

Manipulating Mother Nature to Accelerate Physiological Adaptations to Exercise

by Erin McCleave

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Distinguished Professor Aaron Coutts Dr Katie Slattery Professor Rob Duffield

University of Technology Sydney Faculty of Health

February 2021

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Erin McCleave declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Sport, Exercise and Rehabilitation, Faculty of Health, at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis This document has not been submitted for qualifications at any other academic institution. This research is supported by the Australian Government Research Training Program.

Production Note: Signature removed prior to publication.

Erin McCleave

25th February 2021

Date submitted

ACKNOWLEDGEMENTS

There are so many people that have contributed to my PhD journey, and I am forever grateful for everyone that has been involved. Never did I believe it would actually take me 8 years to complete. But alas, here we are...

To Aaron Coutts, thank you for taking a punt on me all those years ago. Your passion, honesty and life advice have been invaluable and have helped shaped not only my career as a researcher and sport scientist, but as a person in general.

To Katie Slattery (Young), without your vision this project would never have gotten off the ground. Thank you for always going above and beyond, consistently reminding me to keep it simple and punchy, and for teaching me the importance of 'just one more.' I truly cherish all the adventures and memories we have shared over the years.

To Rob Duffield, thank you for your guidance, honesty and wisdom. Thanks for your help and reassurance when we were madly collecting data, to keeping me on track over recent years and making sure I get this PhD finished and published.

To Steve Crowcroft, you may have started as my minion, but you far exceeded that title many years ago. Your ability to challenge my thinking is invaluable, and I cannot imagine a better bloke to have worked with during our PhD and NSWIS journeys.

To Avish Sharma, thanks for single-handedly showing me the influence of an outlier. More importantly, I would have been lost in Canberra without your willingness to jump in and help where needed.

To everyone at NSWIS and UTS, thank you for your help and support to complete this project. Thank you to NSWIS Team Physiology for your invaluable friendship and keeping me sane.

To Chris Abbiss and Philo Saunders, thank for your help in enabling this project to come together. To all the staff at ECU, AIS and UCRISE, thank you for being so welcoming

and for the use of your facilities during data collection. Thanks to Sport Australia and Douglass Hanly Moir, without your support this project would not have been possible.

To all the participants, thank you for making data collection so much fun and giving up your time, blood and sweat all in the name of science.

To my family, thank you for your encouragement and making me feel like the smartest person in the world, even though I am sure you still have no idea what this thesis is about.

To Daniel, I still do not think you realised what you were agreeing to when I ran the idea of doing a PhD past you all those years ago. I'm forever thankful for your endless support and encouragement. To Emmett, thank you for being the greatest motivator to finish my PhD and my shining light every day.

PREFACE

This thesis for the degree of Doctor of Philosophy is in the format of Thesis by compilation and abides by the 'Procedures for Presentation and Submission of Theses for Higher Degrees – University of Technology Sydney; Policies and Directions of the University'.

From the research design and data collection by the candidate, three manuscripts have been accepted and published to peer reviewed journals, with a fourth paper submitted and under review. These papers are brought together by an introduction, which provides background information, research problem, as well as the purpose and significance of each of the four studies. A literature review provides an overview of how heat and hypoxia influence physiological and performance outcomes. The manuscripts are then presented in a logical sequence following the development of research ideas within this thesis. Each manuscript has a similar outline of introduction, methods, results, discussion, practical applications, and conclusion. All studies are combined into a discussion chapter, which integrates the collective findings and limitations. This thesis finishes with an overall conclusion, practical applications, an overview of the impact of thesis findings, and directions for future research.

