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ROBO2 is a stroma suppressor gene in the
pancreas and acts via TGF-β signalling
Andreia V. Pinho 1,2,3, Mathias Van Bulck4, Lorraine Chantrill1,3,5, Mehreen Arshi1,3, Tatyana Sklyarova 4,

David Herrmann 1,3,5, Claire Vennin1, David Gallego-Ortega 1,5, Amanda Mawson 1,3,

Marc Giry-Laterriere1,3, Astrid Magenau1, Gunther Leuckx6, Luc Baeyens6, Anthony J. Gill1,3,7, Phoebe Phillips8,

Paul Timpson1,3,5, Andrew V. Biankin 3,9,10,11, Jianmin Wu 3,12 & Ilse Rooman3,4

Whereas genomic aberrations in the SLIT-ROBO pathway are frequent in pancreatic ductal

adenocarcinoma (PDAC), their function in the pancreas is unclear. Here we report that in

pancreatitis and PDAC mouse models, epithelial Robo2 expression is lost while Robo1

expression becomes most prominent in the stroma. Cell cultures of mice with loss of epi-

thelial Robo2 (Pdx1Cre;Robo2F/F) show increased activation of Robo1+ myofibroblasts and

induction of TGF-β and Wnt pathways. During pancreatitis, Pdx1Cre;Robo2F/F mice present

enhanced myofibroblast activation, collagen crosslinking, T-cell infiltration and tumorigenic

immune markers. The TGF-β inhibitor galunisertib suppresses these effects. In

PDAC patients, ROBO2 expression is overall low while ROBO1 is variably expressed in epi-

thelium and high in stroma. ROBO2low;ROBO1high patients present the poorest survival. In

conclusion, Robo2 acts non-autonomously as a stroma suppressor gene by restraining

myofibroblast activation and T-cell infiltration. ROBO1/2 expression in PDAC patients may

guide therapy with TGF-β inhibitors or other stroma /immune modulating agents.
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Pancreatic ductal adenocarcinoma (PDAC) has a dismal
prognosis, being predicted to become the second leading
cause of cancer-related death by 20301. Chronic pancreatitis

is a major risk factor for the development of PDAC. Both diseases
share a common aetiology in the exocrine pancreatic tissue and
are characterised by a strong desmoplastic response, comprised of
multiple stromal cell types, including activated myofibroblasts or
stellate cells and immune cell infiltrates2,3.

Next-generation sequencing technology transformed our
understanding of the genetic alterations associated with the genesis
and progression of PDAC. Within a very heterogeneous mutational
landscape, specific signalling pathways and biological mechanisms
are recurrently affected, including SLIT ligands and ROBO recep-
tors, originally described for their role in axon guidance4.
SLIT–ROBO genes present structural variations or mutations in
approximately one-third of patients5–7 and are also frequently
silenced by methylation8. Analyzing whole-tissue gene expression,
we previously showed a progressive loss of Robo2, a progressive
increase in Robo1 and no change in Robo3 mRNA expression
when sequentially comparing normal mouse pancreas, models of
acinar-to-ductal metaplasia and a genetically engineered mouse
model of PDAC5. In addition, low expression of ROBO2 mRNA
was associated with poor patient survival5.

Studies focusing on the role of the SLIT–ROBO signalling
pathway in the exocrine pancreas have, however, been very lim-
ited. Loss-of-function experiments in tumour cells showed that
ROBO1 and ROBO3 receptors are involved in pancreatic cancer
cell migration and metastasis9,10, and SLIT2 has a role in neural
remodelling associated with PDAC11,12.

In this study, we describe cell-type-specific changes in Robo
and Slit gene expression during pancreatitis and tumour
development, and we reveal their functional consequence in
reshaping the tissue’s constituents. More specifically, our data
show that overall Robo2 is lost in PDAC. Loss of
Robo2 signalling in the exocrine epithelium reprograms the
microenvironment, resulting in the prominent activation of
myofibroblasts and increased T-cell infiltration, with a critical
role for transforming growth factor beta (TGF-β) signalling.
Our results provide insights into the mechanisms of the des-
moplastic response characteristic of exocrine pancreatic
pathologies, which is the subject of investigation in clinical
trials.

Results
Robo1 and 2 receptors show cell-type-specific changes. We
assessed Robo1 and Robo2 expression by RNA in situ hybridi-
zation (RISH), within the exocrine tissue of normal mouse pan-
creas (NMP), acute pancreatitis (AP) induced by caerulein
treatment13, and PDAC lesions of KrasG12D; Trp53R172H;
Pdx1Cre (KPC) animals14. Expression in the endocrine tissue is
shown in the Supplementary material (Supplementary Figure 1a).

In NMP, Robo1 and Robo2 are expressed within the acinar
(Ac) and ductal (Du) epithelium, as well as in the non-epithelial
(Fig. 1a, f), vimentin-positive (Vim+) mesenchymal (Me) cells
(Fig. 1f).

Robo2 expression is decreased in the epithelial acinar cells in
caerulein-induced AP and in KPC, to the extent that the RISH signal
is close to zero (Fig. 1b, c, e). In these conditions, Robo1 is increased
in Vim+ and α-smooth muscle actin-positive (αSma/Acta2+)
mesenchymal cells (Fig. 1b, c, d, g and Supplementary Figure 1b),
characteristic of activated myofibroblasts. Robo1 remains detectable
in the epithelial lesions of the KPC mice (Fig. 1c, d, g).

In conclusion, in diseases of the exocrine pancreas, epithelial
Robo2 expression is lost, while Robo1 expression is increased in
the mesenchyme.

