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Abstract

Fine-Grained Visual Categorization (FGVC) is a challenging research

topic in computer vision. It deals with the classification of visual data

at a subordinate level. This thesis investigates four categories of FGVC

methods based on deep learning, including general convolutional neural

networks, object part localization methods, approaches using CNN en-

semble or higher-order feature encoding, and methods utilizing recurrent

visual attention. Overall performance comparison has been conducted to

analyse their advantages and disadvantages.

We proposed a new regression-based part detection structure and a novel

part-based model, which increased the classification accuracy of PS-CNN

from 76.4% to 82.4% on the CUB-200-2011 benchmark dataset.

Inspired by the second-order pooling, we proposed a highly interpretable

method with a compressed structure to significantly reduce the compu-

tation complexity while improving the fine-grained categorization accu-

racy. The proposed model provides a supervised selection of the most

discriminative second-order channels. With the proposed method, the

computation and the feature dimension are linearly reduced to 4% of

the original bilinear pooling. By applying matrix normalization and a

Fisher-Recurrent-Attention structure, we achieved the best result among

the VGG-16 based FGVC models.

Following the conception of attention crop and attention drop in the

Fisher-Recurrent-Attention model, we proposed a forcing module to con-

strain the network to extract more diverse features for FGVC. The forc-

ing module focuses more on confusion regions which are essential for the

fine-grained classification. Experimental results show that the proposed

forcing module can improve the attention and prediction of the network

when an input image is panned or zoomed, and the double prediction

performs better than the single prediction.



The existing FGVC methods often come with enormous amounts of com-

putation and require large memory space. This makes these models in-

adequate for mobile applications. We proposed a Category Attention

Transferring Convolutional Neural Network (CAT-CNN) to transfer the

attention knowledge from a large-scale FGVC network to a small but effi-

cient network to improve its presentation capability. Using the proposed

model, we improved the classification accuracy of the efficient networks by

up to 5.7% on the CUB-2011-200 dataset without increasing computation

time or memory cost, which makes FGVC feasible on mobile devices.

We also conducted abundant studies to investigate the relationship be-

tween attention and classification accuracy of our proposed deep learning

models, visualized and analysed the attentional activations of these mod-

els. We hope that our findings may inspire further research efforts to

advance the FGVC for a wide range of real-world applications.

keywords: Image classification, Fine-grained classification, Deep learn-

ing, Species identification.
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Chapter 1

Introduction

In the past years, deep learning has immensely excelled on many challenging visual

tasks, such as image classification, speech recognition, and natural language process-

ing (NLP). Different from traditional image processing systems in which the features

are artificially designed, the deep features are extracted from plentiful annotated data

with a general training regulation. Numerous variants of the deep learning structures

have been proposed in recent years, most of which are deuterogenic from several

well-known parent structures.

The convolutional layer is first proposed in [24]. The layer consists of learnable

filter kernels with parameters. The image’s receptive field is shrunk through the con-

volutional layers, but the image features are extended to the full depth of the output

volume. [53] first proposed the convolutional layers’ backpropagation approach and

introduced the first Convolutional Neural Network (CNN) structure. The CNN struc-

ture was defined as an artificial neural network that contains one or several convo-

lutional layers. A standard MultiLayer Perceptron (MLP) was constructed following

CNN using one or more fully connected layers. With the backpropagation method,

we can train a CNN structure end-to-end using a set of pre-annotated image data.

It’s prevalent to apply an optimization solver (usually gradient descent) to calculate

the gradient of a loss function and update all the network weights to minimize the

loss between the label and the CNN network’s output.

The CNN model is an efficient way to extract semantic image features for that it

learns deep information from the real image data and obtains an approximate optimal

solution. Deep CNN structures have many variants, and they are widely used in real

applications like object detection, image classification, semantic segmentation, and

image retrieval systems.

Different from the traditional image classification task where categories display

a huge difference in morphology, fine-grained visual categorization (FGVC) mainly

1



Figure 1.1: Two subclasses of gulls from the general FGVC dataset, CUB-2011-
200, illustrate the major challenge in FGVC. (a) and (b) shows California gulls and
Glaucous gulls, respectively. The inner-class variances, e.g., pose, scale, etc., are more
visually obvious than the inter-class variances.

focus on distinguishing between subordinate-level categories within the same basic-

level category, e.g., different kinds of birds [90], dogs [49], cars [51], and aircrafts [66].

FGVC is more challenging than the traditional image classification tasks because of

high intra-class variances and low inter-class variances between the subordinate-level

categories. There are minute differences between different categories. It is difficult for

a model to correctly distinguish between remarkably similar-looking categories until

it extracts the subtle and discriminative difference. Figure 1.1 presents two different

gulls with a small variance between species but an enormous variance within the

same class. The pose of the objects, viewpoints, and background of the same species’

images differ very vastly, while different subclasses are very similar to each other.

Moreover, we could only discriminate these species by their very tiny components,

e.g., the legs or tails.

Compared with the well-studied traditional image visual classification that dis-

tinguishes an object’s main class, FGVC is closer to real-world applications. There

are plenty of demands from different fields of agriculture, animal husbandry, health

protection, environmental protection, taxonomy, and commodity management. Some

scenarios (e.g., biological control of agricultural pests) require high identification ac-

curacy, while other specific applications have some other requirements. For example,

a fine-grained image retrieval system prefers low feature dimension to decrease storage

cost; online image identification needs faster processing to boost server concurrency

capacity; industrial inspection drone needs an energy-efficient and portable classifica-

2



tion model. These demands provided new directions for FGVC research in the past

few years.

1.1 Background, Motivation and Challenges

There are four main branches of existing fine-grained image classification approaches

based on deep learning. According to the role and utilisation of CNN networks and

additional information such as part annotation or extra datasets, the approaches can

be classified into the following categories.

� The first is to use generic deep neural networks such as CNN to classify the fine-

grained images. Researchers are motivated by the impressive performance of

CNN [15] to transfer the CNNs pre-trained on the large-scale ImageNet dataset

to the datasets from other domains, such as the fine-grained datasets. However,

fine-grained image classification needs to obtain more discriminative image rep-

resentation than the general image classification tasks like the ImageNet. Efforts

have been made [6][12] to extend the fine-grained dataset via image augmenta-

tion, alignment, or building large transferring datasets. It is the most intuitive

way to improve the performance of generic models on fine-grained datasets.

Usually, the net structure of such methods is more straightforward and more

generalizable compared to parallel or recurrent models. However, the annota-

tion of fine-grained datasets involves a large amount of labor, which is expensive

and time-consuming. On the other hand, complex augmentation of image data

could slow down the training of a classification network and makes a limited

improvement on the classification accuracy.

� The second is part detection and alignment-based approaches. They use deep

CNN to localize an object’s discriminative parts and conduct classification over

the manually defined object parts. The semantic object part localization pro-

motes the fine-grained visual categorization by specifically isolating and zoom-

ing in to clarify the subtle differences on specific object parts. Therefore, object

parts localization is an essential step for constructing the correspondence be-

tween object instances and disregarding the variations caused by the changes

of object posing, position, or camera view. Besides accuracy, model inter-

pretability is another highly valued factor in some cases, such as taxonomy.

The localization-classification scheme conforms to traditional taxonomic con-

ventions and can be applied to other fields as well, such as image caption,
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literal search engine, and discrimination interpretation. The drawback of the

part-based method is that they often require ”strong” labels of the accurate

locations of discriminative semantic object parts, which adds extra workload

and makes it only applicable to very small or ”one-shot” datasets.

� The third direction of research involves multiple deep neural networks or mul-

tiple orders of CNN features to discriminate highly visually-similar fine-grained

images. Some previous works applied multiple neural networks to vote on the

classification results to improve classification accuracy. Others automatically

split the entire dataset into multiple visually similar subsets to improve each

subset’s professionalism and enhance the prediction. In contrast, others en-

code the CNN features to higher orders to discover fine-grained discrimination.

These duplicated methods show significant enhancement in fine-grained tasks.

However, they often suffer from high feature dimension and high computation

complexity and are difficult to extend to deep network structures such as ResNet

and DenseNet.

� The last branch finds the fine-grained images’ discriminative regions using visual

attention produced by the deep CNN concerning the most activated regions.

They classify by the image’s discriminative region and discard the inessential

background information. The attention models achieve the state-of-the-art in

widely used fine-grained datasets. The drawback of the attention-based models

is that they ordinarily use recurrent and multiple CNN structures. Some of

them even apply long short-term memory with deep CNN features, making the

training and testing computation extremely slow and computation consuming.

These four research directions of fine-grained classification may cross each other

to obtain better performance than working solo. The details of the previous works

on these four categories will be discussed in Chapter 2.

Our research is motivated by a CSIRO project, ”Deep Learning-Based Visual

Identification of Large Scale Insect Species”. It aims at developing a large-scale digi-

tal image library of insects in Australia and discover unknown species. So far about

85,269,426 insect occurrence records and 10,839 datasets have been collected. The

project is particularly important to understand the impact of the environment for

the protection of natural species. However, the image library contains millions of

insect species, with subtle inter-class variances. Another challenge is that the images

are shot from both laboratory and natural environment, this could result in appar-

ent intra-class variances. This thesis focuses on the investigation and development
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of deep CNN-based models for fine-grained species identification with high classifica-

tion accuracy. For a largescale online image retrieval system, a low dimension and

highly representative feature set is required; for few-shot or one-shot identification

cases, part-based fine-grained classification methods with prior knowledge such as

part annotation methods have shown great potential in FGVC. For the outdoor ser-

vice environment, the efficiency of a machine learning model is very important. This

thesis proposes several novel approaches to addressing the challenges in FGVC, and

presents extensive experimental results to show the potential of the proposed models.

For comparison of the performance of the proposed and state-of-the-art methods, the

standard FGVC datasets are used in this thesis.

1.2 Main Contributions

A thorough literature review was conducted to gain an understanding of the existing

research in FGVC, especially state-of-the-art methods, evaluate different methods,

and identify gaps where future research is needed. Methods presented in the litera-

ture were compared, evaluated, and summarised into four categories or four research

directions.

The main contributions of this thesis include:

� Proposed a strongly supervised part-based classification method, the

Part-Collaboration CNN (PC-CNN). Similar to previous part-based ap-

proaches, the proposed method detects the accurate locations of semantic object

parts and extracts multi-view visual features to train the PC-CNN classifier. We

designed a detection-localization regression strategy to enhance the robustness

of localization against object occlusion and part deformation. To avoid dimen-

sion boosting caused by additional part streams, we applied the ResNet struc-

ture and fully-convolutional-network to reduce the multi-view feature dimension

and implemented an independent part feature extractor without increasing the

computation complexity and memory requirement.

� Investigated the well-performed bilinear CNN model and proposed a

novel and compact model, named Squeezed Bilinear Pooling (SBP).

The model can reduce both the feature dimension and computation significantly.

With the same dimension of feature sets, the proposed method outperforms the

other compressed models (e.g., Compact Bilinear Pooling [25], and Low-Rank

Bilinear Pooling [50]) and is two orders of magnitude faster. The integration of
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the matrix square root layer is also investigated to enhance the categorization

performance. Based on selected discriminative feature channels, we proposed

a Fisher-Recurrent-Attention structure to achieve state-of-the-art classification

accuracies on the three general FGVC datasets. Based on the selective Squeezed

Bilinear Pooling, we designed a novel compressed higher-order feature encoding

method, which is more adaptive to general structures such as MobileNet [40],

and ShuffleNet [65].

� Proposed a novel framework named ”Forcing Network”, referred to

F-Net. There are two modules in F-Net, the feature extracting module and the

Forcing module. The forcing module consists of an original branch and a forcing

branch. The original branch focuses on discriminative parts and generates class

activation maps to locate the most discriminative parts. In the forcing branch,

based on the class activation maps, we generate suppressive masks and utilize

the suppressive features to classify an abject using the hybrid outputs of both

branches. Different from the original framework, F-Net can learn confused parts

besides the most discriminative part. After gradient descent and backpropaga-

tion, more diverse and enhanced features can be acquired for the fine-grained

classification. The Forcing Network can also accommodate the situation for

objects whose principal part is occluded. Because of the weak translation in-

variance of CNN, we crop and rescale objects according to class activation maps

and infer again. This inference mechanism can reduce the loss caused by a des-

perate gamble. In the training phase, we drop the most discriminative regions

on the cropped and rescaled images to force the network to pay attention to

more regions.

� Proposed a novel network structure for the fine-grained visual classi-

fication on mobile platforms, named Category Attention Transferring

CNN (CAT-CNN). Based on the conception of fine-grained classification with

efficient net structures, we introduced the ”Category Attention Teacher” with

the assumption that a model with better activation to the discriminative regions

has better classification ability. Instead of only using the one-hot class label in

the training phase, we combined the label loss and the category attention loss

so that the student net in the CAT-CNN was capable of learning ”what it is”

and ”where to pay attention” at the same time.
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1.3 Research Objectives

The main research objectives of this study are:

� Developing new part-based FGVC methods aiming for high classification ac-

curacy and low computation and memory costs by improving part localization

performance, avoiding overfitting from the less discriminative object parts.

� Innovating an efficient bilinear-based FGVC model for mobile platforms by

(1) developing a squeezed bilinear pooling module, (2) combining the matrix

normalization with compact bilinear methods, and (3) solving the super high-

dimension problem of applying the higher-order feature to deep backbones to

reduce the computation cost and memory consumption.

� Inventing new attention-based methods to improve the FGVC classification

accuracy and reduce the computation cost and memory consumption for the

strongly supervised part-based fine-grained object classification.

� Developing the Category Attention Teaching method to transfer knowledge

from large-scale deep networks to light-weight models for efficient and accu-

rate FGVC.

1.4 Thesis Outline

This thesis is structured as follows. Chapter 2 reviews available literature works re-

lated to fine-grained visual classification and evaluates the performance of different

FGVC approaches. Chapter 3 to Chapter 6 present our proposed methods listed

in Section 1.2, together with experimental results. In Chapter 7, we conclude the

thesis by summarizing the main findings of this research and suggestions and rec-

ommendations for future research as the extension of this study. Chapter 8 lists the

publications produced during the Ph.D. study.
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Chapter 2

Literature Review

This chapter presents the background information and evaluates existing research,

especially state-of-the-art methods for fine-grained visual classification (FGVC). The

literatures reviewed in this study can be summarised in four main categories:

� Part-based methods use semantic object parts to discover more delicate but

smaller object features, which often needs extra part annotations to train a part

localizer before classifying the object.

� The traditional methods utilize deep net structures or apply complex data

augmentation in their training phase, which is also performed in general image

classification missions.

� The duplicated model methods use more than one CNN model in training

and prediction or employ higher-order feature encoding to enhance the feature

presentation.

� The attention-based methods learn the most discriminative regions in the

image and focus on them while ignoring background noise. They often need

multiple inferences in both training and testing phases.

The literature review revealed that the four categories’ roadmaps often cross over

each other to achieve better performance. In this chapter, we review these methods in

detail. Section 2.1 introduces several traditional methods; the part-based methods are

reviewed in Section 2.2; methods using multiple CNN models or higher-order image

features are introduced in Section 2.3. Section 2.4 describes the recurrent attention-

based approaches. Some illustrations and tables in this chapter are duplicated from

the original papers to make the description more transparent. The citations are

annotated in the captions of each duplicated illustration or table.
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2.1 Traditional Methods

CNN has become the most popular computer vision model because of its superiority

in object detection and image classification. Since LeCun et al. [53] first introduced

the convolutional layer’s backpropagation method and proposed the convolutional

net structure, the CNN models have been surpassing other computer vision learning-

based approaches, e.g., Support Vector Machine (SVM) [83] and Random Decision

Forest (RDF) [39]. Large-scale image datasets with category-level annotation, e.g.,

the ImageNet [15], has accelerated the development of CNN-based computer vision

approaches. In recent years, a tremendous number of researches have verified the

superior performance and effectiveness of CNN structures in large-scale visual cate-

gorization. On the other hand, motivated by the impressive discrimination perfor-

mance of CNN [15]] on the large-scale image datasets, researchers transferred the

visual knowledge from the large image datasets (usually ImageNet [15]) to other

more specific but comparatively much smaller domains, e.g., the fine-grained or med-

ical image datasets. Usually, a model was pretrained using the large-scale dataset,

then adopted to the smaller dataset and fine-tuned to obtain the final model. The

ability of CNN models to produce the image’s discriminative features is also crucial

for fine-grained visual categorization. By replacing the last several fully connected

layer, we can apply most of the current state-of-the-art CNN structures to FGVC

datasets.

This section presents fine-grained visual classification using traditional CNN-based

methods, including transfer learning and advanced image data augmentation. Some

basic and commonly used CNN structures are also introduced in this section.

2.1.1 General CNN Backbones

AlexNet [52] is the first winner of the ILSVRC2012 competition based on a deep

convolutional neural network. It achieved a superior top-5 error rate of 15.3% in the

testing phase, which is 10.9% higher than the second-best entry (26.2%). As shown in

Figure 2.1, AlexNet architecture consists of five convolutional layers and three fully

connected layers, and all of the eight layers are end-to-end learnable.

The GoogLeNet [84] is the new state-of-the-art for detection and classification

in the ImageNet Large-Sale Visual Recognition Challenge 2014 (ILSVRC14). The

major hallmark of the GoogLeNet architecture is the improved utilization efficiency

of the computation resources of the network. This is obtained by the carefully crafted

architecture, named ”inception module”, enhancing the network in depth and width
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Figure 2.1: Framework of AlexNet [52].

Figure 2.2: Inception module of GoogLeNet [84].

while keeping the computational consumption acceptable. GoogLeNet consists of 27

layers (including five pooling layers). It stacks the inception modules to reduce the

number of parameters to 1/12 of that in the structure of AlexNet [52]. Figure 2.2

explains the workflow of an inception module. The 1 × 1 convolutional layers are

applied to perform dimension reductions before the more computationally expensive

3 × 3 and 5 × 5 convolutional layers. Moreover, The inception module also consists

of the rectified linear activation function.

The VGG net [80], as its name claims, increases the convolutional neural networks’

depth by using filters with the smallest kernel size (3 × 3) to reduce the receptive

field. The architecture of the VGG-16 is displayed in Figure 2.3. It contains 13

convolutional layers, followed by the classifier with three fully connected layers. VGG-

19 consists of 16 convolutional layers and has a better representation ability than

the shallower VGG-16. Non-linear rectification was applied on all hidden layers.
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Figure 2.3: The architecture of VGG-16 [80].

Figure 2.4: A residual block.

The VGG architecture is the winner of the ILSVRC localization and classification

competition in 2014 and can be transferred to other tasks easily.

Following the idea to deal with the vanishing gradient issue in VGG [80], the

ResNet introduces a so-called ”identity shortcut connection” that skips one or more

layers, as demonstrated in Figure 2.4. It argues that stacking layers shouldn’t degrade

the network performance because we could stack identity mappings (layers that do

nothing) upon the current network. The resulting architecture would perform the

same. This indicates that the deeper model should not produce a training error

higher than its shallower counterpart. They hypothesize that it is easier for the

stacked layers to fit a residual mapping than to fit the underlying mapping.

EfficientNet [85] is a convolutional neural network architecture and a scaling

method that uniformly scales all dimensions of depth/width/resolution using a com-
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Figure 2.5: Model scaling in [85]. The proposed componding scaling (e) combines the
three scaling (b,c,d) into a single strategy.

pound coefficient. Unlike conventional practice that arbitrarily scales these factors,

the EfficientNet scaling method uniformly scales a network in width, depth, and reso-

lution with a set of fixed scaling coefficients. For example, suppose we want to use 2N

times more computational resources. In that case, we can increase the network depth

by αN , width by βN , and image size by gammaN , where α, β, γ are constant coef-

ficients determined by a small grid search on the original small model. EfficientNet

uses a compound coefficient to uniformly scale network width, depth, and resolution

in a principled way. As presented in Figure 2.5, the compound scaling method is jus-

tified by the intuition that if the input image is of more resolution, then the network

needs more layers to increase the receptive field and more channels to capture more

fine-grained patterns on an image with higher resolution.

Figure 2.6 presents the comparison among the EfficientNets, and other bench-

marks with the dataset of ImageNet [15]. To the best of our knowledge, the Efficient-

Nets outperform all the other generic image classification structures in both accuracy

and efficiency.

