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Abstract

A cancer cell-centric view has long dominated the field of cancer biology. Research
efforts have focussed on aberrant cancer cell signalling pathways and on changes to
cancer cell DNA. Mounting evidence demonstrates that many cancer-associated cell types
within the tumour stroma co-evolve and support tumour growth and development,
greatly modifying cancer cell behaviour, facilitating invasion and metastasis and
controlling dormancy and sensitivity to drug therapy. Thus, these stromal cells represent
potential targets for cancer therapy. Among these cell types, immune cells have emerged
as a promising target for therapy. The adaptive and the innate immune system play

an important role in normal mammary development and breast cancer. The number of
infiltrating adaptive immune system cells with tumour-rejecting capacity, primarily, T
lymphocytes, is lower in breast cancer compared with other cancer types, but infiltration
occurs in a large proportion of cases. There is strong evidence demonstrating the
importance of the immunosuppressive role of the innate immune system during breast
cancer progression. A consideration of components of both the innate and the adaptive
immune system is essential for the design and development of immunotherapies in
breast cancer. In this review, we focus on the importance of immunosuppressive myeloid-
derived suppressor cells (MDSCs) as potential targets for breast cancer therapy.
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Introduction

In 1863 Rudolf Virchow, ‘the father of modern
cellular pathology’, hypothesised a link between

later postulated by Paul Ehrlich in 1909 (Dunn et al. 2002).
However, the mechanism underlying this only became

microinflammation and subsequent cancer development
(Balkwill & Mantovani 2001). The concept of harnessing
the power of the immune system to control cancer was

better understood when the cellular components of
innate and adaptive immunity, along with the molecular
mechanisms that cancer cells utilise to subvert and hide
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from the immune system, began to be uncovered (Burnet
1957a,b). Our knowledge of the interface of cancer and
immune cells in tumours is growing exponentially,
revealing new molecular pathways and opening
therapeutic interventions. The use of monoclonal
antibodies against neoantigens; the development of
cancer vaccines; adoptive transfer of in vitro-engineered
cancer-reactive lymphocytes; immunomodulatory agents
such as cytokines or toll-like receptor agonists and more
recently, checkpoint inhibitor blockade are some of the
therapeutic approaches with proven success in several
types of cancer.

The low immunogenicity and intense
immunosuppressive environment of breast tumours limit
the benefit of immunotherapies targeting the adaptive
immune system, such as checkpoint inhibitors (Rugo et al.
2015). Mechanisms of immunosuppression are essential
for the normal functioning of the mammary gland
during development (Clarkson et al. 2004, Stein et al.
2004, 2009). These same mechanisms might be hijacked
by breast cancer cells to promote tumour tolerance and
escape immune surveillance at the early stages of tumour
formation, underscoring the importance of the innate
immune system during breast cancer progression.

In this review, we discuss the importance of the
immune system during normal mammary gland
development and the therapeutic strategies to target the
two inter-related immune layers that operate in tumours;
the adaptive immunity that directly exerts cancer-rejecting
functions represented by cytotoxic T lymphocytes (CTLs)
and the regulatory innate layer that orchestrates immune
suppression, represented by myeloid-derived suppressor
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cells (MDSCs) (Fig. 1). Emerging evidence indicates that
MDSC is key for all stages of the carcinogenic process.
They are recruited by tumour-derived factors and are
highly influential on other cell populations in the tumour
microenvironment, for example, displaying a number of
mechanisms able to suppress T-cell cytotoxic activity.
A number of existing therapeutics have serendipitous
activity against MDSC. The development of new strategies
to overcome immune suppression is imperative to improve
immunotherapy and the therapeutic potential of defining
and specifically targeting the active MDSC population has
attracted increasing interest in recent years.

The role of the immune system in cancer

There is mounting evidence demonstrating a central role
of the immune system in cancer. Immune cell populations
co-evolve with cancer cells and sculpt the progression of the
tumour, producing sustained inflammatory pathways that
suppress immune rejection, thus cooperating with cancer
cells to promote tumour growth and spread, including
the preparation of the premetastatic niche (Balkwill &
Mantovani 2001, Dunn et al. 2002, Smyth et al. 2006,
Sceneay et al. 2012). In the early stages of carcinogenesis,
tumour cells are rejected by an innate immune mechanism
also referred to as immunosurveillance (Dunn et al.
2002). This process is mainly driven by natural Kkiller
(NK) cells that are activated and recruited in response to
tissue damage signals, mainly interferon gamma (IFNG)
originating from neighbouring cells that are activated by
the abnormal growth of cancer cells (Dunn et al. 2002).
These cells control the otherwise frequent appearance
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Schematic representation of the two interconnected layers of the tumour-infiltrating immune system, illustrating the molecular pathways of induced
tumour tolerance driven by MDSCs. A summary of potential therapeutic approaches to target MDSCs are represented on the right hand side.
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of neoplasms. Cancer immunoediting is the process by
which the immune system protects the host from tumour
development, offering a selection pressure for the fittest
and yet non-immunogenic cancer clones that will finally
populate and generate the clinically detectable tumour
(Dunn et al. 2002). Thus, immunoediting implies that
clinically relevant tumours have developed mechanisms
to evade immune surveillance and induce tumour
tolerance. These mechanisms include decreased expression
of the major histocompatibility complex (MHC) I
and other co-stimulatory molecules and expression of
immunosuppressive factors that contribute to escape
from immune recognition. The resulting tumours display
a strong immune suppressive tumour microenvironment
and fail to elicit an appropriate adaptive immune response,
with multiple molecular mechanisms in place to interfere
with CTLs, resulting in poor infiltration of reactive tumour-
rejecting T-cells. The CTLs that do infiltrate present
symptoms of immune exhaustion (Dushyanthen et al.
2015). The current understanding of the dichotomous
nature of immune cells in tumours is that IFN-y-producing
CD4+ T helper (Th) 1 and CD8+ T lymphocytes, along with
mature dendritic cells (DCs), NK cells, M1 macrophages,
and type 1 NK T-cells can generate anti-tumour responses;
and conversely, CD4+ Th2 cells, CD4+ T regulatory
(Treg) and type 2 NK T-cells, MDSC, immature DCs, or
alternatively activated (M2) macrophages promote tumour
tolerance and support tumour growth and progression
(Gobert et al. 2009, Ruffell et al. 2010, Zamarron & Chen
2011, Emens 2012).

Immunity associated with mammary development

The mammary gland is a unique organ because it develops
post-natally, undergoing a profound morphogenesis
during puberty and with each round of pregnancy
(Oakesetal. 2014). These processes are tightly controlled by
hormones. Oestrogens, progesterone and prolactin act on
the mammary epithelium in synergy with corticosteroids
and growth hormone to orchestrate mammary gland
development (Brisken & O’Malley 2010, Macias &
Hinck 2012). These events encompass epithelial cell
differentiation and stromal interactions (Robinson et al.
1999, Arendt et al. 2010), including the generation of new
blood vessels, infiltration of immune and inflammatory
cells, fibroblast reorganisation and the loss and gain of
lipid droplets within adipocytes (McCready et al. 2010).
Immune cells play an essential role in mammary gland
remodelling during normal development. Macrophages
and eosinophils are key players during ductal outgrowth
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and branching morphogenesis, in a process controlled
by CSF1 (Gouon-Evans et al. 2000, Coussens & Pollard
2011). Antibody-presenting cells (APCs) associated with
mammary epithelial cells, presumably macrophages,
communicate with CD4+ Th1l cells to suppress ductal
development and branching. In this mechanism, CD4+
Thl-type cell-secreted IFNG directly inhibits luminal
epithelial differentiation (Plaks ef al. 2015).