Epithelial Robo2 restrains activation of myofibroblasts. Since
ROBO2 is frequently mutated in pancreatic tumour epithelium5

and epithelial gene expression is suppressed in pancreatitis and
PDAC (Fig. 1), we genetically inhibited Robo2 in pancreatic
epithelium. This was accomplished by breeding Robo2 exon 5
conditional knockout animals with the Pdx1Cre strain (from here
on referred to as Robo2F/F) that resulted in an 80% reduction in
total pancreatic Robo2 mRNA compared with controls (Supple-
mentary Figure 2a). In the Robo2-depleted epithelial acinar and
duct cells, we noticed a slight, and possibly compensatory,
upregulation of Robo1 expression (Supplementary Figure 2b).
Adult Robo2F/F animals presented normal pancreas histology
(Supplementary Figure 2c) with endocrine hormone expressing
islets (Supplementary Figure 2d) and amylase expressing exocrine
tissue comparable with controls (Supplementary Figure 2d, e).
We observed no changes in exocrine (Supplementary Figure 2f)
or endocrine gene expression (Supplementary Figure 2g), except a
subtle increase in SRY-Box9 (Sox9) (Supplementary Figure 2f).
Robo2F/F animals did not show changes in the mesenchymal
markers snail family transcriptional repressor 1 (Snai1), Vim or
the myofibroblast marker Acta2 (Supplementary Figure 2h).

An established in vitro assay with highly enriched exocrine cell
fractions mimics the epithelial cell changes (acinar to ductal
metaplasia) that occur during pancreatitis15–18. Using cells from the
Pdx1Cre mice in this assay (left panels in Fig. 2a, c, e), we observed
changes similar to our previous work15–18, resulting in epithelial
monolayers. In contrast, more cells from Robo2F/F pancreata
attached to the culture plate at 48 h (Fig. 2b), with mostly
mesenchymal cells growing around few epithelial colonies that were
not as spread out as in the controls (Fig. 2a, c, e right panels).

At day 8 (D8), overall expression of the epithelial cell markers
pancreas transcription factor 1a (Ptf1a), carboxypeptidase1
(Cpa1), pancreas and duodenal homeobox gene 1 (Pdx1) and
keratin19 (Krt19) was decreased in Robo2F/F cell cultures
(Fig. 2d), whereas expression of mesenchymal genes Snai1, twist
family BHLH transcription factor 1 (Twist1) and Vim and the
activated myofibroblast genes Acta2 and desmin (Des) were
upregulated (Fig. 2f). The latter was confirmed by staining for
Vim and αSma (Fig. 2e). We note that both in Pdx1Cre as in
Robo2F/F, the Vim+ cells express αSma. In Robo2F/F cultures, E-
cadherin (E-cad)+ monolayer formation was low and their E-cad
staining pattern was punctuated, indicative of immature adherens
junctions (Fig. 2c, right panel). Double-positive E-cad/Vim or E-
cad/αSma cells were never found.

To further characterise the origin of the fibroblastic cell
population, we used fluorescence-activated cell sorting (FACS) to
separate the epithelial (EpCAM+, Cd31− and Cd140a/Pdgfr-α−)
and mesenchymal (Cd140a/Pdgfr-α+, Cd31− and EpCAM−) cell
populations (Supplementary Figure 3a)19. Specificity of EpCAM
and Cd140a markers was confirmed by co-staining with E-cad
and Vim (Supplementary Figure 3b). This experiment yielded
more mesenchymal cells from the Robo2F/F D8 cell cultures,
confirming the above results (Fig. 2g). In this experiment, we also
analysed the presence of Cre-mediated recombination in the
Robo2 allele (deletion of Robo2 exon 5). The 1180 base-pair (bp)
recombined (R) band that we find in the epithelial Robo2F/F

population, is not retrieved in the mesenchymal Robo2F/F

population (Fig. 2h). The Robo2F/F mesenchymal cells show a
similar band to wild-type epithelial Pdx1Cre cells, i.e. a
non-recombined (N) band of 1390 bp (Fig. 2h). The genotype
of Pdx1Cre and RoboF/F cells was confirmed via restriction
digestion of the respective amplicon (Supplementary Figure 3c).
This led us to conclude that the mesenchymal cells present in
Robo2F/F cultures are not of epithelial origin and get activated in
a non-autonomous manner, which leads to their expansion in
culture.
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Fig. 1 Cell-type-specific changes in Robo1/2 expression in pancreatitis and PDAC. a–c Robo1 and Robo2 mRNA expression analysed by RNA in situ
hybridization (RISH) in a normal mouse pancreas (NMP), b acute pancreatitis (AP) and c PDAC samples from KrasG12D; Trp53R172H; Pdx1Cre (KPC)
animals. Note that dot intensity is not related to the amount of mRNA copies. Dotted lines delineate histological compartments (acini, Ac; ducts, Du;
tumour epithelium, Epi; mesenchymal cells, Me). Images are representative of six independent experiments. Scale bars correspond to 20 µm.
d Quantification of Robo1 RISH in tissue sections of NMP, AP and PDAC. Data presented as mean+ /− SEM; N= 6. Statistical analysis was performed
using an unpaired t test with Welsh’s correction; ***P < 0.001. e Quantification of Robo2 RISH in tissue sections of NMP, AP and PDAC. Data presented as
mean+ /− SEM; N= 6. Statistical analysis was performed using an unpaired t test with Welsh’s correction; *P < 0.05. f RISH— immunofluorescence
multiplexing of Robo1 and Robo2 with the epithelial marker E-cad and the mesenchymal marker Vim in NMP. Red arrows indicate Robo1+ and Robo2+

signal. Nuclei are stained with DAPI. Images are representative of six independent experiments. Scale bars correspond to 20 µm. Confocal pictures were
acquired using 20x magnification with zoom 3.5. g RISH—immunofluorescence multiplexing of Robo1 or Robo2 with the epithelial marker E-cadherin (E-
cad) and the mesenchymal marker vimentin (Vim) in PDAC (KPC model). Nuclei are stained with DAPI. Images are representative of three independent
experiments. Scale bars correspond to 20 µm. Confocal pictures were acquired using 20x magnification with zoom 2.0
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Robo2-mediated myofibroblast activation depends on TGF-β.
We hypothesised that Wnt signalling, a known pathway regulated
by Slit2–Robo120–22, and/or TGF-β signalling, known for myo-
fibroblast cell activation23, were implicated in our observations.