PUBLICATIONS

List of Articles Accepted for Peer Review Publication

McCleave, E. L., Slattery, K. M., Duffield, R., Saunders, P. U., Sharma, A. P., Crowcroft, S. J., & Coutts, A. J. (2017). Temperate Performance Benefits after Heat, but Not Combined Heat and Hypoxic Training. *Medicine and science in sports and exercise*, 49(3), 509–517. <u>https://doi.org/10.1249/MSS.000000000001138</u>

McCleave, E. L., Slattery, K. M., Duffield, R., Saunders, P. U., Sharma, A. P., Crowcroft, S., & Coutts, A. J. (2019). Impaired Heat Adaptation from Combined Heat Training and "Live High, Train Low" Hypoxia. *International journal of sports physiology and performance*, *14*(5), 635–643. <u>https://doi.org/10.1123/ijspp.2018-0399</u>

McCleave, E. L., Slattery, K. M., Duffield, R., Crowcroft, S., Abbiss, C. R., Wallace, L. K., & Coutts, A. J. (2020). Concurrent Heat and Intermittent Hypoxic Training: No Additional Performance Benefit Over Temperate Training. *International journal of sports physiology and performance*, 1–12. Advance online publication. https://doi.org/10.1123/ijspp.2019-0277

Article Submitted for Peer Review Publication

McCleave, E. L., Slattery, K. M., Duffield, R., Crowcroft, S., Abbiss, C. R., & Coutts, A. J. (Under review). Heat Response Test Adaptations Following Concurrent Heat and Hypoxic Training.

Conference Communications

McCleave, E.L., Slattery, K.M., Duffield, R., Crowcroft, S.J., Wallace L.K., and Coutts, A.J. (2014) Effects of high intensity interval training in concurrent heat and normobaric hypoxia on physiological and performance adaptations. *Awarded Young Investigator Award to present at 2014 Training and Competing in the Heat Conference, Aspetar – Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.*

McCleave, E.L., Slattery, K.M., Duffield, R., Crowcroft, S.J., Wallace L.K., and Coutts, A.J. (2014) Effects of high intensity interval training in concurrent heat and normobaric hypoxia on physiological and performance adaptations. *Exercise and Sports Science Australia Conference, Adelaide, Australia.*

McCleave, E.L., Slattery, K.M., Saunders, P., Sharma, A.P., Garvican, L., Duffield, R., and Coutts, A.J. (2015) Effect of 3 weeks combined 'Live High-Train Low' exposure with heat interval training in trained runners. *European College of Sport Science Congress, Malmo, Sweden*.

ABSTRACT

Endurance athletes commonly incorporate repeated exposure to either heat or hypoxia into their training program, due to its ability to improve physiological and performance outcomes. However, there is limited understanding of whether the combined effects of both stimuli together can provide even further benefits above either environment alone. Accordingly, this thesis aimed to assess the effectiveness of incorporating heat and hypoxia across a training block to enhance physiological adaptations and performance in endurance athletes.

Study one assessed the temperate performance and physiological changes following a three-week overload period of combined heat and 'Live High, Train Low' (LHTL) hypoxia. While the combined stimuli induced physiological adaptations, it did not transfer to improved 3-km time-trial running performance with the only performance improvements observed following independent heat training.

Study two further investigated the physiological outcomes of combined heat and LHTL, and assessed multiple thermal, cardiovascular, cellular, and perceptual adaptations during submaximal exercise in the heat. Combined heat and LHTL impaired many heat related adaptations relative to the heat only group, indicating that the addition of LHTL provided no greater physiological benefit during exercise in a hot environment.

Following from the findings of study one and two, study three and four assessed the performance and physiological outcomes when heat was applied concurrently with IHT. Specifically, study three evaluated changes in 20-km cycling time-trial performance in both temperate and the participant's assigned environmental condition following three weeks of training in either concurrent heat and IHT, independent heat or a temperate environment. Performance was improved in all groups to a similar extent regardless of the type of environment.

In the fourth and final study, the thermal, cardiovascular, and selected cellular responses following three weeks of training in heat and IHT were assessed. When compared to completing the same training in either independent heat or temperate environments, concurrent heat and IHT provided some advantages above temperate training, but no further benefit above heat training alone.

Taken collectively, the present findings show the additive stimuli of combining heat and hypoxia does not directly transfer to improved endurance performance. While physiological adaptations were induced when both LHTL and IHT were applied with heat training, it did not provide clear benefits above independent heat training alone.

