study areas. 

Therefore, the time series of grass cover greenness observed nearby pollen traps are 

strongly asynchronous with actual pollen profiles (e.g., S2 in Rocklea; Fig. 3.14 b). 
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Even interannual climate condition variability can introduce unexpectedly sharp 

increases in grass greenness and, consequently, impact the seasonal dynamics of 

grass pollen (Haberle et al., 2014; Ramón & Peter, 2020). For example, these 

unexpectedly greener grasses might not be within their normal pollination period or 

else only release a small quantity of grass pollen (e.g., the grass greenness peaks 

observed around April for S2 and S3 at Campbelltown; Fig. 3.14 c). 

Additionally, our result that most grass greenness peaks occurred before grass 

pollen peaks at all sites (Fig. 3.15 - 3.17) keeps in line with the previous study. 

Combining MODIS EVI product with grass pollen concentrations, Devadas et al. 

(2018) found that peak pollen activity lagged behind peak grass cover greenness on 

average by 2–3 weeks and 4–7 weeks in temperate sites in France and Australia, 

respectively. To further interpret the temporal gap between grass greenness and 

airborne grass pollen concentrations, a fundamental question is related to the 

temporal gap between grass growth phenology (i.e., greenness changes) and 

reproductive phenology (i.e., flowering time and pollination period) should not be 

omitted. According to previous studies, the grass flowering to be the same green 

color as the grass stems at the start of reproduction life phase (Melissa et al., 2016, 

Fiona et al., 2010). Therefore, the onset of flowering is hard to identify with 

phenocam, let alone satellites. Until the emergence of the seed head from the sheath 

of the flag leaf and the seed gradually reaches maturity with yellow color, flowers 

cannot be observed from phenocam. Therefore, the “flowering” observed by 

phenocam with lower GCC (3.7 Appendix, Fig. 3.A3 and 4) is related to the late 

flowering stage in ecology perspective, in which grass seeds tend to mature and are 

ready for pollination (Sheila et al., 1968). The ecological “flowering time” occurred 

at the same time with the end of the vegetative growth phase that is corresponding 

to the greenness peak in phenocam and satellite observations. Furthermore, there 

are plenty of studies that reported the grass flowering phase (i.e., near grass 

greenness peak) is prior to airborne grass pollen concentrations. For example, 

Ickovic et al. (1989) studies 18 grass species over 2 years within Paris suburban 

area, and found noticeable grass pollen concentration usually appeared after most of 

grass flowered for 2-3 weeks. Estrella et al. (2006) studied Poaceae species at 51 

stations over 5 years in Germany, and found though grass pollen season started 
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almost on the same day (0.6 days later) as local flowering phenology, the peak of 

grass pollen lagged 22.6 days after local flowering. Similarly, Tormo et al. (2011) 

demonstrated that the asynchronism between grass flowering peak and airborne 

pollen concentration peak in Spain with up to one week difference in phase, i.e. 

airborne pollen appeared after grass flowering. In review of the above, our 

hypothesis is the hysteresis of remote sensing observations and airborne grass 

pollen concentrations for grass flowering time caused the temporal sequences 

between the peaks of GCC/EVI and grass pollen concentrations in our results.   

3.4.3 Scale effect related to spatial and temporal resolutions and research scales on 

relationships between grass pollen concentrations and grass/landscape phenology  

According to the results presented in Figs. 3.13, 3.14, and Table 3.6, Sentinel-2 

grass cover EVI at 10m resolution showed stronger correlations with pollen 

concentrations relative to MODIS and H-8 AHI EVI with coarser spatial resolutions 

for certain grass pollen seasons. When compared with phenocam GCC, the 

Sentinel-2 EVI data at the phenocam footprint scale also exhibited better 

correlations with pollen concentrations at both urban (Rocklea) and rural 

(Mutdapilly) sites (e.g., Fig. 3.9). As for other coarse resolution satellites, their EVI 

time series only correlated well with grass pollen dynamics at the homogeneous site 

and not at the heterogeneous sites. These findings are in agreement with a previous 

study which showed that the phenology dynamics of grass cover derived from finer 

resolution satellite data (i.e. Landsat, 30m) show a better correlation with pollen 

concentrations than MODIS data and, consequently, offer a new avenue for the use 

of finer resolution satellite data in mapping pollen seasons and their dynamics at 

scale (Li et al., 2019). Further, a finer resolution Sentinel-2 sensor, comparable to 

Landsat, has the potential to map the grass distribution in urban domains featuring 

heterogeneous land cover types and can therefore more accurately assess the risk of 

respiratory allergies in urban neighbourhoods. 

As for the variations in grass pollen-greenness correlations across research scales 

for the same satellite sensor, stronger correlations were found at larger research 

scales (Table 3.6). This might be related to the differences in grass cover 

proportions (grass %) at different scales. For example, the grass % within 3km was 

higher than for 1km at Mutdapilly (Table 3.5) and thus EVI profiles calculated from 
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3km included more grasses than 1km resolution, thereby improving the correlation 

with grass pollen dynamics. However, the variation in time intervals observed 

between grass pollen and grass greenness peaks were complicated as the research 

scales increased (Figs. 3.15 – 17; Table 8 – 10). This could also be attributed to the 

spatial heterogeneity of land cover types and the spatial resolution of satellite data. 

As research scales increase, the possibilities of measuring different grass species 

and even recording non-grass information objectively via satellite sensors also 

increased and thus the peaks of EVI time series shifted accordingly. In general, 

satellite data maintained relatively consistent peaks at the homogeneous site 

(Mutdapilly; Fig. 3.15) but showed obvious variations in peaks across research 

scales at the more heterogeneous site (Rocklea; Fig. 3.16).  

Our results pertaining to the temporal scale effect on grass pollen-greenness 

relationships indicate that the daily GCC and EVI time series did not show strong 

correlations between daily pollen concentrations except at the very coarsest 

temporal resolution (16 days) which showed the best correlations with 16-day mean 

pollen concentrations (Fig. 3.19). However, it is dangerous to state that coarse 

temporal resolutions are more suitable for informing pollen dynamics as compared 

to a daily scale. According to the time series recorded via GCC, EVI and pollen 

concentrations presented in Fig. 3.18, greenness metrics at a daily scale effectively 

recorded subtle changes in grass pollen profiles, for instance the slight grass pollen 

peak arising around January 2019. However, these details were lost when the 

temporal scale was reduced to 16 days. The weaker correlations arising between 

grass greenness metrics and grass pollen concentrations on a daily scale might be 

attributed to the details that were erased from time series when we downscaled from 

8-day to 16-day reporting windows. Therefore, the choice of temporal resolution 

scales depends on the application scenarios. It is thus ambiguous to conclude which 

temporal scale is the best for understanding grass pollen concentration dynamics 

using satellite data.  
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3.5 CONCLUSION 

In this study, we evaluated satellite-based grass/ pasture phenology using phenocam 

observations and explored the relationships between satellite-based and near-

surface remote sensing observations of grass/ pasture greenness and in-situ grass 

pollen concentrations at varied spatial and temporal scales. The results and 

discussions have identified five key conclusions:  

(1) All satellites with multiple spatial resolutions can measure grass/ pasture 

phenology at their single pixel scale. Especially, Sentinel-2 data with 10 m 

resolution can effectively obtain pasture greenness information from phenocam 

footprint.  

(2) As research scales increased, the performances in observing grass phenology 

from MODIS (250 m) and Himawari-8 AHI (1 km) decreased in heterogeneous 

landscapes. Though the relationships between Sentinel-2 EVI and phenocam GCC 

tended to be poor at the same time, the ability of Sentinel-2 data remains better than 

coarse satellites (with higher coefficients of determination).  

(3) We identified good interrelationships between in-situ grass pollen 

concentrations and grass greenness as measured by phenocams and satellites at the 

homogeneous site (i.e. Mutdapilly), but poor relationships at heterogeneous sites 

due to some grass pollen seasons have asynchronous trends with phenological 

dynamics of local grass (within 10 km).  

(4) Sentinel-2 observations of grass greenness indeed explained more dynamics of 

grass pollen concentrations than MODIS and Himawari-8 AHI at the same pollen 

season. However, its advantage tended to be weak with increasing study periods 

(from several months to multiple years).  

(5) Though daily phenocam and Himawari-8 AHI observations recorded a lot of 

details of grass greenness changes, phenocam and Himawari-8 AHI observations 

also introduced noises into time series and then decreased relationships between 

grass pollen – greenness correlations. Observations of grass greenness with a 16-

day temporal scale had the strongest relationships with grass pollen, but it came at 

the cost of accurately detecting subtle temporal differences between grass greenness 

and pollen.  
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3.7 APPENDIX 

3.7.1 Research sites and phenocam data 

This pilot study was conducted at two pasture sites located in the north and west of 

Melbourne in the state of Victoria, Australia. A set of time-lapse digital RGB 

phenocams were installed at these two sites. The land cover type is Rain fed pasture 

for all research sites according to DLCD (Dynamic Land Cover Dataset) product. 

To quantify phenological variations of the pasture over time, green chromatic 

coordinate (GCC) was calculated and processed using an R package “Phenopix” as 

following steps: 

(1). Select regions of interest (ROIs). An ROI, which contained most of pasture in 

the file of view (FOV), was chosen for each phenocam. Fig. 3.A1 shows the sample 

images of each site and its ROIs. 

(2). Extract vegetation indices. GCC is computed as below:                                                                                                                                     

DN

DN DN DN

G
GCC

R G B


                                                                                         (1)                       

Where RDN, GDN and BDN are the red, green and blue pixel digital numbers. 

GCC was computed and averaged through all pixels within ROI at each site.  

(3). Filter daily GCC values. To reduce noise caused by low illumination or 

weather conditions, on time series of GCC, we applied a three-day moving 

window method named per90.  

(4). Fit the GCC seasonal curve. After filtering GCC, to better analyze 

greenness seasonal behaviour of pasture, filtered time-series of GCC was fitted 

using a double logistic equation, written as 

2 3 5 6
0 1 4 4

tanh[( ) ] 1 tanh[( ) ] 1
(t)

2 2

t a a t a a
VI a a a a

     
   

                        (2) 

where 𝑡 is time; a0 is the minimum GCC value, a1 and a4 mean amplitude of 

green-up and senescence phases; a2 and a5 are the inflection point (midpoint) 

for the growth and decay phases along with the time series; a3 and a6 control 

the slope of both phases. 
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Figure 3.A1. Phenocam field of views and regions of interest (ROIs) at each site.  