Indeed, in Robo2F/F cell cultures, we found upregulation of the
Wnt signalling genes Axin2, Lef1 (lymphoid enhancer binding
factor 1), Lgr5 (leucine-rich repeat containing G-protein-coupled
receptor 5) and Mmp9 (matrix metalloproteinase 9) (Fig. 3a). We
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Fig. 2 Increased myofibroblasts in cell cultures from Robo2F/F pancreas. a Representative images of Pdx1Cre and Robo2F/F primary pancreatic exocrine
cultures at day 8 (D8) of culture. Scale bars correspond to 200 µm. b Quantification of sulphorhodamine B staining as a measurement of cell attachment at
48 h of culture. c Immunofluorescence staining of the mesenchymal marker Vim and the epithelial marker E-cad in D8 primary pancreatic cultures of
Pdx1Cre and Robo2F/F animals. Images are representative of five independent experiments. Nuclei are stained with DAPI. Confocal images were acquired
using 40x magnification. Scale bars correspond to 50 µm. d mRNA expression of pancreatic epithelial markers analysed by RT-qPCR in D8 primary
pancreatic cultures of Pdx1Cre and Robo2F/F animals. e Immunofluorescence staining of the mesenchymal markers Vim and αSma in D8 primary pancreatic
cultures of Pdx1Cre and Robo2F/F animals. Images are representative of five independent experiments. Nuclei are stained with DAPI. Confocal images were
acquired using 40x magnification. Scale bars correspond to 50 µm. f mRNA expression of mesenchymal and stellate cell markers analysed by RT-qPCR in
D8 primary pancreatic cultures of Pdx1Cre and Robo2F/F animals. All qPCR data are referred to housekeeping gene Hprt. g Quantification of FACS-sorted
epithelial (EpCAM+, Cd31− and Cd140a−) and mesenchymal (Cd140a+, Cd31− and EpCAM−) cell populations in D8 primary pancreatic cultures of
Pdx1Cre and Robo2F/F animals. h Analysis of Cre-mediated recombination of the Robo2 allele by PCR using 10 ng of genomic DNA from FACS-sorted D8
primary pancreatic cultures of Pdx1Cre and Robo2F/F animals. Arrows indicate the non-recombined (1390 bp) and recombined (1180 bp) amplicons. N or R
indicates which primer pair was used. N for Robo2 wild-type allele primer pair, R for Robo2 knockout allele primer pair. All data presented as mean+ /−
SEM; N≥ 5. Statistical analysis was performed using unpaired t test with Welch’s correction; *P < 0.05, **P < 0.01, ***P < 0.001
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also detected increased mRNA of TGF-β ligand (Tgfb1) and
TGF-β receptor II (Tgfbr2) (Fig. 3b), as well as increased phos-
phorylation of Smad2 (Fig. 3d), a hallmark of TGF-β pathway
activation. Robo1 expression was upregulated (Fig. 3c), consistent
with being a target of Wnt and TGF-β signalling pathway24,25.

The Robo2F/F cell cultures contain a majority of myofibro-
blasts, and these cells stain positive for Axin2, Tgfb1, Robo1 and
phospho-Smad2 (P-Smad2) (Fig. 3e), hence they contribute to the
increases detected by RT-PCR and underscore the non-
autonomous effect of epithelial Robo2 deletion.

The TGF-β receptor I inhibitor galunisertib has recently shown
promising results in a randomised phase 2 clinical trial for
advanced PDAC and is further under study26,27. Robo2F/F

cultures treated with galunisertib have decreased phospho-
Smad2 (Supplementary Figure 4a). In Robo2F/F cell cultures

treated with galunisertib, there was an inhibition of the effects
seen in untreated Robo2F/F cells, i.e. epithelial markers E-cad,
Krt19 and Cpa1 were upregulated, and mesenchymal markers
Vim, Snail, Acta2/αSma as well as Tgfb1, Tgfbr2 or Robo1 were
downregulated, compared with Robo2F/F controls (Fig. 4a–c).
Changes in αSma, Vim and E-cad were confirmed by western blot
(Supplementary Figure 4b) and immunofluorescence (Fig. 4d).
We observed that in the mesenchymal cells of the Robo2F/F

cultures, the expression of αSma as well as that of Robo1 was
suppressed by galunisertib (Fig. 4e, f).

In addition, we found that galunisertib reduced the Tgfb1
increase found in Robo2F/F epithelial cells (Supplementary
Figure 5a, b). The fact that Tgfb1 increased in Robo2F/F epithelial
cells was further confirmed by ROBO2 knockdown using siRNA
in Panc1 cells—chosen because it is an epithelial tumour cell line
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Fig. 3 Activation of Wnt and TGF-β pathway in cell cultures from Robo2F/F pancreas. a, b, c mRNA expression of Wnt targets (a), Tgfb1, Tgfbr2 (b) and Robo1
(c) analysed by RT-qPCR in D8 primary pancreatic cultures of Pdx1Cre and Robo2F/F animals. All qPCR data are referred to housekeeping gene Hprt. dWestern
blot (WB) analysis of phospho-Smad2 in D8 cultures and quantification of WB band density using ImageJ. e Representative images of mesenchymal cells,
identified by Vim, in D8 Robo2F/F cultures stained with immunofluorescence/RISH for Axin2, Tgfb1, Robo1 or phospho-Smad2. Nuclei in immunofluorescence
images are stained with DAPI. Images are representative of three to four independent experiments. Scale bars correspond to 20 µm. All data presented as
mean+ /− SEM; N= 4–6. Statistical analysis was performed using unpaired t test with Welch’s correction; *P < 0.05, **P < 0.01, ***P < 0.001
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that retains some ROBO2 expression. ROBO2 knockdown led to
an upregulation of TGFB1 ligand, whereas no change in TGFBR2,
Wnt signalling or ROBO1 was detected (Supplementary
Figure 5c).

We conclude that TGF-β pathway inhibition blocks the
myofibroblast activation induced in conditions of epithelial
Robo2 loss.