There are some other generic deep convolutional feature extractors for image clas-

sification [78][97][99]. The CNN structures can be easily transferred from large-scale

image datasets to fine-grained image datasets. The last fully connected layer is ran-

domly reset. The output number of the layer is set to the same as the class number

of the objective image dataset (for instance, 200 in the CUB-Bird-2011 dataset). The

results of transferring directly from the ImageNet dataset to CUB-200-2011 using the
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Figure 2.6: The prediction accuracy and model size comparison with multiple models
on the ImageNet dataset [85].
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Figure 2.7: The general framework of the Destruction and Construction Learning
[10].

previous CNN structures are shown in Section 2.6. The classification results have

proved the effectiveness of the CNNs pre-trained from the generic image dataset.

2.1.2 Destruction and Construction Learning (DCL)

The DCL[10] proposed a novel image classification structure named Destruction and

Construction Learning to enhance the ”expert learning” of the CNN networks. It

introduced two modules except for the typical image classification network. Firstly,

the Destruction Module uses the Region Confusion Mechanism (RCM) to break the

image construction and shuffle the subtle regions randomly. Thus, the DCL can

force the classification network to learn the local features without object structures.

Secondly, to avoid the negative effect of presentation noise from the RCM, Adversarial

Learning Network (ALN) was used to distinguish whether an image is an original

image or a destructed image. Region Alignment Network used the destructed image

features to reconstruct the original image distribution. The framework of DCL is

shown in Figure 2.7

By collecting the most discriminate object regions and learn from them, DCL

outperforms other methods on a wide range of FGVC datasets. It is worth noting

that the DCL can also significantly improve the network performance on general

image classification datasets.
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Figure 2.8: The general framework of Selective Sparse Sampling Net [16].

2.1.3 Selective Sparse Sampling Net (S3N)

A Selective Sparse Sampling framework was proposed [16] to solve the problem of

keeping the image construction while highlighting the discriminative regions, as illus-

trated in Figure 2.8. The system mimics the human visual system to predict dynamic

sparse attention regions in the image content. S3N is trained under image-level su-

pervision, firstly collecting the peak responses to each class. Then, each class’s size

of the peak responses is estimated to generate a set of sparse attention maps. The

image is inhomogeneously transformed to highlight the corresponding regions and fed

again to the network to learn discriminant features and complementary features.

2.1.4 Anti-Perturbation Inference Net (API-Net)

Aiming to solve the generative classification problem, an Anti-Perturbation Infer-

ence (API) approach was proposed [18]. The API searches for anti-perturbations

to maximize the lower bound of the joint log-likelihood of inputs and classes. By

leveraging the lower bound to approximate Bayes’ rule, it constructed a generative

classifier called Anti-Perturbation Inference Net (API-Net) upon a single discrimi-

nator, as demonstrated in Figure 2.9. It benefits from the generative properties to

tackle the off-manifold examples while maintaining a concise structure for effective

optimization. This introduces a similar idea from another hot topic, the Generative

Adversarial Network (GAN), and its performance is competitive to approaches in

other traditional routes.
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Figure 2.9: Overview of the inference procedure of Anti-Perturbation Inference Net
[18].

2.1.5 Mutual-Channel Loss (MC-Loss)

Unlike most FGVC approaches, a novel loss function was proposed [9] aiming at delv-

ing into individual feature channels and ensuring channel presentation diversity. As

Figure 2.10 shows, the net structure needs no more than an extra component named

MC-Loss. The proposed Mutual-Channel Loss consists of four parts: (a) Softmax for

classification; (b) Cross-Channel Max Pooling which concentrates the peak activation

of every attention channel onto a single activation map; (c) Summarisation of the pix-

els in each channel into a single value; and (d) Calculation of the average throughout

all the channels. The workflow and outputs of MCL are illustrated in Figure 2.11.

The Mutual-Channel Loss uses a novel loss function as extra supervision to force

the model to learn diverse discriminative regions on an object and significantly im-

prove the performance of some basic models on FGVC datasets.

2.1.6 Attribute Mix+

It is believed that the significant challenge of FGVC is the limitation of the dataset

scale. The FGVC data are very difficult to obtain and expensive to annotate. Ad-

dressing the problem of overfitting caused by a small-scale dataset, Attribute Mix+
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Figure 2.10: MC-Loss layer in a CNN structure [9].

Figure 2.11: The inference structure of the MCL [9]. (a) is the MCL components and
(b) is the output feature from CNN with/without MCL.
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Figure 2.12: The workflow of Mix+ model [54].

[54] was proposed as a method for data auto augmentation/generation for FGVC

applications.

The first conception of this paper [54] is the Attribute Mix, a data augmentation

strategy. As illustrated in Figure 2.12, after the category attention maps learned each

class’s discriminative attributes, the Attribute Mix module mixed the attributes to

generate new image samples. The Attribute Mix+ module mines the attributes that

belong to the same category and inserts the eligible image samples into the dataset

to enhance the training.

2.2 Part Based Methods

The fine-grained visual categorization can be enhanced by semantic part localization,

for that it can help isolate subtle appearance differences correlated with particular

object parts explicitly. In humans’ procedure to recognize a fine-grained object class,

object parts localization is necessary to degrade the impact of object pose variations

and camera view position variations and establish the correspondence between object

instances in different image samples. Figure 2.13 presents the workflow of many

traditional part-based approaches. The object parts on fine-grained datasets (e.g.,

beak and head in CUB-200-2011) are localized in each image in the first step. Then

the part alignment is conducted to normalize the part distribution. The last step is

to extract the aligned parts’ feature to do classification.

Following this roadmap, Thomas et al. [4] use data mining to extract intermediate

image features. Each of the learned intermediate features is specialized to discrim-
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Figure 2.13: Rough framework of traditional part detection-based methods.

inate two particular categories on a particular object part. To find the accurate

location of object parts like the ears and eyes of a dog, Liu et al. [63] built a geo-

metric model of dog breeds and their face components. To discover the object parts’

common geometric patterns, Yang et al. [101] learned the co-occurrence statistics

of the geometric patterns of the fine-grained objects using a template model. For

fine-grained visual classification, Yang et al. [101] extracted the object features in the

images aligned with the cooccurred patterns. Similarly, Chai et al. [7], and Gavves

et al. [26] segmented the images and conducted unsupervised alignment on the im-

age fragments. Then they use the alignments to transfer the part patterns from the

training set to the testing set. In the final step, the part features are extracted from

the testing images for classification.

Besides the works, the following subsections introduce several more recent part-

based works using deep-learning technology.

2.2.1 Part-Based R-CNN (PBR-CNN)

Previous research has shown that deep convolutional neural networks can significantly

enhance part localization performance. The Part-based R-CNN [108] proposed a

structure to conduct object part localization using deep convolutional features from

the bottom-up semantic region proposals. The framework of the PBR-CNN is pre-

sented in Figure 2.14. It developed the object detection structure, RCNN [31] to

conduct object detection and part localize at the same time using a geometric prior.

It began with finding several proposal regions of interest with the selective search tech-

nology [86]. Then the object detector and the part detector are trained respectively

using the deep convolutional neural network. The detectors estimated all proposals’

confidence in the testing phase and applied geometric constraints to fine-tune the

detection proposals’ confidence score and confirm the optimal proposals for the de-

tections of the object and its parts. The next stage is to use the extracted features

of the localized object and its semantic parts to train a deep CNN model to classify

the image in a pose-normalized representation.

19



Figure 2.14: Workflow of the Part-based R-CNN [108].

The PBR-CNN model used the ground truth bounding boxes from the original

CUB-200-2011 dataset to fine-tune the CNN pretrained on the ImageNet dataset

to the 200-way bird classification task. They claimed that the transfer fine-tuning

enhances the deep CNN features for the fine-grained bird classification. In practice,

they replaced the original 1000-way fully connected layer in AlexNet with a randomly

initiated 200-way fully connected layer as the classifier. On the other hand, they use

the bounding box annotations of the object and its semantic parts that indicate the

bounding boxes of the head and the body to train the detectors. The training is based

on a one-vs.-all linear SVM, which takes the region proposals’ deep convolutional

feature as input and the label of whether the region belongs to an entire object or

a particular object part as output. A single part detector is not robust enough, so

the window with the best confidence from a single part detector is not mean to be

perfectly accurate. The PBR-CNN utilized a geometric constraint to filter out the

incorrect detection by considering the relative location of the detected object and its

semantic parts.

In the testing phase, the detectors score all the region proposals produced by

the selective search. The geometric non-parametric constraints are employed to the

detected windows and their scores to find the optimal object and part detections.

Finally, an AlexNet pretrained on ImageNet was applied to fine-tune for the FGVC

dataset. Object feature and part features are extracted using the deep network and

concatenated to form the final feature representation, which is used to train a one-

vs.-all linear SVM to produce the category’s final prediction.

20



Figure 2.15: Pose normalized nets [6].

2.2.2 Pose Normalized Nets

The core idea of the pose normalized net [6] is to estimate the object pose and use

it to extract the object parts’ local features. Deep convolutional neural networks are

applied to the image patches localized and normalized by the pose estimation to ex-

tract the local features and conduct the final classification. Figure 2.15 demonstrates

the workflow of the pose normalized net. The lower level of the CNN features (conv5

and fc6) are used to pose normalized zooming-in feature extraction, while the higher

level of the CNN features (fc8) are used to extract the entire images’ feature. The

features are concatenated to produce the final image feature for classification.

Pose normalized net performs the Deformable Part Model (DPM) [5] to localize

the key points and predict their visibilities in the training phase. The entire object

and its parts are cropped and fed to independent deep CNNs to extract the image

features. Then the concatenated image features are used to train the classifier (one

fully connected layer). The paper also implemented a prototype using the bounding

boxes and part annotations provided by the dataset directly.

In the testing phase, the keypoints detected by the DPM are used to crop the

regions of the test images that are aligned with the learned object models. The

image region patches are used to extract local features using the deep CNNs [52].

The experiments show that it performs better when extracting the pose normalized

features using lower-level representation and unaligned image features using lower-

level representation.

2.2.3 Multi-Proposal Consensus (PL-MPC)

The Multi-Proposal Consensus [79] uses a single convolutional neural network, the

AlexNet [52] to localize the keypoint and region of the object parts (eyes, tail, wings).
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Figure 2.16: The workflow of the multi-proposal consensus [79].

It is more advanced than the PBR-CNN, which performed the manually designed

geometric constraint to predict the object parts’ locations.

The Multi-Proposal Consensus applied the regression-based modification on the

last fully connected layer of the AlexNet to localize all the keypoints and predict their

visibilities simultaneously. Two separate output fully connected layers are adopted

to replace the original fc8 layer of the AlexNet. The two layers are for keypoint

localization and their visibility, respectively. The ImageNet [15] dataset is used to

pre-train the AlexNet model. The model then learns on edge box crops [113] that can

be directly obtained from the CUB-200-2011 dataset. After the keypoint location and

their visibility scores are obtained, the detections with low visibility confidences are

ignored. The rest of the detections display a normal distribution around the ground

truth of keypoint locations. The medoid is considered a robust estimation of the

detection.

Figure 2.16 illustrates a typical procedure to find the key point of the right eye.

Confidence thresholding is performed to determine the optimal localization of the

right eye. The predictions with a confidence lower than the pre-set threshold are

shown in boxes with black edges without associated dots. The green box stands for

an outlier with high confidence.

Three partial regions of each bird are localized using the keypoints predicted from

the network: the whole body, head, and torso. The tightest bounding box that

contains the forehead, nape, eyes, beak, crown, and throat is defined as the head

region. Similarly, the box containing the tail, breast, throat, legs, back, wings, and

belly is defined as the torso. The whole body region is provided in the annotation of

the CUB-200-2011 dataset. The whole body, head, and torso regions are fed into CNN

to produce each part’s representation features. Then the features are concatenated

to form the final feature for the 200-way linear one-vs-all Support Vector Machine to

perform classification.
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Figure 2.17: Framework of deep Localisation, Alignment and Classification [59].

2.2.4 Deep Localisation, Alignment, and Classification (Deep
LAC)

Deep Localisation, Alignment, and Classification (Deep LAC) [59] uses a single deep

CNN to perform part localization, alignment, and classification simultaneously. The

Valve Linkage Function (VLF) is designed to backpropagate the localization, align-

ment, and classification losses in a single system. When the LAC model is trained,

the classification error and the alignment error are adaptively compromised to form

the final error and help localization. Figure 2.17 demonstrates the framework of the

Deep LAC.

Following the AlexNet, the part localization stream contains five convolutional fea-

ture extraction layers and three fully connected layers for classification and alignment.

The part stream’s input and output are the images for fine-grained classification. The

coordinates normalized to range from 0 to 1 using the relative position to the top-

left corner of the view, respectively. It regresses the part bounding boxes with the

ground truth provided by the dataset to learn the object parts’ distribution in the

training phase. In the testing phase, LAC takes the images as input and outputs the

corresponding object parts’ normalized relative coordinates.

The part locations detected by the localization stream are fed into the alignment

stream, which conducts align the input image with a template following the approach

in [74], and output the aligned part image segments to the classifier. For higher
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Figure 2.18: Part-stack CNN [45].

prediction accuracy in the classification phase, the alignment stream performs offsets

translation, scaling, and rotation on the input part images. Besides the function of

pose alignment, this stream also bridges the entire LAC’s backpropagation by using

the alignment and classification result to fine-tune the localization stream.

The VLF plays a critical role in the deep LAC architecture because it provides

the optimal connections between the localization and classification streams. All three

subnetworks are connected in a compromising way: the LAC model can take the

classification accuracy and alignment errors into a combined consideration to confirm

the training data’s effectiveness. The classification can have better confidence if the

alignment is sound enough. Otherwise, if the alignment is not correct, the classifier’s

loss can have less impact on the training of the entire network.

2.2.5 Part-Stack CNN (PS-CNN)

The workflow of the Part-stacked CNN (PS-CNN) [45] is explained in Figure 2.18. PS-

CNN introduces a part detection model that contains a fully convolutional network to

localize the major object and its multiple semantic parts. Base on the part detection,

PS-CNN encodes the object-level and part-level features together with a two-stream

feature extraction network. Following the previous research works, it also used strong

supervision from the manually-labeled part annotation of the fine-grained datasets

like CUB-200-2011.
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The fully connected layers in generic CNN structures are replaced with an 1 × 1

convolutional layer to construct a Fully Convolutional Network (FCN). The FCN

takes an RGB image as input and outputs a set of activation maps with lower reso-

lution than the input image. The activation of each pixel in the output maps is only

related to the visual representation of its receptive field, a region with a correspond-

ing location, and a fixed size in the input image. The localization net chose FCN

mainly for three reasons: (1). Compared with fully connected layers generating the

coordinates of the detected keypoints, FCN produces activation maps indicating not

only the part location but also the size of a particular object part, which can be used

in the classification networks directly. (2). FCN can learn to localize the objects’ dif-

ferent parts in a united framework, considering the relative position relation between

the semantic parts in an object. (3).FCN is more efficient to fully connected layers

in both the training and the inference phase.

The localization net based on a fully convolutional network [68], takes the object

images as input and the dense feature maps of the correspondent object parts as

output. The annotation of the K key points at the center of each semantic object

part is used to generate the CNN’s activation to the image. A Gaussian filter is

applied to the generated feature maps to remove the noise. Finally, the output of the

localization net is K conv5 feature maps indicating K 2D locations of the object parts

in the image. The coordinates of the locations are extracted using the indexes of the

maximum responses in each feature map. The part locations are used to crop the

image regions covering the entire object and the discriminative object parts. Each of

the image segments is fed into the classification net.

The PS-CNN classification net is two-fold: the object-level classification using

the bounding boxes of the objects and the part-level classification using the part

landmarks. The part-level classification is implemented with a shared feature ex-

traction structure, which contains the first five convolutional layers of the AlexNet.

A bottle-neck convolutional layer has a lower output channel number to reduce the

memory cost and computation complexity. The object-level classifier is a CNN net

structure that takes the bounding box level image as input and the conv5 feature

maps as output. The final classification is conducted using the grouped features con-

catenated from the object feature and the part features. Following the architecture

of the AlexNet, the classification net contains three fully connected layers. Experi-

ments have been conducted on both original part annotation and the part locations

predicted by the localization network.
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Figure 2.19: The workflow of AttNet&AffNet [35].

2.2.6 AttNet&AffNet

A specific backbone CNN structure can be enhanced with a limited increase in mem-

ory and computational complexity [35]. It only needs a single inference during training

and testing. As manifested in Figure 2.19, for most of the CNN structure, the last

convolutional layer has a large resolution (e.g., ResNet-50 with 448 × 448 input has

14 × 14 output resolution). Instead of using global average pooling, global k-max

pooling is used [35] to approximate the part-based recognition. Moreover, an efficient

bounding box detector is trained that can be applied before the image is processed

by the backbone CNN. The localization module is lightweight and trained using the

class labels only.

A hybrid model was proposed [35] to integrate the auto-part-localization and the

attention-based approaches. We classify this work as a part-based method because

its innovation is mainly on the localization module.

2.3 Model Duplication and Feature Encoding Meth-

ods

Another popularly applied approach in many CNN-based fine-grained visual catego-

rization researches is to split the whole FGVC dataset into several subsets, and each

of the subsets has a similar appearance representation. In this way, the profession-
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Figure 2.20: Framework of subset feature learning networks [30].

alism of the classifiers can be improved since they only focus on smaller but more

delicate classification problems. On the other aspect, ”more hands make light work”.

Using multiple convolutional neural networks was also proven to improve fine-grained

visual classification performance. Inspired by the duplicated model approaches, some

other researchers used the higher-order image feature encoding to extend the features

learned by CNNs to a higher dimension and improved their representation abilities.

The three routes can be concluded with the model duplication and feature encoding

methods. The following subsections describe the methods using these ideas.

2.3.1 Subset Feature Learning Networks

The subset feature learning networks [30] contains two major streams. The first is the

Generic Convolution Neural Network (GCNN). The second stream consists of several

Domain Feature Convolutional Neural Networks (DFCNNs). The AlexNet, adopted

as the backbone of the GCNN, is firstly pre-trained on a large-scale image dataset

that contains a similar domain as the target fine-grained image dataset. Then the

target dataset is used to fine-tune the GCNN model. The output of the first fully

connected layer, fc6, of the GCNN model is used as the representation feature. Linear

Discriminant Analysis (LDA) is applied to the CNN feature to reduce the dimension.

The target dataset classes are clustered into several subsets by their visual similarities

to train the subset classifiers in the second stage. Figure 2.20 presents the framework

of the subset feature learning networks.

In the second stage, correspondingly, K separate domain feature CNNs are learned

from the K subsets pre-clustered. The DFCNNs are supposed to learn subsets’ fea-

tures and can discriminate the images in the same subset easier. Following the GCNN,
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the fc6 is also extracted as the subset DFCNN features. Therefore, each DFCNN is

a specialist in classifying the images in a single subset. The model’s core problem is

the method to select an optimal DFCNN for a particular input image.

Addressing the problem of choosing the optimal DFCNN for a given image sample,

the subset selector CNN (SCNN) is introduced. SCNN follows the generic CNN-based

classification model but uses the rough class clustering output as the class label and

replaces the last fully connected layer, fc8, with a new fully-connected layer with K

outputs. Therefore the prediction of the SCNN is a particular subset. Max voting is

performed to the prediction for the final determination of the subset that the input

image belongs to. Following the previous training procedure, SCNN is trained via

backpropagation using the optimizer of stochastic gradient descent (SGD). It uses

the AlexNet[52] pretrained on ImageNet as the initial state.

2.3.2 Mixture of Deep CNN (MD-CNN)

Following the subset specialist’s idea in subset feature learning networks, MixDCNN

[29] contains several CNN-based experts. Unlike previous works, the MixDCNN does

not need to split the dataset into several subsets with a similar visual representation.

Instead, the K CNNs perform classifications independently on the entire fine-grained

visual classification dataset, and their suggestions are combined to generate the final

decision. Different from the subset-based learning architectures that train the spe-

cialist CNNs separately, the occupation probability equation is applied in MixDCNN

structure to end-to-end train the K CNN specialists at the same time. Figure 2.21

demonstrates the workflow of the MixDCNN.