During involution, the process by which the
mammary gland returns to its non-lactating state, the
immune system plays a particularly important role. Milk
stasis and mammary engorgement after weaning results in
a wave of apoptosis in mammary epithelial cells (Macias
& Hinck 2012). Apoptosis in early involution is induced
by local factors, decreased expression of milk proteins and
block of prolactin-mediated survival signal transduction
(Lietal. 1997). During this stage, cell death occurs despite
high levels of systemic lactogenic survival factors like
prolactin (PRL), glucocorticoids (GCs) and insulin-like
growth factors (IGF-I) (Feng et al. 1995, Hadsell & Abdel-
Fattah 2001, Oakes et al. 2008b). As involution progresses,
systemic pro-survival action of PRL and IGF-I is inhibited
by local factors such as TGFB and IGFBPS5; and together
with systemic lower levels of PRL and GC contribute
to establish irreversible involution (Feng et al. 1995,
Hadsell & Abdel-Fattah 2001, Tonner et al. 2002).

Gene expression profiling studies have identified an
involution-associated immune response that is similar to a
wound-healing process (Stein et al. 2004, 2009). Apoptosis
of the alveolar cells during involution triggers an immune
cascade that co-ordinately recruits the immune system.
This immune response is carefully orchestrated to avoid
a robust inflammatory reaction, ensuring a safe clearance
of cellular debris and residual milk. The first immune
cells recruited to the involuting gland are phagocytic
neutrophils, presumably recruited by CXCL1 signalling
and accompanied by the expression of pro-inflammatory
mediators (ILla, IL1b and IL13). At this stage,
transcriptional evidence of immunosuppressive cytokines
is also detected, presumably released by viable epithelial
cells, indicating an exquisite control of inflammation
(Clarkson et al. 2004, Stein et al. 2004), resulting in the
prevention of neutrophil extravasation (Clarkson et al.
2004). Subsequently, macrophages and eosinophils are
recruited once involution becomes irreversible through
CXCL14 signalling (Monks et al. 2002, Stein et al. 2004).
A strong innate immune signature, characterised by
acute phase response (APR) genes, is detected during
involution (Clarkson et al. 2004, Stein et al. 2004). The
APR aims to minimise tissue damage by suppressing
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inflammation, reinforcing the idea that involution is a
highly controlled inflammatory event. The main function
of these cells is to remove dying cells by phagocytosis,
but the immune cells are also a source of MMPs required
for the matrix remodelling (Watson & Kreuzaler 2011).
Finally, recruitment of plasma B cells is found late in
involution and is characterised by the upregulation of a
number of immunoglobulin genes. Although the role of
these B cells is still controversial, they are not part of an
adaptive immune response, as phagocytic macrophages of
involuting mammary glands are not capable of antigen
presentation to T-cells (Monks et al. 2002). The involuting
microenvironment has been suggested to promote
cancer development, and it is associated with transiently
enhanced risk of breast cancer (McDaniel et al. 2006,
Polyak 2006, Schedin 2006, Schedin et al. 2007). The
wound-healing involution signature is associated with
metastatic breast cancer (Stein et al. 2009).

Breast cancer and its immunogenicity

Breast cancer is a very heterogeneous disease (Polyak
2011), both histologically (Lakhani et al. 2012) and
molecularly (Cancer Genome Atlas Network 2012),
with transcriptional profiles defining at least 5 intrinsic
molecular subtypes (Perou et al. 2000, Prat et al. 2010)
that correlate with clinical outcome (Sorlie et al. 2001).
Breast cancer has been traditionally classified based on
the presence of the receptors for the steroid hormones
oestrogen (ER) and progesterone (PR), and the epidermal
growth factor receptor family member HER2. ER and PR
are part of the nuclear receptor superfamily of ligand-
regulated transcription factors essential for the self-
renewal and replicative potential of the mammary gland
(Brisken & O’Malley 2010). In breast cancer, ER and PR
are not only markers for diagnosis but their signalling
plays a major role in disease progression, reviewed in
Carroll et al. (2016). Approximately 70% of breast cancers
express ER and are considered to be ER driven, as such,
oestrogen deprivation is the standard-of-care treatment
for ER+ breast cancer; however, resistance to endocrine
therapy remains one of the most important clinical
challenges as it frequently results in metastatic lethal
breast cancer, reviewed in Ma et al. (2015) and Musgrove
and Sutherland (2009). PR signalling is increasingly
attracting the attention for the treatment of breast cancer
as several strategies to target this pathway are undergoing
at different stages of clinical development, including
the next generation of selective progesterone receptor
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modulators (SPRMs) and RANKL (denosumab) and WNT
inhibitors (Anastas et al. 2012, Brisken 2013).

The catalogue of somatic mutations found in
each tumour type is indicative of the likelihood of the
formation of antigens that differentiate cancer cells
from their non-transformed counterparts (Schumacher
& Schreiber 2015). These neoantigens are often products
of mutated cellular genes, aberrantly expressed normal
genes or genes-encoding viral proteins. The prevalence
of somatic mutations in breast tumours is comparable
to many other tumours of solid origin (ranging 33-66
per tumour) but much lower compared to the highly
immunogenic and highly mutated tumours such as
melanoma or lung cancer that display about 200 non-
synonymous mutations per tumour (Alexandrov et al.
2013, Vogelstein et al. 2013). The mutation rate is
lowest in luminal A molecular subtype and highest in
the basal-like and HER2 subtypes (Cancer Genome Atlas
Network 2012). Breast cancers have low expression of
MHC antigens and co-stimulators. The breast, due to its
dramatic tissue remodelling with changes in reproductive
state, also has a natural immunosuppressive-permissive
microenvironment, and together, these features create the
relatively low state of immunogenicity of breast cancer.
In support of this, the incidence of breast cancer is not
significantly higher in therapeutically immunosuppressed
populations (Penn 1988, Gallagher et al. 2010).

Despite the fact that cancer-associated immunogens
are not highly common in breast cancer, the literature
provides clear examples of neoantigen recognition and
the generation of an immune response. In a small patient
cohort with HER2+ breast cancer, Disis and coworkers
demonstrated CD4+ helper/inducer T-cell immunity
and antibody-mediated immunity to HER-2/neu protein
(Disis et al. 1994). A lower level of HER2 T-cell immunity
has been proposed as a prognostic marker of increased risk
of treatment failure in invasive breast carcinoma patients
(Datta et al. 2016).