Robo2 suppresses stromal activation in pancreatitis. We ver-
ified if the effects observed in the in vitro model are reproduced in
AP. Samples were collected at day 3 (D3-acute damage) and at
day 8 (D8-regeneration) (Fig. 5a). At the histological level, we
noticed that Robo2F/F pancreata had more inter-acinar space at
D3 (Fig. 5a), indicative of stromal changes. Similar to our in vitro
observations, RT-qPCR analysis at D3 showed in Robo2F/F a
lower expression of epithelial genes, a higher expression of des-
min and an upregulation of Tgfb1, Tgfbr2 and Robo1 (Fig. 5b, c,
d). Increased activation of the TGF-β pathway in Robo2F/F ani-
mals was confirmed by phospho-Smad2 IHC (Fig. 6a, d), as well
as the increase in the number of αSma+myofibroblasts (Fig. 6b,
e). There was no increase in acinar-to-ductal metaplasia (Sup-
plementary Figure 6a,b) and E-cad localization at the cell mem-
brane or E-cad mobility28, did not differ between Pdx1Cre and
Robo2F/F pancreas (Supplementary Figure 7). At D8, the epi-
thelial tissue had also regenerated to the same extent as the
Pdx1Cre samples (Fig. 5a). In contrast, the stromal compartment
remained different with increased deposition of collagen (Sup-
plementary Figure 6c,d) and increased collagen crosslinking at
D8, quantified by second-harmonic generation (SHG) micro-
scopy analysis (Fig. 5h, i). We therefore conclude that, similar to
in vitro observations, the Robo2-mediated effects were stroma-
specific.

Immune cells are important mediators of the epithelial and
stromal changes in pancreatitis and in PDAC2,29. Hence, we also
characterised the immune cell component on the acute damage
time point. Immunohistochemistry showed no difference in the
number of F4/80+ macrophages (Supplementary Figure 6e, f),
whereas the number of CD3+ T lymphocytes was increased in
Robo2F/F animals compared with Pdx1Cre controls (Fig. 6c, f).
Targeted qPCR analysis showed increased expression of the anti-
inflammatory cytokine interleukin-10 (Il10), but no difference in
expression of the pro-inflammatory cytokines Il1b and Il6
(Fig. 5e). Additionally, pathway-focused gene expression analysis,
using the Mouse Cancer Inflammation and Immunity Crosstalk
RT2 Profiler PCR Arrays (Qiagen) containing 84 genes involved
in inflammation and immunity (Supplementary Table 1) showed
downregulation of the pro-inflammatory cytokine Il1a and
upregulation of the chemokine receptors Ccr5 and Cxcr2 (Fig. 5f,
g). Ccr5 and Cxcr2 promote pancreatic cancer progression30,31

and metastasis (in the case of Cxcr2), and their chemical
inhibition has been proposed as cancer immunotherapy32,33.
Additionally, we found an upregulation of Toll-like receptor 7
(Tlr7), also previously implicated in pancreatic carcinogenesis34,
and of the tumour suppressor Trp53. Tlr7 regulates the
expression of Trp53 itself, as well as of TGF-β and Mmp9 in
pancreatic cells34,35. Altogether, these results show that loss of
epithelial Robo2 leads to an exacerbated immune response that is
of anti-inflammatory nature and has been previously linked with
PDAC progression and metastasis.

FACS analysis of pancreatic tissue of Robo2F/F animals at D3
AP (Supplementary Figure 8a-c) allowed us to assess expression of
the most relevant genes per cell type; Axin2 and Robo1 were most
prominent in mesenchymal cells, while the TGF-β ligand was
expressed in epithelial, stromal and immune cells (Supplementary
Figure 8b), as confirmed by RISH (Supplementary Figure 8c).

To determine whether inhibition of the TGF-β pathway in vivo
could inhibit Robo2-mediated stromal effects observed after
pancreatitis, we administered galunisertib during the caerulein
treatment (Fig. 6). This prevented the increase in phospho-Smad2
observed in Robo2F/F animals (Fig. 6a, d), evidencing that the
drug inhibits TGF-β signalling.

Galunisertib decreased the accumulation of αSma+ myofibro-
blasts in Robo2F/F (Fig. 6b, e) as well as the infiltration of CD3+ T
lymphocytes (Fig. 6c, f).

Together, the in vivo data show that loss of Robo2 specifically
in the epithelial compartment leads to activation and remodelling
of the stroma, affecting mesenchymal and immune cells. The
effects are mediated by TGF-β signalling and chemical inhibition
of this pathway using galunisertib could suppress myofibroblast
activation and CD3+ T lymphocyte accumulation.

No effect of additional Robo2 loss in KC mice. As shown in
Fig. 1, epithelial Robo2 expression is lost in different conditions of
Ras activation, such as AP, where wild-type Ras is
overactivated17,36 and in the KPC mice14 that express oncogenic
KRasG12D. We crossed the KC model with Robo2F/F animals and
treated these animals with caerulein to induce a chronic pan-
creatitis (Supplementary Figure 9a). Downregulation of Robo2
expression was confirmed in KC animals, which express onco-
genic KrasG12D in the pancreas (Supplementary Figure 9b). The
area occupied by neoplastic lesions was similar between
KC_Robo2F/F and KC controls, with both groups presenting a
mix of early-stage lesions (PanIN1A/B and PanIN2) (Supple-
mentary Figure 9c, d). We also did not find any additional
increase in αSma+ cells, CD3+ T-cell infiltration or higher TGF-β
RNA expression (Supplementary Figure 9e–j).

In conclusion, Robo2 knockout in the KC mouse background
does not increase the typical phenotypic changes in epithelium
and stroma. One explanation for this observation is the fact that
KrasG12D mutation on its own already induced Robo2 loss.

Slit1 suppresses stromal remodelling in pancreatitis. Slit1 and
Slit2 ligands are mainly expressed in the mesenchymal cells of the
pancreas (Supplementary Figure 10a, e) and increased in AP and
KPC (Supplementary Figure 10b, c, e and f). Since Slit2 knockout
animals are not viable37, we proceeded studying Slit1 knockout
(Slit1−/−) mice.

