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Abstract Advances in the study of hematopoietic cell

maturation have paved the way to a deeper understanding

the stem and progenitor cellular hierarchy in the mammary

gland. The mammary epithelium, unlike the hematopoietic

cellular hierarchy, sits in a complex niche where commu-

nication between epithelial cells and signals from the

systemic hormonal milieu, as well as from extra-cellular

matrix, influence cell fate decisions and contribute to tissue

homeostasis. We review the discovery, definition and

regulation of the mammary cellular hierarchy and we

describe the development of the concepts that have guided

our investigations. We outline recent advances in in vivo

lineage tracing that is now challenging many of our

assumptions regarding the behavior of mammary stem

cells, and we show how understanding these cellular lin-

eages has altered our view of breast cancer.
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Abbreviations

ABCG2 ATP-binding cassette sub-family G member 2

ALDH1 Aldehyde dehydrogenase 1

Blg b-Lactoglobulin

Bmi-1 B lymphoma Mo-MLV insertion region 1

homolog

BRCP1 Breast cancer resistance protein 1

BrdU 5-Bromo-20-deoxyuridine

CALLA Common lymphoblastic leukemia antigen

CD133 Cluster of differentiation 133/prominin-1

CD24 Cluster of differentiation 24/heat stable

antigen

CD29 Cluster of differentiation 29/b1 Integrin

CD44 Cluster of differentiation 44/H-CAM

CD49b Cluster of differentiation 49b/VLA 2

CD49f Cluster of differentiation 49f/integrin alpha 6

CD61 Cluster of differentiation 61/integrin beta 3

CD90/Thy1 Cluster of differentiation 1/Thymocyte

differentiation antigen 1

CK5/K5 Cytokeratin/keratin 5

CK8/K8 Cytokeratin/keratin 8

CK14/K14 Cytokeratin/keratin 14

CK18/K18 Cytokeratin/keratin 18

CYP24A1 1,25-Dihydroxyvitamin D3 24-hydroxylase

cKIT Tyrosine–protein kinase kit

DNA Deoxyribonucleic acid

ECM Extra-cellular matrix

Elf5 E74-like factor 5

EMA Epithelial membrane antigen

EpCAM Epithelial cell adhesion molecule

ER Estrogen receptor

ERRB3 Receptor tyrosine–protein kinase erbB-3

ERBB4 Receptor tyrosine–protein kinase erbB-4

Foxa1 Forkhead box protein A1

Fzd8 Frizzled family receptor 2

Gata3 Trans-acting T cell-specific transcription

factor 3

GFP Green fluorescent protein
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HER2 Human epidermal growth factor receptor

2/Neu

hTERT Human telomerase reverse transcriptase

ID4 Inhibitor of DNA binding 4

Jag2 Jagged 2

Lgr5 Leucine-rich repeat containing G protein-

coupled receptor 5

MFGM Milk fat globule membrane antigen

MMTV Mouse mammary tumor virus

MUC1 Mucin 1

Myb Myb proto-oncogene protein

NEP Neutral endopeptidase

NICD Notch intracellular cellular domain

Nrg1 Neuregulin heregulin-alpha

p63 Tumor protein p63

PR Progesterone receptor

Prlr Prolactin receptor

RankL Receptor activator of nuclear factor kappa-B

ligand

SCA-1 Stem cell antigen

SMA Smooth muscle actin

SOX11 SRY (Sex-Determining Region Y)-Box 11

SP Side population

Stat5A Signal transducer and activator of

transcription 5A

Tcf4 Transcription factor 4

Tgf-b Transforming growth factor beta

Tnfsf11 Tumor necrosis factor ligand superfamily

member 11

WNT Proto-oncogene protein Wnt

X-Gal 5-Bromo-4-chloro-3-indolyl-b-D-

galactopyranoside

YFP Yellow fluorescent protein

Discovery of mammary stem and progenitor cells

Experimental mammary biology leapt ahead with the pio-

neering work of DeOme and colleagues [1]. They

demonstrated that small epithelial fragments of normal or

hyperplastic mouse mammary epithelium gave rise to

morphologically similar outgrowths when transplanted into

de-epithelialized mammary fat pads. Importantly, these

outgrowths produced secondary outgrowths when trans-

planted, confirming that the mammary epithelium contains

cells with self-renewing potential, multipotency and cell-

autonomous actions, all the characteristics of stem cells [2].

