Spatiotemporal dynamics of dryland vegetation photosynthesis and greenness under hydroclimatic extremes

by Song Leng

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

under the supervision of Prof. Alfredo Huete

University of Technology Sydney

Faculty of Science

November 2021

Certificate of original authorship

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This research is supported by an Australian Government Research Training Program and the Joint CSC-UTS Scholarship between China Scholarship Council and University of Technology Sydney.

Production Note: Signature of student: Signature removed prior to publication.

Date: 23-11-2021

Acknowledgements

First of all, I would like to express my deep and sincere grateful to my principle supervisor Distinguished Professor Alfredo Huete for his guidance, assistance, support, and expertise during my four-year doctoral candidature progress. It was a great privilege and honor to study and work under his supervision. I gained and learnt a lot from him, including not only professional knowledge, technical skills, scientific writing, but also developing critical thinking as a Ph.D. researcher. I would also like to thank him for his friendship and empathy.

Also, many thanks to my co-supervisor Professor Qiang Yu who introduced me to Prof. Alfredo when I prepared for the Ph.D. application. Thanks to Professor Derek Eamus, Dr. James Cleverly, Dr. Xuanlong Ma, and Dr. Zunyi Xie for their help and share of their experience. I am also grateful to our team members Dr. Sicong Gao, Dr. Jie He, Dr. Wenjie Zhang, Ekena Rangel, Dr. Ha Nguyen, Dr. Nguyen Ngoc Tran, Dr. Paras Sidiqui, Dr. Leandro Giovannini, Dr. Qiayun Xie, and Yuxia Liu for their invaluable academic and technical support, as well as all my friends Dr. Qinggaozi Zhu, Minxi Zhang, Hong Zhang, Jianguo Li, Rong Gan, Lijie Shi for their help.

My deepest thank to my family for their support and understanding throughout my candidature. Their unconditional support constantly helped me to overcome negative feelings and release pressure during four-year oversea study.

iii

Finally, I appreciate the China Scholarship Council and University of Technology Sydney for their cooperation in providing CSC-UTS Joint Scholarship, which supported my thesis project.

Publications

Ma, X., Huete, A., Moore, C., Cleverly, J., Huetly, L., Beringer, J., Leng, S., Xie, Z., Yu, Q., and Eamus, D., 2020. Spatiotemporal partitioning of savanna plant functional type productivity along NATT. Remote Sensing of Environment, 2020, 246

Tian, F., Wu, J., Liu, L., Leng, S., Yang, J., Zhao, W., and Shen, Q. Exceptional Drought across Southeastern Australia Caused by Extreme Lack of Precipitation and Its Impacts on NDVI and SIF in 2018. Remote Sensing, 2019, 12(1), 54

Table of Contents

Certificate of original authorship	<i>ii</i>
Acknowledgements	iii
Publications	<i>v</i>
Table of Contents	vi
List of figures	ix
List of tables	xii
Abbreviations	xiii
Abstract	xvi
Chapter 1 Introduction	1
1.1 Climate Extremes 1.1.1 Climate change and climate extremes 1.1.2 Global carbon cycle under climate change.	1
1.2 Dryland ecosystem1.2.1 Global drylands1.2.2 Major dryland biomes in Australia	5
1.3 Satellite observation of vegetation1.3.1 Reflectance-based vegetation indices1.3.2 Land surface phenology	14
1.4 Solar-induced chlorophyll fluorescence (SIF) 1.4.1 Photosynthesis and chlorophyll fluorescence 1.4.2 Remote sensing of SIF	19
1.5 Aims and objectives	25
Chapter 2 Response of Dryland Vegetation under Extreme Wet E	Events with Satellite
Measures of Greenness, Fluorescence	
Abstract	
2.1 Introduction	
2.2 Materials and Methods	
2.2.1 Study region	
2.2.2 Satellite Data	
2.2.3 Eddy covariance data	
2.2.4 Wet intensity classification	40
2.2.5 Statistics	41
2.3 Results	
2.3.1 Wet Pulse Characteristics in 2010-2011 and 2016-2017	42
2.3.2 Response of vegetation per major vegetation type	49