The occupation probability function is designed as:

αk =
eCk

K∑
c=1

eCk
(2.1)

where Ck stands for the k-th CNN’s classification result. The CNNs with higher

confidence of ttheir classification result are granted higher weight from the occupation

probability function.

Based on each CNN expert’s classification confidence, the occupation probabil-

ity function allows the MixDCNN structure to train the CNNs jointly with a single

united label vector. Gating network to determine which CNN is trustworthy in the

classification is not required. Instead, the MixDCNN mixed the outputs of all com-

ponents in a more confederate way. By multiplying the occupation probability of the
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Figure 2.21: Framework of MixDCNN [29].

CNNs’ outputs and summing up the features, the classification is simply performed

by applying the softmax function. The experimental results show that the united

framework outperforms the previous separated methods.

2.3.3 CNN Tree

It can be observed from many fine-grained visual classification datasets that a partic-

ular class with low classification accuracy only confuses with a few other categories.

The subset of such classes is defined as the confusion set. Another observation is

that an expert CNN can learn more discriminative features from a smaller but more

elaborate subset. Based on that, Wang et al. [94] proposed the CNN tree to learn

the fine-grained visual features from the confusion sets.

As illustrated in Figure 2.22, a CNN is first trained on entire dataset classes. Then

the trained CNN is used to estimate the confusion sets of the dataset. The estimated

confusion sets are packed to be fed to the next stage’s training. From the root node

CNN that classifies the entire dataset to the leaf nodes that only classify two confused

classes, the procedure repeats until the tree ends up to the two-class classification leaf

or reaches its maximum depth. Different from the previous methods, the CNN tree

learns fine-grained features by progressively learning the discriminative features from

smaller but more confused subsets. The features are more robust than those learned

from the entire datasets directly. In the testing phase, an image that the top CNN

misclassifies can be correctly classified by the CNN tree.

2.3.4 Multiple Granularity CNN

It can be observed that the subordinate-level annotations also carry the labels’ hi-

erarchy in the fine-grained datasets. For example, in the CUB-200-2011 dataset,
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Figure 2.22: Framework of CNN tree [94].

Melanerpes formicivorus belongs to Melanerpes at the genus level and belongs to Pi-

cidae at the family level. Following the ideas to split the FGVC dataset into subsets

with a hierarchy structure in the CNN tree, these genus level and family level annota-

tions can also be utilized to train a set of CNN classifiers and form the tree structure.

Each CNN only concentrates on a one-grain level classification.

As shown in Figure 2.23, the multiple granularity CNN [91] contains a series of

deep convolutional neural networks in parallel structure. Each of the CNNs is designed

to classify for a particular granularity, which means that they are classifiers responsible

for a set of single-grained classifications. The selection of regions of interest (ROI) is

guided by the saliency in the CNNs’ feature maps, and the ROI is then selected from a

general pool of image patches that has the higher activation from the CNNs. Finally,

the ROIs are fed into the next stage classifiers for feature extraction. The features of

different granularity are then combined to generate the classification results.

2.3.5 Bilinear CNN Models

Bilinear CNN (B-CNN) [62] proposed a two-stream CNN structure for fine-grained

visual classification. The network structure is presented in Figure 2.24. After in-

ference through the Convolutional layers, the two streams’ output feature maps are

multiplied with the inner product function, which means that the feature maps are

compressed into a compact representation. This function plays a similar role to the

Global Average Pooling (GAP) [60]. Still, the output feature dimension is the square
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Figure 2.23: Framework of Multiple Granularity NN [91].

Figure 2.24: Framework of bilinear CNN model [62].

magnitude of the GAP. The bilinear function in CNN structures is also named ”Bi-

linear Pooling” (BP). It provides very high dimension representative image features,

which is especially beneficial to the fine-grained visual classification.

The bilinear CNN structure B contains four main components: B = (fA, fB, P, C).

Here fA and fB are two parallel feature-extraction functions, P is a pooling function

and C is a classification function. A feature function is a mapping f :L× I → Rc×D
that takes as input an image I and a location L and outputs a feature with size

c×D. The locations include information on position and scale. The feature outputs

are multiplied at each location with the matrix outer product, i.e., the bilinear feature

combination of fA and fB at a location l is given by bilinear function (l, I, fA, fB) =

fA(l, I)TfB(l, I). Both fA and fB are designed to have the same feature dimension
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c to be compatible. Image bilinear features are obtained by aggregating the pooling

function P across all image pixels.

The original paper used the output feature maps of the last convolutional layers

of two independent CNNs pre-trained with the ImageNet [15] as fA and fB. The

bilinear CNN benefits from pre-training, for that it provided prior knowledge and

made up the scarcity of the single domain dataset. Only applying the convolutional

layers of the pre-trained CNNs provides another advantage that arbitrary resolution

of input images can be adopted. It means that we can use high-resolution image data

to discover more discriminative features for fine-grained visual classification.

For the effectiveness of bilinear pooling shown in fine-grained classification, lots of

follow-up studies have been conducted to improve the performance. An end-to-end

trainable matrix power normalization method was employed to improve the represen-

tation of bilinear features [61]. In a parallel research track, low dimension compact

bilinear pooling has been explored. PCA low-rank approximation of CNN features

before bilinear pooling was investigated [62]. The bilinear pooling and the linear clas-

sifier with a second-order polynomial kernel were bridged [25] by adopting the off-the-

shelf kernel approximation methods, Random Maclaurin [47], and Tensor Sketch [73].

Tensor Sketch was iteratively generated [13] to achieve a higher-order feature poly-

nomial. Inspired by the bilinear SVM, an imposed low-rank constraint was proposed

to reduce the feature dimension [50]. After all, none of the above compact methods

considered the implementation of matrix-power normalization, which requires the

computation of singular value decomposition (SVD) of the output of tensor product

and the same to the backpropagation. Sub-matrix square root was proposed [34]

to normalize the CNN feature before tensor production to approximate the matrix-

square root operation on bilinear features. Although the performance of this method

is better than that obtained by applying element-wise normalization only, the classi-

fication accuracy is sacrificed by 1% comparing with the full MoNet baseline.

2.4 Attention-Based Methods

Attention is the universal phenomenon of the biological visual system. Instead of

encoding the entire image into a compressed feature representation, animals (includ-

ing humans) usually focus on the most discriminative regions and ignore the rest.

Similarly, in computer vision, salient features can be prior extracted by a visual at-

tention system and come to the forefront dynamically as required by the fine-grained

classification applications. Especially for the image datasets with a lot of clutters. In
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this subsection, fine-grained visual classification methods using attention structures

are described in detail.

2.4.1 FCN Attention

FCN attention [64] is a fully convolutional attention localization network that is based

on reinforcement learning. The purpose of the architecture is to select several task-

driven visual attention regions from the input image adaptively. Different from the

previous FGVC models based on reinforcement learning [2][70][77], the proposed ap-

proach is significantly more efficient on computational complexity in both the training

and the testing phase. The reason can be ascribed to its fully-convolutional archi-

tecture, and it is capable of simultaneously focusing its glimpse on multiple visual

attention regions.

The fully convolutional attention localization network’s architecture is illustrated

in Figure 2.25. It localizes multiple discriminative object parts with the attention-

based method. Different parts cover different pre-defined sizes on an object. The

network consists of two components: a part localization and a classification. A fully

convolutional neural network is applied in the part localization component. For a

particular input image, the presentation feature maps are extracted using the convo-

lutional layers of the VGG-16 model [80]. The model is pre-trained on the large-scale

ImageNet dataset [15] and fine-tuned on the target dataset. By generating a confi-

dence map for each part using the feature maps produced by the localization CNN,

multiple object parts are located with the attention localization network. Two stacked

convolutional layers and one spatial softmax layer are used in the localization CNN to

generate each part’s confidence map. Sixty-four 3×3 kernels and one 3×3 kernel are

used in the first and the second convolutional layer, respectively, to produce a part

localization confidence map. Then the confidence map is fed into the spatial soft-

max layer and transferred to localization probability. The activated region with the

highest localization probability is determined as the corresponding part region. This

procedure is adopted to a pre-set fixed number of time steps for the parts localization.

A single particular part is generated with each time step.

The classification stream consists of an independent deep CNN classifier for the

whole image and every object part. Different parts of the same object might cover

different visual sizes on the object. A local part image segment is cropped around

the parts’ locations concerning its pre-set size. The whole image and the local image

segments of different parts are used to train an image classifier. All the output results

from the part classifiers are averaged to produce the final classification result. Each
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Figure 2.25: Framework of FCN attention [64].

local part region is resized to a higher resolution to discriminate the subtle visual

differences better.

2.4.2 Diversified Visual Attention Net (DVAN)

To persevere the diversity of multiple attention and extract the most discriminative

information from the image, the Diversified Visual Attention Network (DVAN) [111]

is proposed. Figure 2.26 presents the architecture of the DVAN model, which indi-

cates that the model includes four main components: (1) attention canvas generation

function; (2) CNN feature learning network; (3) diversified visual attention extrac-

tion; and (4) the final classification. Firstly, DVAN performs localization of several

regions with different sizes and crops those image regions to generate the ”canvas”

for the next stage’s visual attention extraction. The representation features in each

attention canvas are learned with a pretrained CNN (here, VGG-16). A multiple

visual attention CNN is adopted to generate the activation maps to localize each can-

vas’s important visual regions. In this way, the critical part locations in the canvas

are extruded, and discriminative information obtained from the attention canvases is

maximized. Different from the traditional attention-based structures paying attention

only to a single discriminative region, DVAN performs classification using the multi-

ple interest regions in an image, which benefits from a customized diversity-enhancing

loss function.
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Figure 2.26: The framework of diversified visual attention networks [111].

Figure 2.27: The DVAN attention component [111].

As illustrated in the top and bottom panels in Figure 2.27, the visual attention

adopted in DVAN contains two major components: the attentive feature integration

module and the attention map prediction module. DVAN also applied novel diversity-

enhancing loss function and attention canvas construction techniques to diversify the

attention regions and improve the prediction accuracy.

2.4.3 Recurrent Attention CNN (RA-CNN)

Unlike previous attention-based models, the Recurrent Attention CNN (RA-CNN)

[22] recursively learns discriminative region attention and region-based feature rep-

resentation in a mutually reinforced manner. The proposed RA-CNN is a stacked

network that takes the input from full images to fine-grained local regions at multiple

scales. First, the same network architecture is shared by the multi-scale networks.

The network architecture uses different parameters at each scale to fit the inputs with

35



Figure 2.28: The workflow of recurrent attention CNN [22].

different resolutions. The learning procedure at each scale contains a classification

sub-network and an Attention Proposal sub-Network (APN), ensuring adequate dis-

crimination ability at each scale and generating an accurate attended region for the

next finer scale. Second, a finer-scale network dedicated to high-resolution regions

takes as input an amplified attended region for extracting more fine-grained features.

Third, the recurrent network is alternatively optimized by an intra-scale softmax loss

for classification and an inter-scale pairwise ranking loss for the attention proposal

network. The network is optimized by the ranking loss to generate higher confidence

scores on correct categories than the previous prediction.

Since finer-scale networks can be stacked recurrently, RA-CNN can gradually at-

tend to the most discriminative regions from coarse to fine (e.g., from the body to

head, then to beak for birds). Note that accurate region localization can help dis-

criminative region-based feature learning and vice versa. Thus the proposed RA-CNN

can benefit from the mutual reinforcement between the object part localization and

the feature learning. To further leverage the benefits from the ensemble learning,

features from multiple scales are genuinely fused to classify an image by learning a

fully-connected fusion layer. The workflow of the RA-CNN is demonstrated in Figure

2.28.
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Figure 2.29: The workflow of Multi-attention CNN [112].

2.4.4 Multi-Attention CNN (MA-CNN)

Following the approach in [22], the Multi-attention CNN (MA-CNN) model was pro-

posed [112]. It is a novel framework with significant improvement in two aspects.

Firstly, it proposed the one-squeeze multi-excitation module (OSME) to localize dif-

ferent parts inspired by the ImageNet winner in 2018, Squeeze-and-Excitation Net-

works (SENet) [41]. It is fully differentiable and can directly extract part features

with a budgeted computational cost. Secondly, inspired by metric learning loss, the

multi-attention multiclass constraint (MAMC) was proposed to enforce the correla-

tions among different parts in training coherently. The workflow of MA-CNN is shown

in Figure 2.29.

The paper made the following contributions to solve the problem of the attention-

based fine-grained visual classification: 1) The detected parts should be well spread

over the object body to extract noncorrelated features; 2) Each part feature alone

should be discriminative for separating objects of different classes; 3) The part ex-

tractors should be lightweight in order to be scaled up for practical applications. The

experimental results show that MA-CNN achieved substantial improvements on four

benchmark fine-grained classification datasets.

2.4.5 Navigator-Teacher-Scrutinizer Network (NTS-Net)

Following the typical structure of attention-localization and classification workflow,

the Navigator-Teacher-Scrutinizer Network (NTS-Net) [103] was proposed. It is

equipped with a navigator agent, a part teacher agent, and a scrutinizer agent as

three stages of a classification strategy, as illustrated in Figure 2.30. Different from

the previous methods, the NTS-Net took into consideration the intrinsic consistency
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Figure 2.30: The workflow of the NTS-Net. The feature extractor extracts the deep
feature map from each input image, and feeds the feature map into to Navigator
network to generate the activations. Here we select the top-3 activations and crop
the correspondent regions as the second layer classification navigator [103].

between informativeness of the regions and their probability being ground-truth class

was taken into consideration. Hence a training paradigm was designed in the NTS-Net

to detect the most discriminative regions.

The NTS model can also be viewed as a part-based or multiple-model method.

Since the most significant improvement is the Navigator, which uses the attention

map to discover the most activated regions and train the part teacher agent, we

classify it as an attention-based method. The model can be trained end-to-end and

has no requirement for extra annotations except class labels. This makes the model

different from the typical part-based or duplicated model-based methods.

2.4.6 Mixture of Granularity-Specific Experts CNN (MGE-
CNN)

Different classes of objects in fine-grained classification tasks typically have small

inter-class variances and large intra-class variances. A simple solution for this problem

is to divide an FGVC dataset into some class subsets and train several ”experts”.

However, the generated expert model is prone to overfitting because small datasets

are used in training.

The Mixture of Granularity-Specific Experts CNN (MGE-CNN) [107] was pro-

posed to address the overfitting problem. It is a novel structure consisting of several

classification experts and a Gating Network (presented in Figure 2.31). For each input
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Figure 2.31: The workflow of the MGE-CNN [107].

image, a classification expert generates a Category Attention Map (CAM) and crops

attentional regions to feed into the next expert. In MGE-CNN, the KL divergence

was introduced into the loss function to force different experts to focus on different

attention regions:

L =
T∑
t=1

Ltcls +
T∑
t=2

LtKL + Lgate. (2.2)

The Gating Network in MGECNN combines the class scores from class experts

and outputs the final classification result:

ŷi =
T∑
t=1

gt ∗ ŷti (2.3)

2.4.7 Weakly Supervised Data Augmentation Network (WS-
DAN)

The Weakly Supervised Attention Learning was proposed in [42]. It can generate at-

tention maps to represent the spatial distribution of discriminative object parts and
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Figure 2.32: The workflow of Weakly Supervised Data Augmentation Network [42].

extract sequential local features to solve the fine-grained visual classification prob-

lem. The center loss, which is widely used in face landmark detection, is introduced

into the fine-grained visual classification to obtain the feature maps of discriminative

object parts. Based on the attention maps extracted by weakly supervised learning,

attention-guided data augmentation is conducted to improve data augmentation effi-

ciency, including attention cropping and attention dropping. The attention cropping

crops randomly and resizes one of the attention parts to enhance the local feature

representation. The attention-dropping function randomly erases one of the attention

regions out of the image to encourage the model to extract features from multiple

discriminative parts.

In WSDAN, Inception-V3 was used as the backbone, and the bilinear inner prod-

uct was employed to extract discriminative local visual features. The training and

testing flows are illustrated in Figure 2.32.

2.4.8 Weakly Supervised Complementary Parts Models

Weakly supervised complementary parts models [28] were designed in weakly super-

vised convolutional neural networks to retrieve discriminative features in dominant

object regions. The model extracts rough object instances using image-level annota-

tions only. Weakly-supervised object detection and instance segmentation are per-

formed using Mask R-CNN and CRF-based approaches. In the next step, under the

principle of preserving as much diversity as possible, the model evaluates to seek the

optimal parts model for each object instance in the input images. The corresponding

40



Figure 2.33: The workflow of Weakly Supervised Complementary Parts Models [28].

object parts’ representation features are combined and encoded by a bi-directional

long short-term memory (LSTM) network to generate a comprehensive feature set

for image classification. The workflow is demonstrated in Figure 2.33.

2.4.9 Diversification Block (DB)

Diversification Block (DB) [81] was proposed for the fine-grained classification tasks

to discriminate category subsets with a close relationship better. As shown in Figure

2.34, the model consists of two modules: (1) the diversification module forcing the

network to discover subtle but discriminative features between each pair of categories;

(2) a gradient-boosting loss function focusing explicitly on distinguishing class pairs

with high visual similarity. The diversification block addresses where and how to sup-

press the attention activation by using a peak and a patch suppression module. The

Gradient-boosting Loss introduces the Heap-max and Thresholding module before

applying the typical cross-entropy Loss function to avoid the extra noise produced

by the diversification block. The DB solution has a simple and elegant structure,

demonstrates a superior classification performance, and performs lower computational
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Figure 2.34: The workflow model with Diversification Blocks [81].

train test class
CUB-200-2011([90]) 5994 5794 200

FGVC-Aircrafts([66]) 6667 3333 100
Stanford Cars([51]) 8144 8041 196

Table 2.1: Summary of the benchmark datasets used in the experiments.

complexity.

2.5 Fine-Grained Visual Classification Datasets

This section introduces the benchmark fine-grained visual classification datasets pop-

ularly used by FGVC researchers. Our experiments were also conducted on these

datasets, including CUB-200-2011 Bird dataset [90], FGVC-Aircrafts [66] and the

Stanford Cars [51]. All these datasets provide a fixed train and test split. The statis-

tics of these datasets are summarised in Table 2.1.

The CUB-200-2011 Bird dataset [90] contains 11,788 images of 68 primary and 200

subclasses of birds in natural environments. Differences among subclasses could be

very tiny, making it very challenging for vision systems to discriminate automatically

and accurately. In the dataset, each image contains only one bird, and its bounding

box and 15 key-point locations (beak, back, breast, belly, forehead, crown, left eye, left

leg, left-wing, right eye, right leg, right-wing, tail, nape, and throat) are annotated.

It should be noted that due to occlusion or limitation of camera views, some part

locations are missing in the annotation of some image samples. A dataset splitter
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is provided to produce a training set with 5,994 images and a testing set with 5,974

images.

The Stanford Cars [51] dataset contains 16,185 images of 196 car models. The

dataset is pre-split into 8,144 images in the training set and 8,041 images in the

testing set. Each class has been split roughly in 50%-to-50%. For the finest-grained

level of annotation, the dataset is categorized by make, model, and year (e.g., BMW

M3 Coupe 2012 or Tesla Model S 2012). Besides, it also has annotations of color

(e.g., yellow vs. red) and body type (e.g., sedan vs. SUV).

The FGVC-Aircrafts [66] dataset contains 10,200 images of 100 different aircraft

models, with 102 images for each model. The annotation of the dataset includes a

bounding box and a model label for the primary airplane in each image. The label

annotation includes information about the model, family, and manufacturer. The

dataset is split into training and testing sets by 66.66%-to-33.33%.

Figure 2.35 displays sample images from each of the datasets.

2.6 Performance Comparison and Analysis

Table 2.2 compares the classification accuracy of each of the deep learning models in

the four categories on the CUB200-2011 dataset [90]. The classification accuracies

mentioned in the rest of this thesis are defined as the average classification accuracy

of all classes in the FGVC dataset. The dataset contains 11,778 images from 200 bird

species. The dataset also provides rich annotations, including image-level class labels,

bounding boxes of the major object, attribute annotations, and fifteen components’

landmarks. Note that the results from some models are not presented in Table 2.2

because these models were not evaluated with this dataset.