The intensity of the tumour-immune interaction
varies in each breast cancer subtype. Gene expression
analysis has identified breast tumours that present with
high levels of immunomodulatory gene activation
(Rody et al. 2009, Yau et al. 2010). These signatures are
prognostic, particularly in the triple-negative (ER-, PR-
and Her2-) and HER2+/ER- breast cancer subtypes
(Desmedt et al. 2008, Rody et al. 2009, Yau et al. 2010). In
luminal breast cancer, a high B cell/plasma cell signature
was found to be prognostic in patients with more highly
proliferative ER+ breast cancer who received tamoxifen
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treatment, but had no prognostic value in patients with
low-proliferative ER+ cancer (Bianchini et al. 2010).
In general, patients having tumours with a Th1l CTL
cytokine profile have a better prognosis than those
with a Th2 profile or a pattern of tumour-associated
macrophages (TAM) infiltration via CSF1 recruitment
(DeNardo et al. 2011).

The infiltrating immune component of breast tumours
has been used to as a prognostic and predictive biomarker
to chemotherapy and radiotherapy (Apetoh et al. 2007,
Ladoire et al. 2011, Ruffell et al. 2012, Loi et al. 2013a).
One of the best-characterised immune-related prognostic
factors is tumour lymphocytic infiltration (TILs)
(Aaltomaa et al. 1992, Demaria et al. 2001, DeNardo &
Coussens 2007, Schmidt et al. 2008, Denkert et al. 2010,
Loi et al. 2013b, Maenhout et al. 2014). The infiltration
of CD8+ T-cells is associated with better prognosis in ER-
and ER+/HER2+ tumours, but no association was found
in ER+ tumours (Baker et al. 2011, Mahmoud et al. 2011,
West et al. 2011, Liu et al. 2012, Seo et al. 2013, Ali et al.
2014, Chen et al. 2014, Gallego-Ortega et al. 2015). The
Treg marker FOXP3 was shown to predict worse survival
(Criscitiello et al. 2014a) and to associate with distal
metastasis-free survival; however, the clinical relevance
of Tregs has been controversial, offering mixed results
(Mahmoud et al. 2011, West et al. 2013, Ali et al. 2014).
Patients with higher TIL infiltration in their tumours had
an improved response to neoadjuvant chemotherapy
(Denkert et al. 2010, Issa-Nummer et al. 2013) and
improved survival (Loi et al. 2013b).

Immunotherapy strategies in breast cancer:
targeting the adaptive immune system

In ER+ breast cancer, immunomodulators with the
potential to delay tumour recurrence after standard
adjuvant endocrine therapy would have great benefit.
The acquisition of therapy resistance is a common clinical
challenge. Approximately 30% of patients with early-
stage ER+ breast cancer treated with adjuvant endocrine
therapy develop de novo anti-oestrogen therapy resistance
(Musgrove & Sutherland 2009). Targeted therapies have
recently been used in combination with ER-directed
therapies to improve survival outcomes in patients with
metastatic breast cancer. These include inhibitors of PI3K
cell signalling pathway, such as Everolimus, an inhibitor of
mTOR, which is downstream of PI3K (Bachelot et al. 2012,
Baselga et al. 2012), and inhibitors CDK 4/6, which
regulate cell cycle progression. Co-administration of
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palbociclib, a CDK 4/6 inhibitor, with ER-directed
therapies approximately doubles progression-free survival
compared with ER-directed therapy alone (Finn et al.
2015, 2016, Turner et al. 2015). These combinations are
associated with greater toxicities compared to endocrine
therapy alone. The checkpoint inhibitor anti-CTLA4 in
combination with the aromatase inhibitor exemestane was
beneficial in the metastatic ER+ setting (Vonderheide et al.
2010). However, further characterisation of the infiltrating
immune cells is necessary to determine their nature
and functional role as well as the understanding of the
differences in immunogenicity that exists in different
subtypes of breast cancer (Criscitiello et al. 2014b, Loi et al.
2013b, Salgado et al. 2015). Stratification according
to these parameters is key to fully address whether
the combination with immunotherapy will produce
more durable clinical responses and prevention of the
acquisition of resistance in ER+ patients treated with
endocrine therapy. An advantage of immunotherapy is
that the immune system is able to target multiple antigens
at the same time, rendering less likely the development of
therapy resistance. Furthermore, once immune rejection
is activated, vaccines may boost immune surveillance for
residual disease without added toxicity. This approach
is currently being explored in HER2 vaccine-based
clinical trials (Mittendorf ef al. 2014). Another potential
advantage of immunotherapies is that their immediate
effects can be used as surrogate makers to evaluate the
efficacy of therapeutic intervention, which is of particular
importance in neoadjuvant studies.

In patients with breast cancer, TILs have been shown
to be associated with anti-oestrogen therapy resistance;
in a neoadjuvant setting of ER+ postmenopausal women
with early-stage ER+ breast cancer (I-IIIB), a poor
aromatase inhibitor response was strongly associated
with the expression of inflammatory response-related
pathways and lymphocytic infiltration (Miller et al.
2009, Dunbier et al. 2013). This lymphocytic infiltration
is presumably mediated by myeloid-driven activation of
Tregs, as other reports characterising T-cell subtype found
that T-cell infiltration is a good prognosis factor in breast
cancer, in particular in ER- subtypes. This opens the
question whether the behaviour of the immune system
is differential in ER+ and ER- breast cancer and stresses
the importance of the characterisation of the specific
subset of lymphocytic infiltration as a predictive tool.
Better preclinical models for the study of the association
of infiltrated immune system and endocrine resistance are
necessary, as cell lines and xenografts in immunodeficient
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mice are unable to model the contributions of TILs to
therapy resistance (Chan et al. 2002, Martin et al. 2003,
Lupien et al. 2010, Miller et al. 2010, Gee et al. 2011).
Nonetheless, the combination of endocrine therapy with
immunomodulators represents a potential avenue for the
treatment of ER+ breast cancer.

Therapy based on tumour-associated antigens

Immunotherapy with monoclonal antibodies targeting
the HER2 protein, such as trastuzumab, have become the
mainstream therapy for patients with HER2+ early- and
late-stage breast cancer (Nutietal. 2011). The immune basis
of the therapeutic benefit has not been well understood
compared to the effect of these therapies on the HER2
signalling pathway. Theimmune effects include: activation
of both innate and adaptive immune systems, activating
antibody-dependent cytotoxic cellular (ADCC) killing of
HER2-overexpressing cells via NK cells (Clynes et al. 2000,
Arnould et al. 2006, Barok et al. 2007); enhanced tumour
surveillance by increasing INFy production by NK cells,
a process that is stimulated by IL-12 (Jaime-Ramirez et al.
2011) and eliciting an adaptive immune response based
on HER2 presentation by HLA class I molecules to activate
the anti-tumour activity of CD8+ T-cells and reduce Tregs
(Perez et al. 2007, Horlock et al. 2009). Lapatinib, a dual
tyrosine kinase inhibitor targeting downstream activation
of EGFR1/HER1 and HER2, also engages the immune
system by stabilising HER2 in the cell membrane,
potentiating NK cell recognition of trastuzumab-bound
HER2 (Mimura et al. 2011).