2.3.3 SIF-EVI-GPP relationship	54
2.4 Discussion	
2.4.1 Spatiotemporal response to extreme wet pulse	
2.4.2 Sensitivity of Mulga and Hummock to water availability	60
2.4.3 Assessment with tower-based GPP	62
2.5 Conclusions	63
hapter 3 Assessing the Impact of Extreme Droughts on Dryland Vegetation by	Satellite
olar-induced Chlorophyll Fluorescence	65
Abstract	65
3.1 Introduction	66
3.2 Materials and Methods	71
3.2.1 Study area	71
3.2.2 Satellite data	73
3.2.3 Climate Data and Land cover map	77
3.2.4 Eddy Covariance data	78
3.2.5 Analysis	79
3.3 Results	81
3.3.1 Spatiotemporal dynamics of the 2018-2019 extreme drought	81
3.3.2 Responses of dryland vegetation to drought at diverse severity and time scales	86
3.3.3 Comparison of SIF and EVI in response to extreme drought	90
3.3.4 Cross-comparison with in-situ measurements	93
3.4 Discussion	95
3.4.1 Potential of space-borne SIF for drought monitoring over water-limited ecosystems	95
3.4.2 Dynamics of dryland vegetation under different drought scenarios	98
3.5 Conclusions	100
hapter 4 Spatiotemporal variations of dryland vegetation phenology revealed b bserved fluorescence and greenness across the North Australian Tropical Tran Abstract	y satellite- sect 101 101
4.1 Introduction	102
4.2 Materials and Methods	107
4.2.1 Study area	107
4.2.2 Satellite data	108
4.2.3 Climate Data and Land cover map	111
4.2.4 Eddy Covariance data	112
4.2.5 Phenological metrics	112
4.3 Results	115
4.3.1 Seasonal and inter-annual variations over local sites	115
4.3.2 Biogeographic patterns of vegetation phenology	119
4.3.3 Interaction between environmental drivers and vegetation variables	124
4.4 Discussion	
4.4.1 Ground interpretations of the satellite-observed vegetation phenology	126
	126
4.4.2 Spatial patterns of vegetation phenology	126 126 128
4.4.2 Spatial patterns of vegetation phenology4.5 Conclusions	126 126 128

Chapter 5 Conclusions	
5.1 Summary of key methodology, results, and conclusions	
5.1.1 Chapter 2	
5.1.2 Chapter 3	
5.1.3 Chapter 4	
5.2 Limitation and future research directions	
References	