In addition, the flowering information was also obtained from phenocam 

images by visual assessments. We selected images around 1 pm for every day 

since they have ideal exposure and scene illumination to conduct visual 

assessment of flowering existences. The tiny and light yellow flower heads 

could be seen on a certain day, which would be labelled as “flowering” by 

comparing the images with the same shooting time. It is worth noting that 

phenocam is not able to detect a specific onset date of flowering time, because 

flowers generally are green color as the grass stem at the beginning (Melissa et 

al. 2016). The start of flowering observed by phenocam is closer to maturity of 

flowering, associated with mature grass seed and pollination (Fiona et al. 

2010), instead of the onset of flowering phase. Fig. 3.A2 shows the sample 

images for near onset of flowering and near maturity of flowering at 

Redesdale.  
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Figure 3.A2. The sample phenocam images indicate near onset of flowering and 

near maturity of flowering situations at Redesdale.  

3.7.2 Temporal lags between pasture greenness and maturity of flowering 

We found maturity of flowering lagged GCC peaks by 13 and 15 days at Casterton 

and Redesdale sites, respectively (Table 3.A1). The mature flowers nearly could be 

observed at the same time at Casterton and Redesdale might be contributed to they 

had adjacent GCC peak dates. Fig. 3.A3 and 3.A4 showed the phenocam images 

corresponding to GCC peak, maturity of flowering and other DOYs along with 

variations in pasture greenness.  

Table 3.A1. The day of year for maximum GCC, maturity of flowering, and their 

differences at two research sites. (Note: Flowering in table means the DOY of 

detectable mature flowers, instead of onset of flowering time.) 

Sites Name Max GCC 

(DOY) 

Flowering  

(DOY) 

Max GCC – Flowering (days) 

Casterton 295 308 13 

Redesdale 291 306 15 
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Figure 3.A3. GCC profile, DOYs of GCC peak and flowering, as well as phenocam 

images corresponding to specific dates at Casterton. (Note: Flowering in figure 

means the DOY of detectable mature flowers, instead of onset of flowering time.) 

 

Figure 3.A4. GCC profile, DOYs of GCC peak and flowering, as well as phenocam 

images corresponding to specific dates at Redesdale. (Note: Flowering in figure 

means the DOY of detectable mature flowers, instead of onset of flowering time.)  
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Chapter 4 Using 10 m grass map from 

Sentinel-2 to filter grass phenology and map 

grass pollen sources from complex 

landscapes 
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4.1 INTRODUCTION 

Remote sensing imagery has been shown to be useful for gaining insights into grass 

phenological information (Descals et al. 2020; Gómez-Giráldez et al. 2020; 

Vrieling et al. 2018) and mapping grass spatial distributions (Khwarahm et al. 

2016; McInnes et al. 2017; Rapinel et al. 2019; Verstraeten et al. 2021). Maps 

showing the locations of allergenic vegetation taxa have many applications, 

including improved pollen forecasting in combination with weather data (Zink et al. 

2011); combining with health data to inform exposure of aeroallergens (Newson et 

al. 2014); improving pollen emission models (Zink et al. 2013); and individuals’ 

self-management of allergy or asthma (McInnes et al. 2017). 

Vegetation mapping of plants with allergenic pollen requires land cover maps as a 

reference (i.e., base maps). For example, adopting the Corine Land Cover 2000 

(CLC2000) (100 m) as a base map, Khwarahm et al. (2016) mapped the birch and 

grass pollen seasons in the UK with 1 km resolution using a time series of MERIS 

Terrestrial Chlorophyll Index (MTCI) data. Similarly, researchers used finer 

resolution satellite data combined with the CLC2000 land cover map to derive grass 

pollen source inventories across the city of Aarhus, Denmark (Skjøth et al. 2013). 

Another land cover map with finer resolution (The Centre for Ecology and 

Hydrology (CEH) Land Cover Map 2007, 25 m) was used to generate a grass map 

at a continental scale in the UK (McInnes et al. 2017). In contrast to northern 

hemisphere (especially European) studies with finer resolution land cover maps, 

studies of allergenic grass pollen sources in Australia use coarse spatial resolution 

land cover maps, such as the MODerate-resolution Imaging Spectroradiometer 

(MODIS) Land Cover Type 1-International Geosphere-Biosphere Programme land 

cover classification (IGBP, 500 m) (Devadas et al. 2018) or Australian Land Use 

and Management (ALUM, 50 m) classification (Emmerson et al. 2019). The 

Dynamic Land Cover Dataset (DLCD, 250 m) is also used to provide nationally 

consistent land cover information for Australia; however, its spatial resolutions 

cannot meet the requirement of mapping precise grass pollen sources, especially 

considering the intensive spatial heterogeneity around capital cities and the 

existence of urban ‘green spaces’, which play a significant role in grass pollen 

exposure (Skjøth et al. 2013). 
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Recently, Sentinel-2 satellite data at 10 m resolution has shown the potential for 

generating more precise and updated land cover maps (Chen et al. 2015). The 

Sentinel-2 satellite was launched when many advanced classification methods 

based on machine learning approaches were already developed (Phiri et al. 2020). 

Advanced machine learning techniques such as random forests (RF) (Clark 2017; 

Fragoso-Campón et al. 2018), support vector machines (SVM) (Denize et al. 2018; 

Nguyen et al. 2020) and convolutional neural network (CNN) (Längkvist et al. 

2016; Qiu et al. 2020) have been applied for land cover classification—including 

crop (Mazzia, Khaliq & Chiaberge 2020), forest (Miranda et al. 2019) and 

grassland (Pelletier et al. 2019; Dewi & Chen 2019)—based on Sentinel-2 data. For 

example, Segal-Rozenhaimer et al. (2020) applied CNN for land cover 

classification and obtained 91% classification accuracy. Researchers conducted 

land cover classifications in Victoria, Australia, using three widely used machine 

learning approaches (RF, Recurrent Neural Network (RNN) and temporal 

Convolutional Neural Networks (TempCNN)) based on Sentinel-2 images and 

achieved high overall accuracies of 94.0%, 90.8% and 94.5%, respectively 

(Charlotte, Geoffrey & Francois 2019). Although Sentinel-2 imagery-based land 

cover maps have superior 10 m resolution compared to traditional land cover 

products, no published studies have used Sentinel-2 imagery-based land cover maps 

as a base map for mapping grass pollen sources. 

Besides geospatial landscape information on allergenic plants, satellite data also 

contribute to the retrieval of key phenology timing of allergenic vegetation to better 

inform pollen aerobiology and map pollen sources. Using satellite data time series, 

previous studies have adopted the onset of flowering as the phenological proxy to 

map allergenic birch pollen sources (Karlsen et al. 2009; Khwarahm et al. 2016). 

The underlying logic of using flowering phenophase to interpret pollen seasonal 

dynamics is the good correlations found between timings of birch male flowering 

and leaf budburst (1.1-day intervals between each other) (Linkosalo 1999, 2011). 

Further, the timing of these two phenophases appear to be closely synchronised 

with pollen release (Newnham, Adams-Groom & Smith 2013). However, this 

approach is not suitable for mapping grass pollen sources; compared to birch 

(regarded as the major allergenic pollen source in Europe), the flowering time of 
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grass is difficult to detect using satellite data due to their tiny flowers and their 

phenology being ecologically sensitive to meteorological variability (Beaumont et 

al. 2015; Ma et al. 2015). Additionally, Devadas et al. (2018) reported that 

Australian grass pollinating periods are less synchronous with satellite greenness 

measures compared with French sites, partly due to the more heterogeneous 

landscapes and complex species diversity (e.g., co-existence of exotic and native 

species; see Watson, Restrepo-Coupe & Huete 2019) in Australian grasslands. 

In this chapter, we adopt Sentinel-2 data at 10 m resolution to provide geospatial 

information of grass distributions and grass phenology information and improve 

understanding of grass pollen aerobiology. Based on the nonlinear correlations 

between grass pollen concentrations and grass greenness time series reported in the 

previous chapter, we mapped grass pollen sources around one pollen trap station 

using Sentinel-2 data. Combining phenocam in-situ observations of grass greenness 

and grass pollen concentrations from the in-situ pollen station, the following 

questions were investigated: 

(1) What are the differences in grass fractions extracted from three multiresolution 

grass maps (DLCD, ALUM and Sentinel-2 imagery-derived grass maps)? 

(2) Compared with coarser grass maps, does the Sentinel-2 grass map with 10 m 

resolution have better ability to filter grass greenness information from 

heterogeneous landscapes? 

(3) How do the grass fractions derived from the Sentinel-2 grass map change across 

different distances and orientations from the Campbelltown phenocam/pollen trap 

site? 

(4) How do grass greenness dynamics (phenology) vary with grass fraction variations 

across distances and orientations? 

(5) How are variations in grass greenness dynamics related to grass pollen 

concentrations at the pollen station? 

(6) Does knowledge of the spatial distribution of grass fractions better explain grass 

pollen dynamics? 

(7) How does the spatial distribution of grass pollen sources change across different 

years and grass pollen seasons? 
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4.2 METHODS 

4.2.1 Site description 

This study was conducted at three sites near Sydney and Brisbane (Fig. 4.1). The 

Campbelltown pollen station (34.0666 S, 150.7955 E) located on the TAFE New 

South Wales campus near Campbelltown City. It is located 53 km south-west of 

Sydney central business district. According to the 2016 census of population, there 

were 169,572 people in the Campbelltown suburb and Local Government Area 

(https://www.abs.gov.au/census). To compare the differences between 

multiresolution grass maps, we conduct this analysis at two other sites in landscapes 

characterised as urban-rural mixtures: the Richmond site (33.6183 S, 150.7458 E) 

and Rocklea phenocam site (27.5358 S, 152.9934 E).  The Richmond site is located 

near the campus of Western Sydney University and located approximately 65 km 

northwest of Sydney city. The Rocklea phenocam site is located approximately 9 

km south of Brisbane, Queensland. Further detail on these sites can be found in 

Chapter 2, Section 2.2.1. 

 

Figure 4.1 Locations of Campbelltown (1), Richmond (2), and Rocklea (3) sites 

relative to Sydney and Brisbane. Red circular and yellow squares denote regions 

where conducted analyses in this chapter. The Google Earth Pro provided the base 

map.   

https://www.abs.gov.au/census
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The climate of the Campbelltown site is humid subtropical (Koppen–Geigen 

classification Cfa) (K̈oppen, Volken & Brönnimann 2011), with warm to hot 

summers and mild to cool winters. During the study years (2018–2020), the mean 

annual maximum temperature was 24.8 °C and the mean annual minimum 

temperature was 10.9 °C (see Table 4.1). During the study years, the monthly mean 

maximum temperature was 32.1 °C in January and the monthly mean minimum 

temperature was 4.2 °C in July. The seasonal distribution of temperature is shown 

in Figure 4.2. During the study years, the area had a mean annual rainfall total of 

556.5 mm (see Table 4.1), with mean maximum and minimum monthly rainfall 

total being 69.9 mm (in December) and 17.9 mm (in April), respectively. The 

rainfall total is highly variable from year to year, with the highest annual rainfall 

total being 738.8 mm in 2020 and 401.4 mm in 2019. The seasonal distribution of 

rainfall is shown in Figure 4.2. 