The use of therapeutic vaccines based on monoclonal
antibodies directed against tumour-associated antigens
to elicit a CTL response and tumour rejection is still
under development in breast cancer. An example is E75
Nelipepimut-S, a human leukocyte antigen (HLA)-A2/
A3-restricted immunogenic peptide derived from the
HER2 protein (Mittendorf ef al. 2014). Another example is
hTERT-mediated immunity. hTERT activity is increased in
>85% of all human cancers compared with that in normal
cells (Kim et al. 1994). The hTERT catalytic subunit is
recognised by cytotoxic T lymphocytes (Vonderheide et al.
1999). Importantly, naturally occurring CD8+ T-cells
specific for the hTERT peptide 1540 (ILAKFLHWL) have
been observed in high numbers in blood from remission
patients with different types of cancer (Gannagé et al.
2005, Filaci et al. 2006). Vaccination of patients with
metastatic breast cancer with the 1540 peptide in
combination with GM-CSF resulted in increased TILs,
which associated with necrotic areas and hTERT-specific
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immunity (Domchek et al. 2007). Another example is
the human high-affinity folate-binding protein (FBP),
which is a source of antigenic peptides recognised in
ovarian cancer, which is also recognised in breast cancer.
FBP is overexpressed in 50-70% of breast tumours and
its epitopes are presented by HLA-A2 in these cancers.
These peptides are efficient at amplifying the response of
tumour-associated lymphocyte populations in terms of
lytic function, enhanced proliferation and specific IFN-y
release (Peoples et al. 1999). Additional vaccine strategies
are being investigated in patients with breast cancer such
as MUCI1 (Jerome et al. 1993, Brossart et al. 1999, Emens
2012), WT1 (Oka & Sugiyama 2010, Di Stasi etal. 2015) and
NY-ESO-1 (Odunsi et al. 2014), including several ongoing
or recently completed phase II studies. Other examples
include HER2-derived peptide vaccines; an allogeneic
GM-CSF1-secreting vaccine; a HER2 peptide-pulsed,
dendritic cell vaccine; and PANVAC, which incorporates
vaccinia and fowlpox viruses genetically engineered to
express the tumour-associated antigens carcinoembryonic
antigen and MUCI.

Checkpoint inhibitors

Checkpoint inhibitors such as antibodies against CTLA4
and PD-1 have elicited remarkable responses against
cancers with high numbers of neoantigens, such as
melanoma, lung cancer and renal cell carcinoma
(Hodi et al. 2010, Brahmer et al. 2012, Topalian et al.
2012, Herbst et al. 2014, Powles et al. 2014, Tumeh et al.
2014, Rizvi et al. 2015, Robert et al. 2015), but have also
promoted responses in ‘less immunogenic’ solid tumours
(Le et al. 2015, Ojalvo et al. 2015, Shah et al. 2015),
including triple-negative breast cancer (TNBC) (Emens
& Middleton 2015, Nanda et al. 2016). One of the main
challenges of checkpoint inhibitor blockade therapy is
that many patients have low levels of TILs, especially
in ER+ luminal breast cancer, whereby the efficacy of
checkpoint inhibitors has so far been disappointing
(Rugoetal. 2015). The potential of T-cell-mediated therapy
in breast cancer is likely to be achieved in combination
with standard-of-care therapies, and there is evidence to
suggest that the immune system is pivotal in determining
the response to targeted therapy. Examples can be found
in preclinical models of trastuzumab combined with
CTLA4 treatment (Persson et al. 2011) or PD-L1 blockade
(Park et al. 2010, Rakhra et al. 2010, Stagg et al. 2011).
In a phase 1 clinical trial in patients with metastatic
hormone-responsive breast cancer, Tremelimumab (anti-
CTLA4) in combination with exemestane demonstrated
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an overall response rate (defined as stable disease
for 12 weeks or more) in 11 of 26 patients (42%)
(Vonderheide et al. 2010). Treatment was associated with
increased levels of peripheral CD4+ and CD8+ T-cells that
expressed the protein-inducible co-stimulator of T-cell
activation (ICOS), a potential biomarker of immune
activation resulting from blockade of CTLA4. A marked
increase in the ratio of ICOS+ T-cells/FOXP3+ Tregs in
the peripheral blood was observed (Tarhini et al. 2014).
Other examples aimed at increasing tumour rejection
given in combination with standard cancer treatments
(Criscitiello et al. 2014a) include trastuzumab +anti-PD-1
therapy for HER2+ metastatic patients (PANACEA) and
nelipepimut-S + trastuzumab (Mittendorf et al. 2015).

There is also evidence that standard non-targeted
therapies elicit an immune response that is essential for
complete patient response. Chemotherapy treatment
with anthracyclines and platinum salts increases DC
presentation of tumour antigens (Zitvogel et al. 2011),
whereas taxanes are associated with an increase in
lymphocyte infiltration in locally advanced breast
cancer (Demaria et al. 2001) and increased Th-1-
cytokines cancer
(Tsavaris et al. 2002). Finally, cyclophosphamide depletes
Tregs (Zitvogel et al. 2011). Radiation therapy similarly
elicits anti-tumour immune responses by boosting
tumour antigen presentation and T-cell infiltration
(Matsumura et al. 2008).

A critical concept underlying the current view of

associated in metastatic breast

immunotherapy is that the ultimate end-effector and
therapeutic target of cancer immunotherapy is the tumour-
specific T-cell. An important limitation of these types
of therapies is that they are based on the pre-existence
of neoantigens that can be exploited as engineered
therapeutic targets or in the reactivation of tumour
rejection mechanisms in pre-existing T-cells. However,
the majority of breast cancer tumours do not display
elevated numbers of TILs, with the median percentage of
stromal TILs reported as 10% in ER+ breast cancer, 15%
in HER2+ breast cancer and 20% in TNBC, whereas the
median intratumoral infiltration drops to 1.5, 3 and 5%,
respectively (Loi et al. 2013b), thus limiting the therapeutic
benefit of these approaches. Strategies to dismantle the
strong immunosuppressive tumour microenvironment
that precludes cytotoxic T-cell activity are also under
investigation. The T-cell immunomodulatory enzyme
indoleamine 2,3 dioxygenase (IDO) is a key pathway in
causing T-cell dysfunction in cancer, facilitating immune
escape (Prendergast 2008). In the immune-competent
MMTV-Neu mouse model, small-molecule inhibitors
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of IDO potentiated the efficacy of cytotoxic drugs
without increasing their side effects, demonstrating that
immunotherapy and chemotherapy can be combined to
more effectively destroy cancer cells (Muller et al. 2005).
Although the mechanism of IDO and chemotherapy
synergy is not clear, it has been suggested that cooperating
cytotoxic agents may preferentially compromise the
survival of regulatory T-cells, contributing to a weakening
of immune tolerance and stimulation of anti-tumour
immunity (Machiels et al. 2001, Mason et al. 2001,
Nowak etal. 2003). Additionally, the aberrant angiogenesis
in tumours creates an endothelial barrier that restricts
the extravasation of tumour-rejecting T-cells and creates
an immunosuppressive environment (Motz & Coukos
2011, Melero et al. 2014). TAM, MDSC and Treg cells are
capable of both stimulating angiogenesis and supporting
immunosuppression in the tumour microenvironment
through the secretion of mediators such as VEGFA and
PGE2 (Yang et al. 2004, Facciabene et al. 2011, Motz et al.
2014). Through these factors, T-cells
predominantly in the stroma but are unable to properly
infiltrate into the tumour, thus impeding the efficacy of
immunotherapy (Buckanovich et al. 2008, Quezada et al.
2008). As such, strategies that combine immunotherapy
with agents that eliminate mediators that induce both
angiogenesis and immunosuppression are currently
under investigations. For example, Basu and coworkers
reported the administration of both a combination of
celecoxib and a dendritic cell-based cancer vaccine was
able to significantly reduce metastasis, tumour burden
and increase survival in breast cancer (Basu et al. 2006).
Anti-VEGF antibody has also been used to disrupt the
tumour vasculature to increase the infiltration of T-cells
from adoptive cell transfer (ACT)-based immunotherapies
and has been found to greatly improve ACT-based
immunotherapy (Shrimali et al. 2010).