List of figures

Figure 1-1 Global distribution of drylands based on observations (reanalysis combined with station
and satellite observations) for the 1981–2010 baseline (Koutroulis 2019)
Figure 1-2 Spatial distribution of major dryland biomes in Australia based on Australia's National
Vegetation Information System - Major Vegetation Groups (Version 5)
Figure 1-3 (a) the Mulga viewed at ground level; (b) the Mulga viewed from above the canopy at the
Alice Spring Mulga (AU-ASM) eddy covariance tower (Eamus et al. 2016)10
Figure 1-4 Hummock grasslands during (a) dry and (b) wet growing seasons (Rammig & Mahecha
2015)
Figure 1-5 Typical vegetation reflectance spectrum (Roman & Ursu 2016)15
Figure 1-6 Schematic diagram of photosynthesis and chlorophyll fluorescence (Baker, 2008)20
Figure 1-7 Spatial comparison between TROPOMI, GOME-2, and OCO-2 SIF in the Nile region
based on data acquired between 23 and 29 November 2017 (Köhler et al. 2018)23
Figure 2-1 Map of reclassified major vegetation groups over central Australia (map source: NVIS
Version 5.0). Black dot and triangle represent AU-ASM, AU-TTE flux tower sites respectively; Black
pentagrams refer to the three selected test-points as well as the extent of 3×3 pixels labelled as blue
dashed square; Grids refer to a fishnet at 0.5° spatial resolution, consistent with pixel size of GOME-2
SIF data. Top-left figure displays the locations of the study area over Australian continent (image
source: Google Earth). Left column shows the spatial distributions of relative homogenous pixels of
three major biomes at a 0.5° resolution. (g. refers to grassland, w. refers to woodland, s. refers to
shrubland, selection percentages are listed in parentheses)
Figure 2-2 The region-wide mean seasonal cycle of (a) precipitation, (b) soil moisture, (c) EVI, and
(d) SIF over study area during 2010-2011, 2016-2017 and non-wet years. The shaded area represent
± 1 standard deviation (σ). The vertical rectangles refer to extreme wet periods of 2010-2011 (yellow)
and 2016-2017 (blue) respectively
Figure 2-3 Spatial patterns of standard anomalies of (a) precipitation, (b) SM, (c) SIF, and (d) EVI
during 2010-2011 wet pulse as well as following three months. Bottom panel shows frequency map of
each SA (standard anomaly) category of the corresponding variable during the five months
Figure 2-4 Spatial patterns of standard anomalies of (a) precipitation, (b) SM, (c) SIF, and (d) EVI
during $2016-2017$ wet pulse as well as following three months
Figure 2-5 Spatial characteristics of wet pulses. (a, b) Spatial pattern of wet intensity during 2010-
2011 and 2016-2017 wet pulses; (c, d) percentages of each wet level over three major vegetation
types
Figure 2-6 Seasonal variation in spatial averaged anomalies of EVI and SIF of major biomes by each
wet level in 2010-2011 (a-1) and 2010-2017 (g-1). Coloriul areas represent ± 1 standard deviation of the corresponding wet level. The vertical restangles refer to extreme wet nericely (2 month)
Eigure 2.7 Cross site relationship (a. d) between mean annual presinitation, soil maisture, SIE, EVI
aver three selected nivels. Vertical deshed lines refer to the multi year mean of precipitation, soil
moisture: Solid lines refer to the linear regression and the coefficient of determination (r^2) of each TP
are listed with corresponding color (e-i) Seasonal trajectory between SM and SIF FVI during wet
season (Nov-Apr), k refers to the slopes of linear regression between SM and SIF, EVI during wet
vear and non-wet vear
Figure 2-8 Relationship between soil moisture and EVI. SIF (a) Boxplot of maximum correlation
coefficients between monthly Soil Moisture and EVI, SIF during 2007-2017 along with (b) the

corresponding time lags (months). Above the dashed line represents p value below than 0.01 and vice
versa54
Figure 2-9 Comparison of satellite observation and tower-based measurement. (a, b) Seasonal
variation in monthly GPP over AU-ASM and AU-TTE; (c-g) relationship between normalized GPP
and SIF, EVI over flux tower sites during wet pulse years (2010-2011, 2016-2017) and non-wet year
mean (2012-2015)56
Figure 2-10 Coefficients of determination between multi-year series of tower-based GPP and EVI,
EVI and SIF, GPP and SIF at a range of spatial resolution from 0.25 km to \sim 50 km (0.5°). Dashed
orange rectangle refer to the footprints of satellite observation overlapped between AU-ASM and AU-
TTE57
Figure 3-1 (a) Land cover map based on national Dynamic Land Cover Dataset (DLCD). (b) Spatial
pattern of aridity index. Black triangles refer to five flux tower sites72
Figure 3-2 (a) Region-wide mean monthly SPEI _{6-month} along with pixel counting under extreme dry
(SPEI \leq -2) from 2000-2019 and (b) monthly SPEI _{1-month} during 2018-201982
Figure 3-3 (a) Spatial pattern of drought severity based on SPEI _{6-month} during 2018-2019 monsoon
season (November - April). (b) Pixel-wise number of extreme-dry months during 2018-2019 monsoon
season based on SPEI _{1-month} . Four pairs of ROIs (1-4) are shown in Fig.3a. The black boundary
represents the extent of extreme (within) and medium (outside) dry in 2018-2019
Figure 3-4 The spatially-averaged seasonal cycles of GOME-2A SIF, SIFPAR, MODIS EVI, and
FluxSat GPP within (a, e, i, k) medium and (b, f, j, l) extreme dry extent from July 2018 to June 2019.
The grey curves represent the monthly multiyear mean of each variable between 2007 and 2018.
Vertical lines refer to ±1 standard deviation. (c, d, g, h) the spatially-averaged seasonal profiles of
SIF, SIF _{PAR} from TROPOMI and GOME-2B in 2018-2019 respectively84
Figure 3-5 The spatial distributions of the standardized anomalies of IMERG precipitation, ERA-5
surface and root zone soil moisture, MODIS LST, GOME-2A SIF, SIF _{PAR} , EVI, and FluxSat GPP
averaged from November 2018 to March 2019. Pixel density of vegetation variables within the extent
of extreme and medium dry respectively are shown in right column
Figure 3-6 Region-wide seasonal cycles and anomalies of (a, c, g, i) EVI and (b, d, h, j) SIF within
four pairs of ROIs in 2018-2019. Seasonal profiles of SIF and EVI within (e, f) ROI-2 in 2012-2013
and (k, l) ROI-4 in 2015-2016. Bottom panels of each figure refer to the anomalies of SIF or EVI
relative to climatology (2007-2018)
Figure 3-7 The boxplot of anomalies of (a) EVI and (b) SIF by different extreme-dry months along all
pixels grouped by aridity index during 2018-201990
Figure 3-8 The boxplot of anomalies of EVI and SIF under extreme and medium drought along all
pixels grouped by major biome types and aridity index during 2018-201991
Figure 3-9 (a, b, c) Monthly and (d, e) 16-day time series of the percentage of drought-induced
vegetation reduction indicated by EVI, SIF, and SIFPAR under moderately ($< -0.5\sigma$), severely ($< -1\sigma$)
and extremely (< -2σ) negative anomalies. σ indicates the standard deviation of the monthly SIF, EVI
during 2007–2018 as well as 16-day SIF/EVI during 2013–2018. The text of x-axis in Fig.9d, 8e refer
to the day of year (DOY) from November 2018 to March 201992
Figure 3-10 Seasonal cycles of monthly tower-based GPP, satellite-observed SIF, EVI over five flux
tower sites from July 2018 to June 2019 as well as multiyear mean. The grey area refers to ± 1
standard deviation
Figure 3-11 Relationship between tower-based GPP and satellite-based SIF, EVI in 2018-2019 across
five flux tower sites at different spatial (0.5°, 0.05° grid) and temporal (monthly, 16-day) resolution.
(p value < 0.001)