This transplantation technique is one of the most useful

methods in mammary biology, used to demonstrate repop-

ulating capacity and self-renewing potential of mammary

cells [3, 4], for defining the cell-autonomous role of

molecular regulators of cell specification and for isolating

their effects from systemic confounders in a variety of

applications [5–9]. Using this technique, Smith reported

that transplantation of dissociated mammary epithelial cells

at limiting dilution revealed three types of outgrowths;

lobules, ducts or complete glands. [10]. The ability of serial

transplants to produce either lobules or ducts decayed

independently of each other, suggesting that this was not

just a property of diluted cells [11]. The observations of

outgrowths forming only lobules or ducts pointed to the

existence of founding cells committed to these fates, but

what was not clear was whether these lineage-restricted

progenitors cooperated to establish the complete mammary

outgrowth, or whether a ‘master mammary stem cell’ could

give rise to the entire mammary epithelium [12]. Varmus,

Cardiff and colleagues [13, 14] observed that the

mouse mammary tumor virus (MMTV) inserts its proviral

DNA randomly into the genome of a newly infected pup.

This observation provided an ingenious way to track

mammary epithelial cells. Exploiting the integration of

MMTV to fate-map cells, Kordon and Smith [12] used

MMTV to investigate the clonal origins of the mammary

gland. These experiments were one of the earliest uses of

lineage tracing. CzechII mice were infected with MMTV,

and mammary tissue was serially transplanted into unin-

fected hosts. Subsequent genomic Southern blot analysis

revealed identical viral insertion sites in primary and sec-

ondary outgrowths. These experiments demonstrated that

the mammary epithelium is derived from a multipotent and

self-renewing mammary stem cell. Subsequent estimates of

the capacity of mammary epithelial stem cells to undergo

symmetric cell divisions led to the conclusion that a single

mammary stem cell could give rise to an entire functional

mammary gland [12]. Similar conclusions were drawn

regarding clonally dominant populations in the human

breast, where identical X-chromosome inactivation patterns

can be observed in contiguous clonal areas of both luminal

and myoepithelial cells [15]. Transplantation showed that

mammary stem cells were located sporadically throughout

the mammary epithelium and concentrated in the cap cells

of the terminal end buds. These stem cells were present in

the mammary gland at various stages throughout develop-

ment and were long lived. They also maintained their

repopulating capacity throughout the lifespan of a rodent, as

they were functionally identical whether isolated from a

young or old animal [16], or as transplants or isolated cells

from age and parity-matched animals [17]. These experi-

ments established the foundations for our current

understanding [18, 19] of the cellular hierarchy of the

mammary gland, that a multipotent mammary stem cell can

give rise to all the functional-differentiated cells in the

mammary gland, that maintenance of tissue homeostasis by

localized stem cells produced clonal regions within the
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mammary epithelial tree, and that progenitor cell popula-

tions restricted to lobule or ductal development existed.

Isolation of mammary stem cell and progenitor cells

First attempts to visualize the mammary stem cell were

made by histological investigation, where they were pos-

tulated to be morphologically distinct, characterized by pale

staining nucleus and cytoplasm containing few organelles

(small light cells). These cells were absent in senescent

glands, pointing to their regenerative capacity [20, 21], and

similar cells with stem cell properties were seen in human

tissues when cultured in 3D culture systems [22]. The

extensively studied differentiation hierarchy of the hema-

topoietic system, and the well-developed flow cytometric

methods, provided an alternative experimental and organi-

zational paradigm to dissect and describe the cellular

hierarchy in the mammary gland [23]. For review, see [24,

25]. Mammary biologists implemented similar strategies

combined with intricate tissue dissociation and more gentle

antibody-based flow cytometry techniques, to delineate the

mammary cellular hierarchy and understand how it is reg-

ulated [26]. Some caveats are immediately obvious. Tissues

provide positional cues to stem and progenitor cells, the

stem cell niche that is absent in the blood. Loss of cellular

context during tissue disaggregation, and its random

replacement during transplantation, may alter subsequent

stem cell behavior. Other caveats are less obvious and more

insidious, such as the assumption that the stem cell is an

entity rather than an activity, and of a simple, Waddington-

like cellular hierarchy, as the paradigm for solid tissues.