A dominant immunosuppressive environment that
selectively excludes T-cell tumour infiltration can be
explained in the context of the innate immune system,
driven by cancer-associated fibroblasts (CAFs), TAMs
and MDSCs (Joyce & Fearon 2015). Using the poorly
immunogenic and highly metastatic 4T1 mammary
tumour model, Kim and coworkers (Kim et al. 2014)
showed that elevated numbers of MDSCs were responsible
for the failure of checkpoint inhibitor therapy. Targeting
MDSCs with epigenetic modulators or Ly6G antibodies
sensitised 4T1 tumours to checkpoint blockade resulting
in effective combination therapy. These experiments
underscore the importance of immunosuppressive innate
immune cells as targets for breast cancer therapy.

accumulate
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Immunotherapy strategies targeting the
innate immune system in breast cancer:
myeloid-derived suppressor cells

MDSCs are a heterogeneous population composed of
precursors of the myeloid-cell lineage. They are found
in inflammatory pathological conditions, such as
infections and various types of cancer. Their recruitment
to sites of inflammation is induced by pro-inflammatory
cytokines and often they are localised abundantly in
peripheral lymphoid organs and tumours, where they
play an important role in immunosuppression of both
the innate and adaptive immune system. Along with their
immunosuppressive functions, MDSCs also stimulate
tumour growth by promoting angiogenesis and tumour
cell survival (Condamine et al. 2015) and facilitate
local invasion and distant metastasis, preparing the
premetastatic niche in distant tissues including lung, by
inducing mesenchymal-to-epithelial transition (Erler et al.
2009, Yan et al. 2010, Gao et al. 2012, Sceneay et al. 2012),
brain (Liu et al. 2013) and bone (Danilin et al. 2012,
Sawant et al. 2013).

Classification of MDSCs

MDSCs may be broadly classified into monocytic and
polymorphonuclear granulocytic subtypes (M-MDSC and
PMN-MDSC, respectively) based on different expression
of cell surface markers. In mice, MDSCs express high
levels of CD11b, also known as integrin « M, and Gr1, a
granulocytic marker that is composed of the macrophage
and neutrophil markers, Ly6C and Ly6G, respectively. The
level of expression of these markers is frequently used to
classify murine MDSC into the two subtypes (Ostrand-
Rosenberg & Sinha 2009). M-MDSCs are mononuclear
and have of high levels of Ly6C and low or absent Ly6G
(CD11b*Ly6Glow/-Ly6C*), whereas PMN-MDSC have
multi-lobed nuclei and expresses Ly6G and low Ly6C
(CD11b*Ly6G+Ly6Clow). These two subtypes have been
found to have different mechanisms of T-cell suppression
and both are expanded in cancer (Movahedi et al. 2008).
In humans, a marker that is homologous to the murine
Gr1 antigen is absent and instead identification is based
on the myeloid-cell markers CD11b+, CD33+, HLA-DRlow/~
and negative for lineage-specific antigen (Lin-). M-MSDC
is typically CD11b+*CD33+*CD14*HLA-DR- and PMN-
MDSC are characterised by CD11b+CD33+*CD15+HLA-DR-.
The phenotypic markers used to identify MSDCs can vary
based on the context of the disease, as distinct subtypes
of MSDCs have been isolated from different cancers, and
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often, different studies utilise specific combinations of
markers for a particular subsets of MDSCs (Filipazzi et al.
2007, Hoechst et al. 2008, Vetsika et al. 2014). As MDSCs
are composed of a heterogenous population of immature
myeloid cells (IMCs) at various stages of differentiation,
it is to be expected that such disparity in the phenotypic
markers of MDSCs exists. Thus, it is essential to identify
markers that better define unique MDSC subpopulations
to develop better therapies aimed at MDSC modulation.

Developmental biology of MDSCs

Under normal conditions, IMCs are generated in the
bone marrow and lack immunosuppressive activity.
In acute pathological conditions, such as infections
or trauma, IMC is released from the bone marrow, and
the population of MDSCs is expanded through the
differentiation of common myeloid progenitor cells. The
immunosuppressive activity of MDSCs is then used to
mediate and suppress the immune response to prevent
any harm caused by an overstimulated immune system.
Once the inflammation is resolved, myelopoiesis reverts
to a steady basal level. A chronic inflammation setting,
such as cancer, leads to a continuous MDSC expansion.
Accumulation of MDSCs occurs in the bone marrow
and in peripheral lymphoid organs and is induced in
response to chronic exposure to growth factors secreted
by tumours (Almand et al. 2001, Sica & Bronte 2007).
Within the tumour microenvironment, many of these
factors are pro-inflammatory cytokines, such as IL1,
IL6, PGE2, S100 proteins, GM-CSE, M-CSF, VEGF and
TNFA, which promote an aberrant state of myelopoiesis
(Sawanobori et al. 2008, Ostrand-Rosenberg & Sinha
2009). Consequently, this increases the levels of MDSCs,
and in both patients, with breast cancer and in mouse
models, this effect is seen most prominently associated
with high tumour burden (Marigo et al. 2008). The MDSCs
then subsequently migrate into tumours, where they exert
their immunosuppressive effects. As such, MDSCs play a
major role in reducing the efficacy of immunotherapies
and promoting resistance against treatments (Mantovani
2010, Gabrilovich et al. 2012).