Table 4.1 Mean monthly minimum and maximum temperatures (T) and rainfall 

taken from Campbelltown (Mount Annan) meteorology station from 2018 to 2020.  

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Mean max 

T (°C) 

32.1 29.5 27.2 25.8 21.5 18.2 18.9 19.2 22.6 25.2 28.0 29.3 24.8 

Mean min 

T (°C) 

18.5 16.7 15.4 12.0 7.0 5.6 4.2 4.3 7.4 11.2 12.9 15.4 10.9 

Monthly 

rainfall (mm) 

67.9 34.0 76.8 17.9 22.4 50.3 32.9 37.5 36.5 61.0 60.9 69.9 567.9 

 

 

Figure 4.2 Monthly precipitation total and monthly mean maximum and minimum 

temperature for Campbelltown site from 2018–2020. Source: 

http://www.bom.gov.au/climate/data/. 

http://www.bom.gov.au/climate/data/
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4.2.2 Description of multiresolution grass maps 

The Dynamic Land Cover Dataset Version 2 (DLCDv2.1) 

(http://www.ga.gov.au/scientific-topics/earth-obs/accessing-satellite-

imagery/landcover) with 250 m spatial resolution was used to extract grass 

information from the landscape around the grass pollen trap. The latest version 

(updated until the end of 2015) consists of 14 maps, each based on two years of 

MODIS (Moderate Resolution Imaging Spectrometer) data. The map used in this 

study is landcover during January 2014 – December 2015. We generated a grass 

map—referred as to the DLCD grass map—by compositing six original land cover 

types related to grass/pasture: Rain fed pasture, Closed Tussock Grassland, Open 

Tussock Grassland, Open Hummock Grassland, Scattered Shrubs and Grass and 

Irrigated pasture. 

The Australian Land Use and Management (ALUM) Classification version 8 

(https://www.agriculture.gov.au/abares/aclump/land-use/alum-classification) was 

used to generate another grass map, referred as to the ALUM grass map. The 

ALUM Classification system provides a nationally consistent method to collect and 

present land use information with 50 m resolution. The current version map was 

developed by the ALUM Classification Technical Working Group in 2016. We 

composited several original land use classes related to grass/pasture into one type to 

generate the ALUM grass map: Native/exotic pasture mosaic, Grazing irrigated 

modified pasture & Grazing modified pastures, Pasture legume and Pasture 

legume/grass mixtures. Note that several classes also include grass, for example, 

Recreation and culture, Services and Public Services classes usually include public 

green space and grass lawns to different extents in the urban area. We included the 

Recreation and culture class in the ALUM grass map, as the grass proportion is the 

highest among these three classes by visual inspection. 

To better inform grass cover greenness information from the heterogeneous 

landscape around the Campbelltown pollen trap station, we generated a grass map 

with 10 m resolution using CNN, referred to as to the Sentinel-2 grass map. The 

CNN is a deep learning algorithm for classification that has been widely adopted 

(Miranda et al. 2019) and increasingly used based on finer resolution Sentinel-2 

imagery for land cover classification, including crop (Mazzia, Khaliq & Chiaberge 

http://www.ga.gov.au/scientific-topics/earth-obs/accessing-satellite-imagery/landcover
http://www.ga.gov.au/scientific-topics/earth-obs/accessing-satellite-imagery/landcover
https://www.agriculture.gov.au/abares/aclump/land-use/alum-classification
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2020), forest (Miranda et al. 2019) and grassland (Pelletier et al. 2019; Dewi & 

Chen 2019). We trained the model using 8929 grass samples (i.e. 8929 Sentinel-2 

pixels) to generate a 20 × 20 km square grass map. To ensure the timeliness and 

accuracy of the grass map, all grass samples were selected from Sentinel-2 image of 

4-May-2020 (i.e. the greenest image in 2020) by manually checking on Google 

Earth Pro. The specific details about the process using the CNN model and 

accuracy are provided in Abdollahi et al. (2021). 

4.2.3 Grass greenness and pollen concentration data 

The Sentinel-2 EVI image satellite data was used for this study. Details about pre-

processing and calculating EVI from Sentinel-2 images are described in Chapter 3, 

Section 3.2.3.1. To better describe grass cover greenness dynamics from the 

heterogeneous landscape around the Campbelltown phenocam/pollen trap site, 

grass cover EVI was extracted from Sentinel-2 EVI images using each grass map 

with spatial resolutions varied from coarse to finer. 

Grass pollen concentration was collected in Campbelltown from January 2018 to 

June 2020 using Hirst-type volumetric pollen and spore traps (Burkard Scientific 

Ltd, Uxbridge, UK). Details on this method are provided in Haberle et al. (2014). 

4.2.4 Analysis strategies 

To explore the capacity of Sentinel-2 grass map with 10 m resolution to filter grass 

information from heterogeneous landscapes, I compared grass fractions extracted 

from Sentinel-2 grass map, ALUM, and DLCD, respectively, within 3 × 3 km 

square area at each site (Fig. 4.1 yellow square in small maps). And then, three 

grass maps were used to filter the grass EVI from Sentinel-2 landscape EVI images. 

Using phenocam observation of grass greenness as reference (Green Chromatic 

Coordinate, GCC), performances of three grass maps were further analysed by 

comparing correlations between grass EVI and phenocam GCC.  

The Sentinel-2 grass map was divided into 40 land plots (5 distances (2, 4, 6, 8, 10 

km radii) × 8 orientations) with varied grass fractions within a 20 km buffer around 

the Campbelltown pollen station (Fig. 4.1. Red circle). Grass EVI were calculated 

at each land plot. Those grass EVI time series and their relationships between in-

situ grass pollen concentrations were compared to explore whether grass phenology 
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and grass pollen – EVI correlations varied across distances and orientations. 

Furthermore, the role of grass fractions in interpreting grass pollen dynamics was 

analysed by correlating grass fractions with coefficients of determination between 

grass pollen and grass EVI time series.  

Pixel-wise grass sources maps for each grass pollen season were generated to 

explore seasonal and inter-annual variations in spatial distributions of grass pollen 

seasons. First, grass pollen seasons were defined based on peaks timing of grass 

EVI averaged from the 20 km buffer. Second, grass pixels with 10 m resolution 

were filtered by the Sentinel-2 grass map from Sentinel-2 landscape images. Third, 

we explored the relationship between the time series of EVI calculated from each 

grass pixel and the 5-day mean grass pollen concentrations (i.e. mean value for ± 2 

days of the date for corresponding Sentinel-2 EVI) by conducting least-squares 

polynomial regression analyses to calculate coefficients of determination (R2). The 

reason why we adopted polynomial regression is that simple linear regression is not 

suitable to fit the curvilinear shape between grass pollen concentrations and grass 

greenness changes, Additionally, although polynomial regression fits a 

nonlinear model to the data, as a statistical estimation problem it is linear. 

For this reason, R2 is a robust statistic for polynomial regression (Fan et al., 

1996) and is widely used in previous studies adopted polynomial regression 

(Oteros et al., 2015; Sadeh et al., 2021). Finally, mapping pixel-wise grass 

pollen sources for each pollen season using R2 values obtained in the previous step. 

Fig. 4.2 shows the flowchart of this study.  
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Figure 4.3 The flowchart of this study. 

4.3 RESULTS 

4.3.1 Comparison of grass spatial distributions among multiresolution grass maps 

Figure 4.4 shows landscapes (Google Earth Pro) and grass areas identified by the 

Sentinel-2 (b, f and j), ALUM (c, g and k) and DLCD (d, h, and l) grass maps 

around the Campbelltown, Rocklea and Richmond sites. 

According to the visual inspection in Figures 4.4 a, e and i, the Richmond site has 

more grass cover and fewer buildings and roads than the other two sites. For the 

Campbelltown site, the DLCD (250 m) and ALUM (50 m) incorrectly classified 

some buildings and roads as grass. For example, the ALUM grass map included a 

big building chunk located southwest of the pollen trap (the small red points in 

Figure 4.4 c). Similarly, the DLCD grass map classified those buildings and a lot of 

roads as grass (see Figure 4.4 d). These two coarse grass maps also missed some 

grass, such as the grass areas located west of the interchange around the 

Campbelltown site (see Figures 4.4 c and d). Note that the Sentinel-2 grass map 

correctly identified those grass areas (see Figure 4.4 a). Similar problems were 

exhibited in the urban site, Rocklea. Although the ALUM grass map did not include 

a big chunk of a building as it did in Campbelltown, it classified all trees on the golf 

course located east of Rocklea pollen trap site as grass (see Figure 4.4 g). The 
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DLCD missed a large area of grass southwest of the Rocklea pollen trap (see Figure 

4.4 h). The problems of coarse grass maps in the relatively rural site (Richmond) 

were mainly classifying buildings and some bare lands as grass (see Figures 4.4 k 

and l), but the Sentinel-2 grass map efficiently excluded those bare lands (see 

Figure 4.4 j). 

The proportions of grass areas classified by the different grass maps are 

summarised in Figure 4.5. The results from statistical analyses are in line with the 

visual inspection—much more grass areas were identified in Richmond (50.83% 

from the Sentinel-2 grass map) than in Campbelltown and Rocklea. The Rocklea 

site exhibited the least grass cover (17.85% from the Sentinel-2 grass map). The 

amount of identified grass varied greatly among the DLCD, ALUM and Sentinel-2 

grass maps, with the least grass recognised by the Sentinel-2 grass map. This result 

is understandable, given the difference in grass covers between the grass maps. The 

ALUM and DLCD grass maps incorrectly classified many non-grass areas as grass. 

Therefore, though ALUM has finer resolution compared to DLCD, it is still not 

suitable for accurate filtering of grass information from a heterogeneous landscape. 
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Figure 4.4 Landscapes and grass areas identified by the Sentinel-2, ALUM and 

DLCD grass maps within the 3 km x 3 km study areas centred on the pollen traps in 

Campbelltown (a to d), Rocklea (e to h) and Richmond (i to l). The background 

images of the landscapes were downloaded from Google Earth Pro. 

 

Figure 4.5 Proportion of 3 km x 3 km areas (Campbelltown, Rocklea and 

Richmond) classified as grass by the Sentinel-2, ALUM and DLCD grass maps. 