Some of the earliest experiments using tissue disaggre-

gation and fluorescence-activated cell sorting (FACS) to

isolate different cellular populations in the mammary gland

suggested that both the myoepithelial and luminal epithe-

lial fractions contain populations with heterogeneous

cellular identities [27, 28]. In 1991, an antibody to epi-

thelial membrane antigen (EMA/25.5/MUC1) was

developed that recognized only luminal epithelial cells of

the mammary gland throughout development [28]. Its use

in conjunction with an antibody against common lympho-

blastic leukemia antigen (CALLA/NEP/gp100), which in

the mammary gland stained the basally located cells of the

myoepithelial cell layer, allowed the mammary epithelium

to be fractionated into its basal and luminal components

[28]. Later, Dundas and colleagues [27] used the same

markers to characterize these two populations in vitro.

Curiously, two different basal cytokeratin 14-positive

(CK14?) clones were derived from the CALLA? fraction,

a highly proliferative and predominantly smooth muscle

actin negative (SMA-) clone and a slowly growing

(SMA?) clone. The EMA? fraction gave rise to three

clones, two slow-growing clones expressing the luminal

markers cytokeratin 7/18/19 (CK7?, CK18? and CK19?)

and a third that gave rise to a fast-growing heterogeneous

population of basal (CK14?), luminal (CK18?) cells and

bi-lineage (CK14?/CK18?) cells. All clones could be iso-

lated from both the ductal and alveolar compartments

although their proportions differed depending on origin.

The problem with these early studies is that these cell

fractions were heavily contaminated with unknown cells

derived from the stroma. Smalley and colleagues were

aware of this issue and attempted to purify epithelial or-

ganoids away from contaminating stromal cells by short-

term plating of collagenase-digested tissues [29]. Stromal

cells adhered to the plate quickly leaving the unattached

organoids in suspension to be isolated and further digested

and fractionated by FACS. In this study, luminal cells were

isolated using an antibody against mouse milk fat globule

membrane antigen (MFGM/33A10) and myoepithelial

cells isolated using an antibody to myoepithelial/basal cells

(JB6). When cloned in vitro, JB6? basal/myoepithelial

cells gave rise to a single slow-growing clone and MFGM-

positive luminal epithelial cells gave rise to three different

phenotypes, although the myoepithelial (CK14?/SMA?)

and luminal (CK8, CK18 and CK19) identity of these

clones was not stable in culture. This issue was solved

when each population was cultured in 3D on extracellular

matrix (ECM) [30]. Greater than 90 % of all JB6?, myo-

epithelial clones expressed the basal marker CK14 and

most were also positive for alpha SMA. Grown on ECM,

the MFGM? luminal epithelial cells generated two types of

clones, one with flattened morphology and the other

rounded that formed complex acinar colonies that invaded

the ECM. The flattened clones were characterized by two

colony types, a monolayer (Type I, 90 % of flat clones) that

expressed both basal and luminal markers (CK14 and

CK18) and a multilayered colony (Type II, 10 % of flat

clones), which consisted of a CK14?/CK18- basal layer

intimately in contact with the ECM that surrounded a

cuboidal layer with a mixture of luminal CK14-/CK18?

and bi-lineage cells. The outgrowths that grew out from

MFGM, and only in areas where the ECM was thickest,

were composed of a central/inner cell mass of luminal

CK14-/CK18? cells surrounded by an outer layer of

double stained bi-lineage and presumably undifferentiated

CK14?/CK18? cells. Interestingly, luminal-derived clones

on ECM were also positive for CK19 and expressed b-

casein when grown in lactation medium. These data sug-

gested that the luminal compartment purified using MGFM

contains multipotent cells capable of giving rise to both

undifferentiated basal cells and functionally competent

luminal cells. A human breast progenitor cell separated on

the basis of the expression of the MAM-6/sialomucin?

(luminal cells) and CALLA? (myoepithelial cells) was
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discovered using magnetic bead separation [31, 32]. In a

specially formulated medium, a small proportion of the

MAM-6? cells gave rise to a population of morphologi-

cally distinct CALLA?, SMA alpha? and vimentin?

myoepithelial cells that had lost expression of CK18 and

CK19. Hence, it was postulated that all progenitor cell

activity resides in the luminal compartment in the human

breast [32]. The importance of the luminal origins of this

progenitor cell will become apparent below. As significant

heterogeneity in morphology and function was still

apparent in the myoepithelial and luminal compartments

separated by markers mentioned above, the search con-

tinued for more specific markers of mammary stem and

progenitor cells.