Recruitment and expansion of MDSCs

MDSCs are found abundantly in tumours in tumour-
bearing mice and have been isolated from patient-
derived cancers, including breast cancer (Yu et al. 2013,
Templeton et al. 2014, Gentles et al. 2015). The recruitment
of MDSCs to tumours is governed by the same factors and
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mechanisms that regulate the migration of neutrophils
and monocytes. M-MDSC and monocytes are recruited to
primary tumour sites and metastatic sites by chemokines
secreted by tumour cells, most commonly CCL2 and
CCLS, which function to regulate monocyte chemotaxis
(Qian et al. 2011). These chemokines primarily recruit
the M-MDSC subtype and are implicated in different
cancers, such as breast cancer (Yu et al. 2013). Kitamaru
and coworkers reported the recruitment of inflammatory
monocytes to breast tumours via a CCL2-induced
chemokine cascade. These were retained within the tumour
by CCL3, a chemokine produced by metastasis-associated
macrophages through the activation of the CCL2
receptor (CCR2) (Kitamura et al. 2015). Similarly, CCL2
and CCL3 recruit PMN-MDSC to tumours (Reichel et al.
2012, Chun et al. 2015) (Fig. 2). Furthermore, hypoxic
conditions in the tumour microenvironment can further
promote the recruitment and expansion of MDSCs,
leading to a weakened antitumor response (Sceneay et al.
2012). Reactive oxygen species (ROS) produced by MDSCs
can also lead to nitration of CCL2 (N-CCL2), which has
been found to contribute to infiltrated T-cell exclusion,
trapping T lymphocytes in the stroma that surrounds the
tumour (Molon et al. 2011). Other factors and chemokines
that have been found to recruit MDSCs include CCL1,
CCL1S and CXC chemokines, such as CXCL1, CXCLS,
CXCL8 and S100A8/9 proteins (Kumar ef al. 2016b).
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The molecular effectors involved in these MDSC
recruitment mechanisms are poorly understood. A
transcriptional network that operates in Iluminal
breast cancer has been identified that promotes MDSC
recruitment; this network is regulated by the ETS
transcription factor ELF5 (Gallego-Ortega et al. 2015). ELFS
is a well-known master regulator of mammary progenitor
cell fate (Oakes et al. 2008a, Gallego-Ortega et al. 2013,
Lee et al. 2013). Its expression is altered in multiple
cancers (Piggin et al. 2016); in breast cancer, elevated
ELFS suppresses oestrogen sensitivity and correlates with
the ER- negative basal subtype (Kalyuga et al. 2012). In
luminal breast cancer, progesterone signalling induces E1f5
and activates a number of immune functions (Hilton et al.
2010). Furthermore, ELFS5 drives the expression of a
number of factors implicated in MDSC recruitment
and activation, presumably by direct transcriptional
activation (Gallego-Ortega et al. 2015). Interestingly,
Elf5 promotes resistance to endocrine therapy through a
mechanism that involves direct transcriptional repression
of ER signalling (Kalyuga et al. 2012). It is tempting to
speculate that these two aspects of aggressive disease,
MDSC-driven immunosuppression and promotion of
resistance to endocrine therapy are linked (Fig. 2) and that
an ER-suppressive environment is especially conducive to
MDSC recruitment. The stromal microenvironment of
ER+ and ER- tumours is markedly different, including

MDSC expansion
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Schematic representation of the functions of infiltrating MDSCs during cancer progression and metastatic spread, depicting some known molecular
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the higher expression of MDSC-recruiting CCL2 in
ER- tumours (Bianchini et al. 2010).

The expansion and activation of the MDSC
population is influenced by a complex network of signals
and factors that are categorised into two groups. The first
group involves factors that are secreted by tumour cells to
induce the expansion of MDSCs and their accumulation
in tumours. The second group of factors are produced
by the tumour stroma and T-cells to activate MDSCs
(Condamine et al. 2015).

Factors involved in the expansion of the MDSCs
include GM-CSE M-CSF and VEGE The receptors for
these factors on MDSC activate signalling to the nucleus
via STAT3. STAT3 appears to be one of the primary
transcription factors that regulate MDSC expansion
(Fig. 2). In both in vivo mouse models and in vitro model
in haematopoietic progenitor cells, STAT3 activation was
associated with increased levels of MDSC. Inhibition of
STAT3 signalling reduced the size of the MDSC population
and allowed the elicitation of anti-tumour immunity
(Nefedova et al. 2004, Kortylewski et al. 2005). As the target
genes of STAT3 are associated with increased proliferation
and pro-survival function, such as BCL-XL, survivin and
cyclin D1, it is likely that STAT3 induces the expansion of
MDSCs by promoting proliferation, while also blocking
the differentiation of IMC into mature myeloid cells.
Additionally, the pro-inflammatory proteins S100A8 and
S100A9 are upregulated by STAT3 and have a role in the
expansion of MDSC in tumours by preventing myeloid-
cell differentiation and in abrogating T-cell function in
breast cancer, ovarian cancer and gastric cancer (Arai et al.
2008, Sinha et al. 2008, Wang et al. 2013). A recent study
by Kumar and coworkers suggested that the inhibition
of STAT3 activity is also associated with the pathological
differentiation of M-MDSCs into TAMs, which were the
major population within tumours compared to M-MDSC
(Kumar et al. 2016a), indicating a level of unforseen
complexity in the regulation of tumour immunity.
Other studies suggest that M-MDSCs and PMN-MDSCs
may have distinct routes of pathological differentiation
within the tumour microenvironment. Yu and coworkers
demonstrated in tumour-bearing mice that the silencing
of the retinoblastoma gene induced the differentiation of
M-MDSC to acquire features that were morphologically and
phenotypically similar to PMN-MDSC, but which had not
acquired the functional activity of PMN-MDSC (Yu et al.
2013). Additionally, monocytes and M-MDSC that are
recruited to tumour sites are suggested to differentiate into
TAM, which allows their immunosuppressive functions to
be exerted (Kumar ef al. 2016a). Some studies suggest that
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the exposure of MDSC to the hypoxic microenvironment
within the tumour allows hypoxia-inducible factor HIF1A
to regulate and induce MDSC differentiation into TAM
(Corzo et al. 2010, Liu et al. 2014). Interferon regulatory
factor-8 (IRF8) is also a negative regulator of MDSC
expansion, as IRF8 overexpression was found to attenuate
MDSC accumulation in breast cancer and enhanced the
responsiveness to immunotherapy (Waight et al. 2013).

