

Lung Nodule Detection, Classification and Segmentation via Deep Learning

by Mohammad Hesam Hesamian

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Dr.Wenjing Jia

University of Technology Sydney Faculty of Engineering and Information Technology

Jun 2021

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Mohammad Hesam Hesamian declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Electrical and Data Engineering/Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: 25/06/2021

ABSTRACT

Lung Nodule Detection, Classification and Segmentation via Deep Learning

by

Mohammad Hesam Hesamian

Accurately detecting and segmenting lung nodules from CT images play a critical role in the earlier diagnosis of lung cancer, staging and evaluating patients' response to cancer therapy. Thus, this research area has attracted much interest from the research community. Moreover, deep learning based image segmentation has by now been firmly established as a robust tool in image segmentation. It has been widely used to separate homogeneous areas as the first and critical component of diagnosis and treatment pipeline.

In the first part of my research, an advanced solution is proposed to segment lung nodules from CT images by employing a deep residual network structure with Atrous convolution. The Atrous convolution increases the field of view of the filters and helps to improve classification accuracy.

Due to the irregular shapes of nodules, and the low-intensity contrast between the nodules and other lung areas, precisely segmenting nodules from lung CT images is a very challenging task. The second part of this research proposes a highly effective and robust solution to this problem by innovatively utilizing the changes of nodule shapes over continuous slices (inter-slice changes) and develops a deep learning based end-to-end system. Different from the existing 2.5D or 3D methods that attempt to explore the inter-slice features, we propose to create a novel synthetic image to depict the unique changing pattern of nodules between slices in distinctive colour patterns. By taking advantage of inter-slice information and forming the proposed synthetic image, the task of lung nodule segmentation can be done accurately.

To further improve the detection and segmentation accuracy, in the third part of this research, a two-stage segmentation method is developed which is capable of improving the accuracy of detection and segmentation of lung nodules from 2D CT images. The first stage of our approach proposes multiple regions, potentially containing the tumour, and the second stage performs the pixel-level segmentation from the resultant regions.

Dissertation directed by Dr Wenjing Jia School of Electrical and Data Engineering

Dedication

This disertation is dedicated to my wonderful parents Miham Nikfetrat and Naser Hesamian who have given me endless love, encouragement and invaluable supports throughout my life. And my younger brother

who is my loveliest friend in life.

Acknowledgements

All praise and gratitude will be to Allah the Almighty for his mercy and support during our life and moments of truth.

First and foremost, I would acknowledge my dear supervisor Dr. Wenjing Jia for her continuous and endless supervisions and encouragements.

I would like to extend my thanks to Professor Sean He for his practical guides.

My deep gratitude to my co-supervisor, Professor Paul Kennedy, for his pure assistance and brotherly help not only in study but also in many other aspects that will never be forgotten.

I would also like to express my gratitude to Sharifah Farhana, who has given me moral support throughout the challenging times and shared even small happiness with me.

> Mohammad Hesam Hesamian Sydney, Australia, 2021.

List of Publications

Journal Papers

- J-1. Hesamian MH, Jia W, He X, Kennedy P. Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges. Journal of digital imaging. 2019 May 29:1-5.
- J-2. Hesamian MH, Jia W, He X, Qinqing Wang, Kennedy P. Synthetic CT Images for Semi-Sequential Detection and Segmentation of Lung Nodules. Applied Intelligence. 2020 August.

Conference Papers

- C-1. Hesamian MH, Jia W, He X, Kennedy PJ. Atrous Convolution for Binary Semantic Segmentation of Lung Nodule. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2019 May 12 (pp. 1015-1019). IEEE.
- C-2. Hesamian MH, Jia W, He X, Kennedy PJ. Region Proposal Network for Lung Nodule Detection and Segmentation. In ECAI 2020. European Conference on Artificial Intelligence. September 2020.