The adult pancreas of the Slit1−/− mice presented
normal histology (Supplementary Figure 12b). Slit1−/− pancrea-
tic cell explants showed a similar phenotype to Robo2F/F cells
with increased cell attachment (Supplementary Figure 11a, b),
and increased expression of mesenchymal genes, including αSma/
Acta2, as well as increased expression of Wnt signalling genes
(Supplementary Figure 11c-e). Although expression changes in
Slit1−/− were similar to those in Robo2F/F cultures (Figs. 2f, 3a)
no increase in Tgfb1 or Tgfbr2 was found (Supplementary
Figure 11f). When subjected to AP, Slit1−/− pancreata showed an
increase in inter-acinar space with more αSma+ myofibroblasts
(Supplementary Figure 12a–d) and increased collagen cross-
linking at D8 (Supplementary Figure 12c, f). CD3+ T-lymphocyte
infiltration only showed a tendency for increase (Supplementary
Figure 12c, e).

We conclude that the absence of Slit1 in all pancreatic cells (i.e.
epithelium and stroma) results in enhanced myofibroblast
activation in AP or its equivalent cell culture model. Albeit that
additional different mechanisms may have been involved, the
above observations strongly support that the ligand Slit1 also
suppresses the microenvironment by restraining myofibroblast
activation.
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ROBO1 determines prognosis in ROBO2-negative patients.
We investigated the expression of ROBO1 and ROBO2 in a large
cohort of PDAC patients (n= 109) from APGI5–7, as well as non-
malignant pancreas samples. Similar to the observation in mouse,
we found modest expression of ROBO1 and 2 in normal exocrine
epithelium and we detected high expression of ROBO1 but low
expression of ROBO2 in advanced preneoplastic PanIN lesions
(Supplementary Figure 13). The vast majority of PDAC tumours
were positive for ROBO1 (106/109) with 55% of patients pre-
senting high expression of ROBO1 (score ≥200 in 60/109 sam-
ples). On the contrary, for ROBO2, 54% of PDAC samples were
negative (score 0 in 59/109 samples) and 26% only presented low
expression (score ≤100 in 28/109 samples) (Fig. 7a, b). Moreover,
we found that ROBO1 is also highly expressed by stromal cells in

these tumour samples, while ROBO2 is absent or expressed at
very low levels in stromal cells (Fig. 7a).

RNA sequencing (RNAseq) confirmed that ROBO1 was
highly expressed in tumours from this cohort, while ROBO2
expression is much lower (Fig. 7c). One should note that
RNAseq data were obtained from tumour samples containing
epithelial and stromal cells. Tumour epithelial purity, analysed
by Qpure analysis38, negatively correlates with ROBO1 expres-
sion in these samples (Spearman rs=−0.321, p= 0.002,
Fig. 7d), suggesting that ROBO1 mRNA expression is higher
in samples with higher stromal content, in agreement with the
mouse data. Not only did ROBO1 correlate with abundance of
stromal cells, when using the expression signatures from Moffit
et al., we found that ROBO1 correlated best with markers of
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activated inflammatory stroma (Fig. 7e), which have been
associated with poor prognosis39. In addition, gene set
enrichment analysis of the genes that correlated with ROBO1
in the PDAC samples, was enriched for pathways related to the
extracellular matrix, focal and cell adhesion, as well as genes
involved in Wnt signalling and TGF-β signalling, reinforcing
the findings from the mouse experimental models
described above (Supplementary Table 2).

We had previously shown that ROBO2 mRNA expression (from
cDNA microarrays) positively correlated with improved patient
survival5. We now refined our data showing, by immunostaining
and by RNAseq, that within the ROBO2low population, ROBO1
expression is a determining factor; ROBO2low;ROBO1high tumours
corresponding to the patients with the poorest prognosis and
ROBO2low;ROBO1low not differing from ROBO2high tumours in
terms of disease-free survival (Fig. 7f, g).

Altogether, these data illustrate that our functional mouse
studies are relevant for human pathology, showing that loss of
ROBO2 signalling is commonly found in PDAC and that
concurrent high ROBO1 expression correlates with activated
Wnt and TGF-β pathways, with markers of activated inflamma-
tory stroma and with poor disease-free survival.

Discussion
Further to a role in axonal guidance, the SLIT–ROBO pathway
has been implicated in cancer4, with studies showing that Slit2
and Robo1 regulate tumour cell migration and invasion through
regulation of the β-catenin/Wnt pathway11,20–22 and affect neural
remodelling in pancreatic cancer11,12.

Our study reports the involvement of the other partners, Slit1
and Robo2, in regulating the neighbouring microenvironment.
We use an integrative approach that combines genetically engi-
neered mice and a large set of human PDAC samples. Specifically,
we show that epithelial loss of Robo2 leads to a non-autonomous
activation of pancreatic myofibroblasts and induction of an
immune response that is primarily of an anti-inflammatory and
tumour-promoting nature (Fig. 8). Hence, we coin Robo2 a
stroma suppressor gene, a term that we would reserve specifically

for a gene expressed in epithelial cells that limits neighbouring
stromal cells and that is susceptible to inactivating mutations in
cancer.

We not only show that epithelial Robo2 loss is accompanied by
expansion of myofibroblasts and induced TGF-β signalling (with
prominent phospho-Smad2 in the stromal cells), we also
demonstrate dependency on TGF-β signalling. This pathway
confers a known stimulus for stroma remodelling, wound healing
and desmoplastic response in AP, chronic pancreatitis and
PDAC23,40, but how stroma itself affects cancer development and
progression is a matter of vigorous debate41. TGF-β itself can also
have a dual role herein, depending on the cell type where sig-
nalling occurs (epithelium vs. stroma) as well as on the timing
(early or late in tumour development); it can function as a
tumour suppressor when activated in premalignant epithelial
cells, or as a tumour promotor when activated in advanced cancer
cells or the tumour microenvironment42,43. We demonstrate that
Robo2 expression is decreased early in tumour development, in
samples with oncogenic Kras activation (mouse KPC model and
human PanIN lesions) and is overall low in PDAC samples.
Hence, effects of Robo2 loss on cancer development (through
TGF-β signalling and stroma activation) might depend on the
timing of Robo2 inactivation. Our experiments with concomitant
embryonic inactivation of Robo2 and mutant Kras activation
(KC_Robo2F/F) followed by chronic pancreatitis show no addi-
tional phenotypic changes compared to controls. It would be
most interesting to sequentially introduce the genetic changes to
better mimic human PDAC development.