Immunosuppressive mechanisms of MDSCs

MDSCs have distinct biochemical and genetic features that
provide their immunosuppressive effects and the inability
to differentiate into mature myeloid cells. The activation
of MDSCs is regulated by multiple signalling pathways
that include STAT1, STAT6 and NFkB. Factors that initiate
these pathways, including TLR, IL4, IL13, TGFB and IFNG,
are expressed by tumour stroma and activated T-cells
(Fig. 1). STAT1 is one of the major transcription factor
that is facilitated by IFNG to upregulate the expression
of arginase-1 (ARG1) and inducible nitric oxide synthase
(iNOS) in MDSCs, which along with other factors, provide
the basis of the immunosuppressive functions in MDSCs.
Studies have previously described the mechanism by
which MDSCs can induce anergy in both natural killer
(NK) cells (Hoechst et al. 2009, Li et al. 2009) and in
the adaptive immune system, in particular CD4+ and
CD8+ T-cells (Nagaraj & Gabrilovich 2012). In the C26
colon adenocarcinoma mouse model, MDSCs have been
suggested to lead to reduced IFN-driven responsiveness of
T lymphocytes and NK cells (Mundy-Bosse et al. 2011).
Within the tumour microenvironment, MDSCs can inhibit
T-cell function and proliferation through several different
mechanisms. MDSC highly expresses both ARG1 and
iNOS, enzymes that are capable of metabolising 1-arginine.
iNOS converts L-arginine to nitric oxide (NO), and ARG1
converts L-arginine into urea and r-ornithine. r-arginine
is an amino acid that is vital for T-cell activity, and
deprivation of this amino acid in the microenvironment
inhibits T-cell proliferation and function (Fletcher et al.
2015). Additionally, the production of NO through
the metabolism of r-arginine by iNOS suppresses T-cell
activity and also induces apoptosis (Bingisser et al. 1998,
Rivoltini et al. 2002). MDSCs isolated from breast cancer
tissue have Stat3-dependent upregulation of indole amine
2,3 dioxygenase (IDO), an enzyme responsible for the
catabolism of tryptophan. The high expression of IDO
depleted the tumour microenvironment of tryptophan
and produced kynurenine-based byproducts, which led to
the inhibition of T-cell proliferation and induced T-cell
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apoptosis. Furthermore, IDO induces CD4+ CD25+ T
regulatory cell infiltration to primary breast tumours and
lymph node metastases (Curti et al. 2007, Yu et al. 2013).

MDSCs also have upregulated activity of NADPH
oxidase (NOX2), resulting in the increased generation
of ROS in the form of superoxide anion (O,) and
peroxynitrite (ONOO-). The elevated production of ROS
by MDSC creates oxidative stress within the tumour
microenvironment and is a major component of the
immunosuppressive effects of MDSCs on the antigen-
specific response of T-cells and the inhibition of MDSC
differentiation to mature myeloid cells (Kusmartsev &
Gabrilovich 2003, Kusmartsev et al. 2004). Peroxynitrite, a
powerful oxidant synthesised in the reaction between NO
and superoxide anion, is another important mediator of
the suppression of T-cell function and has been linked with
T-cell deactivation in cancer. High levels of peroxynitrite
are found in sites of expanded MDSC population and have
been correlated with tumour progression and metastasis in
cancer (Vickers et al. 1999, Nakamura et al. 2006). During
direct cell-to-cell interaction between MDSCs and T-cells,
peroxynitrite can chemically alter the T-cell receptor and
CD8 molecule on the surface of T-cells by nitration. This
modification renders the T-cell unresponsive to antigen-
specific stimulation, but not to nonspecific stimuli
(Nagaraj et al. 2007). This antigen-specific interaction is
more stable and prolonged than nonspecific interactions,
allowing the ROS and peroxynitrite to exert their effects
on the surface of T-cells to suppress their antigen-specific
response (Kusmartsev et al. 2000). In cancer patients,
T-cells found in the peripheral blood are still capable of
responding to other stimuli that are not tumour-specific
antigens (Antonia et al. 2006, Mirza et al. 2006).

In most cancers, the PMN-MDSC population has been
reported to outnumber the M-MDSC population (Gallego-
Ortega et al. 2015, Messmer et al. 2015, Kumar et al.
2016b). Preferential expansion of a specific subtype of
MDSC can be caused by factors that exist in the tumour
microenvironment. For example, M-MDSCs are found
as the predominant population in prostate cancer and
PMN-MDSCs in breast cancer (Marvel & Gabrilovich
2015). However, the ratio of population of PMN-MDSCs
to M-MDSCs is a vital factor in determining the different
mechanisms that are utilised by the MDSC to suppress
the immune response. PMN-MDSCs produce a higher
amount of ROS in comparison to M-MDSCs, and as
such, require cell-to-cell contact to exert suppression on
antigen-specific response of T-cells. In contrast, M-MDSCs
produce more ARG1, iNOS and immunosuppressive
cytokines, such as TGFB, and suppresses the nonspecific
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T-cell response (Haverkamp et al. 2014, Kumar et al.
2016b). Additionally, the strength of immunosuppression
in the MDSC subsets is primarily determined by GM-CSF
secreted by tumours, and on a per-cell basis, M-MDSC
possesses more potent suppressive activity compared to
PMN-MDSC (Dolcetti et al. 2010, Kumar et al. 2016b).
MDSC isolated from tumours were found to have stronger
immunosuppressive activity compared to their peripheral
counterparts (Qian et al. 2011, Haverkamp et al. 2014,
Maenhout et al. 2014).

Treatments targeting MDSC

Suppression of the immune system has been a major
limitation for the successful treatment of cancer by
immunotherapy. Indeed, as MDSCs are capable of
subverting immunosurveillance and suppressing anti-
tumour immunity, there has been more attention focusing
on MDSC as a potential therapeutic target in pathological
conditions, in particular, cancer. Clinical evidence shows
a strong correlation between the tumour-induced MDSC
dysfunction and poor patient prognosis (Messmer et al.
2015), including breast cancer (Diaz-Montero et al. 2009).
Increased circulating MDSCs have been associated with
decreased T-cell activation and with decreased efficacy
of immunotherapeutic intervention (Gabrilovich &
Nagaraj 2009, Ostrand-Rosenberg 2010, Gabrilovich et al.
2012). Elimination of MDSCs is effective in improving
adoptive T-cell transfer therapy in breast cancer (Alizadeh
& Larmonier 2014). Therapeutic targeting of MDSCs has
a remarkable potential as a therapy for breast cancer,
by either promoting MDSC differentiation to a non-
suppressive phenotype or by eliminating MDSCs through
activation of their apoptosis program or inhibition of
their production from haematopoietic stem cells.

Modulation of MDSC immunosuppressive functions

Promoting MDSC to differentiate into mature myeloid
cells removes their suppressive functions. One such
approach is using all-trans-retinoic acid (ATRA). ATRA
is an agonist of nuclear retinoid receptors, such RARA,
which are responsible for facilitating the differentiation
of IMC into mature myeloid cells (DC and macrophages),
thus removing their immunosuppressive activity.
Administration of ATRA in mice or patients caused MDSC
differentiation seen as increased expression of phenotypic
markers associated with mature myeloid cells. In these
cases, there was a lower MDSC population in peripheral
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blood and better antigen-specific immune response
(Bastien & Rochette-Egly 2004, Hengesbach & Hoag
2004, Kusmartsev et al. 2008). The reduction in MDSC
by ATRA improves tumour-specific response in T-cells
(Mirza et al. 2006), and in tumour models, combination
of ATRA with cancer vaccines significantly prolonged the
anti-tumour effect of the treatment (Kusmartsev et al.
2003). This strategy is being tested in clinical trials. The
mechanism of action for ATRA reduction of MDSC is
not clear but may involve glutathione synthase (GSS)
(Nefedova et al. 2007).