Certificate of Original Authorship	i
Acknowledgements	ii
Preface	iv
Publications	v
Abstract	vii
Table of Contents	ix
List of Figures	xii
List of Tables	xiii
List of Abbreviations	xiv
Chapter 1: Introduction	1
Background	2
Research Problem	4
Research Objectives	5
Chapter 2: Literature Review	8
Introduction	9
Heat	12
Physiological and Performance Responses to Acute Heat	12
Physiological Adaptations to Chronic Heat	13
Heat Acclimation and Endurance Performance	15
Time Course of Onset and Decay of Heat Adaptations	16
Limitations/Unknowns of Heat Acclimation	17
Heat Training Conclusion	18
Hypoxia	18
Physiological and Performance Responses to Acute Hypoxia	19
Physiological Adaptations to Chronic Hypoxia	20
Hypoxic Acclimation and Endurance Performance	21
Time Course of Onset and Decay of Hypoxic Adaptations	23
Limitations/Unknowns of Hypoxia	24
Hypoxic Training Conclusion	24
Introduction to Combined Heat and Hypoxia	25
Physiological Responses to Heat and Hypoxia	25
Endurance Performance and Heat and Hypoxia – Cross Adaptation	

Table of Contents

Performance Responses to Acute Combined Heat and Hypoxia	28
Performance Responses to Chronic Combined Heat and Hypoxia	29
Limitations/Unknowns of Combined Heat and Hypoxia	32
Heat and Hypoxia Conclusion	33
Conclusion	33
Chapter 3 (Study 1): Temperate performance benefits after heat, but not combi	ined
heat and hypoxic training	35
Abstract	38
Introduction	39
Methods	40
Results	47
Discussion	52
Limitations	55
Conclusion	55
Chapter 4 (Study 2): Impaired heat adaptation from combined heat and 'Live H	igh,
Train Low' hypoxia	56
Abstract	59
Introduction	60
Methods	61
Results	66
Discussion	70
Limitations	73
Practical Applications	73
Conclusion	74
Chapter 5 (Study 3): Concurrent heat and intermittent hypoxic training:	No
additional performance benefit over temperate training	75
Abstract	78
Introduction	79
Methods	83
Results	80
Discussion	85
Practical Applications	97
Conclusion	97

Chapter 6 (Study 4): Heat response test adaptations following concurrent heat and
hypoxic training
Abstract101
Introduction
Methods
Results
Discussion110
Practical Applications113
Conclusion
Chapter 7: Thesis Discussion
Thesis findings
Influence of Combined Heat and Hypoxic Training on Endurance Performance
Physiological Adaptations to Combined Heat and Hypoxia119
Magnitude and Time Course of Heat and Hypoxic Adaptations
Uncoupling of Physiology and Performance
Factors Influencing Performance Independent of Environmental Exposure128
Limitations of Thesis
Chapter 8: Conclusion
Conclusion
Practical Applications132
Impact of Thesis
Future Research Recommendations135
Chapter 9: References
Appendices
Appendix 1: Human Research Ethics Committee Approval
Appendix 2: AIS Ethics Committee Approval
Appendix 3: UTS Consent Form (Study 1 & 2)152
Appendix 4: Informed Consent Form (Study 3 & 4)
Appendix 5: Pre Time-Trial Questionnaire #1 (Study 1)155
Appending 6: Pre Time-Trial Questionnaire #2 (Study 1)156