The areas are shown in Figure 4.4. 

4.3.2 Comparison of improvement of grass greenness upscaling from phenocam 

GCC to Sentinel-2 EVI by multiresolution grass maps 

Using multiresolution grass maps, we filtered grass information (grass pixels) from 

the landscape Sentinel-2 EVI images of the 3 km2 study areas centred on the 

Campbelltown and Rocklea sites. Phenocams were co-located with pollen traps at 

these two sites. The time series of phenocam GCC and Sentinel-2 EVI (unfiltered 

and filtered by grass maps) are shown in Figures 4.6 a and c. The correlations 

between phenocam GCC and landscape/grass cover Sentinel-2 EVI are shown in 

Figures 4.6 b and d and Table 4.2. 

At the Campbelltown site, all landscape/grass cover EVI time series were consistent 

with the phenocam GCC temporal profiles, although the EVI exhibited different 

magnitudes among grass maps (see Figure 4.6 a). At the Rocklea site, the grass EVI 
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time series reached its second peak earlier than the phenocam GCC (see Figure 4.6 

c). The dates of the second peak of grass EVI differed between grass maps. The 

grass EVI filtered by the Sentinel-2 grass map reached its second peak on 26 April 

2019, which is the closest to the second peak date of the phenocam GCC (3 May 

2019). In contrast, the grass EVI time series filtered by the ALUM and DLCD grass 

maps had the same second peak date as the unfiltered EVI (landscape) (6 April 

2019). The relatively large time intervals of peaks in the phenocam and Sentinel-2 

grass EVI may be due to differences in the phenological dynamics to the grass in 

the field of view of the phenocam at Rocklea versus the grass around this phenocam 

site. Regarding differences in magnitudes among grass EVI temporal profiles 

filtered by multiresolution grass maps, the Sentinel-2 grass map generated the 

highest EVI values. The unfiltered EVI (landscape) exhibited the lowest EVI values 

due to the mix-pixel effect reducing the EVI values of landscape Sentinel-2 images. 

This indicates that the Sentinel-2 grass map and other two coarse grass maps 

stretched the amplitudes of seasonal grass EVI time series by extracting grass 

information and then highlighted the seasonal dynamics of grass cover from all 

heterogeneous landscapes. 

We set the correlations between phenocam GCC and 3 x 3 pixel Sentinel-2 EVI at 

the phenocam footprint (details on determining the phenocam footprint from 

Sentinel-2 images were provided in Chapter 3, Section 3.2.5) as the reference of the 

true relationship between grass greenness metrics extracted from the phenocam and 

Sentinel-2, respectively (dashed lines in Figure 4.6 b and d, and the italic font in 

Table 4.2). Overall, all correlations between the phenocam GCC and 

landscape/grass Sentinel-2 EVI in Campbelltown were better than those in Rocklea, 

with higher R2 values. This may be attributed to the unconformity of the GCC and 

EVI at the second peak in Rocklea. All grass cover EVI filtered by grass maps 

improved the grass greenness upscaling from phenocam to Sentinel-2, with higher 

R2 values and slopes, as compared with landscape EVI calculated from ‘unfiltered’ 

Sentinel-2 images at both sites. The GCC-grass EVI correlation, filtered by the 

Sentinel-2 grass map, was the closest to the GCC-EVI correlation at the phenocam 

footprint scale at both sites (Figures 4.6 b and d). This indicates that the Sentinel-2 
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grass map exhibited the best performance in upscaling greenness, with the highest 

R2 and slope values of all grass maps. 

 

Figure 4.6 Time series of daily the phenocam GCC and Sentinel-2 grass EVI 

filtered by multiresolution grass maps at Campbelltown and Rocklea (a and c) and 

the correlations between them (b and d). Analyses conducted at the 3 km x 3 km 

areas shown in Figure 4.4. The dashed lines in the right panels denote the 

correlations between Sentinel-2 EVI (3 x 3 pixel) and phenocam GCC. 

Table 4.2 Coefficient of determination (R2) and slopes (a) of linear regression 

between phenocam GCC and whole landscape Sentinel-2 EVI (i.e., unfiltered EVI) 

and grass cover Sentinel-2 EVI filtered by the Sentinel-2, ALUM and DLCD grass 

maps. 

 Footprint S-2 grass map ALUM DLCD Unfiltered 

 R2 a R2 a R2 a R2 a R2 a 

Campbelltown 0.95 6.08 0.80 2.18 0.76 1.25 0.67 1.16 0.70 0.87 

Rocklea 0.75 7.55 0.41 4.36 0.40 3.28 0.40 2.72 0.34 1.64 

Note: These coefficients correspond to Figures 4.6 b and d. Bold font shows the 

highest correlation among the three grass maps. All correlations are significant at 

the p<0.0001 level. 
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To further compare the performances in filtering grass greenness information from 

landscapes among multiresolution grass maps, we plotted the histogram of pixel 

numbers from unfiltered and filtered Sentinel-2 EVI images using grass maps at 

Campbelltown (Figures 4.7 a–c) and Rocklea (Figures 4.7 d–f) (the 3 km2 areas 

shown in Figure 4.4) for their greenest days within growing seasons. The grey bars 

in Figure 4.7 denote the histogram of pixel numbers of landscape (unfiltered) 

Sentinel-2 EVI with mean EVI values for 0.30 and 0.32 at Campbelltown and 

Rocklea, respectively. The green, red and blue bars represent the histograms of 

pixel numbers of Sentinel-2 grass EVI filtered by the Sentinel-2, ALUM and DLCD 

grass maps, respectively. The thin and thick red lines denote mean Sentinel-2 grass 

pixels EVI and mean EVI at the phenocam footprint. Closer thin and thick red lines 

indicate better performance of that grass map in filtering grass information. 

For the DLCD grass map, the mean EVI of grass pixels was only 0.34 at 

Campbelltown and 0.41 at Rocklea. They deviated far from mean EVI at the 

phenocam footprint (i.e., reference lines). This indicates that although the DLCD 

grass map filtered a part of pixels (blue part in Figure 4.7 c) from whole landscape 

pixels, some were not grass pixels. For example, the anomalous pixels with EVI 

values around –0.1 in Figure 4.7 f. They likely belonged to water pixels located in 

the north part of the Rocklea site. Compared to the DLCD grass map, the ALUM 

grass map showed better performance with higher mean grass EVI values at both 

sites, especially at the Rocklea site (see Figure 4.7 e). The ALUM grass map also 

successfully filtered water pixels. However, the ALUM grass map only reduced the 

number of pixels but did not efficiently filter grass pixels at Campbelltown, 

considering it had a similar mean grass EVI value to the DLCD (0.37). The 

Sentinel-2 grass map increased mean grass EVI from 0.34 to 0.50 and 0.41 to 0.60 

at Campbelltown and Rocklea, respectively (see Figures 4.7 a and d). Both thin red 

lines were closer to the reference lines at both sites. All grass pixels filtered by the 

Sentinel-2 grass map kept higher EVI values at whole landscape pixels. In general, 

our results indicate that the Sentinel-2 grass map had the best performance in 

filtering grass information from landscapes compared to the ALUM and DLCD 

coarse grass maps. 
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Figure 4.7 Histogram of pixel numbers from unfiltered and filtered Sentinel-2 EVI 

images (3 km × 3 km areas shown in Figure 4.4) at the greenest day within the 

growing season for Campbelltown (26 December 2018) and Rocklea (2 November 

2018). Red thick solid lines represent the average of Sentinel-2 EVI values 

extracted from the phenocam footprint (3 x 3 pixels), set as the reference value for 

real grass greenness at each site. 

4.3.3 Seasonal grass dynamics and relationships with grass pollen concentrations 

around pollen trap station: Case study in Campbelltown 

4.3.3.1 Variations of grass fraction at different orientations with extended distances 

Based on our results from the above comparisons between multiresolution grass 

maps, we only used the Sentinel-2 grass map with 10 m resolution for the next 

analyses due to its superior performance in filtering grass information from 

heterogeneous landscapes. We selected the Campbelltown site to conduct analyses 

as the landscape around this pollen station is characterised as a rural-urban mixture. 

We extracted grass pixels from the area within a 10 km radius of the Campbelltown 

pollen trap station. Figure 4.8 shows the grass spatial distribution, based on 

Sentinel-2 grass map, around Campbelltown (the left panel) and the grass fractions 

of each circular study area (2 km, 4 km, 6 km, 8 km and 10 km radius). 

In general, grasses around the Campbelltown site were mainly concentrated at the 

NE1 (northeast 1, 0°–45°), SW1 (southwest 1, 180°–225°), SW2 (southwest 2, 

225°–270°), NW1 (northwest 1, 270°–315°) and NW2 (northwest 2, 315°–365°) 

orientations (Figure 4.8, right panel). Grass fractions at different orientations were 
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quite varied (Figure 4.8, left panel). The changes in grass fractions were greatest in 

NW2 and smallest in NE2 (northeast 2, 45°–90°). The grass fraction changed from 

68.39% (within 2 km radius) to 32.82% (within 10 km radius) at NW2 orientation. 

This indicates that grasses were distributed closer to the pollen trap in this direction. 

However, grasses were uniformly distributed in NE2 orientation, with grass 

fractions only changing from 10.64% (2 km radius) to 10.28% (10 km radius). The 

SE1 (southeast 1, 90°–135°) direction had the least grass fraction of all orientations 

(3.88% within 10 km radius). Most grasses were concentrated in the SW1 

orientation (50.98% within 10 km). 

 

Figure 4.8 Spatial distribution of grass fraction within a 10 km radius of the 

Campbelltown pollen trap (left panel) and grass proportions at different orientations 

(right panel). The area was divided into 40 sectors with varied distances and 

orientations. Light green in the left panel shows grass as identified by the Sentinel-2 

grass map. Different colours in the right panel denote different areas within 2 km, 4 

km, 6 km, 8 km and 10 km radius from the centre. Grey circles in each radar figure 

are the scale of grass fraction (0–80%). 