Contents

Abstract	iii
Dedication	v
Acknowledgments	vi
List of Publications	vii
List of Figures	xii
List of Tables	XV
1 Introduction	1
1.1 Lung Cancer	
1.2 Detection Process and Its Chal	lenges
1.3 Importance of Tumour Detection	on
1.4 Importance of Tumour Segmen	tation $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 5$
1.5 Research Objectives	
1.6 Major Contributions	
1.7 Thesis Organization	
2 Literature Review	10
2.1 Introduction \ldots	
2.2~ Cancer Imaging Techniques $~.$	
2.3 Lung Cancer Imaging Techniqu	les
2.4 Approaches/Network Structure	s

		2.4.1	Convolutional Neural Networks (CNNs)	19
		2.4.2	Fully Convolutional Networks (FCNs)	24
		2.4.3	U-Net	27
		2.4.4	Convolutional Residual Networks (CRNs)	31
		2.4.5	Recurrent Neural Networks (RNNs)	33
	2.5	Networ	k Training Techniques	35
		2.5.1	Deeply Supervised Training	35
		2.5.2	Weakly Supervised Training	35
		2.5.3	Transfer Learning	37
	2.6	Challen	ages and Existing Solutions	39
		2.6.1	Limited Annotated Data	39
		2.6.2	Effective Negative Set	42
		2.6.3	Class Imbalance	42
		2.6.4	Challenges with Training Deep Models	43
	2.7	Summa	ary	45
3	At	rous (Convolution for Lung Tumour Segmentation	46
	3.1	Introdu	letion	46
	3.2	Related	l Work	48
	3.3	The Pr	oposed Method	51
		3.3.1	Atrous Convolution	51
		3.3.2	Weighted Loss	53
		3.3.3	Residual Network	56
	3.4	Experir	ments and Discussion	58
		3.4.1	Data	58

		3.4.2	Training	59
		3.4.3	Experiment Results	59
	3.5	Summa	ry	62
4	$\mathbf{S}\mathbf{y}$	ntheti	c CT Images for Semi-Sequential Detection and	l
	Se	gment	ation of Lung Nodules	64
	4.1	Introdu	ction	64
	4.2	Related	Work	66
		4.2.1	2D Approaches	66
		4.2.2	2.5D Approaches	67
		4.2.3	3D Approaches	67
		4.2.4	RNN Approaches	69
	4.3	The Pro	oposed Method	70
		4.3.1	Synthetic CT Image	73
		4.3.2	Network Structure	75
		4.3.3	Weighted Loss	76
	4.4	Results		78
		4.4.1	Dataset	78
		4.4.2	Ablation Study	80
		4.4.3	Segmentation Results of Various Nodule Types	82
	4.5	Discuss	ion	83
		4.5.1	Improved Tumour Detection	85
		4.5.2	Reduced False Positive	87
	4.6	Summa	ry	88

5 Region Proposal Network for Lung Nodule Detection

and Segmentation

xi

	5.1	Introdu	action	 •	90
	5.2	Mini R	eview		92
	5.3	The Pr	coposed Method		95
		5.3.1	Network Structure		95
		5.3.2	Adaptive Loss Coefficients	 •	97
	5.4	Experi	ments and Discussion		99
		5.4.1	Data Preparation		99
		5.4.2	Training	 . 1	.00
		5.4.3	Experiment Results	 . 1	01
	5.5	Conclu	sion	 . 1	04
6	Co	onclusi	ion	1()6
	6.1	Summa	ary	 . 1	.06
	6.2	Future	Works	 . 1	.09
	Bil	bliogra	aphy	11	11