In our mouse model with epithelial Robo2 deficiency, we also
find a non-autonomous activation of Wnt and TGF-β pathways,
as well as their common target Robo124,25, which is notably
activated in stromal cells. Activation of Wnt signalling is actually
required for TGF-β-mediated fibrosis44 and Wnt target genes are
markers of activated stroma in the pancreas39,45. Indeed, in
pancreata of KPC mice, we show expression of Robo1 in αSma+

myofibroblasts, similar to what is seen in hepatic stellate cells46,47.
We also demonstrate that in PDAC patients, high ROBO1 mRNA
expression inversely correlates with tumour epithelial cellularity
and positively correlated with markers of activated stroma, as well
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Fig. 8 ROBO2 is a stroma suppressor gene in the pancreas and acts via TGF-β. A schematic representation of the key findings in this study. After injury,
either by cell culture or acute pancreatitis induction, loss of Robo2 in pancreatic epithelial cells leads to non-autonomous activation of pancreatic
myofibroblasts and increased T-cell infiltration, dependent on activation of the TGF-β signalling pathway
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as with Wnt and TGF-β pathways. High levels of Robo1 in the
tumour stroma could on their turn modulate Wnt pathway
activation in response to TGF-β activation. We note that Robo1
itself was also reported to activate the Wnt pathway11,20–22. The
particular mechanisms of this cross-regulation might constitute
the subject of future studies. On the other hand, Robo1 is not only
found in the myofibroblasts but also frequently found in pan-
creatic tumour epithelium where, as referred above, it might play
a distinct role in migration and invasion11,20–22.

Pancreata of either Robo2F/F or Slit1-/- have normal organi-
sation of the exocrine and the endocrine tissue. Yang et al.
reported that Slit1, 2 or 3 knockdown by siRNA did affect beta-
cell survival48. We cannot exclude that in our in vivo model, there
was a compensatory mechanism at play during development of
the pancreas. Indeed, a recent study from Adams et al.49 suggests
that only upon loss of both Robo1 and Robo2 the endocrine
compartment is affected.

We had shown that ROBO2 low-expressing tumours present a
poorer prognosis5. In the present study, we validate these data by
RNAseq analyses and demonstrate, using RNAseq and IHC, that
within the low ROBO2 population, those patients with high
expression of ROBO1 have the poorest prognosis. This led us to
propose that epithelial loss of ROBO2 and high expression of
ROBO1 may constitute a specific subtype of patients with a
characteristic stroma and consequent poor prognosis. The reason
why all ROBO2 low patients do not display high ROBO1
expression is still unclear. We speculate that the mutational
landscape, e.g. genes within the TGF-β pathway that are fre-
quently affected in PDAC5,7, might have an influence and other
stroma modulators40 (possibly other stroma suppressor genes)
may also have their contribution. With regard to ROBO1
expression in tumour epithelium, it is subject to methylation8 and
hence, different patients may present different expression
patterns.

In our preclinical work, Robo2-mediated reprogramming of
the microenvironment is blocked by the TGF-β inhibitor galu-
nisertib. TGF-β inhibition has recently been shown to improve
the efficacy of immunotherapies in preclinical models of uro-
thelial and colorectal cancer50,51. Moreover, phase 2 clinical trials
with galunisertib in advanced PDAC showed promising effects on
progression-free survival26,52 and a clinical trial testing galuni-
sertib with immunotherapy is now ongoing53. This type of trials,
as well as those testing other stroma54 and/or immune targeting
drugs, such as Cxcr2 inhibition32, could make use of our findings.
In conclusion, this report helps to understand the role of the
SLIT–ROBO pathway in the pancreatic epithelium and how it
regulates the stroma with its fibroblastic as well as immunological
components, a topic that is of utmost clinical relevance, given the
mutations found in these genes and the drugs that are currently
making their way to the clinic.

Methods
Animal experimentation. Experiments were performed in accordance with
institutional ethical guidelines and regulations, and were approved by St. Vincent’s
Hospital Animal Ethics Committee, Sydney, Australia (ethical approval 16/02). In
all experiments, adult animals 3–6 months of age and of both sexes were used.
Pancreatic-specific Robo2-deficient animals were generated by crossing Robo2
exon 5 flox animals55 with Pdx1Cre animals56, resulting in Pdx1Cre;Robo2F/F ani-
mals. Pdx1Cre;Robo2F/F were compared with Pdx1Cre control animals of the same
genetic background (129 Sv/C57BL/6). Whole-body Slit1−/− mice37 were com-
pared with wild-type (WT) animals of the same genetic background (CD-1/Swiss).
Pancreatitis was induced by administering 8 hourly intraperitoneal injections of
100 μg/kg of caerulein (Sigma) during 2 consecutive days13,18. When applicable,
animals were treated with 75 mg/kg of galunisertib (LY2157299, Selleck Chemicals)
or saline by oral gavage, twice daily before and after caerulein treatment.