4.3.3.2 Variations of grass EVI seasonal dynamics across orientations and 

distances with varied grass fractions 

To explore whether the grass seasonal dynamics in terms of phenology timing and 

magnitude varied across orientations and distances, we compared grass EVI time 
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series among the 40 land plots within the 20 km radius area around the 

Campbelltown site from January 2018 to June 2020 (see Appendix X, Figure 

A.4.1). Figure 4.9 shows the time series of in-situ grass pollen concentrations and 

grass EVI extracted from different distances (0–2 km, 2–4 km, 4–6 km, 6–8 km and 

8–10 km) at three orientations (NW2, SW1 and NE2). The grass fractions of each 

land plot are included in Figure 4.9. NW2 (Figure 4.9 a) and SW1 (Figure 4.9 b) 

were characterised as roughly decreased and increased trends for grass fractions 

from inner to outer land plot s, respectively. The grass fractions in the NE2 

direction showed moderate variations and lower values compared to other 

orientations. Though all grass EVI profiles exhibited similar phenological dynamics 

with the same major grass greenness peaks (e.g., peaks occurred in February and 

October 2018, January and May 2019, and February to May 2020), the specific 

timing of EVI peaks and magnitudes varied among land plots with different grass 

fractions. 

For the NW2 orientation (Figure 4.9 a), eight grass EVI peaks were identified 

throughout the entire growing season (from 2018–2020). The areas within 0–2 km 

(green line and bar) and 4–6 km (black line and bar) had the most and least grass 

fractions, respectively. Areas with higher grass fractions did not always have higher 

grass EVI values. For example, although areas within 0–2 km and 2–4 km had 

relatively higher grass fractions compared to other land plots, their grass EVI values 

were lower than those extracted from the 6–8 km and 8–10 km areas from January 

to June 2018. For other grass pollen seasons in 2019 and 2020, however, areas with 

higher grass fractions had higher grass EVI values (e.g., January and May peaks in 

2019, and October and February peaks in 2020). Besides differences in grass EVI 

magnitude, the phenology of each grass plot showed differences in some grass 

pollen seasons. Though all grass EVI values in five grass plots reached their 

maximum values around October 2019, in which a corresponding grass pollen peak 

occurred, the date of the grass EVI peak of the 6–8 km area (red line) lagged behind 

the other EVI peaks by 15 days (7 and 22 October, respectively). Additionally, 

grass EVI values reached their peaks on three different days for the long grass 

pollen season during February to May 2020 (19 February 2020 for 0–2 km and 2–5 

km, 19 March 2020 for 8–10 km, and 14 April 2020 for 4–6 km and 6–8 km). 
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For the SW1 orientation (Figure 4.9 b), patterns of grass EVI dynamics extracted 

from different grass plots behaved similarly to those in NW2. In the grass pollen 

season in February 2018, grass plots with lower grass fractions showed higher grass 

EVI values (similar to that observed in NW2) and dates of grass EVI peaks were 

different within the pollen season period. Though grass fraction was slightly lower 

in the 6–8 km area than in the 8–10 km area, the grass EVI values of the 6–8 km 

area were higher than that of the 8–10 km area in the October 2018, January 2019 

and April 2020 pollen seasons (red line in Figure 4.9 b). Similar to NW2, grass EVI 

profiles from different grass plots showed different dates of EVI peaks in the 

October 2019 and April 2020 pollen seasons. For peaks around October 2019, 

however, the grass EVI peak date of the 6–8 km and 8–10 km areas was 27 

September (10 days earlier than the peak in the 0–2 km area in NW2; Figure 4.9 a, 

green line). For grass peaks around April 2020, EVI profiles from the 0–2 km and 

2–4 km areas reached their peaks on 19 April 2020 in SW1 (Figure 4.9 b, green and 

yellow lines). This lagged behind their peaks in NW2 by one month. 

For the NE2 orientation (Figure 4.9 c), the magnitude of grass EVI profiles did not 

change as strongly as the other two directions due to grass fractions varying 

moderately among land plots in this orientation (bar plot in Figure 4.9 c). 

Interestingly, grass EVI values from the 8–10 km area were higher than other EVI 

profiles throughout almost the entire growing season, even though other grass plots 

had higher grass fractions. Similar to NW2 and SW1, grass EVI profiles reached 

their peaks on different dates and plateaued from February to May 2020. 
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Figure 4.9 Time series plots of grass pollen concentrations and Sentinel-2 grass EVI 

extracted from (a) NW2 (northwest 2, 315°–365°), (b) SW1 (southwest 1, 180°–

225°) and (c) NE2 (northeast 2, 45°–90°) orientations across increased distances for 

2018–2020 at the Campbelltown site. 

In general, the major differences between grass EVI profiles extracted from each 

land plot with varied grass fractions related to magnitudes of grass EVI and 

phenology (i.e., grass peak dates) for different grass pollen seasons. Compared with 

grass pollen seasons in 2019 and 2020, grass pollen concentrations in 2018 pollen 
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seasons were dramatically lower. The differences in grass greenness between land 

plots with higher grass fractions and plots with lower grass fractions can partly 

explain this finding; areas with much more grass may not release much grass pollen 

due to being yellower than normal. Therefore, grass pollens mainly came from 

areas with lower grass fractions and maintained lower pollen concentrations during 

the pollen season in 2018. In the grass pollen seasons in 2019 and 2020, the grass 

greenness of areas with higher grass fractions became higher than areas with lower 

grass fractions. All grasses in the 2019 and 2020 pollen seasons were greener than 

in February 2018, and grass pollens came from all land plots, especially areas with 

higher grass fractions. In particular, the grass EVI profiles showed a plateau with 

higher values and several different peak dates from February to May 2020. This 

partly explains why this grass pollen season lasted longer, as a longer period of 

green grasses indicates a larger possibility of releasing grass pollen. 

4.3.3.3 Variations of correlations between grass EVI and grass pollen 

concentrations across orientations with increased distances 

According to the analyses in the previous section, grass EVI seasonal dynamics 

varied with extended distances at different orientations. In this section, we explore 

changes in correlations between grass pollen concentrations and grass EVI 

dynamics across orientations and distances around the Campbelltown site. 

Correlations between grass pollen concentrations and grass EVI in circular areas 

with increased distances centred on the Campbelltown pollen station are shown in 

Figure 4.10. The associated coefficient of determination values are shown in Figure 

4.11. All analyses in this section were conducted in February to June of their 

respective study year (2018, 2019 or 2020) to avoid losing inter-annual specific 

differences due to mixing different years into one research period. 

Grass pollen concentrations correlated well with grass EVI dynamics extracted 

from circular areas with varied distances in 2018 (Figures 4.10 a–e) and 2020 

(Figures 4.10 k–o), with R2 ranging from 0.60 to 0.70. However, grass pollen 

concentrations did not correlate with greenness dynamics of grasses around the 

Campbelltown pollen trap station in 2019 (Figures 4.10 f–j). Grass pollen 

concentrations observed from the in-situ pollen trap showed positive correlations 

with grass greenness dynamics, which indicates grass pollen concentrations 
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increased as grass greenness increased. However, the relationship exhibited a 

nonlinear form. This might be attributed to the peaks of grass pollen concentrations 

always lagging behind the peaks of grass greenness. For example, the grass EVI 

peak that occurred around October 2020 triggered the grass pollen peak around 

November 2020 (Figure 4.9). For the grass pollen – EVI correlations in 2018, the 

R2 values increased from 0.60 to 0.70 with the extended research areas. The 

increasing trend of R2 values might be due to more grasses being included in study 

areas as distances increased; therefore, correlations between grass greenness and 

grass pollen concentrations became stronger as study areas increased in size. In 

contrast, R2 values experienced a decreasing trend as study areas extended in 2020. 

This may indicate that grass pollens came from areas closer to the pollen trap 

station. More grasses not associated with grass pollen dynamics may have been 

included in larger study areas, weakening grass greenness – pollen correlations. In 

general, correlations between grass pollen concentrations and grass EVI varied 

across distances and years. 
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Figure 4.10 Correlations between five-day mean grass pollen concentrations and Sentinel-2 grass EVI for each sector across increased distances 

(from 2 km to 10 km radius) for February to June 2018, 2019 and 2020 at Campbelltown. n = the number of available images in that year. 

Sectors 1–8 denote NE1, NE2, SE1, SE2, SW1, SW2, NW1 and NW2, respectively. The five-day mean grass pollen data is the mean value for 

±two days from the date for the corresponding Sentinel-2 EVI. Note that the coefficient of determination values (R2) and regression lines were 

calculated using mean grass EVI values within the whole circle, rather than every sector in each circle. *** denotes correlation significant at 

p = 0.0001. The R2 values for each sector are summarised in Figure 4.11.
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To analyse differences in grass pollen – EVI correlations at different orientations 

and further explore why their correlations exhibited opposite trends with increased 

distances in 2018 versus 2020 (February to June) (as seen in Figure 4.10), we 

compared correlations between grass pollen and grass greenness for eight different 

directions in 2018 and 2020 by plotting a heat map of coefficient of determination 

values (see Figure 4.11). Grass pollen – EVI correlations at varying distances and 

orientations in 2020 were generally stronger than those in 2018. Of course, a 

potential reason for this is that the study period included 12 months of 2018 but 

only five months of 2020. Additionally, correlations varied among orientations, 

with stronger relationships observed for the SW1, SW2, NW1 and NW2 directions 

for both 2018 and 2020. 

In 2018 (see Figure 4.11 left panel), areas in NE1, NE2 and SE1 had relatively 

lower R2 values compared to other orientations. The 0–2 km area in SE2 and 0–10 

km area in SW2 exhibited the lowest and highest R2 values, respectively, among all 

distances and directions. Within the 0–2 km radius, grass greenness dynamics were 

more associated with grass pollen dynamics in areas in the SW1, SW2 and NW1 

directions. Grass pollen concentrations showed weaker correlations with grass 

greenness in the SE2 and NW2 directions, though these increased as research areas 

extended. This indicates that greenness of grasses, clustered in closer areas, was 

less associated with grass pollen dynamics, and grass pollens might come from 

grasses beyond the 2 km radius in these two directions. A similar pattern was also 

found for the SW2 and NW1 orientations and partly explains why grass EVI from 

increased research areas (i.e., larger radius) exhibited stronger correlations with 

grass pollen in 2018 (see Figures 4.10 a–e). 

In 2020 (see Figure 4.11 right panel), patterns of variations in R2 values with 

increasing study distances were different (even opposite) to the 2018 patterns for 

most orientations. Of the eight orientations, only SW1 and NW2 exhibited 

increased R2 values as distances increased. The grass pollen – EVI correlations 

tended to weaken with increasing distances in the other six orientations, which 

indicates that grass pollen dynamics in 2020 was more associated with grasses 

located in areas closer to the Campbelltown pollen trap station. This trend was 

extremely obvious in the NE2, SE1 and SE2 directions compared with 2018. Grass 
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pollen – EVI correlations in more distant areas tended to weaken in 2018 (see 

Figures 4.10 k–o). 

 

Figure 4.11 Heat map of coefficient of determination values (R2) for correlations 

between five-day mean grass pollen concentrations and grass cover EVI for every 

sector (Campbelltown site) for 2018 and 2020. These R2 values correspond to the 

cross plots in Figure 4.10. 