Table 2.2 groups the experimental results of each method into four categories. The

first category of models includes baselines whose backbone structures are widely used

in traditional object classification. Some data augmentation and transfer learning-

based FGVC models are also listed in the category. The second category shows the

performances of the part-based models. The methods shown in the third category are

based on ensembled multiple neural networks or encoded image features to improve

the performance of fine-grained classification. The attention-based models are eval-

uated in the fourth category. They usually do not require the bounding box or part

landmark annotations and mimics human beings’ recognition procedure. Depending

on the time they were proposed, these approaches might use different CNN structures

such asAlexNet [52], VGGNet [80], GoogLeNet [84], or DenseNet [44]. Moreover, some
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Figure 2.35: Samples from the three benchmark FGVC datasets. For each dataset,
three images from each of randomly selected two classes are presented to show intu-
itively the FGVC datasets used in our experiments.
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of these approaches may utilize the annotation of object bounding boxes or part land-

marks in the training or testing phase, while other models only require the category

labels for the training. The backbone CNN model and the annotation they are using

are noted in the table.

For traditional approaches, the net structures before 2017, such as AlexNet [52],

GoogLeNet [84], VGG-16 [80] and ResNet50 [36], could only obtain an accuracy

lower than 79%. However, DenseNet161 [44] which was proposed in 2017 achieved

an accuracy of 84.2% with a single model. With the latest auto-searching based

EfficientNet-b7 [85], an accuracy of 88.5% was obtained with only a single model and a

single training phase. Meanwhile, some other methods using auto data augmentation

or customized loss function also achieved impressive performance. For example, both

API [18] and Mix+ [54] produced an accuracy of over 90% on the CUB-200-2011

dataset.

Generally, part-based fine-grained classification methods can localize critical re-

gions using a series of manually pre-defined semantic parts. However, It is both

difficult and expensive to obtain the part landmarks for so many images. More re-

cent fine-grained visual classification techniques can automatically learn one or more

discriminative region detectors using category-level annotations with hierarchical re-

inforcement learning. The disadvantage of the attention-based models is that It is

usually difficult for them to localize the semantic object accurately without utilizing

the explicit part annotation. The discovered attention parts lack semantical inter-

pretability. The attribute annotation is more manageable considering the great labor

and time consumption of part annotation for fine-grained visual classification. There-

fore, we can utilize the attribute label information as weak supervision to improve

the classification accuracy further. The best traditional part-based method we have

investigated is the Deep LAC [59], which only achieved 80.3% accuracy on CUB-200-

2011 dataset. However, with the attention cropping module and deeper backbone

structure, the AttNet [35] achieved an accuracy of 88.9%, which was also in the first

echelon of the top-performing FGVC approaches.

Duplicated models or higher-order feature encoding methods achieved better ac-

curacy and required more affordable human labor than part-based methods. Bilinear

models, particularly, obtain an impressive accuracy of 88.7% with the backbone of

ResNet-101. Meanwhile, the recurrent visual attention models can effectively localize

the discriminative regions and learn their representations with an end-to-end pro-

cedure. In recent years, a lot of recurrent visual attention-based models have been
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proposed. The roadmaps of the attention-based approaches fall into two main cate-

gories: soft attention-based or hard attention-based. Models based on soft attention

[22][112] extract the attention regions deterministically. Consequently, it is differen-

tiable and can be trained end-to-end using backpropagation. Hard attention models

[111][64][42][28] use the stochastic attention points of the images. Reinforcement

learning is usually applied to the training of the hard attention models. Generally,

the soft attention-based approaches are more efficient than the hard attention-based

approach, for that it usually requires duplicated training procedure in hard attention

models. In contrast, soft attention-based models can be trained in a single end-to-end

procedure.

In practice, there are still several drawbacks to visual attention-based models.

Firstly, performance improvements are not satisfying using soft attention-based mod-

els. A more robust visual attention model is supposed to improve FGVC accuracy

more significantly. Secondly, reinforcement learning is used in hard attention-based

methods, making it difficult to implement and usually not as efficient as soft attention-

based methods. Approaches to improve the hard attention-based methods’ efficiency

and assemble the different attention extraction stages should be explored further.

In conclusion, attention-based methods provide the best performance and have

immense research prospects.
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Method Architecture Input Train Test Accuracy(%)

AlexNet[52] AlexNet 224 — — 69.1
GoogLeNet[84] GoogLeNet 224 — — 68.2

VGG-16[80] VGG-16 224 — — 73.3
ResNet50[36] ResNet50 224 — — 78.2
ResNet50[36] ResNet50 448 — — 85.4

DenseNet161[44] DenseNet161 448 — — 84.2
EfficientNet-b0[85] EfficientNet-b0 448 — — 84.7
EfficientNet-b7[85] EfficientNet-b7 448 — — 88.5

DCL[10] ResNet-50 448 — — 87.8
S3N[16] ResNet-50 448 — — 88.5
API[18] DenseNet161 448 — — 90.0

MC-Loss[9] Bilinear CNN 448 — — 86.4
Mix+[54] ResNet-50 448 — — 90.2

PB-R-CNN[108] AlexNet 224 BBox+Parts BBox 76.4
PB-R-CNN[108] AlexNet 224 BBox+Parts — 73.9

MPC[79] AlexNet 224 BBox BBox 80.3
PoseNorm[6] AlexNet 224 BBox+Parts — 75.7
PS-CNN[45] AlexNet 224 BBox+Parts BBox 76.2

Deep LAC[59] AlexNet 224 BBox BBox 80.3
AttNet[35] ResNet-101 448 — — 88.9

Subset FL[30] AlexNet 224 — — 77.5
MixDCNN[29] AlexNet 224 BBox BBox 74.1
MG-CNN[91] VGG-16 224 BBox — 83.0
MG-CNN[91] VGG-16 224 — — 81.7

Bilinear CNN[62] VGG-16 448 BBox BBox 85.1
Bilinear CNN[62] VGG-16 448 — — 84.1

BoostCNN[71] VGG-16 448 — — 86.2
PC[19] DenseNet-161 448 — — 86.8

iSQRT-COV[55] ResNet-101 448 — — 88.7
DVAN[111] VGG-16 224 — — 79.0

FCN attention[64] GoogLeNet 224 BBox — 84.3
FCN attention[64] GoogLeNet 224 — — 82.0

RA-CNN[22] VGG-16 448 — — 85.3
MA-CNN[112] VGG-16 448 — — 86.5
NTS-Net[103] ResNet-50 448 — — 87.5

MGE-CNN[107] ResNet-50 448 — — 88.5
DB[81] ResNet-50 448 — — 88.6

WS-DAN[42] Inception-V3 448 — — 89.3
WS-CPM[28] GoogleNet 448 — — 90.3

Table 2.2: Comparison of classification performance of different FGVC models on
CUB-200-2011 dataset. The baselines of AlexNet, GoogLeNet, VGG-16, ResNet50,
DenseNet161, EfficientNet-b0, and EfficientNet-b7 are conducted by this thesis, while
the rest are reported in the original papers.
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Chapter 3

Part Collaboration Convolutional
Neural Network

Part based approaches have been proven effective in previous works [59][108][6][79][45].

By localizing parts in an object and construct their feature correspondences among

different species, these methods can amplify the subtle distinguishing visual char-

acteristics. Moreover, the localization-classification scheme conforms to traditional

taxonomic conventions and can be applied to other fields like image caption, literal

search engine, and discrimination interpretation. Plagued by increasing model com-

plication from multi-view end-to-end parallel deep network, however, previous works

benefited far not enough from part level detail information.

This chapter presents an end-to-end part-based Part Collaboration CNN (PC-

CNN) architecture for fine-grained categorization. Similar to previous part-based

approaches, the proposed method extracts multi-view visual features to train the

FGVC classifier. To avoid dimension boosting caused by additional part streams,

ResNet structure and a fully convolutional network were applied to reduce the multi-

view feature dimension, and independent part feature extractors were implemented.

The major contributions of this work include:

� A novel multi-view categorization architecture was proposed based on deep

CNN, which can take into consideration an unlimited number of object parts

and the pose information.

� A training strategy was proposed, which was capable of avoiding under fitting

caused by the unbalance among the discrimination abilities of different parts

while keeping the globe optimization achievable.
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� The proposed method achieved an accuracy of 84.1% with the ground truth part

annotation for the CUB-200-2011 dataset, superior to the accuracy of 82.02%

reported in the state-of-the-art works [108][45].

� The parameter number of the proposed model is 93.3 million for 15 parts, which

is 28.7% less than that in [45]. The processing speed for the proposed 7-parts

model is 73 frames per second on a TITAN X (Pascal) GPU, which is marginally

slower than the basic ResNet-50 model [36] (84.5 frames/sec).

The work of this chapter has been published in the proceedings of 2018 Digital

Image Computing: Techniques and Applications (DICTA) [56].

The chapter is organized as follows. Detailed introduction of PCCNN nets and

their training method is described in Section 3.1. Experimental results and analysis

on the performance of the proposed model and its interpretability are detailed in

Section 3.2, followed by conclusions and discussions on the structure of the PC-CNN

and future work in Section 3.3.

3.1 PC-CNN Structure

While Zhang et al. [108] and Huang et al. [45] proved the effectiveness of side net

and increased the accuracy of the primary AlexNet [52] by 6%, with only two rough

parts (head and body) utilized, their methods were limited by the R-CNN-based

localization framework and 2-step classification network structure. To address these

problems, an FCN part-localization architecture was designed [45] that was capable

of precisely detecting coordinated points of quantity object parts. Based on that, a 2-

stream end-to-end network architecture was proposed, containing an object stream for

bounding-box level feature extraction, a shared part stream for the feature extraction

of all candidate parts, and a three fully connected-layer classifier. However, its FCN

based localization network is not accurate enough due to the limitation of feature

map resolution, and the FCN often overlooks the potential relationship among the

locations of different parts. Moreover, sub-classifiers should be customized based on

the visual appearance of each part. However, this was not taken into consideration

in [45]. Their model also ignored the pose information that can be potentially useful

in the classification to improve the generalization capacity of the model.

A novel structure was proposed to address these problems by adopting ResNet-50

[36] as the object level feature extractor, regression-based localization network, and

AlexNet 5-layer convolutional network as the part feature extractor. A joint layer
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Figure 3.1: The network architecture of the proposed PC-CNN categorization model.
With the PC-CNN, 1) the input image is resized into 224 × 224 for object stream,
and cropped into M 113×113 parts for part streams; 2) M part streams take cropped
part images as input, and extract the most representative M × 16 × 3 × 3 features
independently; 3) the object stream takes the object image as input and extract
a global 2048-dimensional feature set; 4) unify object and part features and utilize
pose information to achieve the final multi-view feature for the classifier with 3 fully
connected layers.

is designed to fuse global, part, and pose features. The uniqueness of the proposed

architecture is its customized part classifier and feature fusion strategy. The experi-

mental results show that the proposed architecture works well, and its classification

accuracy has been significantly improved with minimal increase in computation cost.

Figure 3.1 illustrates the proposed framework.

3.1.1 Part Localization Network

The first stage of the proposed method is part localization that aims to detect the 2-D

locations of each object part defined in CUB-200-2011 [90]. Different from [45], which

applies a fully convolutional network, a novel net structure is proposed to reduce

location sampling errors from convolutional feature maps substantially. Moreover,

compared with the fully convolutional network, the fully connected layers can learn

more in-depth into the potential correspondence among each object’s parts, leading

to high localization accuracy.

Unlike most of the regression-based keypoint localization applications such as

human pose estimation [102] or face keypoint detection [82], object part localization

for fine-grained classification suffers a lot from occlusion and deformation. Figure 3.2
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Figure 3.2: The percentage of the images in CUB-2011-200 dataset that contains each
part of a bird. 99.64% of the images in the dataset contain beak, while the back only
appears in 76.89% of the images. Due to occlusion, right wing, left wing, right eye,
and left eye only show in around half of the images.

shows the unbalanced percentage of the images in CUB-2011-200 dataset that contains

each part of a bird. As a consequence, lots of parts are annotated but are hard to

detect in CUB-200-2011. To address this issue, a fully convolutional network was

introduced [45] to transform localization into a pixel classification problem. However,

the localization accuracy is limited by the resolution of feature maps produced by

CNN. The output of CNN has a resolution of 27 × 27. Therefore, some artificial

postprocessing like smoothing and maximum detection must be done to determine

the final location.

To address this problem, a regression-based keypoint localization method is pro-

posed. By separating part detection and localization networks and designing detection

and localization loss functions, the proposed method can accurately learn part loca-

tions while detecting missing parts caused by occlusion. As illustrated in Figure 3.3,

the proposed network consists of three parts: feature extraction network, part detec-

tion network, and part localization network. The feature extraction network applies

the convolutional layers of ResNet-50 [36] and provides 2048-dimension output. Sup-

posing N is the number of parts utilized in the proposed model, part detection and part

localization networks take the feature vector as input, generate N dimension detection

(d1, d2, ..., dN) and 2 × N rough localization coordinates (x1, x2, ..., xN , y1, y2, ..., yN)
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as output.

Part detection network consists of two fully connected layers, the first layer

produces 512 dimension feature vector and the second one output N dimension detec-

tion. If the i− th part appears in the image, set annotation d̂i = 1, else set d̂i = −1.

Then model output di can determine the possibilities of each parts appearing in the

image. Set loss function for the i− th part is :

lossdetect(i) =

{
0 di × d̂i = 1

(di − d̂i)2 otherwise.
(3.1)

Then the overall detection loss is the summation of the loss of each part:

lossdetect =
N∑
i=1

lossdetect(i) (3.2)

In the backward processing of the detection network, it takes lossdetect(i) as the

diff vector. In the testing stage, a threshold δ ⊂ (−1, 1) is set to determine whether

a part appears in an image: if the output dk > δ, the model labels the k− th part as

being detected.

Part localization network structure is similar to the detection net, but its

output number is 2×N. The annotated localization coordination (x̂i, ŷi) is normalized

to (0, 1) in preprocessing. The loss function of the i-th part is defined as follows:

lossloc(i) =

{
0 d̂i = −1

(xi − x̂i)2 + (yi − ŷi)2 otherwise.
(3.3)

In the back propagation, the proposed model only calculates the detected parts,

the diff of the coordinates of undetected parts is set to 0. Similarly, the overall

localization loss is defined as follows:

lossloc =
N∑
i=1

lossloc(i) (3.4)

3.1.2 Two Stream Feature Extraction Structure

As described in Figure 3.1 (3), the object stream is constructed on the general ar-

chitecture of ResNet-50[36], which takes a 224 × 224 RGB image as input and the

2048-dimensional feature set from the pool5 layer as output. To capture detailed

semantics for finer-grained classification, the previous work [108] trained a set of in-

dependent part-based feature extraction side nets and cascaded these part features
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Figure 3.3: The localization network architecture. The model consists of: 1) image
feature extraction network; 2) 2 fully connected layer part location prediction network;
3) 2 fully connected layer object part detection network; 4) unify part detection and
predicted location output to generate the final localization.

with the global features to classify an object. In [45], the part level side net was com-

bined with the object-level structure. However, only a unified part feature extractor

for all different object parts was used, which means that the part classifiers are not

concentrated enough comparing with the customized part streams in [108]. With the

proposed method, customized side nets and a unified structure are introduced as the

core of the proposed strategy. These side nets utilize finetuned part-level supervision

to capture detailed semantics. As criticized in [45], independent feature extraction

CNNs for multiple parts will lead to inapplicable high computation and memory cost.

In the proposed framework, efforts are made to keep recognition performance while

reducing the computation and memory cost of the customized part classifiers to a

maximum extent.

The first step of the proposed method is to downsample the input resolution of

part streams to 113× 113 to reduce the calculation cost. In the meantime, the pool5

layer in each part stream was discarded to save M × 256× 3× 3 feature map output.

This design avoids fixed receptive field in [45] while providing more flexible part-

cropping options. For example, we designed larger receptive field cropping for wings

was designed with 25% of the bounding-box size and smaller ones for beaks (15%

of the bounding-box size). This makes the part feature extractor more adaptable to

scale changes.

AlexNet part stream K outputs 3× 3× 256 features, and M part streams provide

M × 3 × 3 × 256 dimension part features for the classification net. For our general

classification net structure, the major overhead is the massive parameters in the first
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fully connected layer. For PC-CNN that involves more than ten parts, the first fully

connected layer would contain over one million parameters, making both computation

time and memory cost unacceptable. To address this problem, similar to [45], FCN is

utilized to reduce the dimension of conv5 outputs of part streams. Therefore, the final

output dimension of each part stream is only 3 × 3 × 16, and the overall dimension

of part steams is M × 3× 3× 16.

3.1.3 Feature Unifying Layer and Classifier

After extracting feature maps at both the object and part levels, a unification layer

is defined to cascade feature maps from different extractors. To handle this, output

feature maps of different streams were put together outside the network [108]. The

separation of the feature extraction and classification in the framework makes it

harder to achieve global optimization. To solve the problem, a parameter sharing

structure was proposed in [45] to extract detailed part feature maps with a shared side

net and flatten feature maps as the input of 3 fully connected classification networks.

In some instances, this solved the global optimization problem, but sharing the same

set of parameters and computation by all parts raised the issue of under-customization

as CNN finetuned at specific dataset outperforms general one.

We proposed three strategies on the unification layer to improve the performance

of both computational complexity and the final classification accuracy. The first

involves the pose information in the classification by simply taking a 2×M dimension

(M point X-Y coordinates) pose vector as part of the input. The pose information

is an instructive extra feature for fine-grained classification. The previous studies we

have reviewed only utilized these coordinates to crop images/features from objects.

The proposed structure takes the pose coordinates into the forward and backward

propagation of the three fully connected layers.

The second is discarding blocking parts in both the forward and backward prop-

agation. In the forward propagation, the unifying layer reads location vectors and

checks whether a part is blocked or not. If it is blocked, then the data vector is

set to 0. Similarly, if an object part is blocked, the difference vector is set to 0 for

the backward propagation. This strategy effectively reduces redundant computation

while minimizing the negative impact of the blocked parts.

Unlike the single-view classification in which over-fitting results are only from

limited image samples, over-fitting in the multi-view classification also comes from

limited part correlations in samples. Following the idea of dropping layer to avoid

part over-fitting, we randomly discard some less discriminative parts in each sample.
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Supposing the discriminative capability of each part can be represented by the top-1

accuracy of classification by the part alone, to measure the discriminative capability

of each part, we use the CaffeNet model [52] as the feature extractor and train the last

three fully connected layers for each part. As presented in Table 3.4, some parts such

as the eye, crown, and beak produce higher prediction accuracies than others. The

proposed framework randomly discards some of the existing part features by setting

both the data and difference of the correspondent position to 0. The possibility pdiscard

of a part being discarded depends on its top-1 prediction accuracy Accpart:

pdiscard(part) =
ρ

1 + eσ×(Accpart−ε)
(3.5)

In practice we set ρ=0.8, σ=10 and ε=0.1. The unified feature vector is input into

the classic three fully connected classification layers after sorting out in the unifying

layer. In particular, we replaced the last original 1000-way fc8 layer with a customized

200-way fully connected layer to generalize the final classification output.

3.1.4 Training Methodology

Considering that the streams in the proposed PC-CNN are unbalanced in both rep-

resentation capability and sample number as some parts are missing in some samples

due to occlusion or camera views, training the entire PC-CNN from the beginning

will cause under-fitting in some low representative part streams. Feature extraction

nets should be trained separately and finetuned together. We propose a three-step

training process for our PC-CNN structure.

Given data symbols DG, DL and Di respectively stand for object-level image data,

part localization vector data, and the i-th part image data. Parameters Pnet, PnetCNN ,

and PnetOrg respectively stand for the parameters for network structure, convolutional

part of the structure, and original model parameters pre-trained from the ILSVRC

ImageNet dataset. ResNet, AlexNet, and PC-CNNn respectively stand for 50-layer

ResNet[36], classic 8-layers AlexNet[52] and the proposed PC-CNN that consists of n

part streams. Operator({D}, {P}) NET−−−−→Psave stands for utilizing data/dataset {D}
and pre-trained model POrg to fine-tune network NET, producing and saving network

model parameters Psave. The training process is demonstrated in Table 3.1.