RNA in situ hybridization. RNA in situ hybridization (RISH) was performed in
formalin-fixed, paraffin-embedded tissue sections, according to the manufacturer’s

protocols for manual RNAscope® 2.5 HD Assay—RED (Advanced Cell Diagnostics
Inc., 322350). Robo1, Robo2, Slit1, Slit2, Tgfb1, Foxp3, DapB (negative control)
and UbC (positive control) probes were purchased from Advanced Cell Diag-
nostics. For multiplex staining, after RISH, samples were stained with an antibody
using routine immunostaining (see below) at 4 °C. Images were acquired using a
Nikon Eclipse 90i fluorescence microscope, a Carl Zeiss LSM710 multiphoton
confocal laser scanning microscope or an Evos FL1 auto digital microscope
(Thermo Fisher Scientific). Image analysis and quantification was done using
Image J or Imaris 9.1. (Bitplane). Detailed RISH and imaging protocols are
described in the Supplementary Methods.

Pancreatic exocrine cell isolation and culture. Pancreatic exocrine cells were
isolated and cultured following a method previously published16,17. Animals were
euthanised in line with animal ethics guidelines and total mouse pancreas was
isolated. The pancreatic tissue was digested with a collagenase P (Roche) solution
(1.25 mg/mL) for 20 min at 37°C. Digested pancreata were washed twice in Hank’s
balanced salt solution (HBSS) (Gibco BRL) supplemented with 5% fetal bovine
serum (FBS) (Sigma) and filtered over a 100-μm nylon mesh (Corning). Viable cells
were recovered after low-speed centrifugation over 30% FBS. Isolated pancreatic
acinar cells were cultured in suspension for the first 48 h in ultra-low- attachment
dishes (Corning) to allow dedifferentiation into pancreatic progenitors. From day
3, cells were transferred to tissue culture-treated six-well plates (Corning) and
cultured as a monolayer until day 8. Cell culture media consisted of DMEM/F-12
(Gibco) supplemented with 3% FBS, 1X N2 supplement (Invitrogen), 0.5X
B27 supplement (Invitrogen), 20 ng/mL EGF (R&D Systems), 100 μM β-
mercaptoethanol (Gibco), 1X nonessential amino acids (Gibco), 1X penicillin/
streptomycin (Gibco) and 106 U/L Esgro-LIF (Millipore). Soybean trypsin inhibitor
(0.1 mg/mL, Sigma) was added for the first 48 h, and geneticin sulphate (25 μg/mL,
Sigma) was added to eliminate contaminating fibroblasts. Galunisertib (5 μM,
Selleck Chemicals) or control DMSO was added from the moment of cell isolation
and during the 8 days of culture.

RT-qPCR. Total RNA was isolated from cells and tissue using Purelink RNA Mini
Kit (Ambion, Life Technologies), and cDNA was prepared using Superscript III
Reverse Transcriptase (Invitrogen, Life Technologies) according to the manu-
facturer’s instructions. For targeted qPCR, 10 ng of RNA equivalent was used for
amplification with specific primers (sequences available upon request) with Power
SYBR Master Mix (Invitrogen, Life Technologies) using the 7900 H Fast Real Time
PCR System (Life Technologies). All analyses were done in duplicate. A melting
curve analysis was performed to control for product quality and specificity. The
expression levels were normalised to a housekeeping gene Hprt. Mouse Cancer
Inflammation and Immunity Crosstalk RT2 Profiler PCR Arrays (Qiagen) were
used for pathway-focused gene expression analysis, following the manufacturer’s
procedures.

Flow cytometry. Pancreatic cell cultures at day 8 were digested using StemCell pro
Accutase (Gibco). After washing with DMEM/F-12 (Gibco) with 3% FBS, cells
were filtered over a 70-μm nylon mesh. Total mouse pancreas was digested with a
collagenase P (Roche) solution (1.25 mg/mL) for 20 min at 37 °C. Digested pan-
creata were washed in HBSS (Gibco BRL) supplemented with 5% FBS (Sigma) and
filtered over a 70-μm nylon mesh (Corning) to obtain a single-cell suspension. Cells
were stained with the following fluorophore-conjugated antibodies: Alexa Fluor
488 anti-mouse CD326/EpCAM (dil. 1/50, 118210, Biolegend, Inc.), anti-mouse
Cd140a/PDGFR-α (dil. 1/100, 135907, Biolegend, Inc.), PE-Cy7 anti-mouse CD31
(dil. 1/50, 61410, BD Pharmingen) and V450 anti-mouse CD45 (dil. 1/500, 560401,
BD Horizon). Propidium iodide (Sigma) was used as death cell exclusion marker.
Flow cytometry was performed using FACS Canto II or FACS Aria II (analysis and
sorting) from Becton Dickinson and exported to the FlowJo software (Tree Star
Inc.) for data analysis.

Recombination-specific PCR for Robo2F/F animals. Genomic DNA was
extracted from sorted cells using QIAzol Lysis Reagent (Qiagen), according to the
manufacturer’s conditions. The presence of the Robo2-flox allele was determined
by standard PCR amplification of 50 ng of genomic DNA, followed by SpeI (BcuI)
restriction digestion with the use of PCR primers Ro2-MEBAC15F and Ro2-
MEBAC15R, which amplify a 1100-bp fragment for both wild-type Pdx1-cre and
Robo2-flox alleles, as described55. After SpeI digestion, the Robo2-flox amplicon
remains uncut, whereas the wild-type amplicon yields 750-bp and 350-bp products.
Recombination of the Robo2-flox allele was confirmed by amplification of the
Robo2del5 allele by primers Robo2koF and Robo2R, which produce a 1180-bp
fragment. The Robo2 wild-type allele was amplified by primers Robo2wtF and
Robo2R, which yield a 1390-bp fragment. Specific primer sequences are detailed
in Supplementary Methods.

Western blotting. Proteins were extracted in RIPA buffer supplemented with
complete, EDTA-free protease inhibitor cocktail (Roche Diagnostics) and phos-
phatase inhibitor cocktail 3 (Sigma). Proteins were separated by SDS-PAGE and
blotted onto a nitrocellulose membrane. The following antibodies were used: β-
actin (dil. 1/5000, A5441, Sigma), phospho-Smad2 (ser465/467) (dil. 1/1000, #3108,
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Cell Signalling), Smad2 (dil. 1/1000, #3102, Cell Signalling), E-cadherin (dil. 1/
10000, BD610181, BD Pharmingen), α-smooth muscle actin (dil. 1/1000, A5228,
Sigma) and vimentin (dil. 1/1000, Ab16700, Abcam). Uncropped blots are pre-
sented in the Source data file.