4.3.3.4 Variations of correlations between grass EVI and grass pollen 

concentrations across distances and orientations with varied grass fractions 

According to the analyses in Section 4.3.3.3, grass greenness dynamics was more 

associated with grass pollen concentrations in larger outer areas than in smaller 

closer areas around the Campbelltown pollen trap sites in some directions for 2018, 

with an opposite pattern in 2020. However, we cannot firmly conclude that grasses 

in farther regions were more related to grass pollen dynamics due to study areas 

overlapping with increasing distances. Further, land plot area (i.e., study areas) 

tended to be larger as distances increased. For example, the area of land plots in the 

8–10 km band was greater than the area of those plots within the 0–2 km band. 

Therefore, the question arises whether stronger grass pollen – EVI correlations in 

larger outer study regions were due to the greater amount of grass in these areas, 

rather than the grass phenological factor? In other words, did land plots with higher 

grass fractions tend to have a stronger ability to explain grass pollen dynamics? To 

further analyse differences in grass pollen – EVI correlations across distances and 

orientations that had varying amounts of grasses, we conducted correlation analyses 
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for 40 sectors (eight orientations × five distance intervals) (to eliminate the 

overlapped area effect) and compared their R2 values with grass fractions (to 

eliminate the differences in areas of land plots) in each sector. 

In general, variation patterns in R2 values across orientations and distances (sectors 

in annuli) (Figure 4.12) were similar to the patterns shown in Figure 4.11 (sectors in 

circles). This firmly indicates that stronger correlations between grass pollen and 

grass greenness in larger land plots (e.g., areas in the 8–10 km radius in SW2; see 

Figure 4.11) were due to the greenness of grass in farther areas being better related 

to grass pollen dynamics than that in closer areas (see Figure 4.12 a). Similarly, the 

obvious decreasing trend in R2 values with increasing distances in the SE1 

orientation in 2020 (see Figure 4.11) was due to farther grasses showing weaker 

correlations with grass pollen compared to grasses in closer areas in this direction 

(see Figure 4. 12 c). Figure 4.12 b shows the R2 values of grass pollen – EVI 

correlations for each sector in 2019. As shown in Figures 4.10 f–j, grass greenness 

dynamics was not associated with grass pollen concentrations in all sectors in 2019. 

Therefore, we can confidently state that grasses closely related to grass pollen 

dynamics were distributed across different orientations and distances, and that their 

patterns of spatial distribution varied across years. 
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Figure 4.12 Heat map of coefficient of determination values (R2) for correlations 

between five-day mean grass pollen concentrations and grass EVI from every sector 

in each year for (a) 2018, (b) 2019 and (c) 2020 (five months), and (d) the grass 

fraction at the Campbelltown site. 

Additionally, we showed the grass fractions of each land plot (Figure 4.12 d). In 

general, grass fractions varied greatly across orientations and distances. Land plots 

in the NE2, SE1, and SE2 directions had relatively low grass fractions compared to 

other orientations, with higher grass fractions only concentrated in areas closer to 

the Campbelltown pollen trap station. In the SW1 direction, grass fractions in each 

land plot increased with increasing distances, which indicates grass was mainly 

located in farther land plots for this orientation. In contrast, grass fractions in each 

land plot decreased as distance increased in NW1 and NW2. Grass fraction 

appeared to be unrelated to distance in the NE1 and SW2 orientations. 
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In general, the distribution patterns of land plots with higher grass fractions were 

similar to the R2 values. For example, higher grass fractions in the land plots within 

8–10 km in the SW1, SW2 and NW1 directions corresponded to stronger grass 

pollen – EVI correlations in 2018 and 2020. In contrast, the land plot within the 8–

10 km area in the SE1 direction had the lowest grass fraction and the lowest R2 

value in all years. However, the grass fraction of the land plot within 8–10 km in 

the SE2 orientation was relatively low (only 8.28%), but the R2 values derived from 

grass pollen – EVI correlations in this land plot were 0.77 and 0.24 in 2018 and 

2020, respectively. Therefore, to further explore whether land plots with higher 

grass fractions exhibited a stronger ability to interpret grass pollen dynamics, we 

correlated R2 values derived from grass pollen – EVI correlations with grass 

fractions for 2018 and 2020 (see Figure 4.13). 

The coefficient of determination derived from correlations between grass pollen 

and grass EVI positively correlated with grass fractions in 2018 (see Figure 4.13 a) 

and 2020 (see Figure 4.13 b) with different significance levels. In 2018, grass 

fraction only showed a weak correlation with the coefficient of determination 

derived from grass pollen – EVI correlations (R2 = 0.15). This indicates that more 

grass did not equate to better ability to interpret grass pollen dynamics in 2018. In 

contrast, the grass fraction showed significantly positive correlations with R2 values 

derived from grass pollen – EVI correlations in 2020, which indicates that 

variations in grass fractions explained the grass pollen – EVI correlation changes 

across orientations and distances to some extent. There is a bunch of points kept 

relatively vertical form in Figure 4.13 b might be because the relationships between 

grass pollen concentrations and grass phenology remained unchanged despite the 

grass fraction in some land plots increasing. It indirectly proved that the grass 

fraction is not the determining factor for understanding grass pollen dynamics, and 

grass phenological variations played a combined role with grass fraction in 

interpreting grass pollen dynamics. 
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Figure 4.13 Correlations between coefficients of determination (R2) derived from 

grass pollen – EVI correlations and grass fractions for each land plot around the 

Campbelltown site for (a) 2018 and (b) 2020 (five months). 

4.3.4 Inter-annual and inter-seasonal variations in spatial distributions of grass 

pollen sources 

Figure 4.14 shows the variations in pixel-wise spatial distributions of grass pollen 

sources around the Campbelltown pollen station across pollen seasons and years. 

Given that there were multiple pollen seasons during one Julian year, we divided 

each year into several grass pollen seasons based on the magnitude of grass pollen 

concentrations. There were two pollen seasons in 2018 (30 January – 20 May 2018 

and 7 September – 1 December 2018), three in 2019 (1 December 2018 – 19 

February 2019, 26 March – 9 July 2019 and 23 August – 26 December 2019) and 

one in 2020 (19 February – 28 June 2020). Grass pollen seasons are highlighted by 

different colour in the time series of grass EVI and denoted by S1 to S6 in Figure 

4.14. The circular plots in Figure 4.14 show the spatial distributions of grass pollen 

sources for each season and Julian year. 

The results of the above analyses show that pixel-wise correlations between grass 

pollen concentrations and grass EVI time series were stronger in 2018 than in 2019 

and 2020, with much more grass pixels with high R2 values in the research area in 

2018. Almost all grass pixels showed low R2 values in 2019. The magnitudes of R2 

values differed between 2018 and 2020, though the spatial distributions of grass 

pollen sources were similar (in NE1, SW1, SW2, NW1 and NW2). There were two 

grass areas located in the 8–10 km area in the SW1 orientation that showed weak 

correlations (cold colours) in 2018 but relatively strong correlations (warm colours) 
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in 2020. This suggests the spatial distributions of grass pollen sources varied across 

years. 

For two grass pollen seasons (S1 and S2) in 2018, distributions of grass pollen 

sources clearly varied in terms of orientations. Grass pollen sources were mainly 

concentrated in the NE1, NE2, SE1, SW1 and NW2 directions in S1. However, 

almost all grasses surrounding the Campbelltown pollen station were pollen sources 

in S2. This indicates that the grass species located in the SW2, NW1 and SE2 

directions might differ from the species in the other five directions, which had 

different pollination periods. For example, the greenness of grass located in the 8–

10 km area in the SW1 direction showed strong correlations with grass pollen in S1 

but weak correlations in S2. The grass plots (0–2 km) in the NW2 direction showed 

the same pattern. 

Although we did not identify grass pollen sources on a long-term temporal study 

scale (the entire year) in 2019, some grass pixels exhibiting strong grass pollen – 

EVI correlations were found when shifting to season scale. This indicates that grass 

pollen sources varied across distances and orientations among pollen seasons within 

one year. Another interesting finding is that the distributions and amounts of grass 

pollen sources were dramatically different between S2 and S5, though both of them 

were the autumn to summer pollen season. Compared with S2 (2018), grass pollen 

in S5 came from a smaller number of pollen sources located in farther areas. 

Additionally, according to grass EVI and pollen profiles, grasses turned very green 

around January 2019 (corresponded to S3) and a sharp increase in grass pollen 

concentrations occurred at the same time. However, no obvious grass pollen 

sources were found within the 10 km radius in S3. It may be that grass pollen came 

from sources outside the 10 km radius in S3. Overall, the spatial distribution and 

amount of grass pollen sources varied across each pollen season. 
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Figure 4.14 Pixel-wise spatial distribution of coefficient of determination (R2) 

between five-day mean grass pollen concentrations and grass EVI derived from 

Sentinel-2 data for each grass pollen season and Julian year (2018–2020). S1 to S6 

denote grass pollen seasons 1 to 6, respectively, highlighted by different colours in 

the top plot. White parts represent non-grass classes according to the Sentinel-2 

grass map.  
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4.4 DISCUSSION 

4.4.1 Differences in grass fractions derived from multi-resolution grass maps 

Plant species used for ornamental and recreational purposes in urban landscapes 

(i.e. parks, gardens, tree-alignments or open green spaces in a broad sense) are the 

most common cause of pollen allergies among the local population (Granada, 

Spain) (Cariñanos, Casares-Porcel & Quesada-Rubio 2014). However, how to 

accurately describe grass greenness dynamics in urban is remain unsolved due to 

land cover products usually have coarse resolutions (> 10 m), which are widely 

used to filter grass information from landscapes. Using a commercial satellite 

image -  Quickbird (DigitalGlobal Corporate, 2010) with 0.6 m ground resolution, 

Skjøth et al., (2013) generated an image showing the potential grass pollen source 

areas in the urban area. Though high-resolution images captured by commercial 

satellite or unmanned aerial vehicles (UAVs) (Guo et al. 2018) provide a chance to 

efficiently identify the distribution of grass in urban areas, they are not suitable for 

applications at national or continental scales. 

In this study, by comparing with widely used land cover products in Australia (i.e. 

DLCD, 250 m; ALUM, 50 m), we proved the promising potential of Sentinel-2 

image-derived grass map with 10 m resolution in describing urban grass greenness. 