A significant advantage of the proposed three-step training is that it can avoid the

potential under-fitting of some weak representative part streams because the multiple-

step training can avoid the conflict between different steams. In the meanwhile, it

can keep the distinctive capabilities of each referring object part.
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Step 1: fine-tuning object and part streams separately;

(DG, PResOrg) ResNet−−−−−→PResCNN

for (i = 1; i < M; i++){
(Di, PAlexOrg) AlexNet−−−−−−→PAlexCNN

}

Step 2: fix PResCNN and PAlexCNN , training conv6 of each part streams;

(Di, PAlexCNNi
) Sort by independent accurracy−−−−−−−−−−−−−−−−−−−−−−−−→{D’i, P’AlexCNNi

}

for (i = 1; i < M; i++){
({DG,D’1,D’2,...D’i}, {PPC−CNNi

,PAlexCNNi
}) PC-CNNi−−−−−−−→PPC−CNNi

}

Step 3: fine-tuning entire network.

(DG,D’1,D’2,...D’M , PPC−CNNM
) PC-CNN−−−−−−−→PPC−CNNM

Output: PPC−CNN

Table 3.1: The 3-steps training process for PC-CNN

3.2 Experiment Result of PC-CNN

This section presents the experimental results of PC-CNN. Section 3.2.2 illustrates

the localization accuracy of PC-CNN and presents the comparison of the PC-CNN

with the previous PS-CNN. Section 3.2.3 compares the classification accuracy of the

proposed PC-CNN and other state-of-the-art part-based methods. In Section 3.2.4,

activated feature maps are visualized to validate the effectiveness of PC-CNN in

extracting discriminative features.

3.2.1 Implementation Details

We carried out the experiments on the widely-cited fine-grained benchmark Caltech-

UCSD birds (CUB-200-2011 [90]) dataset, which has been described in Section 2.5.

The open-source package Caffe [46] was used to extract deep features and finetune

our CNNs. For the localization network and the object stream of the classification

network, we employed the ResNet-50 [36] model, which provided the least output

feature-map dimension (2048× 1× 1), and was one of the best-performing structures

overall. Meanwhile, to produce ancillary detail features for fine-grained classification,

we took the Caffe reference AlexNet model in classification side nets in our proposed
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part streams. The AlexNet model is almost identical to the model used by Krizhevsky

et al. in [52].

3.2.2 Part Localization Result

According to [102][82], the localization accuracy of the proposed model is quantita-

tively assessed with three metrics: MRK (Mean Precision of Keypoints over images),

MPK (Mean Recall of Keypoints over images), and APK (Average Precision of Key-

points). Following [102], an output location is considered correctly predicted if the

prediction is within an Euclidean distance of 0.1 times the maximum width of the

bounding box. Suppose that an image I in image set I contains ngt ground-truth

parts, and the proposed model predicts npd parts in which ntp parts are correctly

located, MPK and MRK are:

MPK =
1

N

∑
I∈I

ntp
npd

,MRK =
1

N

∑
I∈I

ntp
ngt

, (3.6)

By adjusting threshold δ ∈ (−1, 1) and observing the model performance, we can

get a MPK-MRK function, MPK = fδ(MRK), then APK is defined as follows:

APK =

∫ 1

0

fδ(MRK)dMRK (3.7)

The overall comparison of APK between the proposed PC-CNN and model pre-

sented in [45] is presented in Table 3.2. PC-CNN achieved impressive improvement

over the recent state-of-the-art model by 5.8%. In our case, the δ is set to 0.12, and

the MPK/MRK is 0.900/0.906, which is much higher than that in [45] (0.800/0.838).

The localization result is presented in Figure 3.4. As Figure 3.4.(a) illustrates, the

proposed model can effectively handle pose transmission, object part deformation,

and slight occlusion. Moreover, in Figure 3.4.(b) we show several typical mispredic-

tion samples caused by mis-annotation, extreme deformation, or occlusion, through

which we can see that the majority of essential parts are correctly located and the

performance of the proposed model remains robust even in these extreme situations.

3.2.3 Categorization Results

To generate the categorization results, we firstly examined the extra discrimination

of part streams. In step two, described in Table 3.1, we incrementally added the most

discriminative object parts to the entire framework and iteratively trained the pro-

posed model. The classification accuracy was recorded for each increment to observe
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(a) Positive samples

(b) Negative samples

Figure 3.4: Localization samples: predicted part locations and ground-truth part
locations are shown in red and blue dots, respectively, the green lines show their
correspondences. (a) Correct localizations on different species and environments, and
(b) Some representative samples mis-predicted by the proposed model.

Part throat beak crown forehead r-eye nape l-eye back
PS-CNN[45] 0.908 0.894 0.894 0.885 0.861 0.857 0.850 0.807

Ours 0.982 0.982 0.977 0.980 0.967 0.955 0.956 0.929

Part breast belly r-leg tail l-leg r-wing l-wing overall
PS-CNN[45] 0.799 0.794 0.775 0.760 0.750 0.678 0.670 0.866

Ours 0.942 0.956 0.815 0.836 0.783 0.859 0.820 0.924

Table 3.2: Comparison of APKs obtained from state-of-art methods on the CUB-200-
2011.
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FCN BB +1 +2 +3 +4 +5 +6 +7 +8 +9 +10
8 76.0 77.2 79 78.5 79.3 79.6 80.2 80.4 80.6 80.3 80.5
16 76.0 80.7 81.8 82.7 82.9 83.2 83.7 84.1 84.1 83.5 83.6
32 76.0 81.0 81.4 81.8 82.2 83.0 83.6 83.3 83.3 83.4 83.2

Table 3.3: The classification accuracy with different part number and FCN output
dimension (tested with ground-truth part annotation).

Part BB Eyes Beak Crown Forehead Throat Wing
Acc 63.50 56.20 36.40 35.20 34.30 31.20 26.00
Part Breast Nape Belly Back Tail Legs
Acc 20.90 17.00 16.10 16.00 12.30 10.30

Table 3.4: Part accuracy.

the contribution of the part streams. As shown in Table 3.3, the most discriminative

parts (eyes, crown, beak, wings) can significantly improve the classification accuracy.

While further increment of less discriminative parts also contributed to the gradual

improvement of the classification accuracy, it soon became saturated. In the end,

it was observed that the environmental noise in barely discriminative parts had a

negative impact on the classification accuracy of the proposed PC-CNN model.

The impact of the conv6 output number was also evaluated. We respectively

applied 8, 16, and 32 full convolution layer output feature maps on the proposed

structure to determine the best practice for the low-level part feature extraction.

Table 3.3 reveals the impact of part streams. BB stands for using bounding box only,

+k stands for using the most discriminative parts besides BB, each row stands for

using the outputs of 8, 16, 32 FCN. As shown in Table 3.3, further increasing the

FCN output number to 32 did not improve the accuracy. However, it vastly increased

the input dimension of the first fully connected layer, which was useful for explicit

model interpretation.

In the two steps of the localization-classification scheme, we concentrated on the

classification structure by utilizing the ground truth localization in our testing process.

Table 3.4 compares the classification accuracies among the bounding-box level object

and different parts alone trained and tested with the AlexNet model. Table 3.5

demonstrates the comparison of the proposed and other state-of-the-art models on

the same dataset. Our proposed PC-CNN achieved a classification accuracy of 82.4%,

which is inspiringly higher than state-of-the-art part-based methods, including the

part-based RCNN [108] and the part-stacked CNN [45] by over 6%. Compared with

the former state-of-the-art, Bilinear CNN (BCNN) [62], which used 448 × 448 input
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Method Training anno Testing anno Speed/fps Para/million Acc/%

Alignment[27] BBox BBox — — 67.0
No parts[67] BBox BBox <1 135 74.9
ResNet[36] BBox BBox 130 25.5 76.2
Bilinear[62] BBox BBox 8 70 85.1

PR-CNN[108] BBox+Part n/a — — 73.9
PN-CNN[6] BBox+Part n/a — — 75.7
POOF[4] BBox+Part BBox+Part — — 73.3

PC-CNN BBox+Part BBox+Part 73 92 84.1
POOF[4] BBox+Part BBox — — 56.8

DeCAF[17] BBox+Part BBox — — 65.0
PR-CNN[108] BBox+Part BBox <1 60 76.4
PS-CNN[45] BBox+Part BBox 20 130.5 76.2
PC-CNN BBox+Part BBox 47 120 82.4

Table 3.5: Comparison of classification accuracies among the proposed PC-CNN and
other state-of-the-arts. BBox and Part stand for using ground-truth bounding box
and part location annotation, respectively.

image resolution, the PC-CNN only use 1/4 of the input resolution (224 × 224) and

hence is nearly six times faster (8 fps vs. 47 fps), to achieve a comparable classification

accuracy.

3.2.4 Discussion on the Proposed PC-CNN

For CNN-FCN classification schemes, the FCN structure largely determines the mem-

ory and calculation cost of the entire network model. A comparison was conducted to

evaluate the parameter number and testing speed of some well-known structures and

the proposed method, as shown in Table 3.5. By applying the ResNet structure to

reduce the input parameter number of the fully connected layers, an M-part PC-CNN

updates only 49.5 + 2.92 ×M millions of parameters, which is much less than the

AlexNet based PS-CNN structure (60.02 + 4.72 ×M millions). At the localization

stage, our proposed 15 part PC-CNN achieved 47 fps on TITAN X (Pascal) GPU,

which is marginally slower than the basic ResNet-50 model; however, the classification

performance has been significantly improved by about 6.2%.

Instead of sharing a feature extractor for all parts as presented in [45], our pro-

posed model uses separated part streams. We particularly compared the activation

of the conv5 output of an image sample from the CUB-200-2011 dataset. We also

applied several independent AlexNet feature extractors in the proposed framework to

produce the activation heatmap for each part. On the contrary, a shared feature ex-
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Figure 3.5: Comparison among the output heatmaps of independent and shared pa-
rameter CNNs. (1) the maximal activation maps from the outputs of part streams;
(2) the maximal activation map from the outputs of object stream; (3) the heatmaps
of different parts cropped from (2).

tractor was employed in [45], and part features were cropped from output heatmaps.

Figure 3.5 explains that shared parameters lead to mediocre discrimination of part

features. In contrast, customized feature exactors for each stream are more sensi-

tive to discriminative parts like feather textures, beak outlines, or tail shapes in part

images.

3.3 Conclusion

In this chapter, a novel PC-CNN model for fine-grained classification was proposed

and presented. By defining separated part side nets, the proposed model introduces

detailed part-level representations into the classification. This has led to signifi-

cant improvement of the fine-grained classification on the benchmark CUB-200-2011

dataset. Examining the output feature maps of each part stream reveals that inde-

pendently trained part feature exactors can produce more meaningful activation and

discriminate part differences among different species with subtle appearance vari-

ances. By applying ResNet and 1×1 convolution layer to reduce the input dimension

of the FCN classifier, we reduced the model size to a level similar to or smaller than

most of the commonly used networks.

The future work of the PC-CNN will focus on an end-to-end localization-classification

strategy. Based on the predefined skeleton of an object, a deep network should have

the capability to learn the tridimensional structure of the object and find discrimi-
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native parts automatically. In this way, we may even catch some hidden biological

characteristics still undiscovered by human biologists.
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Chapter 4

Squeezed Bilinear Pooling

Bilinear pooling was first proposed to address the challenge of Fine-Grained Visual

Classification (FGVC) by Lin et al. [62]. Based on the bilinear pooling, Lin et al.

[61] investigated matrix square-root normalization to significantly improve the repre-

sentation of the bilinear feature. However, a neglected problem of the above feature

encoding method is its extremely high output feature dimension. The tensor product

makes c CNN output channels to c2 dimension of pooled features. A relatively low

c = 512 VGG-16[80] structure produces a 512 × 512 ≈ 262k dimension bilinear fea-

tures. To deal with this problem, Tensor Sketching was investigated in [25] and similar

accuracy was reported with 8K compact features. However, the linear combination

significantly increases the computational complexity of bilinear features. To solve

the computation dilemma, a low-rank approximation-based method was proposed in

[50] and obtained a similar performance of the original full bilinear pooling. Given

these methods reduced the dimension and computational complexity by two orders

of magnitude, one vital problem is that the matrix power function cannot propagate

through the compact layer. Sub-normalization was employed in [34] to solve the prob-

lem. However, the performance is not as good as expected since the categorization

accuracy drops around 1% compared with that obtained with the baseline structure.

It remains a problem to combine a compressed bilinear structure with matrix power

normalization.

This chapter proposes a novel efficient module for the fine-grained visual classi-

fication, named Iterative Fisher Bilinear Pooling (IFBP). The proposed module is a

pooling layer inspired by the Bilinear CNN (BCNN) [62], and its variants CBP [25]

and LRBP [50]. Unlike the previous works, the proposed IFBP can directly replace

the global average pooling in a range of deep CNN structures to improve transfer

learning capability while keeping the computation cost and memory consumption
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Fast
Computation

Matrix
Normalization

Attention
Interpretable

CBP × × ×
LRBP

√
× ×

MoNet ×
√

×
SBP

√ √ √

Table 4.1: Comparison on the proposed SBP and other compressed bilinear pooling
based methods.

low. The advantages of the proposed model over the other compact bilinear models

are illustrated in Table 4.2.

The highlights of this chapter include:

� With the proposed IFBP, we investigated the distribution of the bilinear fea-

tures. We compressed the bilinear features with Fisher Selector (FS), which

outputs a second-order feature with a much lower dimension, and at the same

time, linearly reduces the computational complexity.

� With the improved version of Squeezed Bilinear Pooling (SBP), Matrix Nor-

malization (SBP-MN), we designed a backpropagation procedure for the matrix

normalization of the selected features.

� We proposed an SBP-based recurrent attention structure, called Fisher Re-

current Attention Squeezed Bilinear Pooling (FRA-SBP), which significantly

improved the categorization accuracy on the common FGVC datasets.

The work of this chapter has been published in the proceedings of the 2019 IEEE

International Conference on Computer Vision Workshops [57].

4.1 Squeezed Bilinear CNN

In this section, we describe a novel bilinear-based supervised compressed method.

The overview of the proposed SBP architecture is shown in Figure 4.1. For each

input image I, the convolutional neural network outputs a feature matrix M =

{m1,m2 . . . ,mc}, where mi is the expansion tensor of the i-th channel of CNN fea-

tures. Following [62], the co-inner production is conducted on M to produce c×c sec-

ond order map M̂ = {m̂1, m̂2, . . . , m̂c2}. After that, the novel Fisher Selection Layer

(FSL) and Global Average Pooling (GAP) are applied to generalize the d-dimension
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Figure 4.1: The proposed network architecture with three SBP based models: 1)
the Squeezed Bilinear Pooling with Element-wise Normalization (SBP-EN) for fast
computation, 2) the Squeezed Bilinear Pooling with Matrix Normalization (SBP-MN)
by inserting the matrix square root function before the squeezing layer, and 3) the
Fisher Recurrent Attention Squeezed Bilinear Pooling (FRA-SBP).

Full Bilinear CBP/MoNet TS LRBP SBP-EN

Feature Dim. c2 [262K] d [10K] m2[10K] d [10K]
Feature Comp. O(hwc2) O(hw(c+ dlogd)) O(hwm(c+m)) O(hwd)
Classify Comp. O(Kc2) O(Kd) O(Khwrm) O(Kd)
Feature Para. N/A 2c [4KB] cm [200KB] d [20KB]
Classifiy Para. Kc2 [200MB] Kd [6.4MB] krm [600KB] Kd [6.4MB]

Table 4.2: Comparison on feature dimensions, computations, and the parameter num-
bers for different pooling methods and classification layers.

squeezed second-order feature vector, followed by the off-the-shelf element-wise square

root regularisation, l2-normalization layers, and a full connected classification layer.

In the parallel workflow, a matrix square root layer is applied as a bridge between

the full bilinear layer and the FSL to improve the proposed SBP further. The two flows

are named as Squeezed Bilinear Pooling with element-wise (SBP-EN, as illustrated

in Figure 4.1.(1)), and matrix normalization (SBP-MN, as shown in Figure 4.1.(2)),

respectively. Based on the single model approaches, we designed the Fisher Recurrent

Attention SBP (FRA-SBP, shown in Figure 4.1.(3)). We will discuss these structures

in detail in the following sections.
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4.1.1 Fisher Feature Selector

Fisher Discriminant Analysis (FDA) has been widely investigated [3][69][23]. It dis-

criminates patterns using the low-dimensional projection of high-dimensional features

with linear transformations. Its main idea is to maximize the inter-class variations

and minimize intra-class variations. Although Fisher’s discriminant analysis does

not perform feature selection projection from high dimensional to low dimensional

space via linear transformation, it maximizes the class separation measurement via

the feature selection.

Denote the intra, inter-class, and total scatter matrix by Sw, Sb, and St:

Sw =
1

n

g∑
j=1

nj∑
i=1

(x
(j)
i − µj)(x

(j)
i − µj)T ,

Sb =
1

n

g∑
j=1

nj(µj − µ)(µj − µ)T ,

St =
1

n

n∑
i=1

(xi − µ)(xi − µ)T = Sw + Sb,

(4.1)

where x
(j)
i represents the i-th feature observation in Class Cj, µj and µ are sample

means for Class Cj and the hole dataset, respectively, i.e. uj = 1
nj

∑nj

i=1 x
(j)
i , and

µ = 1
n

∑n
i=1 xi.

Fukunaga [23] proved that the traces of these scatter matrices could be used to

measure the class separation of the features. The scatter measurement using means

and variances is based on an implicit assumption that the features in each class follow

a normal distribution. For large data machine learning cases, it usually works well [89].

To address the linearly non-separable problem, non-linear kernels are incorporated

into the above scatter matrices. Note that φ(·) is the kernel that maps the original

feature space Rp into the objective kernel space Rd:

Rp φ−→ Rd, φ(x) = z, (4.2)

the inner product in the kernel space becomes 〈φ(x1, x2)〉 = k(x1, x2), where k(·, ·)
is the kernel function [89]. After mapping into and calculating the scatter matrices

in the kernel space, the trace of the intra, inter-class, and total scatter matrices in
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kernel space, i.e., S̃w, S̃b, and S̃t can be obtained as:

Tr(S̃w) =
1

n
Tr(K)− 1

n

g∑
i=1

1

ni
Sum(K(i)),

T r(S̃b) =
1

n

g∑
i=1

1

ni
Sum(K(i))− 1

n2
Sum(K),

T r(S̃t) =
1

n
Tr(K)− 1

n2
Sum(K),

(4.3)

where the operators Sum(·) and Tr(·) calculate, respectively, the summation of all

elements and the trace of a matrix, and K and K(i) are the n × n and ni × ni sized

matrices defined by:

{K}kl = k(xk, xl), {K(i)}uv = k(x(i)u , x
(i)
v ). (4.4)

The feature selector is denoted by α = [α1, ..., αp]
T ∈ {0, 1}p with αk = 1 indicat-

ing that the k-th feature is selected or 0 not-selected, k = 1, . . . , p. Then the selected

feature set from the original feature vector x is given by:

x(α) = x� α, (4.5)

where the operator � performs the Hadamard product, with the feature selector, K

and K(i) become the function of α:

{K(α)}kl = k(xk � α, xl � α),

{K(i)(α)}uv = k(x(i)u � α, x(i)v � α),
(4.6)

for k, l ∈ {1, ..., n}, u, v ∈ {1, ..., ni}, and i = 1, ..., g. Similarly, the trace of the

scatter matrices are noted by Tr(S̃w)(α), Tr(S̃b)(α), Tr(S̃t)(α). To maximize the

class separation, the objective function of optimization can be formulated as:

arg max
α∈{0,1}p

{Tr(S̃b)(α)− λTr(S̃t)(α)}. (4.7)

To handle the robustness issues with the linearly non-separable and highly noisy

datasets, especially for extremely high dimensional covariance bilinear features in

our case, the l0-norm constraint is utilized in the feature selector to regularize the

discrimination measure [21][96]. Hence, the objective function is modified to:

arg max
α∈{0,1}p

{Tr(S̃b)(α)− λTr(S̃t)(α)− β‖α‖0}. (4.8)

The parameters λ and β are constraint factors, and their ranges and the optimal

values were discussed and experimented in detail in [11]. In the Fisher selection layer
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in our squeezed bilinear model, we directly use the value provided in [11] with the

best performance on other machine learning-based classification tasks.