LIST OF FIGURES

Figure 1.1: Visual representation of the thesis objectives and study aims7
Figure 2.1: Physiological, biomechanical, and psychological factors that contribute to
endurance performance
Figure 3.1: Outline of study design, illustrating the exposure and non-exposure training
periods
Figure 3.2: Mean (± SD) weekly internal training load (TL), expressed as session rating
of perceived exertion
Figure 3.3: Change in 3-km running time-trial performance expressed as a percent
change (%) from Baseline ±90% CL
Figure 3.4: Percent change (%) from baseline in Hbmass, PV, BV
Figure 4.1: Experimental design
Figure 4.2: Changes in average heart rate during the heat response test, expressed as a
percent change (%) from Baseline ±90% CL67
Figure 4.3: Comparison of the physiological responses between interventions
Figure 5.1: Experimental design
Figure 5.2: Average weekly training load (mean ±SD) across each training phase 86
Figure 5.3: RPE (A) and percentage of maximal HR (B) across each training session. 87
Figure 5.4: Percent change (%) from Base (±90% CL) in 20-km TT completion time
(y-axis) in TT _{temperate} (A) TT _{environment} (B) for H+H, HOT and CONT
Figure 5.5: Group comparison (mean \pm SD) between TT _{temperate} and TT _{environment} at
Base (A), Mid (B) and End (C)90
Figure 6.1: Experimental design
Figure 6.2: Percent change (%) from Base during the heat response test for heart rate for
H+H, HOT and CONT107
Figure 7.1: Within group effect size changes (Cohen's D), at post and three weeks post
exposure
Figure 7.2: Factors affecting endurance performance capacity

LIST OF TABLES

Table 2.1: Key adaptations to endurance training in temperate, heat or hypoxic
environments
Table 2.2: Summary of key physiological and performance outcomes presented in
chronic heat and hypoxic studies
Table 3.1: Baseline physical characteristics of participants. 41
Table 3.2: Treadmill training sessions completed during exposure period
Table 4.1: Physical characteristics of participants in heat and hypoxia (H+H),
heat (HOT) and temperate (CONT) training groups at Baseline
Table 4.2: Physiological and perceptual adaptations during the heat response test 69
Table 5.1: Order of training sessions during overload (S1-S12) and taper (S13 $-$ S19).
Table 5.2: Base participants characteristics
Table 5.3: 20-km TT variables including time to completion, average heart rate and
perceptual responses
Table 5.4: Measures of plasma volume, blood volume and haemoglobin mass92
Table 6.1: Raw values and change in effect size (90% confidence limits) of measures
during heat response test
Table 7.1: Adaptations following endurance training in different hot and hypoxic
environments

LIST OF ABBREVIATIONS

[Hb]	Haemoglobin concentration
[Na]sweat	Sweat sodium concentration
μL	Microlitre
AIS	Australian Institute of Sport
AU	Arbitrary units
BV	Blood volume
CL	Confidence limits
CO	Carbon monoxide
CV	Coefficient of variation
ECU	Edith Cowan University
EPO	Erythropoietin
ES	Effect size
F	Female
FiO ₂	Fraction of inspired oxygen
Н	Hours
Hbmass	Haemoglobin mass
Hct	Hematocrit
HIF-1a	Hypoxia inducible factor-1α
HR	Heart rate
HRmax	Maximal heart rate
HRT	Heat response test
HSP	Heat shock protein
IAAF	International Association of Athletics Federation
IHT	Intermittent Hypoxic Training
Kg	Kilogram
Km	Kilometre
$L \cdot min^{-1}$	Litres per minute
LHTH	'Live High, Train High' mode of hypoxic exposure
LHTL	'Live High, Train Low' mode of hypoxic exposure
М	Male
m	Metres
$m \cdot s^{-1}$	Metres per second

Mg	Milligram
Min	Minutes
ml·kg ⁻¹ ·min ⁻¹	Oxygen capacity in milliliters per kilogram per minute
Mm	Millimeter
MMP	Mean maximal power
mRNA	Messenger ribonucleic acid
n	Sample size
NSWIS	New South Wales Institute of Sport
°C	Degrees Celsius
PV	Plasma volume
RBC	Red blood cell count
RE	Running economy
RH	Relative humidity
RPE	Rating of perceived exertion
S	Seconds
SaO_2	Arterial oxyhaemoglobin saturation
SD	Standard deviation
sRPE	Session RPE
Sum of 7	Total seven sites of skinfolds, measured in millimetres
TE	Technical error
TL	Training load
TT	Time-trial
v4 mmol·L ⁻¹	Velocity corresponding to lactate at 4 mmol per litre
VEGF	Vascular endothelial growth factor
VO ₂	Oxygen consumption
VO ₂ max	Maximal aerobic capacity
VO ₂ peak	Peak aerobic capacity
vVO _{2peak}	Velocity corresponding to VO _{2peak}
W	Watts
Y	Year