According to Fig. 4.4 and 4.5, both DLCD and ALUM products recognized non-

grass features as grass due to their coarse resolutions and specific usages. Unlike 

DLCD (i.e. land cover products), ALUM was designed to provide land use 

information. Land cover data documents how much of a region is covered by 

forests, wetlands, agriculture, grassland, and other land and water types. They are 

usually generated by satellite images. In contrast, land use map shows how people 

use the landscape – whether for development, conservation, or mixed uses. 

Therefore, though some classes of ALUM indeed include grass cover, e.g. parks, 

golf course, and lawns, they did not be included in “grass cover” classes in my 

study, because those regions included too many buildings or non-grass classes 

rather pure grass cover. On the other hand, to improve the accuracy of the ALUM 

grass map, we integrated urban ‘green space’ into it. However, non-grass features 

will inevitably be included in the grass map, for example, trees surrounding the golf 

course, or buildings nearby the recreation lawns. That is why though the ALUM 
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grass map features 50 m resolution, its performance is similar to the DLCD grass 

map (250 m). The differences in capturing grass greenness between Sentinel-2 

grass map, ALUM and DLCD were shown in Fig. 4.6. and 4.7. As compared with 

coarse grass maps, the Sentinel-2 grass map can efficiently measure and track grass 

greenness dynamics, even in heterogeneous urban landscapes, due to it successfully 

excluded non-grass features (Fig. 4.7).  

4.4.2 Variations in grass phenology and relationships with grass pollen 

concentrations across distances and orientations  

According to our results (Fig. 4.8 to 4.13, and Appendix Fig. 4.A1 and A2), grass 

fractions varied across distances and orientations around the pollen trap station. 

Meanwhile, grass phenology, which derived from Sentinel-2 grass images, and 

relationships between grass pollen concentrations were varied in different degrees 

with distances and orientations changes.   

Though grass fractions were varied at different land plots around the Campbelltown 

site, their grass phenology exhibited similar temporal trends from January 2018 to 

June 2020, with slight shifts in greenness peak timing between different land plots 

(Fig. 4.9). In contrast, the magnitude of grass greenness around peak timings varied 

obviously and it was associated with grass fractions, i.e. higher grass fractions, 

higher magnitudes of grass greenness. However, grass phenology derived from 

different land plots around March 2018 exhibited the opposite ‘fraction - 

magnitude’ pattern compared with other grass greenness peaks. It might be 

attributed to the differences in responding to precipitation between C3 (cool season) 

and C4 (warm season) species. The summer-autumn months (from January to May) 

in 2018 were dryer than 2019 and 2020, with monthly precipitation totals of 121.2 

mm, 225 mm, and 276.6 mm for 2018, 2019 and 2020, respectively (Fig. 4.2). 

According to previous studies, aridity does seem to help C4 vegetation to persist at 

temperatures that would otherwise have led to C3 dominance (Sage et al. 1999; 

Cabido et al. 2008). Therefore, the aridity suppressed the growth of C3 vegetation, 

which is located at land plots with high grass fractions (Fig. 4.9), and then reduced 

the magnitude of their greenness in summer-autumn months, 2018. As precipitation 

increased in 2019 and 2020, C3 species became to be dominated again, and thus 

their magnitude of greenness increased. 
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Although the grass phenology did not vary obviously across distances and 

orientations, relationships between grass phenology and grass pollen concentrations 

varied a lot at different years (Fig. 4.10 to 4.12). The grass greenness dynamics 

around pollen station associated well with in-situ trapped grass pollen 

concentrations in 2018 and 2020, but not 2019. Furthermore, grass greenness 

extracted from several farther land plots showed higher correlations with grass 

pollen as compared with closer grass plots in 2018 (e.g. Fig. 4.12 a). In contrast, 

grass pollen – EVI correlations exhibited a relatively consistent pattern with 

distances increased in 2020 (e.g. Fig. 4.12 c).  

I tried to explain whether varied grass fractions in different land plots are the key 

reason that caused the variations in grass pollen – EVI correlations across distances 

and orientations (Fig. 4.13). In general, land plots with more grass (higher grass 

fractions) are thought to have greater possibilities to release grass pollen and 

therefore their grass greenness possesses stronger performance to interpret grass 

pollen dynamics. However, the grass fraction seems to act as a secondary control in 

my results. For example, in 2020, correlations between grass greenness and pollen 

concentrations did not continue to increase when the grass fraction reached a certain 

level (Fig. 4.13 b). And in 2018, the year where grass greenness showed strong 

correlations with pollen, even grass greenness derived from land plots with small 

grass fractions (i.e. less grass) could better interpret pollen dynamics than land plots 

with more grass (Fig. 4.13 a).  

4.4.3 Seasonal variations in spatial distributions of grass pollen sources  

To improve the advances in pollen forecast systems, mapping grass pollen emission 

sources is critical, particularly in diverse landscapes where mixtures of species 

composition are not well represented in existing coarse land cover products. In this 

study, the promising performance of Sentinel-2 data had been proved for improving 

the description of grass greenness from space and for mapping grass pollen sources 

with finer spatial resolution. It provides firm data support to better inform grass 

pollen aerobiology in urban areas, especially considering the growing allergenicity 

related to urban green spaces that had been reported in previous studies (Cariñanos 

et al. 2002; De Linares et al. 2010).  
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I mapped grass pollen sources based on grass pollen – EVI correlations using 

Sentinel-2 grass map for a 20 × 20 km circular area centred at Campbelltown pollen 

station. The grass surrounding the pollen station exhibited six greenness peaks from 

January 2018 to June 2020, which corresponded to grass pollen activities (Fig. 

4.14). This is due to grass cover in Sydney region consist of native/ exotic species, 

and the co-existence of mixed C3 (cool-season grasses)/C4 (subtropical or summer-

flowering grasses) species (Davies et al. 2015). These functionally diverse grasses, 

which with contrasting growth requirements, contributed to multiple peaks of grass 

greenness and pollen (Medek et al. 2016).According to grass pollen sources maps 

(Fig. 4.14), the deviation in spatial distributions and amounts of pollen sources were 

evident across pollen seasons.  

Although S1, S4, and S6 (Fig. 4.14), were summer-autumn pollen seasons 

associated with C4 grasses (highlighted by red color in Fig. 4.15), their grass pollen 

sources were different in terms of spatial distribution and amounts. As discussed 

above (section 4.4.2), C4 grasses exhibited only minor senescence during S1 when 

low rainfall promoted browning in C3 grasslands (Watson, Restrepo-Coupe & 

Huete 2019). Therefore, only C4 – dominated grasslands around pollen station (i.e. 

NW2, within 4 km; NE1, NE2, and SW1) contributed pollens in S1 (Fig. 4.14). In 

contrast, besides those four orientations, SE2 and NW1 also contributed pollens to 

S6. It can be attributed to high rainfall during S6 might favour the growth for both 

C3 and C4, and thus grass greenness in S6 were dramatically high (Fig. 4.15). 

Additionally, to compensate for growth disadvantages in competing for growth 

resources and space with C4 grasses, C3 grasses may flower earlier and reproduce 

longer. Therefore, the possibility of both C4 and C3-dominated grasslands 

contributing pollens to S6 and forming a long pollen season was not be excluded. 

Furthermore, to better interpret the combined or individual impact of grass species 

on grass pollen concentration dynamics, categories of grass classified by temporal 

sequences of grass greening and grass flowering of specific grass species (e.g., 

species flowering prior/after to vegetative green peak) is worth to study in the 

future. Although grass exhibited a greenness peak around April 2019 (i.e. S4), only 

small amounts of grass were associated with pollen activities at S4 as compared 

with S1 and S6 (Fig. 4.14). It might be due to the fact that although the grass turned 
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green but did not release grass pollens and, therefore, the amount of grass pollen 

concentrations trapped by pollen station was small at S4. Another assumption is 

grass released pollen but they were not captured by pollen trap due to 

meteorological variables – for example, increased relative humidity that usually 

hindered airborne pollen transport (Rojo et al. 2015), especially considering a heavy 

rainfall occurred at the start of S4 (Fig. 4.15).  

The spring pollen season S2 and S5 were associated with cool-season C3 grasses 

(highlighted by blue color in Fig. 4.15). The C3 species generally reached greenness 

peak in late October to early November in Australia, but high rainfall has been 

demonstrated to drive a C3 green peak occurred in January in a previous study 

(Watson, Restrepo-Coupe & Huete 2019). It keeps in line with my results – there 

was a January (2019) greenness peak after a heavy rainfall occurred around 

December 2018. Therefore, the S3 was identified as pollen season that was 

associated with C3 grasses and highlighted by green in Fig. 4.15. Given greenness 

peak in S3 was an anomalous peak driven by rainfall, it might do not have the 

pollination ability. And thus, grass pollen concentrations decreased alongside grass 

greenness increased and only small amounts of grass were associated with pollen 

dynamics in S3 (Fig. 4.15). As for other two spring seasons, fewer pollen sources 

and lower grass greenness for S5 can be partly attributed to lower precipitation as 

compared with S2 (Fig. 4.15). Overall, variations in grass pollen sources 

distribution among seasons were driven by not only grass phenology, but also other 

explanatory variables (e.g. precipitation, relative humidity, temperature, and wind). 

The effect of meteorological variables on pollen emission and dispersal should be 

taken into account in informing the aerobiology of grass pollen using satellite-based 

remote sensing.  
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Figure 4.15 Time series plots of monthly precipitation total and mean grass 

Sentinel-2 EVI averaged from the 20 × 20 km circular area around Campbelltown 

site from 2018 to 2020. Summer-autumn pollen seasons associated with C4 grasses 

are highlighted by red colors. Blue and green colors highlight spring pollen seasons 

associated with C3 grasses. 

For further provide some clues to interpret seasonal dynamics of grass pollen 

concentrations across all grass pollen seasons, we plotted the wind speeds and 

directions roses (Figure 4.16). Due to grass pollen seasons could be roughly divided 

into two types, i.e., S1, S4, and S6 – the pollen peak appeared around April; and S2 

and S5 – the pollen peak appeared around October (Figure 4.15), we analyses the 

wind speeds and prevailing wind directions for time period from the middle of 

March to the middle of April (hereafter: Mar-Apr wind) and from the middle of 

October to the middle of November (hereafter: Oct-Nov wind).  

As compared with April pollen peaks (i.e., S1, S4, and S6), grass pollen 

concentrations are usually higher than November pollen peaks (i.e., S2 and S5). It is 

partly contributed to wind were faster in Oct-Nov wind and showed much more 

diverse directions than Mar-Apr wind (Figure. 4.16). For example, the prevailing 

wind only blew from the SSW at 9:00 am for Mar-Apr wind (Figure 4.16 a). 

