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Abstract

Fine-Grained Visual Categorization (FGVC) is a challenging research
topic in computer vision. It deals with the classification of visual data
at a subordinate level. This thesis investigates four categories of FGVC
methods based on deep learning, including general convolutional neural
networks, object part localization methods, approaches using CNN en-
semble or higher-order feature encoding, and methods utilizing recurrent
visual attention. Overall performance comparison has been conducted to

analyse their advantages and disadvantages.

We proposed a new regression-based part detection structure and a novel
part-based model, which increased the classification accuracy of PS-CNN
from 76.4% to 82.4% on the CUB-200-2011 benchmark dataset.

Inspired by the second-order pooling, we proposed a highly interpretable
method with a compressed structure to significantly reduce the compu-
tation complexity while improving the fine-grained categorization accu-
racy. The proposed model provides a supervised selection of the most
discriminative second-order channels. With the proposed method, the
computation and the feature dimension are linearly reduced to 4% of
the original bilinear pooling. By applying matrix normalization and a
Fisher-Recurrent-Attention structure, we achieved the best result among
the VGG-16 based FGVC models.

Following the conception of attention crop and attention drop in the
Fisher-Recurrent-Attention model, we proposed a forcing module to con-
strain the network to extract more diverse features for FGVC. The forc-
ing module focuses more on confusion regions which are essential for the
fine-grained classification. Experimental results show that the proposed
forcing module can improve the attention and prediction of the network
when an input image is panned or zoomed, and the double prediction

performs better than the single prediction.



The existing FGVC methods often come with enormous amounts of com-
putation and require large memory space. This makes these models in-
adequate for mobile applications. We proposed a Category Attention
Transferring Convolutional Neural Network (CAT-CNN) to transfer the
attention knowledge from a large-scale FGVC network to a small but effi-
cient network to improve its presentation capability. Using the proposed
model, we improved the classification accuracy of the efficient networks by
up to 5.7% on the CUB-2011-200 dataset without increasing computation

time or memory cost, which makes FGVC feasible on mobile devices.

We also conducted abundant studies to investigate the relationship be-
tween attention and classification accuracy of our proposed deep learning
models, visualized and analysed the attentional activations of these mod-
els. We hope that our findings may inspire further research efforts to

advance the FGVC for a wide range of real-world applications.

keywords: Image classification, Fine-grained classification, Deep learn-

ing, Species identification.
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