Substitute the scatter matrix expression (4.3) into the object function (4.8), we

can get the final Fisher feature selector objective function:

arg max
α∈{0,1}p

{ 1

n

g∑
i=1

1

ni
Sum(K(i)(α))− λ

n
Tr(K(α))

+
(λ− 1)

n2
Sum(K)− β‖α‖0}.

(4.9)

The general Fisher selector formulation is a combinatorial optimization problem

for many kernels, it is far from feasible in our bilinear features whose p is up to over

262K. Surprisingly, the polynomial kernel provides efficient and global optimization

for (FS) for large p [89][76][88]:

k(x1, x2) = (1 + 〈x1, x2〉)D (4.10)

By incorporating the feature selector α with the degree parameter D = 1, the

kernel becomes:
k1(x1, x2)(α) = 1 + 〈x1 � α, x2 � α〉

= 1 +

p∑
i=1

x1ix2iαi

or k′1(x1, x2)(α) =

p∑
i=1

x1ix2iαi

(4.11)

Substitute the k1(·, ·) or k′1(·, ·) into the objective function (4.9), we can get the

Fisher discriminative score:

θj =
1

n

g∑
i=1

1

ni

ni∑
u,v=1

x
(i)
ujx

(i)
vj

− λ

n

n∑
i=1

x2ij +
(λ− 1)

n2

n∑
u,v=1

xujxvj

(4.12)

and considering of the preset d object dimension of the squeezed bilinear model, the

Fisher optimization objective function can be depicted as follows:

arg max
α∈{0,1}p

p∑
j=1

(θj − β)αj,

s.t.‖α‖0 = d.

(4.13)

With the first-order polynomial kernel, the globe Fisher score θj only varies for

the observation of the j-th feature dimension. For a given λ, the optimization process
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can be transformed into calculating the θj for each bilinear feature dimension, and

select d largest scores θJ :

j ∈ J ←→ αj = 1 (4.14)

This is the globally optimal solution, and the computational complexity for the

calculation of α with n training samples and p feature dimensions is O(n2p).

4.1.2 Squeezed Bilinear CNN

With the full bilinear feature M = XTX ∈ Rc2 , the Fisher selector α, and the

objective projection dimension d, the projection function for the Fisher selection

layer can be represented as:

Rc2 ψ−→ Rd, ψ(M) = M ◦ α, (4.15)

where the operator (a ◦ b) requires the same size of the tensors a and b, aiming at

extracting the a values of position that is not “0” in b, to form a new d dimensional

feature tensor (‖a‖0 = d). Note that the calculation of each element in the bilinear

features is independent. Discarding the less discriminative features can lead to faster

computation. By combining the bilinear pooling layer and the Fisher selection, named

as squeezed bilinear pooling, we can directly obtain xi ·xjwhere α(τ(i, j)) 6= 0 (τ(i, j)

is the corresponding transformed position of the inner product of the i-th and j-th

CNN channels in the bilinear feature tensor. The computational complexity for a

d dimensional squeezed bilinear feature with CNN feature maps of size h × w × c

is O(hwd). It is linear only with the compact feature size d, which means that our

proposed squeezed bilinear pooling can be efficiently implemented into larger-scale

CNN structures such as ResNet and DenseNet with 2048 and 1024 CNN output

channels respectively.

The backpropagation is the converse process of the forwarding (4.15). The prop-

agation function can be written as:

∂L

∂ψ(M)
=

∂L

∂Mi ◦ αi
. (4.16)

The operator ◦ is not differentiable but is an element-wise first-order linear com-

bination, hence it can be solved by the combination of element-wise derivatives. For

each αi 6= 0, ρ(i) is the projected index of i by the selection function ψ (if projected),

the backpropagation function can thus be depicted as below:

∂L

∂Miαi
=

∂L

∂ψ(M)ρ(i)
. (4.17)
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For selected elements, αi = 1, we can directly pass the back gradient to the

corresponding channels of CNN feature maps.

The implementation of the matrix power normalization M ′ = M1/2 requires a

positive definite forward input feature matrix, and a symmetric backward gradient

matrix [61], which makes it not practical to be embedded into the linear combination

based compact bilinear structures [61][50][34]. As shown in Figure 4.1, the SBP-MN

structure satisfies the first requirement by inserting the matrix normalization layer

as a bridge between the full bilinear pooling layer and the Fisher selection layer.

The second requirement can be met by a matrix diagonalization. Suppose δ(i) is the

diagonal position of index i in the bilinear feature matrix M , we can describe the

improved backpropagation function for matrix power normalization as follows:

∂L

∂M ′
iαi

=
∂L

∂M ′
ρ(i)αi

=
1

2
(

∂L

∂ψ(M ′)ρ(i)
+

∂L

∂ψ(M ′)ρ(δ(i))
) (4.18)

This can promise the convergence of Newton’s iteration in [61]. But due to the

necessity of a positive definite full bilinear feature matrix for SVD in the matrix power

function, the computational complexity is increased back to O(hw(c2)). The memory

and computation cost of SBP with/without the matrix normalization are compared

with other compressed structures in Table 4.2. With the same encoded feature dimen-

sion, the proposed SBP-EN can reduce the computational complexity by magnitude.

Despite that the SBP-MN requires a similar computation as the Full Bilinear Pool-

ing, it uses matrix normalization to enhance the classification accuracy, which does

not apply to CBP and LRBP. SBP-MN and MoNet TS require, on the same order

of magnitude, as much of computation and memory resources, their classification

performance will be discussed in Section 4.2.3.

4.1.3 Fisher Recurrent Attention Structure

Recently, lots of research on fine-grained classification focus on the recurrent atten-

tion structures [22][112][43]. Noting that the Squeezed Bilinear Pooling selects the

most discriminative second order features, it is also an ideal method to localize the

object region and suppress the irrelevant background activation. As illustrated in

Figure 4.1.(3), the d selected second order feature maps {m1,m2, ...,md} ∈ ψ(M) are

element-to-element summed and produce the average activated map ma. Then the

ma is linearly resized to input image size, and its values are normalized into the range

of (0, 1), called the normalized attention map mn. A threshold ε is applied to mn to

segment the attention activation map ms:
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ms = mn > ε. (4.19)

Following the method of [95], we randomly select an second order map mk ∈ ψ(M),

and erase the activated region of mk from ms to obtain the attention erase map me:

me = (mk == 0) ·ms. (4.20)

The attention erosion is conducive to learn from global discriminative object parts

[95] and avoid overfitting. After the random erosion, we crop the TRUE region of me

from the input image I to create the attention image Ia. Ia is recurrently inputted

into the SB-CNN and outputs the d dimensional attention feature fa. The features of

the two stages, f and fa are cascaded, and after sgnsqrt and l2 normalization layer, are

classified with a fully connected layer. The feature dimension of FRA-SBP is 20,000.

The computational complexity of the FRA-SBP model is the summation of two SBP-

MN models and the computation of the cropping processing. Compared with the

convolutional computation, the cropping is negligible, for which we can consider the

FRA-SBP has two times of computational complexity of SPB-MN.

4.2 Experimental Results of SBP

In this section, we detail our experiments on the proposed SBP-CNN in three aspects.

(1) In Section 4.2.2, we investigate the impact of the most determinative parameter,

the selected dimension number, on the proposed squeezed bilinear method and com-

pare it with the commonly used compact bilinear pooling under different dimensions.

(2) In Section 4.2.3, we conduct an overall comparison of our proposed squeezed mod-

els against other methods on a variety of fine-grained datasets. (3) In Section 4.2.4,

we look into the activation of different channels and their covariances to verify the

effectiveness of the Fisher score and the squeezed function for bilinear features. To

begin with, we provide experiment details in Section 4.2.1.

4.2.1 Implementation Details

In the experiments, We only used the category label without any part or bounding

box annotation provided by the datasets when training all models. When evaluating

our model on the VGG-16[80] structure (D-net in [62][25][61]), we used the first

30 layers of VGG-16 as the local feature extractor and retained the output of the

Conv5 3+ReLU layer for the second-order encoding, as conducted in [62]. We then
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compared the proposed squeezed bilinear pooling with full bilinear and other compact

feature encoding methods. All experiments are conducted using Caffe [46] platform

and implemented in Python. We resized the input images to the dimension of 512×512

and randomly cropped them to the size of 448×448 for training in all the second-order

models. The training batch size was set to 8, and the weight of decay is 5 × 10−6.

We conducted the training in two steps: the first step was to fine-tune the last fully

connected classification layer, and the second step is to fine-tune the whole network

with CNN to obtain the final model. For FSL, λ was assigned a value of -0.5, and for

attention cropping in FRA-SBP, the value of ε was assigned to 0.005.

4.2.2 Configuration and Comparison with Compact Bilinear

The selected dimension d of the squeezed bilinear pooling can be adjusted manually.

We conducted experiments with the selected dimension range of 100 to 15,000 on the

CUB-200-2011 dataset to investigate the potential impact of the selected dimension

number on the squeezed bilinear pooling. To choose the proper dimension needed

for SBP, we used a convolutional net of VGG16 as the backbone of the proposed

approach. We also compared the performance of SBP with CBP. For fairness, we

did not utilize the matrix normalization in this section to compare the representation

capabilities of different compression functions. Except for the pooling method and

the projected dimension mentioned in the experimental results, the other components

of the network structure and training configurations are the same for all models.

As summarised in Figure 4.2, with the increasing of projected dimension, the top-

1 errors of both the CBP [25], and the SBP come down to a similar level of the full

bilinear. The difference after fine-tuning the whole network is less than 0.2% with

over 10K projected dimension. When only the last classification layer is fine-tuned,

the squeezed bilinear can achieve a slightly lower error rate than the full bilinear and

compact bilinear. We credit to the discarding of the redundant non-semantical high

dimensional covariances.

With a lower dimension, the performance of SBP is more promising than the Ten-

sor Sketch. Without fine-tuning, SBP outperforms CBP by around 1.5% when the di-

mension ranges from 1K to 5K, and the gap widens as the dimension decreases. With

500 projected dimensions, a significant disparity can be observed between the two

methods, 4.6% without and 2.6% with fine-tuning. In deficient dimension cases, e.g.,

100, SBP produces acceptable accuracy loss (22.7%) comparing with CBP (42.8%).

This makes sense for a vast area of applications. For example, large-scale fine-grained
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Figure 4.2: Classification error rate on the Cub dataset. Comparisons are made on
the proposed SBP without matrix normalization and Compact Bilinear Polling (CBP)
with Tensor Sketch. Horizontal lines are the baseline performances of Fully Bilinear
Pooling (FBP). ft and woft stands for with and without global fine-tuning of CNN,
respectively.
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Method Dim. Mul. Cub Airplane Car

Bilinear
&

Improved
Versions

BCNN[27] 262K 205M 84.0 86.9 90.6
iBCNN[61] 262K 205M 85.8 88.5 92.0

G2DeNet[93] 263K 206M 87.1 89.0 92.5
MoNet[34] 263K 206M 86.4 89.3 91.8

Compressed

CBP TS[25] 8.2K 105M 84.0 87.2 90.2
LRBP[50] 10K 48M 84.2 87.3 90.9

SMSO[104] 2K — 85.0 — —
MoNet 2U TS[34] 10K 105M 85.0 86.1 89.5

SBP-EN 10K 7.8M 84.6 87.8 90.9

Compressed
+Matrix

Normalization

MoNet 2 TS[34] 10K 105M 85.7 86.7 90.3
MoNet TS[34] 10K 105M 85.7 88.1 90.8

SBP-MN 10K 205M 86.1 89.2 91.6
FRA-SBP 20K — 86.8 90.4 93.2

Other
SotAs

KP[13] 14.3K 420M 86.2 86.9 92.4
BoostCNN[71] — — 86.2 88.5 92.1

PC[19] — — 85.6 85.8 92.5
iSQRT-COV[55] — — 87.2 90.0 92.5
MA-CNN[112] — — 86.5 89.9 92.8

Table 4.3: Comparison of the classification performance among the proposed SBP
based models and other methods on various FGVC datasets. From top to bottom,
the four blocks respectively list fully bilinear based methods, compressed bilinear
methods, compressed structures with matrix normalization, and other state-of-the-
art methods obtained on multi-datasets. Dim. and Mul. stand for feature dimension
and multiplies required for pooling, respectively. The results of the baseline methods
are duplicated from the original papers.

image retrieval [92] often needs quick, high representative but low dimensional image

features.

The experiments suggest that while the proposed squeezed bilinear pooling linearly

reduces the feature dimension and computational complexity, it can provide a reliable

approximation of the full bilinear pooling with 262K dimension of output features.

For FGVC, 10K selected features performed well. The experimental results also show

that SBP significantly outperforms CBP, especially with low dimension constraints.

4.2.3 Experiments with Different Datasets

We compared the proposed squeezed bilinear pooling against other approaches for the

categorization of the following commonly used FGVC datasets: CUB-200-2011 [90],

FGVC-Aircrafts [66], Stanford Cars [51]. The experimental results are summarised
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in Table 4.3, including four parts. The first part adduces results from the original

[62] and the improved versions of bilinear, including iBCNN [61] and the first-order

embedded G2DeNet [93] and MoNet [34]. The second part lists the results using the

compressed bilinear features, including CBP [25], LRBP [50], SMSO [104], Monet with

Tensor Sketch but without the first-order embedding (MoNet 2U TS) [34], and the

proposed SBP with element-wise normalization (SBP-EN). Both utilizing compressed

structure and matrix normalization, the proposed SBP with matrix normalization

(SBP-MN), the derived Recurrent Attention SBP (RA-SBP), and competitive Monets

are shown in part three. The other state-of-the-art methods, including the boostCNN

[71], KP [13], Pairwise Confusion(PC) [19], iterative matrix square root normalization

of covariance pooling (i-SQRT-COV) [55] and attention-based multi-model MACNN

[112], despite not exactly in the same research route, are shown in the part 4. Note

that for fairness, we only compare the results reported on the backbone of VGG-16.

From Table 4.3, we can see that the fast version of the proposed SBP, SBP-EN

obtained the best accuracy with the planes and cars dataset and achieved an accu-

racy of 84.6% on CUB-200-2011, only 0.4% lower than the recent proposed MoNet

[34]. However, our SBP requires only 24% of the computation required for the Ten-

sor Sketching in Monet. Comparing with CBP [25] and LRBP [50] with the same

dimension, the accuracy of the proposed SBP-EN is around 0.5% higher on average

on the three datasets.

In the other aspect, the matrix square root is not directly applicable to CBP

[25] and LRBP [50]. Hence, comparing the compressed structures with matrix nor-

malization was conducted between the SBP-MN and Tensor Sketching Monet with

and without the first-order information. SBP-MN without the first-order informa-

tion outperforms MoNet TS [34] by 0.4% to 1.0% on the three fine-grained datasets.

When comparing with MoNet 2 TS [34], the classification accuracy of the proposed

SBP-MN is 0.4% to 2.4% higher. To the best of our knowledge, the performance of

our SBP-MN model is state-of-the-art among all compressed bilinear models on these

datasets.

The accuracy of the proposed FRA-SBP is 0.4% lower than the state-of-the-art

fine-grained model, iSQRT-COV [55] on CUB-200-2011 dataset, but around 0.5%

higher on the other two datasets. Note that iSQRT-COV needs to pre-train on Im-

ageNet [15], while the FRA-SBP model achieved the overall better accuracy with a

transferred model. Comparing with other duplicate or recurrent models, e.g. Boost-

CNN [71], KP [13] and MA-CNN [112], the accuracy of the FRA-SBP is 0.2% to 3.5%

higher on the three datasets.
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Figure 4.3: Visualization of Squeezed Bilinear Pooling and its activation across CNN
channels. 1) shows the normalized Fisher scores for the inner products of the eight
most activated channels. 2) crops the activated regions of the channels and abstracts
the semantemes. 3) marks overlapped regions of activations across channels to verify
the effectiveness of the Fisher score measurement.

4.2.4 Validation via Visualization

We visualized the output of CNN channels, and the inner products cross them to

see what happens to features with different ranges of Fisher scores. As shown in

Figure 4.3, we chose the eight most covariant channels with the largest mean Fisher

score from all other channels, and they are labeled with the colors of red, green, blue,

yellow, cyan, magenta, brown, and dark cyan. The activations of these channels for

different classes of images were observed to abstract the semantic representation. For

example, the 288th channel, marked as blue, was mostly activated to sharp streak on

wings or tails; and the 301st channel, marked as yellow, activated to brown feather

regions, which are highly probably wings or bellies.

We calculated the Fisher score of the inner product of the eight channels to obtain

an 8× 8 Fisher score matrix (illustrated in Figure 4.3.(1)). We then looked into the

activation of channel pairs with different ranges of Fisher scores. As shown in Figure

4.3.(3), the 288th
⊗

301st (Fisher score: 0.76) are sensitive to the combination of the

semantics of two single channels and activate in the areas of brown tails or wings,
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which most probably represent sparrows. Similarly, the 301st
⊗

501st (Fisher score:

0.52) activates strongly in the areas of brown breasts and wings.

We also analyzed the features with low Fisher scores to discover the fundamental

cause of sparsity in the bilinear features. For example, the 280th
⊗

301st (Fisher

score: 0.08) provides rare activation throughout the whole dataset, for that the 280th

channel activates to the black and white regions, and the 301st, to the brown regions.

The other example is the 135th channel, which is activated to the fluff regions, and

the 396th channel for streaks (Fisher score: 0.07). The experiments suggest that

the semantic conflicts of different channels suppress the discrimination of most of

the co-inner channels and lead to the sparsity of bilinear features. The Fisher score

can be used to measure the representation capability effectively and select the most

discriminative features.

4.3 Conclusion

We presented a novel Squeezed Bilinear Pooling (SBP) network to solve the fatal

problem of bilinear pooling, the extremely high feature dimension, and obtained

state-of-the-art results using VGG as the backbone. Using the Fisher feature se-

lector, we obtained the global optimized selection of bilinear features with O(n2p)

computational complexity, making it practical to deal with the high dimensional

bilinear features. Our model outperforms other compressed bilinear models and low-

rank approximation in terms of classification accuracy and computation performance,

especially with low dimensional features. The proposed models are capable of matrix

normalization and provide the best performance over other compact models to the

best of our knowledge. The computational complexity of the proposed SBP increases

linearly with the output feature dimension. This is a promising step for the second-

order pooling towards replacing global average pooling in other deep structures, e.g.,

ResNet, Inception, and DenseNet.

77



Chapter 5

Learning Enhanced Features and
Inferring Twice

The recent works [81][16][103] have shown that paying attention to multiple discrim-

inative parts plays a vital role in FGVC. In the early work [98][8][4], extra manual

bounding-box/part annotations are employed to extracting discriminative features in

multiple object parts. Recent efforts [103][112][106] utilize only class labels to auto-

matically localize the object’s parts. [81][16] show that without external interference,

CNNs [80][36][84] usually excel at extracting the most discriminative feature but ig-

nores the complementary information that is crucial as well. Recently, the study of

translation invariance [48][109][1] in CNN indicates that small translation or rescaling

on the input image can drastically change the prediction of a deep network. Since

the phenomenon occurs in CNN, we can reasonably speculate that the FGVC based

on CNN will also follow the rule.

Motivated by the recent study, a novel framework named ”forcing network” is

proposed, referred to as F-Net, to address the challenges of FGVC. The diverse and

enhanced features are obtained in F-Net by the forcing module, which is composed

of the original branch and the forcing branch. The original branch generates the

class activation maps (CAM) to localize the most discriminative parts. In the forc-

ing branch, the suppressive mask is generated to suppress the primary discriminative

parts and force the network to pay attention to the secondary discriminative regions

that are usually overlooked. After the back gradient propagation, enhanced features

are extracted for classifiers. To reduce the prediction error, the subtle regions are

magnified. According to the CAM, the object is cropped and zoomed as the sec-

ond input to predict the class of the object again. The first and second prediction

probabilities are fused as the final result.
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In the training phase, the most discriminative region of the cropped image is

dropped to force the network to pay attention to more regions. The main contribu-

tions of this work can be summarised as follows:

� A novel ”forcing network” structure was proposed. A forcing branch is intro-

duced as an auxiliary branch to force the network to focus on multiple regions

and extract diverse features that contain the primary discriminative features

and confusion features for fine-grained visual categorization.

� Based on class activation maps, an object to be classified is cropped to the center

of its image, and the subtle regions are magnified for the second prediction. The

sum of the two predicted confidence scores serves as the final prediction.