Figure 4-1 Land cover map of the Northern Australian Tropical Transect (NATT) study area. Black
triangles refer to the five flux tower sites108
Figure 4-2 Schematic diagram of phenological metrics retrieval. The curve refers to the seasonal SSA re-reconstructed EVI or SIF profile at daily scale. SOS: the start of growing season; POS: the peak of growing season; EOS: the end of growing season; RSP: the rate of spring green-up; RAU: the rate of autumn senescence
Figure 4-4 Seasonal cycle (mean) of tower-based GPP, GOME-2 SIF, MODIS EVI, and EVI×PAR over 5 selected local sites during 2014-2019. Curves are normalized with respect to unity at the maximum annual value. Satellite observations were extracted within a 3×3 window centered at each
flux tower site (SIF: $1.5^{\circ} \times 1.5^{\circ}$, EVI and EVI×PAR: $0.15^{\circ} \times 0.15^{\circ}$)118
Figure 4-5 Spatial patterns of vegetation phenology based on EVI over the NATT study area across three representative hydrological years (2014-2015 normal year, 2016-2017 wet year, 2018-2019 dry year). The filled pixels (grey shaded areas) are either water body or without detectable phenology. 121 Figure 4-6 Spatial patterns of vegetation phenology based on SIF over the NATT study area across three representative hydrological. (2014-2015 normal year, 2016-2017 wet year, 2018-2019 dry year). The filled pixels (grey shaded areas) are either water body or without detectable phenology
diagonal
Figure 4-8 Relationship between environmental drivers and vegetation variables averaged by four major biome types across NATT. (p value < 0.001)

List of tables

Table 1-1 Summary of primary satellite-based instrument for SIF retrieval	23
Table 2-1 Summary of wet pulse intensity classification	40
Table 4-1 Summary of differences (days) in SOS and EOS derived from SIF, EVI compared with	ı that
derived from tower-based GPP. MAE: mean absolute error. Negative values represent an earlier	
green-up (SOS) or senescence (EOS) of SIF, EVI relative to that of GPP.	118