By blocking the signalling pathways that regulate the
expression of ARG1 and iNOS, the immunosuppressive
activity of MDSC can be inhibited. COX2 can promote
the expression of ARG1 in MDSC, thus inducing their
suppressive function. Celecoxib, a COX2 inhibitor,
enhances efficacy of immunotherapy by repressing ARG1
expression and improving T-cell response to tumour-
specific antigen (Talmadge et al. 2007). Recently, Zelenay
and coworkers had demonstrated that both COX1
and COX2 can be partially inhibited with the addition
of aspirin, and when mice that were implanted with
melanoma were treated in combination of anti-PD-1
monoclonal antibody and aspirin, a marked reduction
in tumour regression and eradication of melanoma cells
was observed compared with just the anti-PD-1 alone
(Zelenay et al. 2015). This synergistic effect was also
observed when mice were administered with celecoxib
and treated in conjunction with anti-PD-1, but to a lesser
degree compared with aspirin (Zelenay et al. 2015).

Additionally, phosphodiesterase-5 (PDE-5) inhibitors
and nitroaspirin limit the expression or activity of ARG1
and iNOS, leading to improved responsiveness and
population of T-cells (Serafini et al. 2006, Wesolowski et al.
2013, Califano et al. 2015). Increased production of ROS
and NO hampers T-cell responsiveness through nitration
of the T-cell receptor. Anti-inflammatory triterpenoids,
such as CDDO-IM and CDDO-Me, inhibits the
immunosuppressive activity of MDSC by upregulating the
transcription factor Nf-E2-related factor 2 (NRF2), which
has been found to play a role in the protection of cells
against oxidative stress. NRF2 regulates the expression
of several antioxidant genes such as NADPH, NQO1 and
hemeoxygenase and increased expression of NRF2 results
in a reduction of intracellular ROS and attenuates MDSC-
driven immunosuppression (Thimmulappa et al. 2007,
Nagaraj et al. 2010, Marvel & Gabrilovich 2015), whereas
deletion of NRF2 was reported to increase metastasis
in mice with Lewis lung carcinoma due to the aberrant
accumulation of ROS in MDSC (Hiramoto et al. 2014).
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Contradicting this, other studies have reported that
permanent activation of NRF2, and subsequently
enhanced ROS detoxification, in human lung carcinomas
has also been found to promote tumourgenesis,
pulmonary malignancy and resistance to chemotherapy
(Singh et al. 2008, Bauer et al. 2011).

Different studies have shown both the beneficial
and detrimental aspects of using antioxidants, such as N
acetyl-cysteine (NAC) and vitamin E, as an anti-cancer
treatment. NAC and vitamin E have been shown to reduce
the immunosuppressive activity of MDSC by scavenging
free radicals, decreasing MDSC population in the tumour
microenvironment and increasing the population of
activated T-cells both in vivo and in vitro (Srivastava et al.
2010, Kang et al. 2014). Conflicting studies have also
suggested that the use of antioxidants may promote
tumour growth and increase metastasis. Addition of NAC
and vitamin E in the diet of mice with BRAF- and KRAS-
induced lung cancer was shown by Sayin and coworkers
to increase tumour cell proliferation by decreasing p53
expression, subsequently promoting tumour growth
(Sayin et al. 2014). Additionally, administration of
antioxidants in mice with malignant melanoma was
reported to promote lymph node metastases but did not
affect the growth of the primary tumours (Le Gal et al.
2015, Piskounova et al. 2015). In breast cancer, the effects
of antioxidants have remained controversial regarding the
risk of recurrence and mortality among premenopausal
and postmenopausal women (Fleischauer et al. 2003,
Cui et al. 2008, Pan et al. 2011).

Apoptosis of MDSC

An increasing number of chemotherapeutic drugs activate
tumour immune rejection by targeting MDSC, suggesting
that part of their anti-tumour success includes reactivation
of the immune system (Naiditch et al. 2011). Gemcitabine,
has been utilised in tumour-bearing mice to specifically
lower the population of MDSC in the spleen, and was
effective in reducing tumour growth and increasing
anti-tumour immune activity (Suzuki et al. 2005, 2007,
Le et al. 2009). Cisplatin and 5-fluorouracil have also been
used to successfully deplete MDSCs and improve T-cell
responsiveness (Tseng et al. 2008, Vincent et al. 2010).
Doxorubicin promoted apoptosis of MDSCs and interfered
with the suppressive ability of MDSCs and restored T-CD8+
lymphocyte responses (Alizadeh et al. 2014). Docetaxel
administration significantly inhibited tumour growth
in 4T1 tumour-bearing mice and decreased the numbers
of MDSCs in the spleen. The treatment also selectively
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increased CTL responses and polarised MDSC towards
an anti-tumourigenic phenotype (Kodumudi et al. 2010).
Interestingly, epigenetic modulators such as 5-azacytidine
and S5-aza-2’-deoxy-azacytidine have also resulted in
MDSCs killing (Kim et al. 2014).

The opposite effect of chemotherapy on MDSCs
has also been demonstrated. For example, although
cyclophosphamide has been proposed to enhance cancer
vaccines presumably by its effect on Tregs (Machiels et al.
2001, Lutsiak et al. 2005), in non-tumour-bearing animals,
it leads to transient surges in MDSC (Angulo et al. 2000,
Salem et al. 2007). Breast cancer patients receiving
cyclophosphamide as part of their chemotherapy had
a five-fold increase in circulating MDSCs in blood, and
this increase was associated with low T-cell activity
(Diaz-Montero et al. 2009). This indicates that immune
modulation is a double-edged sword and that methods to
characterise the immune landscape of the patient would be
very informative before the administration of these drugs.

Concluding remarks

Two interconnected layers of immune populations operate
in cancer, the innate and the adaptive immune system.
Immunotherapies aimed at reactivating the tumour-
rejecting cytotoxic capacity of T-cells are efficient in types
of cancer with a high mutational profile. Breast tumours
have relatively low TIL infiltration, consequently T-cell-
directed therapies, such as checkpoint inhibitors, have not
resulted in major responses. The components of the innate
immune system have a prominent role during breast
cancer progression, and this might reflect the importance
of the innate immune system in normal mammary gland
development that couples tissue morphogenesis with
immunosuppression. During mammary involution,
neutrophils (the precursors of MDSC) are recruited but
maintained in an immunosuppressive environment.
It is possible that the same mechanisms are hijacked
by breast cancer cells to increase tumour tolerance and
promote T CD8+ cell exclusion. MDSCs have been shown
to regulate T-cell exclusion by a variety of mechanisms,
thus representing promising targets for therapy.
Immunotherapies directed to the intersection of the two
layers of the immune system may open new avenues for the
treatment of breast cancer patients. MDSC is a compelling
target for cancer therapy, but their heterogeneous nature
and poor definition in humans make this elusive. A
transcriptional definition of tumour-infiltrating MDSCs
may better characterise and classify this heterogeneous
population, laying the foundation to specifically target
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pro-tumorigenic MDSC populations and unleashing the
development of breast cancer immunotherapies.
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