� Extensive experiments were conducted on the widely-used fine-grained bench-

mark datasets, including CUB-200-2011, FGVC-aircraft, and Stanford-cars.

The experimental results demonstrated that our method outperforms the ma-

jority of existing methods and achieved state-of-the-art performance on FGVC-

Aircraft.

The methodology and experiment result are shown in Section 5.1 and 5.2, respec-

tively.

The work in this chapter has been submitted to the Multimedia Tools and Appli-

cations [100].

5.1 Method

In this section, the F-Net and the CAM-based cropping module are described in

detail. The overview architectures of the two modules are illustrated in Figure 5.1

and Figure 5.2, respectively. F-Net consists of two components, the feature extracting

module and the forcing module. The feature extracting module is the convolutional

backbone of ResNet-50 [36]. The forcing module and CAM-based cropping module

are described in this Section 5.1.1 and 5.1.2, respectively. To acquire class activation

maps, the fully connected layer for classification is replaced with a 1×1 convolutional

layer. The number of the output channels of the 1×1 convolutional layer is the same

as the number of classes. Given an input image, the feature maps for classification are

produced by the feature extraction module. We denote the extracted feature maps

as F ∈ RNWH , with height H, width W , and the number of channels N .
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Figure 5.1: Overview of the proposed F-Net which consists of the feature extracting
module and the forcing module. The feature extracting module is convolutional layers
that extract features. The forcing module contains the original branch and the forcing
branch.

5.1.1 Forcing Net

The proposed forcing module is inspired by DB [81]. The module aims to force the

network to extract more diverse features for the classifier. It consists of an original

branch and a forcing branch. The original branch and the forcing branch share the

same feature extraction model, but the inputs of the two branches are different. The

destination of the original branch is to generate the class activation maps and localize

the primary discriminative regions. After the feature maps F are convoluted by an

1× 1 convolutional layer, the class activation maps M ′ ∈ RCWH are obtained, where

W , H, and C represent the width and height of the feature, and the number of classes,

respectively. Then a global average pooling was conducted to obtain the predicted

class activation maps M ′
p ∈ RWH , where p is the index of maximum in the predicted

vector V ∈ RC . Here, C refers to the number of classes. We have:

V = g(M ′), (5.1)

where g()̇ represents the Global Average pooling. For the forcing branch, M ′
p is

utilized to generate a mask to suppress the top-k discriminative positions of F . Since

the top-k positions are suppressed, the forcing branch is forced to pay attention to

other confused positions. Here, we describe the procedure to generate the input for

the forcing branch in detail. Firstly, M ′
p is reshaped to a vector of size W ×H, i.e.,

WH and is sorted in descending order, then, the k-th values T is obtained as the

threshold value:

T = Sort(M ′
p)[k], (5.2)
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Figure 5.2: Overview of CAM-based cropping module.

where Sort()̇ denotes the sorting in descending order, []̇ represents getting value from

the vector, and k is a hyperparameter that denotes the number of suppressive posi-

tions. Let B be the suppressive mask derived from M ′
p such that:

B(i, j) =

{
α M ′

p(i, j) ≥ T

1 M ′
p(i, j) < T

, (5.3)

where i and j represent row and column of the position of the feature, respectively,

and α is a hyperparameter that denotes suppressing factor. Finally, the input of the

forcing branch G ∈ RCWH is obtained, which is generated as follows:

G = B
⊙

F, (5.4)

where
⊙

denotes the element-wise multiplication of the two tensors. After the clas-

sification convolution is performed, the output of the forcing branch M ′′ ∈ RCWN is

obtained. Let M be the output of the forcing module, M is obtained as:

M = M ′ +M ′′, (5.5)

The confidence scores are obtained after M is fed to global average pooling.

5.1.2 CAM-Based Cropping

The CAM-based cropping module is proposed to crop the object region as the center

of the input image for the second prediction. The first prediction always focuses on

the obvious regions, while the second prediction may pay attention to some subtle

regions which are amplified after the CAM-based cropping module. The summation

of raw prediction and the second prediction is deemed as the final prediction. Here,

we explain the procedure of cropping the object. In the forcing module, the genera-

tion of class activation maps M ∈ RCWN was described. Since the top-1 map usually

highly responds to the object region and the high response regions from other maps
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are other parts of the object. Instead of using the top-1 map to localize the discrim-

inative region, top-8 maps are used to crop the whole object. Denote Mp ∈ RWN

as the element-wise summation of top-8 maps. Mp consists of the object and back-

ground. The threshold value t is set to distinguish the object and background, and t

is generated as follows:

t = max(Mp)× d, (5.6)

where d is the random coefficient for the diversity of the samples. d follows the uniform

distribution between 0.4 and 0.6 in the training phase and is set to the minimum value

of 0.4 in the test phase to ensure the whole major object is included. Then, the crop

mask B2 is obtained as follows:

B2(i, j) =

{
1 Mp(i, j) ≥ t

0 Mp(i, j) < t
. (5.7)

The response values greater than or equal to t belong to the object. Otherwise, they

belong to the backgrounds. We generate a bounding box covering all positions of 1

in B2 and crop the object from the raw image as the second input. In the training

phase, the discriminative parts are dropped in the second input. It should be noted

that discriminative parts do not drop in the test phase. The drop mask is obtained

as follows:

E(i, j) =

{
0 M1(i, j) ≥ m1 × 0.75

1 M1(i, j) < m1 × 0.75
,m1 = max(M1) (5.8)

where M1 is the top-1 map of M and m1 is the maximum of M1. As the training

progresses, the size of the high response area changes all the time, so the threshold

value is set to a fixed value of 0.75 instead of random values. In the second inference,

the positions with the value of E=0 will be discarded due to low discrimination.

5.2 Experimental Results of F-Net

This section presents the experiments conducted to verify the effectiveness of F-Net.

Firstly, the implementation details are described in Section 5.2.1. Then the proposed

model is compared with other methods on the three benchmark fine-grained visual

classification datasets in Section 5.2.2, followed by analysis on the contribution of

each component in the proposed framework in Section 5.2.3.
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5.2.1 Implementation Details

In the following experiments, following previous attention based FGVC works [9][35][16],

ResNet-50 [36] implemented in Pytorch [72] is adopted as the backbone, and the fully

connected layer is replaced with a 1×1 convolutional layer, which has the same num-

ber of output channels as the number of classes. The feature extraction convolutional

layers is initialized with pre-trained ResNet-50 weights on ImageNet [15], and the

classification layer is initialized using Xavier initialization [32].

In the training phase, the input images are resized to 515×512 and then randomly

cropped to 448×448 with random horizontal flipping. The threshold for the cropping,

d, is randomly selected from 0.4 to 0.6 for every sample, and the threshold for the

dropping is set to 0.75, as described in Section 5.1.2. We train our network using

Stochastic Gradient Descent (SGD) with the momentum of 0.9, epoch number of

100, weight decay of 0.0001, and a mini-batch of 6 on GTX-1080(8G) GPU. The

initial learning rate is set to 0.001 and decayed on the 30th epoch with a decay rate

of 0.1. Source code is released at https://github.com/boxyao/Forcing-Network.

5.2.2 Quantitative Results

No manual annotations except for the class labels are used in the experiments. For

a fair comparison, our method is compared with the methods without using human-

defined bounding boxes or part annotations. The comparison was conducted between

various recent and top-performing methods on three challenging datasets, including

CUB200-2011, FGVC aircraft, and Stanford-cars. Table 5.1 illustrates the comparison

of the performance of different FGVC methods on the three datasets.

On the CUB-200-2011 dataset, the baseline based on ResNet-50 achieved an accu-

racy of 85.4%. Our method outperforms the baseline by 3.0%. A further improvement

of 0.7% can be observed when we use DenseNet-161 [44] as the backbone. Comparing

with MGE-CNN [107] based on ResNet-50, which used multi-experts, we obtained

almost the same accuracy by adding an auxiliary classifier. Both our approach and

the DB [81] extracted diverse features by feature suppression. Although the DB

method outperforms our method by 0.2%, our forcing module outperforms DB with-

out Gradient-boosting loss by 1%.

On the FGVC-aircraft dataset, the proposed F-Net on ResNet-50 and DenseNet-

161 [44] achieved an accuracy of 93.3% and 94.4%, respectively. Comparing with

the methods based on ResNet-50, our methods outperform most of the state-of-the-
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Method Backbone Resolution Parameters Cub Airplane Car

ResNet-50[36] ResNet-50 448 23.9M 85.4 88.5 91.7
NTS-Net[103] ResNet-50 448 25.5M 87.5 91.4 93.9

DCL[10] ResNet-50 448 24.7M 87.8 93.0 94.5
S3N[16] ResNet-50 448 >101.5M 88.5 92.8 94.7

MGE-CNN[107] ResNet-50 448 >25.1M 88.5 - 93.9
DB[81] ResNet-50 448 23.9M 88.6 93.5 94.9

Stacked-LSTM[37] ResNet-50 800 - 90.4 - -
API-Net[18] DenseNet-161 448 30.3M 90.0 93.9 95.3

AttNet&AffNet[35] ResNet-50 448 23.8M 88.9 94.1 95.6
MC-Loss[9] ResNet-50 448 67.1M 86.4 92.9 94.4

Ours ResNet-50 448 24.3M 88.4 93.3 94.5
Ours DenseNet-161 448 27.3M 89.1 94.4 94.8

Table 5.1: Comparison with the state-of-the-art on the CUB-200-2011, Stanford Cars,
and FGVC Aircraft benchmarks.

Method Accuracy

ResNet-50 85.6%
ResNet-50+Forcing Module 87.3%

ResNet-50+CAM-based Copping Module 88.1%
ResNet-50+Forcing Module+CAM-based Copping Module 88.4%

Table 5.2: Ablation analysis on the CUB-200-2011.

art methods except DB. Our method based on DenseNet-161 shows state-of-the-art

performance, outperforms DenseNet-161 based APINet [18] by 0.5%.

On the Stanford-cars dataset, our ResNet-50 based method obtained an accuracy

of 94.5%, which is 2.8% higher than the accuracy of the baseline, 91.7%.

Figure 5.3 shows some examples of experimental results. The results show that

the proposed structure is activated to different parts of a raw input image and its

cropped image. The examples with the wrong prediction from the original image and

correct prediction from the cropped image indicate that the two-step strategy can

reduce prediction error.

5.2.3 Ablation Study

To further analyze the contribution of different components in our method, extensive

experiments were conducted on CUB-200-201 using ResNet-50. Table 5.2 illustrates

the detailed contribution of each key component. It shows both the forcing branch
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Figure 5.3: Visualisation of our method. The one to the left of the dotted line is where
the first prediction was wrong and the second prediction was correct, and the final
prediction was correct. The examples shown to the right of the dotted line are those
with the first, the second, and final predictions are all correct. Each of these examples
from left to right includes the original image, top-1 class activation map of the original
image, prediction of the original image, cropped image, top-1 class activation map of
the cropped image, prediction of the cropped image, the summation of the prediction
from the original image, and the prediction from the cropped image.
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k 0 1 2 3 4 5 6
Accuracy 86.9 87.0 87.1 86.8 87.3 87.2 87.0

Table 5.3: Ablation study on the number of suppressing positions k.

and the crop inference are effective in improving the performance of FGVC.

Impact of forcing branch - Basic ResNet-50 with the forcing branch achieved a

top-1 accuracy of 87.3%. Since the primary discriminative part for the forcing branch

classifier is suppressed, the network is forced to focus on other equally important parts

rather than the primary discriminative part. It also means we enhanced the weight

of the secondary discriminative regions in the extracted features. In the inference

phase, the diverse features are acquired by CNN, and the classifier of each branch

pays attention to different parts. Our experimental results show that the forcing

branch improved the accuracy of the backbone network by 1.7%.

CAM-based cropping module - Because we have conducted panning and

rescaling of the input images, the prediction from the cropped image is different

from that of the raw image. The results in Figure 5.3 show that the network always

pays attention to different parts when the object is panned or zoomed. Double pre-

diction improves the result from 85.6% to 88.1%. The 2.5% improvement shows that

the second prediction can reduce the classification error, and the combination of the

forcing model and the double prediction leads to an improvement of the classification

accuracy by 0.3%. Using the cropped object to the center of the image, the network

pays attention to more object parts as the object is more evident than the first to

the network. The experiments show that the forcing module can force the network

to focus on other confusing parts as well. This can further improve the classification

accuracy from 88.1% to 88.4%.

Two hyperparameters: suppressing factor α and the number of sup-

pressing positions k - The classification accuracy is impacted by both the number

of suppression positions, k, and the suppressing factor, α, as shown in Table 5.3 and

Table 5.4. When the top-k positions are suppressed based on the class activation

maps, the classification accuracy changed as well. It is observed that suppressing too

many positions or setting an over small α will result in lower accuracy. We first fix

α to 0.5 and compare the performance of different k. Specifically, when k = 4, the

best performance was achieved. Then we fix k to 4 and compare the performance

of different α. The experiments indicate that when α = 0.5, the best classification

performance was obtained on CUB-200-2011.
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α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Accuracy 87.0 87.1 86.7 86.9 87.3 86.9 86.9 87.0 86.9 86.9

Table 5.4: Ablation study on suppressing factor α.

5.3 Conclusion

In this chapter, we proposed a forcing network to focus on multiple regions as well

as extract diverse features for fine-grained visual categorization. The first prediction

using a raw input image is combined with the second prediction using a copped image

of the raw input image to predict the final classification result. The cropped image

was obtained from the raw image based on class activation maps from the first pre-

diction. The forcing network does not require bounding boxes or part annotations

and can be trained end-to-end. Our method outperforms most methods of FGVC on

the benchmark datasets, including CUB-200-2011, FGVCAircraft, Stanford-Cars, and

achieved state-of-the-art performance on FGVC-Aircraft. We have experimented with

our model using ResNet and DenseNet backbones, which proved that our model could

be embedded to multiple structures and improve the classification performance. Al-

though our method has improved the accuracy greatly, the suppressed region is highly

dependent on hyperparameters. We will reduce the dependence on hyperparameters

while maintaining higher accuracy in future research.
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Chapter 6

Category Attention Teaching CNN

Previous FGVC works have shown that the attention of multiple discriminative parts

plays a vital role in FGVC. Early works ([8]) used manual bounding-boxes or part

annotations to extract discriminative local features in multiple object parts. Signifi-

cant efforts were made ([112]; [103]) to utilize only class labels to find and localize the

most discriminative object parts automatically. Some research focuses on attention

crop and attention drop to extract the secondary but discriminative features to better

describe the presentation ([43]). These efforts are impressive as they have greatly im-

proved the classification accuracy in FGVC datasets, and experimental results show

that the activation of the networks is semantically more representative.

One common defect that disadvantages the previous FGVC structures to han-

dle the mobile scenarios is that they often complicate the backbone CNN models.

For example, BCNN ([62]) extended the number of the feature channels from 512

to 512 × 512; Stacked LSTM ([37]) applied multi-inference with LSTM to identify

the most discriminative regions; and WS-DAN ([43]) introduced attention cropping

and attention pooling in the inference phase, which doubled the inference time and

increased the feature dimension as well. The other problem is that most of the cur-

rent solutions are customized for a specific network structure. A large number of

hyper-parameters like channel number, attention cropping size, dropping rate, crop-

ping threshold, etc., make the structures extremely difficult to be transformed to

other backbones.

With the rapid development of mobile devices such as mobile phones, auto robotics,

drones, and auto driving devices, a great demand has been raised to use deep-learning

models with lower power consumption and smaller model size. Addressing the prob-

lem, previous works [85][40][65] have successfully embedded deep-learning models to

mobile platforms in detection, general classification, segmentation, etc. However, they
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usually degrade the presentation performance while increasing the efficiency, which

makes them insufficient to the mission of fine-grained visual classification.

Motivated by the recent works, this chapter presents a novel network structure

for the fine-grained visual classification on mobile platforms, named Category At-

tention Transferring CNN (CAT-CNN). Based on the assumption that a model with

better activation to the discriminative regions has better classification capability, we

introduced the ”Category Attention Teacher”. Instead of only using the one-hot class

label in the training phase, we combine the label loss and the category attention loss

to learn ”what it is” and ”where to pay attention” simultaneously.

The main contributions of this study include:

� We proposed the CAT-CNN to transfer the attention knowledge of a large-scale

FGVC network to multiple efficient models.

� We investigated the relationship between the category transferring rate and

the classification performance over three common efficient CNN models and

confirmed the best transferring rate overall models.

� Our structure achieved a classification accuracy of 84.1% with the ground truth

part annotations on the CUB-200-2011 dataset, superior to the accuracy of

82.02% reported in the state-of-the-art works [108][45].

� We conducted extensive experiments to compare the CAT-CNN with other ef-

ficient structures and state-of-the-art in FGVC. The experimental results show

that when using the large-scale network, the performance of the proposed CAT-

CNN is similar to the state-of-the-arts and outperforms the basic efficient net-

works by up to 6.7%.

� The proposed CAT-CNN uses the original network structure and single inference

in the testing phase. This is unique and makes the proposed CAT-CNN more

efficient and suitable for mobile platforms.

The work of this chapter has been published in Pattern Recognition Letters 2021

[58].
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6.1 Category Attention Teaching CNN

This section describes a novel structure called Category Attention Teaching CNN

(CAT-CNN) in detail. As shown in Figure 6.1, the CAT-CNN contains two streams.

The attention teacher stream has a deeper and more complex CNN structure like

Resnet-152 [36], and EfficientNet-b7 [85], which has a more robust learning capabil-

ity of fine-grained features. The attention student stream is an efficient structure

like ShuffleNet and MobileNet. The representation capabilities of these structures

are comparably weaker than the teacher nets, but the computation and memory con-

sumption are orders lower than the teacher CNNs.

To investigate the activations of the CNN to specific categories, we replaced the

last fully connected layer with an 1 × 1 convolutional layer. The number of the

input and output channel is the same as the output channel number of the last

convolutional layer and the number of classes in the dataset, noted as c. We denote

the output feature map of the corresponding class as the “category activation” in the

rest of this chapter. The category activation Att of the input image I from the specific

network Net is defined as Att = Net(I), where Att ∈ Rc×h×w, I ∈ R3×sizeinput×sizeinput ,

sizeinput is the input image size, h = w is the size of output attention map. Class

score Scls = GAP (Att) is the global average pooling result of the category activation

Att, and we have Scls ∈ Rc.

In Figure 6.1, we showed the comparison of class activation of pretrained EfficientNet-

b7 and MobileNet-V3 on an image from CUB-200-2011 in the first and third lines,

The class activations of EfficientNet-b7 are more obvious than the MobileNet-V3, and

cover most discriminative regions of the birds in the image. Hence, the prediction

accuracy of EfficientNet-b7 on the CUB-200-2011 dataset is 4.6% higher than that of

the MobileNet-V3 (88.7% vs. 84.1%).

Inspired by the Knowledge Distilling (KD) [38][33], we proposed the class atten-

tion supervised CNN for FGVC on mobile platforms. The CAT-CNN uses the class

activation of the deeper teacher net to guide the student net’s training. Compared

with using the one-hot class labels as the only supervision, the class-map can pro-

vide much more valid information of where the student CNN should pay attention

to and enhance the representation capability of the student net. To better tackle the

gap between the more complexed teacher net and simpler student net, we trained a

Category Attention Teaching Assistant (CATA) using class labels and the category

attention output from a pretrained Category Attention Teacher. The structure of

CATA is the same as the teacher net, which means the same learning ability of the
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Figure 6.1: The proposed network architecture with three training phases: 1) pre-
training the category attention teacher using the class labels, 2) training the category
attention teaching assistant with the supervision from the class attention of the phase
one and the class labels, and 3) cross-model category attention teaching for efficient
networks using the supervision from the class attention of the phase two and the class
labels.

CAT and CATA. The way in which CAT learns and helps the training of CATA is

defined as ”Fast-Slow CAT Training”. The loss function can be described as follows:

Lcat = (1− rt)Lcls + rtLap, (6.1)

where Lcls is the typical cross-entropy classification loss between the output class

scores and the label. Lap is the mean square loss between two same-sized attention

maps (Att1 and Att2), which is defined as:

Lap(Att1, Att2) =

c,h,w∑
i,j,k

(Att1i,j,k − Att2i,j,k)
2/c/h/w. (6.2)

The factor rt is a parameter that indicates the participation of category attention

teaching. If rt = 0, the training of CAT-CNN degrades into regular classification

training using a single model. The result is the same as that when we use the student

net only.