Abbreviations

AI	Aridity Index
AU-ASM	Alice Springs Mulga
AU-Dry	Dry River
AU-How	Howard Springs
AU-Stp	Sturt Plains
AU-TTE	Ti Tree East
CERES	Cloud and Earth's Radiant Energy System
CPA	Cumulative Precipitation Anomalies
DJF	December-January-February
DLCD	Dynamic Land Cover Dataset
DOY	Day of Year
ENSO	El Niño-Southern Oscillation
ESA	European Space Agency
EVI	Enhanced Vegetation Index
EUMETSAT	European Organisation for the Exploitation of Meteorological
	Satellites
fPAR	Fraction of Photosynthetically Active Radiation
GOME-2	Global Ozone Monitoring Experiment-2
GOSAT	Greenhouse Gases Observing Satellite
GPP	Gross Primary Productivity
GRACE	Gravity Recovery and Climate Experiment

IMERG	Integrated Multi-Satellite Retrievals for Global Precipitation
	Measurement
LAI	Leaf Area Index
LSP	Land Surface Phenology
LST	Land Surface Temperature
LUE	Light Use Efficiency
MVGs	Major Vegetation Groups
NASA	National Aeronautics and Space Administration
NATT	North Australian Tropical Transect
NDVI	Normalized Difference Vegetation Index
NEP	Net Ecosystem Production
NIR	Near Infra-Red
NVIS	National Vegetation Information System
OCO-2	Orbiting Carbon Observatory-2
PAR	Photosynthetically Active Radiation
PET	Potential Evapotranspiration
POS	Peak of Growing Season
RAU	Rate of Autumn Senescence
ROI	Region of Interest
RSP	Rate of Spring Green-up
SA	Standardized Anomaly
SD	Standard Deviation
SIF	Sun-Induced chlorophyll Fluorescence
SM	Soil Moisture
SOS	Start of Growing Season
SPEI	Standardized Precipitation Evapotranspiration Index
TPs	Test-pixels
TRMM	Tropical Rainfall Measuring Mission

TROPOMI	TROPOspheric Monitoring Instrument
TWSA	Total Water Storage Anomaly
VI	Vegetation Indices
VPD	Vapour Pressure Deficit
WUE	Water-Use Efficiency

Abstract

Australia's dryland ecosystems play a critical role in regulating the climate system and considerably influence the interannual variability in global carbon cycle. However, the dynamics of dryland vegetation under climate variability and extreme events have not been as thoroughly investigated as in other ecosystems. Spaceborne solar-induced chlorophyll fluorescence (SIF) provide a fresh means to evaluate vegetation photosynthetic activity and detect vegetation stress. Considering its spatially coarse resolution, studies with reference to the application of SIF over heterogeneous dryland ecosystem are rarely reported.

The main goal of this thesis is to explore the spatial and temporal dynamics of Australia's dryland vegetation under hydro-climatic extremes using satelliteestimated fluorescence and greenness. To achieve this goal, I first utilized a strong wet pulse in 2016-2017 as well as in the 2011 big wet period as natural experiments to assess the response of major dryland biomes in central Australia. Next, I investigated the impact of a recent extreme drought on spatiotemporal variability of Australia's dryland vegetation indicated by multi-source satellitebased SIF. Finally, I analysed the spatial pattern and seasonal variations in dryland vegetation phenology under climate variability.

The results showed semiarid ecosystems to have the largest variability and were most sensitive to climate extremes. SIF derived from the Global Ozone

xvi

Monitoring Experiment-2 (GOME-2) at 0.5° spatial resolution has an insufficient capacity for capturing spatiotemporal dynamics over xeric central Australia as a result of low signal level and high retrieval noise. In contrast to humid ecosystems, both SIF and enhanced vegetation index (EVI) simultaneously captured the declines of arid/semiarid plant growth from the beginning of extreme drought events at 16-day scale. SIF data retrieved from TROPOspheric Monitoring Instrument (TROPOMI) at a 0.05° spatial grid exhibits promising capability of mapping and characterizing the dynamics of heterogeneous dryland vegetation in future.

This thesis highlights that the incorporation of satellite-observed greenness and fluorescence can potentially contribute to an improved understanding of dryland vegetation dynamics and can advance our ability to detect ecosystem alterations under future changing climates.