List of Figures

1.1	Number of lung cancer cases in Australia.	3
1.2	Various types of lung cancer tumour	6
2.1	The process of generating a CT scan [1]	13
2.2	The structure of CNN [31]	20
2.3	The orthogonal representation of 3D volume [145].	21
2.4	The structure of FCN [83]	24
2.5	The structure of the U-Net [100]. \ldots \ldots \ldots \ldots \ldots	28
2.6	A residual block of CRN. Residual blocks may have various number and combination of layers inside, depending on the network design.	32
3.1	Semantic segmentation process	48
3.2	Illustration of the Atrous convolution with various rates showing the enlarged field of view	52
3.3	The block diagram of the proposed network	54
3.4	The class imbalance issue in generic image segmentation and medical image segmentation	55
3.5	Examples of the segmentation results, where the green lines indicate the ground truth and the yellow lines indicate the prediction	
	obtained with our approach	60

4.1	Appearance of a nodule over multiple successive slices. \hdots	71
4.2	Illustration of the various lung elements in conventional and our	
	synthetic CT images. $S_{(n-1)}$, S_n , and $S_{(n+1)}$ represent a three-slice	
	sequence of lung CT images, and the 'Synthetic' column is their	
	corresponding synthesized image. The first row (a) depicts a lung	
	nodule (marked in a blue circle) in the expanding phase (Φ_1)	
	appearing with increasing size over the slices, and a segment of the	
	blood vessel, circled in green. The second row (b) shows a lung	
	nodule (marked in red circles) in the shrinking phase (Φ_2) with the	
	diminishing size over the slices whereas the bone area (marked in	
	yellow) barely changes	72
4.3	The structure of the U-Net [100] used in our work	76
4.4	Examples of detection and segmentation results for various types of	
	tumour obtained with our proposed approach. In the sub-figures,	
	the ground truth boundaries of nodules are shown in green color,	
	while the segmentation results are shown in yellow. \ldots \ldots \ldots	79
4.5	Creation of the proposed synthetic image with different skip rates,	
	<i>i.e.</i> , $SD = 0, 1, 2, 3$. The original image corresponds to $SD = 0$ in	
	which the current slice will be duplicated in all three channels. This	
	produce a normal grey image	81
4.6	Evaluation of the results by nodule types: 'S' for Solid type, 'PS' for	
	Part-Solid type, and 'NS' for Non-Solid type. (a) shows the dice	
	score, (b) shows the sensitivity, (c) shows the Positive Predictive	
	Value (PPV), (d) shows the True Positive (TP), and (e) shows the	
	False Positive (FP). The green error lines show the standard	
	deviations.	85

4.7	Higher tumour detection rate achieved with our newly proposed	
	synthetic images compared to the original greyscale CT images. In	
	the sub-figures, the ground truth boundaries of nodules are shown in	
	green, while the segmentation results are shown in yellow. \hdots	86
4.8	False positive reduction with our proposed synthetic images	
	compared with the original grey images. In the sub-figures, the	
	ground truth boundaries of nodules are shown in green, whereas the	
	segmentation results are shown in yellow	87
5.1	The proposed network model	95
5.2	Visualization of the network output. The green color is the ground	
	truth marked by the radiologists. The yellow is the prediction,	
	generated by the proposed model. Best viewed in color	96

List of Tables

1.1	Lung cancer statistics	2
2.1	Summary of the conventional imaging techniques used for cancer	
	detection	16
2.2	Comparison of multi-organ segmentation approaches $\ldots \ldots \ldots$	27
2.3	Summary of the widely used datasets for various organ	
	segmentation systems	40
3.1	Performance comparison of different models on their mean Dice	
	Score, Precision and Recall \pm standard deviation. All the models	
	shown in the table are in 2D	62
4.1	Performance comparison of different models in terms of mean Dice	
	score, Sensitivity and Precision \pm standard deviation	80
4.2	Quantitative evaluation of the effect of our synthetic images with	
	multiple slice distance (SD). The model used for the below	
	experiment is our modified U-Net which is tested with and without	
	synthetic images.	83
4.3	Quantitative evaluation of the proposed model on various nodule	
	textures	84

5.1	The detection rate of the nodules of various sizes obtained with our	
	proposed approach	100
5.2	Quantitative evaluation of the achieved results and comparison.	
	Models marked with * use 3D processing	102