Using the categorization attention supervision, the training includes three steps:

(1) We use the class labels only to fine-tune a teacher network. (2) Using the class

activation maps from the teacher net and the class labels, we train a teaching assistant
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network using the same backbone as the teacher net. (3) We use the class attention

maps and class labels of the input images to supervise the training of the student net.

6.2 Experimental Result of CAT-CNN

In this section, we detail our experiments in three folds. In Section 6.2.2, we investi-

gate the impact of the most crucial parameter, the mixing rate of teacher’s activation,

on the proposed category attention teaching method and compare with the commonly

used efficient structures without teaching. In Section 6.2.3, we conduct an overall

comparison of our proposed CAT-EfficientNet-b7 model against other fine-grained

methods on various datasets. Section 6.2.4 compares the proposed CAT-CNN’s accu-

racy and efficiency with other efficient structures. In Section 6.2.5, we investigate the

activation of different structures and their covariance to verify the effectiveness of the

category attention teaching. We start with providing experiment details in Section

6.2.1.

6.2.1 Dataset and Implementation Details

We conducted our experiments on three widely cited FGVC datasets: CUB-200-

2011 Bird dataset ([90]), FGVC-Aircrafts ([66]) and the Stanford Cars ([51]). All

these datasets provide a fixed train and test split. The statistics of these datasets

are summarized in Table 2.5. We only use the category label without any part or

bounding box annotation provided in the datasets when training all models. To

compare the performance of our proposed model with other state-of-the-art methods

with extended training datasets, we also applied the NABirds ([87]) dataset in Section

6.2.3.

We evaluated our model based on four different efficient CNN backbones: the

EfficientNet-b0 and EfficientNet-b7 proposed by [85], the MobileNet-V3-Large-1.0 by

[40] and ShuffleNet-V2-Large-1.0 by [65]. We used the CNN layers of the backbones

as the local feature extractor and replace the last fully connected layer with an 1× 1

convolutional layer with the same input and out channel numbers as that of the fully

connected layer to produce c output feature maps (c is the number of classes of the

dataset used in each experiment, for CUB-200-2011, n = 200). We then compared

the proposed CAT-CNN with the original structure and other FGVC models. All

experiments are conducted using the Pytorch platform and implemented in Python.

Following practice in previous single inference work ([16]), we use the ”Random-

ResizedCrop” function of Pytorch to augment the input image to the resolution of

92



Figure 6.2: Visualization of the accuracy of Category Attention Teaching model with
its teaching rate rt. From left to right, the three graphs stand for ShuffleNet-V2-Large-
1.0, MobileNet-V3-Large-1.0 and EfficientNet-b0 taught by a pretrained EfficientNet-
b7 model. The blue lines represent the prediction accuracies of CAT-CNNs with
different teaching rates. The orange lines demonstrate the baselines when we only
use the corresponding student model without CAT structure.

448× 448 for training. For testing, we resize the input image to 512× 512 and center

crop the image to 448 × 448. The training batch size is 16, and the weight of decay

is 1 × 10−5. For all layers, the initial learning rate is 0.01. We conducted testing at

the end of each training epoch. If the testing accuracy does not increase for seven

epochs, we reduce the learning rate by multiplying 0.1. If the learning rate is lower

than 0.00001, we terminate the training process. The training method is consolidated

for all structures.

6.2.2 Configuration and comparison with the baseline

The category attention teaching rate rt, which indicates the degree of participation

of the teacher in the training phase, can be adjusted manually. To investigate the

potential impact of teaching rate on the category attention teaching, we conducted

experiments with the teaching rate in the range of 0.1 to 1.0 with the step of 0.1

on the CUB-200-2011 dataset. We used the EfficientNet-b7 model to train a cate-

gory attention teacher on the dataset. To choose a proper teaching rate for CAT-

CNN, we employed three net structures, EfficientNet-b0, MobileNet-V3-Large-1.0,

and ShuffleNet-V2-Large 1.0, as the backbones of the student streams in our pro-

posed CAT-CNN structure. We also compared the performance of CAT-CNN with

the original structure. For a fair comparison, the training configurations are the same

for all models.

As demonstrated in Figure 6.2, the top-1 errors of both the EfficientNet-b0,

MobileNet-V3-Large-1.0, and ShuffleNet-V2-Large-1.0 approached a maximum value
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Method Cub Airplane Car

NTS-Net ([103]) 87.5 91.4 93.9
DCL ([10]) 87.8 93.0 94.5
S3N ([16]) 88.5 92.8 94.7

WS-DAN ([43]) 89.4 93.0 94.5
MGE-CNN ([10]) 88.5 - 93.9

DB ([81]) 88.6 93.5 94.9
stacked-LSTM ([37]) 90.4 - -

API-Net ([18]) 90.0 93.9 95.3
AttNet ([35]) 88.9 94.1 95.6
MC-Loss ([9]) 86.4 92.9 94.4
Mix+ ([54]) 90.2 93.1 94.9

TBMSL-Net ([106]) 89.6 94.5 94.7
EfficientNet-b7 ([85]) 88.5 91.7 93.1
CAT-EfficientNet-b7 88.8 92.0 93.9

CAT-EfficientNet-b7+NABirds 90.2 - -

Table 6.1: Comparison of the classification performance among the proposed CAT-
Efficient-b7 and baselines on various FGVC datasets. The results of the previous
works are duplicated from corresponding publications.

when the teaching rate was around 0.2 to 0.4. The ShuffleNet-V2-Large-1.0 reached

its optimal solution when the teaching rate was 0.2, and the classification accuracy

was 81.67%, which was 5.6% higher than the original ShuffleNet-V2-Large-1.0. For

the MobileNet-V3-Large-1.0, the accuracy of the original structure was 81.82%, while

the CAT-CNN achieved an accuracy of 86.37% with the teaching rate of 0.4, which

indicated a 4.55% improvement on the accuracy. As the latest compact structure,

EfficientNet-b0 achieved 86.66% and 84.70% on the CUB-200-2011 dataset with and

without the CAT-CNN structure. The most significant improvement achieved was

1.96% when the teaching rate rt was set to 0.3.

The experiments suggested that while the proposed CAT-CNN kept the compact

structure and low computational consumption, it could significantly enhance the per-

formance of general CNN structures for FGVC. Considering the individual deviation

between different net structures, we used the median optimal teaching rate rt = 0.25

in the rest of experiments in this chapter.

6.2.3 Fast-Slow CAT-CNN for General FGVC

We did not use any manual annotations except for class labels. Using the same back-

bone as the original EfficientNet-b7 but with the Fast-Slow CAT training strategy, we
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Figure 6.3: Visualization of the category activation of the CAT-ShuffleNet and com-
parison with the teacher steam (EfficientNet-b7) and the original ShuffleNetV2-Large-
1.0. The column labeled with ”Image” is the original input image. The ”Efficient-b7”
column shows the output of the maximum activated category of the category attention
maps. The ”ShuffleNet” shows the maximum category activations of the ShuffleNet-
V2-Large-1.0, which is pretrained with the one-hot label only. The column labeled
with ”CAT-ShuffleNet” shows the maximum category activations of the proposed
CAT-ShuffleNet model, which is trained with Category Attention Teaching from a
pretrained EfficientNet-b7 model.

95



proposed the CAT-EfficientNet-b7 network. The network was compared with those

without using human-defined bounding boxes or part annotations for fair comparison.

The comparison was conducted with a recent top-performing method on the following

datasets, CUB-200-2011, FGVC aircrafts, and Stanford-cars. Table 6.1 illustrates the

results on the three datasets.

On the CUB-200-2011, the baseline based on EfficientNet-b7 achieved an accuracy

of 88.5%. Our approach outperformed the baseline by 0.3% to 88.8%. A further

improvement of another 1.4% was observed when we used NABirds and pretrained

the CAT stream. Compared with the DB, which extracted diverse features by feature

suppression and used attention cropping and double inferences, our proposed CAT-

CNN outperformed the DB by 1.0%. Comparing with stackedLSTM and Mix+, which

used multi-experts, we obtained almost the same accuracy by single inference and two

training steps. With an extensive dataset of NABirds, we achieved the state-of-the-

art accuracy of 90.2% among all single inference approaches. On other datasets like

FGVC-aircraft and Stanford cars, our method achieved similar accuracies to the latest

state-of-the-art FGVC methods, which was higher than the original EfficientNet-b7.

6.2.4 Cross Model CAT-CNN for Efficient FGVC

The CAT-CNN can transform latent knowledge of the teacher model to the weaker

student model. Thus it can improve the student net’s performance, especially when

the student net has a strong limitation of memory and computation, which leads to

a large gap of presentation capability between the student and the teacher streams.

This section investigates the impact of the CAT structure with the EfficientNet-b7

as the teacher model and three efficient structures, the EfficientNet-b0, MobileNet-

V3-Large-1.0, and ShuffleNet-V2-Large-1.0 as the student models. Experiments were

conducted on three common FGVC datasets described in Section 6.2.1. To compare

horizontally with other models that are widely used in image classification, we also

listed the experimental results of ResNet-50. Memory consumption and computation

efficiency were also compared.

The performance comparison of different models is shown in Table 6.2. For the

most compact base model of ShuffleNet-V2-Large-1.0, we observed improvements of

5.7%, 4.9%, and 2.3% on the three datasets. The accuracies of CAT on MobileNet-V3-

Large-1.0 are improved by 6.8%, 4.9%, and 2.7%, respectively, on the three datasets

listed in Table 2.5, and the average performance is much better than the common

deep-CNN structure, ResNet50, which consumes five times of memory and costs 16

times of computation. The classification performance of CAT-EfficientNet-b0 is only
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Method GFLOPs Parameter Cub Airplane Car

ResNet-50 ([36]) 16.48 25.56M 85.4 89.9 91.7
EfficientNet-b7 ([85]) 0.32 66.35M 88.5 91.7 93.1
ShuffleNet-V2 ([65]) 0.60 2.28M 76.0 79.5 87.0
CAT-ShuffleNet-V2 0.60 2.28M 81.7 84.4 89.3
MobileNet-V3 ([40]) 1.03 5.15M 81.8 83.8 89.5
CAT-MobileNet-V3 1.03 5.15M 86.5 90.5 92.2

EfficientNet-b0 ([85]) 0.06 5.29M 84.7 90.0 91.9
CAT-EfficientNet-b0 0.06 5.29M 86.7 89.7 92.7

Table 6.2: Comparison of the classification performance among the proposed CAT
based models and baselines on various FGVC datasets. Parameter and GFLOPs
stand for the number of model parameters and giga FLOPS required for the inference
of each model, respectively.

improved by 2.0%, -0.3%, and 0.8%, respectively, on the three datasets, compared

with the original EfficientNet-b0 because its accuracy is close to the teacher’s.

6.2.5 Validation via Visualization

We extracted the category activation maps and visualized the channel with the

maximum average value from three different models: EfficientNer-b7, ShuffleNet-V2-

Large-1.0, and the proposed CAT-ShuffleNet-V2-Large-1.0. As shown in Figure 6.3,

the brighter region indicates stronger activation of the convolutional network. The

”Efficient-b7” column shows great affinity and accuracy of the category activation

from the Efficient-b7 net structure. The most activated regions are the heads and

bodies of the birds. The activation on the background is close to zero in most cases,

which means that the shape and texture of the non-discriminative background have

less influence on the classification result. In the ”ShuffleNet” column, we can see that

ShuffleNet-V2-Large-1.0 provides much less accurate and shape-related activations

with the correct category. This is caused by the background noise, like the grasses,

bushes, or reflections on the water, and leads to a 12.5% decrease of accuracy on the

CUB-200-2011 from EfficientNer-b7 to ShuffleNetV2-Large-1.0 (88.5% vs 76.0%).

In the column labeled with ”CAT-ShuffleNet”, we show the category activation of

the proposed CAT-ShuffleNet-V2Large-1.0. Comparing with the original ShuffleNet,

the CATShuffleNet is much more concentrated. Most of the activations are concen-

trated on the discriminative regions such as heads and bodies. In the other aspect,

CAT-ShuffleNet extracts more discriminative features than the original ShuffleNet,

for that the activation on the background is suppressed to a low level. Compared with
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the Efficient-b7, the activated region and intensity are similar to that of the original

ShuffleNet. This indicates that our proposed CAT-ShuffleNet has learned the atten-

tion patterns from the Category Attention Teacher. The classification accuracy is

81.7%, which is lower than the attention teacher but is much higher than that of the

original structure (76.0%).

6.3 Conclusion

We presented a novel Category Attention Teaching CNN (CAT-CNN) framework to

satisfy the demand for Efficient Fine-Grained Visual Classification. Using the cross

model CAT-CNN, we can transfer the latent discriminative knowledge of a larger

structure to a more efficient one to significantly enhance the compact CNNs in FGVC

applications. Our model outperforms the commonly used single inference classifica-

tion model, ResNet-50, with about 1/5 of the memory utilization and about 1/16

of the computation cost. Furthermore, we use the Fast-Slow CAT-CNN framework

to enhance the EfficientNet-b7 and achieve the same level of accuracy as that of the

state-of-the-art approaches without cropping or second inference. Deploying such an

application on mobile devices requires small, simple but accurate models which are

less resource-intensive. So our proposed model is promising to be deployed as a mobile

FGVC app to low-power platforms like smartphones, drones, and automatic robots.
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Chapter 7

Conclusions and Future Work

This chapter concludes the research work, the thesis’s achievement, and the potential

future work that needs to be done. Section 7.1 illustrates the conclusions of the thesis.

Section 7.2 lists two possible future working roots that may be novel and applicable

in the field of fine-grained visual classification.

7.1 Conclusions

In this thesis, we presented our achievements on the fine-grained visual classification

in four stages. First, we proposed a regression-based deep localisation structure and

a novel PC-CNN model for the fine-grained classification. We handled occlusion and

deformation in images by designing a detection-localisation mechanism to increase

the localisation accuracy. By defining separated part side nets, the proposed model

introduced detail part-level representations into the classification. This has led to

significant improvement of the fine-grained classification on the benchmark CUB-

200-2011 dataset. Examining the output feature maps of each part stream reveals

that independently trained part feature exactors can produce more meaningful activa-

tion and discriminate part differences among different species with subtle appearance

variances. By applying ResNet and a 1 × 1 convolution layer to reduce the input

dimension of the FCN classifier, we reduced the model size to a level similar to or

smaller than most of the commonly used structures.

In the meantime, based on the second-order feature encoding methods, we pre-

sented a novel Squeezed Bilinear Pooling (SBP) network to solve the fatal problem

of bilinear pooling, the exceptionally high feature dimension. Using Fisher feature

selector, we obtained the global optimised selection with O(n2p) computation com-

plexity, which made it practical to deal with the high dimension bilinear features.
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Our model has the best overall performance compering with other compressed bi-

linear models and low-rank approximation in terms of classification accuracy and

computation efficiency, especially with low dimension features. To the best of our

knowledge, the proposed models are capable of matrix normalisation and provide the

best performance over other compact models. The computation complexity of the

proposed SBP increases linearly with the output feature dimension. This is a promis-

ing step for bilinear-based pooling towards replacing global average pooling in other

deep structures, e.g., ResNet, Inception, and DenseNet.

Following the Recurrent Attention models, we proposed a forcing network to force

the network to focus on multiple parts and extract diverse features for fine-grained

visual categorisation and infer the object twice to reduce misclassification rates. Our

method outperforms most methods of FGVC on CUB-200-2011, FGVC-aircraft, and

Stanford-cars. We took a further step by transferring the attention knowledge from

a large-scale deep network to a smaller but more efficient network to significantly

improve the performance of FGVC on mobile platforms. Experiments have shown

that the proposed CAT-CNN structure can enable the compact networks to activate

similarly as a large FGVC network and achieve a high classification accuracy.

7.2 Future Work

The proposed models have achieved promising results on both part-based, recur-

rent attention-based, and efficient fine-grained image visual classification, and have

achieved our pre-set research objectives described in Section 1.3. However, there is

still some buffer for future improvements.

In this section, we present some research ideas for further improvement of the

fine-grained visual classification.

7.2.1 Extend the Squeezed Bilinear Pooling to General Struc-
ture

The bilinear pooling obtains the covariance of very high dimension CNN features.

The representative of covariance features drops as the number of CNN output feature

maps increase. As shown in Table 7.1, the bilinear pooling has great potential for

further performance improvement with the backbone of VGG-16, which outputs 512

feature maps from the Relu5 3 layer. With ResNet-50 as the backbone and 2,048

output feature maps, the bilinear pooling has achieved an accuracy of 81.6%, which

is only 3.4% higher than that of the baseline. For DenseNet with 1,024 output feature
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maps, the classification accuracy of the bilinear pooling is dropped by 2.1% (82.1% vs.

84.2%) comparing with that of the baseline. Surprisingly, both ResNet and DenseNet

have achieved lower classification accuracies than VGG-16, though their structures

are much deeper than VGG’s.

Backbone Pooling Output maps Error rate

VGG-16 GAP 512 73.3%

VGG-16 FBP 512 84.1%

DenseNet-161 GAP 1024 84.2%

DenseNet-161 FBP 1024 82.1%

ResNet-50 GAP 2048 78.2%

ResNet-50 FBP 2048 81.6%

Table 7.1: Classification accuracy of Bilinear Pooling with different backbones on
CUB-200-2011

To address this problem, some research such as iSQRT-COV [55] and WS-DAN

[42] investigated PCA trainable functions to reduce the output feature dimension

and achieved promising but not satisfactory enough results. This is because such

dimension compression leads to considerable accuracy loss [62]. The proposed SBP

can be a potential solution for the compression of the extremely high dimension

ResNet or DenseNet features.

We have conducted some initial experiments by applying the proposed SBP to the

following efficient backbones: the MobileNet V3 large 1.0, the ShuffleNet-V2-large-

1.0, and the EfficientNet-b0 and EfficientNet-b7. The experimental results are shown

in Figure 7.1.

We can see from the figure that with a similar feature dimension (around 1,000),

the SBP led to the improvement of classification accuracies by 1.8%, 3.1%, and 0.7%,

respectively, over the original global average pooling on MobileNet-V3, ShuffleNet-V2,

and EfficientNet-b0 backbones. The improvements proved that the proposed SBP

could be easily generalised to other networks to improve their performance. If we

increase the feature dimension of the SBP, the classification accuracies of MobileNet-

V3 and ShuffleNet-V2 can be improved by 2.3% and 4.3%, respectively, which in-

dicates that a higher feature dimension of the SBP can improve the representation

of the squeezed bilinear feature. However, for the very-large-scale net structure,

EfficientNet-b7, the SBP failed to improve the performance. This is because the

performance of EfficientNet-b7 is already close to the state-of-the-art on the CUB-

200-2011 dataset.
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Figure 7.1: The CUB-200-2011 prediction accuracy of SBP on four different
backbones: (a). MobileNet-V3; (b). ShuffleNet-V3; (c). EfficientNet-b0; (d).
EfficientNet-b7. The red lines indecate the accuracies using different featrue dimen-
sion. The blue lines of dashes are the baseline of the original structures without SBP,
and the blue stars is the feature dimension of the orginal structures.
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Therefore, future research can focus on how to generalise the squeezed bilinear

pooling and embed it into popular deep learning networks as a plugin component.

7.2.2 Weakly Supervised Part Discovery

Most of the attention-based methods in the fine-grained classification rely on local

activation grouping to localise the discriminative semantic object parts. For exam-

ple, a channel grouping loss is employed [112] to roughly localise four parts (head,

wings, feet, and tail) for classification in detail. There is a need to develop a more

accurate and robust part segmentation method without semantic part annotations.

The method can be used for Weakly Supervised Part Discovery (WSPD).

Based on the semi-supervised semantic segmentation, an autoencoding formula-

tion was proposed [110] to discover landmarks as explicit structural representations.

Combined with the SBP fine-grained features, a novel framework for weakly super-

vised part discovery and segmentation can be developed to further improve the perfor-

mance of the attention-based fine-grained classification models. Therefore, we suggest

this as another potential area for future work.
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