However, besides SSW direction, almost 20% of wind blew from the north at 9:00 

am for Oct-Nov wind (Figure 4.17 c). Additionally, the wind that was larger than 

20 km/h was only found at Oct-Nov wind rose (Figure 4.17 d).  

Regarding the inter-annual differences in terms of pollen concentrations among the 

same pollen seasons, the wind speeds and directions also provided some insights by 
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combining grass pollen sources map. According to Figure 4.14, there were much 

more grass plots located at SW1 and SW2 directions (i.e., the prevailing wind 

direction, SSW, in Mar-Apr wind rose, Figure 4.16 a) were recognized as pollen 

sources in S6 compared with S1 and S4. Therefore, the prevailing wind carries 

pollens in SSW directions to pollen trap and consequently the pollen concentrations 

increased in S6. Furthermore, though there were fewer grass pollen sources in S5 as 

compared with S2, diverse wind directions and faster wind speeds in Oct-Nov wind 

could be used to explain the similar amount of grass pollen concentrations in S2 

and S5. In other words, grass pollens collected by the trap in S5 might come from 

pollen sources beyond our research regions, which were carried by stronger winds 

from diverse directions.  

 

Figure 4.16 The wind speed and direction rose at Campbelltown for 15/03/2021 – 

15/04/2021 and 15/10/2020 – 15/11/2020. Wind directions are divided into sixteen 

compass directions. The circles around the image represent the various percentages 



 

200 

 

of occurrence of the winds (e.g., if the line to the south just reaches the 20% ring it 

means a frequency of 20% blowing from that direction). Wind speeds are grouped 

into three compass speeds. The black lines denote the grand total of all wind 

speeds. The left panels (a and c) and right panels (b and d) is wind rose for 9:00 am 

and 3 pm, respectively. 

4.5 CONCLUSION 

In this study, we explored the potential of Sentinel-2 data with 10 m resolutions for 

improving filter grass information from heterogeneous landscapes and for mapping 

grass pollen sources. Despite the complex landscape conditions, this study has 

shown that the Sentinel-2 grass map can function effectively in monitoring and 

tracing grass greenness dynamics, and thus improve our understanding on the 

aerobiology of grass pollen. The Sentinel-2 data contributed both to the timing of 

grass phenology growth periods and important geospatial landscape information on 

local and regional grass pollen emission sources. Results from this study are 

promising because they offer a new avenue to use Sentinel-2 data with a 10 m 

resolution globally for mapping grass pollen sources and their seasonal dynamics at 

a large scale. The results and discussions have identified four key conclusions: 

(1) Compared with ALUM and DLCD grass maps, the Sentinel-2 grass map (10 m) 

could effectively exclude non-grass features, which were recognized as grass class 

by the two coarser grass maps, and grass greenness information filtered by the 

Sentinel-2 grass map was better correlated with phenocam observation of grass at 

in-situ scale. Therefore, the Sentinel-2 grass map has the improved ability to filter 

grass greenness information from heterogeneous landscapes. 

(2) Grass greenness dynamics (phenology) derived from the Sentinel-2 grass map 

and their relationships with grass pollen concentrations varied across different 

distances and orientations, with significant inter-annual variability.  

(3) Although the grass fraction derived from the Sentinel-2 grass map changed 

across different distances and orientations, it was a secondary factor to affect the 

relationships between grass greenness dynamics and grass pollen concentrations.  

(4) Seasonal and inter-annual variability of grass pollen sources in terms of spatial 

distributions and amounts were high for the Campbelltown pollen station. To 
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accurately interpret these variations, meteorological factors and influences on the 

phenology of C3/C4 grassland functional types and pollen emission/ transport need 

further attention. 
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Figure 4.A1. Time series plots of grass pollen concentrations and Sentinel-2 grass 

EVI extracted from different sectors in each annulus, which showed in top-right 

panels, for 2018 Jan to 2020 Jun at Campbelltown site. The bottom-right panels 

show grass proportions in sectors within each annulus. Sector 1 to 8 respectively 

corresponded to areas of 0° - 45° to 315° - 365° in Fig. 4.8. 
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Figure 4.A2. Time series plots of grass pollen concentrations and Sentinel-2 grass 

EVI extracted from different orientations across extended distances for 2018 Jan to 

2020 Jun at Campbelltown site. Sector 1 to 8 respectively corresponded to areas of 

0° - 45° to 315° - 365° in Fig. 4.8. 
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As a natural ecosystem dominated by grasses and other herbaceous species, 

grassland/ pasture and its phenological studies have attracted increased attention 

due to their important roles in public health around the world. Allergenic grass 

pollen is widely regarded as the major source of clinically relevant outdoor 

aeroallergens, e.g. seasonal hay fever and asthma, affecting a worldwide 

population. Furthermore, the public is experiencing an increasing exposure to 

aeroallergens with higher frequency of high pollen concentrations days under the 

current climate change background (Davies et al. 2020, Ziska et al. 2011, Beggs et 

al. 2015). In contrast to the well-studied aerobiology of allergenic grass pollen in 

the Northern Hemisphere, although the prevalence and morbidity of allergic 

diseases in Australasia are among the highest globally, the precise ecological 

information on grassland/ pasture including phenology status and spatial 

distribution of pollen sources is not well understood yet. Also, the knowledge gap 

in how these ecological factors impact grass pollen seasonal dynamics restricts the 

development of accurate pollen forecasts as guidance for the management of public 

health.  

Satellite remote sensing offers a promising method to detect ecologically relevant 

landscape variables via providing timely and repetitive updates of vegetation 

phenological dynamics and land cover conditions at regional scale. Meanwhile, as 

an alternative approach to labour-intensive field surveys, near-surface remote 

sensing (phenocams) can provide diurnal and long-term vegetation greenness 

observation at the in-situ scale.  

Through integrating satellite data and phenocams imagery with grass pollen 

concentrations, the primary goal of this thesis is to address critical knowledge gaps 

in our understanding of the ecological drivers of grass pollen aerobiology. To 

achieve this goal, at the south-eastern Australia grassland/ pasture ecosystem, I first 

used a set of phenocams to investigate the diurnal and seasonal pasture greenness 

variations. It provides the reliable surface ground truth observation of grassland/ 

pasture phenological dynamics. Next, to better understand the regional grassland/ 

pasture phenology and its impacts on grass pollen seasons, I investigated the 

possibility and limitations of upscaling greenness observations from phenocam to 

multi-sensor satellites (i.e. Sentinel-2 MIS, MODIS, and Himawari-8 AHI). And 

then, I explored relationships between seasonal grass pollen dynamics and grass 
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greenness derived from multi-sources remote sensing in peak timing and amplitude 

scopes. Furthermore, I compared a finer-resolution grass map generated by 

Sentinel-2 data with developed but coarse land cover/use products in terms of 

characterizing grass distributions and filtering grass greenness information from 

landscape scales. Finally, based on correlations between grass greenness and total 

pollen concentrations, a grass pollen sources map, with 10 m resolution, was 

generated to reveal the spatial distribution of grass pollen sources for each pollen 

season. 

The results showed that diurnal grass greenness (GCC) observed by phenocam 

characterized a concave pattern with smaller solar angles tended to larger GCC 

values, which is opposite with diurnal greenness index from forest canopy. 

Therefore, I proposed a diurnal-to-daily compositing approach based on the 

minimum solar angle over a day to achieve grass GCC seasonal profiles. As 

compared to the compositing approach proposed by forest canopy, our method 

tended to composite GCC obtained from optimal illumination images (noon time or 

clear sky condition) as daily value. Therefore, I recommend using this method to 

composite phenocam GCC in grassland/ pasture ecosystem. Near-surface remote 

sensing technology has long been used to track environmental change occurring on 

decadal time scales. As compared with the forest ecosystem. However, the 

phenology research of grassland using phenocam should put more effort, especially 

considering the potential applications for monitoring grass flowering using 

phenocam, which is impossible for satellites from space. It is also an important 

direction for our further study. As the phenocam network continues to grow, my 

results highlighted that image processing and analyses should be treated differently 

when using phenocams in grassland and forest ecosystem. And it lays a foundation 

for the further use of phenocam to reveal grassland phenology and possible to 

detect grass flowering.  

Regarding the upscaling grass greenness observations from in-situ phenocam to 

regional multi-sensor satellites, my results indicated the Sentinel-2 data with finer 

spatial resolution can efficiently achieve grass greenness dynamics at phenocam 

footprint. Although coarse resolution satellites - MODIS (250 m) and Himawari-8 

AHI (1 km) - also can monitor the grass dynamics at regional scale, their abilities 

were subjected to complex landscapes. In general, grass greenness dynamics as 
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measured by phenocam and satellites were associated with grass pollen 

concentrations, but their interrelationships were highly site-dependent. The 

Sentinel-2 observation with finer spatial resolution indeed benefited to observe 

grass greenness as compared with coarse resolution satellites, especially 

considering the spatial heterogeneity in Australian grassland. However, for the 

grass pollen aerobiology research, the choice of temporal resolution scales of 

satellite observation should depend on the application scenarios.  

The Sentinel-2 grass map with 10 m resolution has the potential as a land cover 

filter to improve greenness upscaling from phenocam to satellites. Also, compared 

to currently mature land cover/use products, it can more precisely recognize the 

grass from complex landscapes and furtherly support filter grass information from 

satellite images. Although grass phenology and relationships between grass pollen 

concentrations varied across different distances and orientations centred at pollen 

sampler, grass fractions only play a secondary role in affecting the 

interrelationships between grass pollen and greenness dynamics. Strong seasonal 

and inter-annual variability of grass pollen sources in terms of spatial distributions 

and amount attested to the complexity of understanding on aerobiology of grass 

pollen in Australia. However, this thesis highlights the promising ability of near-

surface and finer resolution satellite (i.e. Sentinel-2) to offer a new avenue for 

tracing grass phenology and mapping pollen sources at a large scale.  

According to my knowledge, my study is the first time to adopt Sentinel-2 data for 

exploring grass phenology – grass pollen relationships and mapping grass pollen 

sources at 10 m resolution. Results from this thesis are promising because they 

offer a new avenue to use Sentinel-2 data with a finer spatial resolution globally for 

mapping grass pollen seasons and their dynamics at a large scale. The good 

agreement between grass greenness amplitude and grass pollen concentrations 

(rather than grass flowering humanly observed by dispersed in-situ stations) are 

potential of great use in future grass pollen-induced public health assessment using 

remote sensing technology. Meanwhile, grass pollen source maps with finer 

resolution can be used for assessing the risk of respiratory allergies, especially in 

urban areas with complex landscapes. My thesis demonstrated the promising 

application of near-surface and satellite-based remote sensing in informing 

grassland phenology and aerobiology of grass pollen in Australia.  
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