Immunocytochemistry. Monolayer-cultured cells were fixed with 4% paraf-
ormaldehyde. Antibodies were the following: vimentin (dil. 1/500, AB5733, Mil-
lipore), E-cadherin (dil. 1/50, BD610181, BD Pharmingen), α-smooth muscle actin
(dil. 1/500, A5228, Sigma) and amylase (dil. 1/100, sc12821, Santa Cruz). After
fluorophore-conjugated secondary antibody (Jackson Immunoresearch) incuba-
tion, cells were stained with DAPI (Sigma) and mounted using Fluoromount-G
(Thermo Fisher Scientific). Immunofluorescence images were acquired with a Leica
DMI 6000 SP8 confocal microscope.

Mouse pancreatic tissues were fixed in buffered 4% formaldehyde and
embedded in paraffin. Pancreas sections were deparaffinised, hydrated and stained
using an automated staining system (Leica BondmaX autostainer). Antigen
retrieval was performed at 100 °C with citrate solution (S1699, DAKO). The
following antibodies were used: CD3 (dil. 1/50, A0452, DAKO), F4/80 (dil. 1/100,
clone Cl:A3-1, AbD Serotec), Krt19/TromaIII (dil. 1/100, Developmental Studies
Hybridoma Bank), Axin2 (dil. 1/100, AB32197, Abcam), phospho-Smad2 (dil. 1/
10000, gift from Dr. Heldin), insulin (dil. 1/5000) and glucagon (dil. 1/3000)
(Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium). EnVision
+ system (DAKO) was used as a secondary antibody for 30 min before staining
with diaminobenzidine (DAB+, DAKO) for 10 min. Immunohistochemistry
images were acquired using a Leica DM 4000 microscope.

Second-harmonic generation imaging. Second-harmonic generation (SHG) sig-
nal derived from H&E sections of pancreata was acquired using a 25 × 0.95 NA
water objective on an inverted Leica DMI 6000 SP8 confocal microscope. A Ti:
sapphire femtosecond laser cavity was used to excite the samples (Coherent
Chameleon Ultra II), operating at 80MHz and tuned to a wavelength of 840 nm.
Intensity was recorded with a RLD HyD detector (420/40 nm). Areas 512 x 512 μm
were imaged over a 20-μm z-stack with a z-step size of 1.5 μm.

Statistical analyses. Experimental data were analysed by two-tailed unpaired
Student t test, unpaired t test with Welch’s correction, Mann–Whitney or one-way
Anova with Turkey’s multiple comparisons test using GraphPad Prism7.0 and
statistical significance was accepted at P < 0.05. The results are shown as mean ±
standard error of mean (SEM). The number of independent experiments (N) is
indicated in the figure legends.

PDAC patient samples and clinical data. Biospecimens, transcriptomic and
clinical data were collected by the Australian Pancreatic Cancer Genome Initiative
(APGI), and informed consent was obtained from all patients. Use of clinical
samples and data were in accordance with national ethical guidelines and regula-
tions in Australia (HREC/11/RPAH/329—Sydney Local Health District—RPA
Zone, protocol X11-0220) and in Belgium (UZ Brussels 2017-183, B.U.
N.143201732468).

Patient tissue microarray analysis. Tissue samples from resected pancreatic ductal
adenocarcinomas and clinical data were obtained from patients collected under the
auspices of the APGI. Tissues were fixed in 4% formalin and embedded in paraffin. In
total, 96 spot tumour microarrays were created using triplicate cores of tumour tissue
from each case. Immunohistochemistry (IHC) was performed as described above,
using the following antibodies: Robo1 (dil. 1/200, ab7279, Abcam), Robo2 (dil. 1/50,
ab75014, Abcam). The intensity of staining is scored using a four-point scale (0, 1, 2
and 3) to represent none, weak, moderate and strong levels of expression. An estimate
of the percentage of stained cells was made and multiplied by the intensity score to
calculate the H-score: (1 ×% weak)+ (2 × % moderate)+ (3 × % strong). All sec-
tions were scored by the investigator and then second-scored by an expert
pathologist without knowledge of patient outcomes. Three cores per tumour were
scored, and the median H-score was used. Tumours with median H-score less than
200 were regarded as ROBO1 low-expression group.

Patient gene expression analysis. RNA-seq and microarray data from the APGI/
International Cancer Genome Consortium (ICGC) pancreatic cancer project have
been previously published5,7, and datasets have been deposited online, as described
in the “Data availability” section. The patient tumours were divided into three
groups based on ROBO1 and ROBO2 expression levels, determined by RNA-seq.
The ROBO1 low- expression group is specified using 45 quantiles as the cut-off, to
keep a similar proportion to the low-expression group in IHC data. The correlation
between Robo1 gene expression and any other gene on the microarray was tested
by both Pearson and Spearman’s rank correlation. Genes with R > 4 and R <−4
were selected for pathway enrichment analysis using KOBAS 3.057. The hyper-
geometrical test was selected to test statistical enrichment of KEGG pathway, and
the P-values were corrected for multiple comparisons.

Survival analysis. Kaplan–Meier survival analysis with a log-rank statistical test
was used to analyse disease-free survival from the time of surgery. Patients alive at
the time of the follow-up point were censored. All statistical analyses were per-
formed using R/Bioconductor packages.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available
within the article and its Supplementary Information files or from the corre-
sponding author upon reasonable request. Microarray data have been deposited at
Gene Expression Omnibus (GEO) under the accession code: GSE36924 and RNA-
seq data have been deposited in the European Genome-phenome Archive (EGA)
under the accession code EGAD00001003298. The source data underlying Figs. 1,
2, 3, 4, 5, 6 and 7 and Supplementary Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 are
provided as a Source Data file. A reporting summary for this article is available as
a Supplementary Information file.
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