Expression of the ATP-binding cassette family of mem-

brane transporters, notably the expression of Breast Cancer

Resistance Protein 1 (Brcp1/Abcg2) is greatest in primitive

hematopoietic stem cells and mediates rhodamine 123 and

Hoechst 33342 dye efflux [33]. This population is observed

as a small negative side population by FACS [34, 35] that can

be masked by pre-treatment with voltage-dependent calcium

channel blocker Verapamil. Hoechst-33342 dye efflux was

explored as a potential marker of multipotent mammary stem

cell in mouse and human mammary glands [36, 37]. Side

population (SP) cells, which excluded Hoechst 33342, were

enriched for stem cell antigen-1 (Sca-1, 80 % of SP [37]), an

additional marker of stemness in the hematopoietic system

[33, 38]. Transplantation of less than 4,000 SP cells resulted

in complete mammary outgrowths containing both ductal

and alveolar populations [37], a significant improvement

from unsorted mammary epithelium [10], and suggested that

the SP was enriched for mammary stem cells [10]. Similar

enrichment of undifferentiated and multipotent mammary

stem cells was observed for the SP isolated from the human

breast [36]. Interestingly, the SP expressed lower levels of

cytokeratins and higher levels of vimentin than the non-side

population cells and was further enriched for catalytic sub-

unit of telomerase (hTERT) [36], characteristics of primitive

stem cells.

Compared to cells enriched from the Hoechst-33342 SP,

as few as 1000 Sca-1? cells could give rise to partial or

complete mammary outgrowths and suggested that Sca-1 is

an improved marker of mammary stem cells. The location

of these cells was examined in a Sca-1?/GFP reporter

mouse. Sca-1 positive cells were found scattered through-

out the mammary epithelium, but the greatest number of

Sca-1 positive cells were found at the distal tips of

extending ducts [37], a localization for stem cells that been

suggested before [12]. Interestingly, Sca-1? cells segre-

gated with progesterone receptor (PR) expression, retained

label (BrdU) over long periods and possessed an undif-

ferentiated molecular phenotype [37]. These data suggest

that the Sca-1? mammary epithelial population is enriched

for undifferentiated, long-lived and multipotent mammary

stem cells and that Sca-1 appeared to be a better marker of

mammary stem cells than dye efflux properties.

Unfortunately, 20 % of the Hoechst-33342 positive

population also expressed Sca-1 [37], as did stromal cells

[39], hence better markers were needed to enrich for and

understand the biology of mammary stem cells. Following

on studies by Al Hajj and colleagues that demonstrated the

utility of marker for CD24 (Heat stable antigen/HAS/BA-

1) in isolating tumorigenic cells from breast cancers (to be

discussed in detail below) [40], the Smalley laboratory then

investigated the utility of CD24 in fractionating the

mammary epithelium [41]. CD45? leukocytes were

excluded from dissociated mammary tissue, and the

remaining cells sorted into three populations based on

CD24 expression: negative (CD24-), low (CD24lo) and

high (CD24hi) expression. The CD24hi population almost

exclusively expressed the luminal markers CK8/CK18 and

had restricted mammary reconstitution potential in limiting

dilution transplantation assays. Ninety-four percent of the

CD24lo population expressed the basal/myoepithelial

marker CK14 and were highly enriched for mammary stem

cells. Further fractionation of these compartments came

from the addition of an antibody against the glycoprotein

Prominin-1 (CD133/AC133), a marker for hematopoietic

progenitor cells [42]. Prominin-1 and Sca1 displayed

almost identical flow cytometric-staining patterns within

the CD24? epithelial compartment, however unlike Sca-1,

Prominin-1 was restricted to the CD24? epithelial com-

partment. Interestingly, expression for Prominin-1 could

fractionate CD24hi cells into two compartments; a CD24?/

Prominin-1? hormone-sensing compartment expressing

high levels of estrogen receptor (ER), PR and Prlr and

Cited-1; and a CD24?/Prominin-1- hormone receptor-

negative secretory progenitor cell enriched for in vitro

colony-forming ability and capable of milk production

[43]. Appropriate steroid hormone receptor patterning and

paracrine signaling from hormone-sensing cells was

already recognized as a key feature of normal mammary

gland establishment and function [44–46]. CD24lo stem

cells were predominantly basal cells and did not express

the steroid hormone receptors, hence these data demon-

strated that most of the stem and progenitor activity in the

mammary gland predominantly resides in the steroid

receptor-negative basal compartment, and these cells are

probably responsive to growth and differentiation signals

from the hormone-sensing compartment.

It was clear from these studies that no one marker could

be used to purify cell types in the mammary gland. Great

advances in the understanding of the breast and mammary

cellular hierarchy came from using a combination of dif-

ferent markers to fractionate subsets of the epithelium [3, 4,

47, 48]. Antibodies directed against the luminal antigens
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EpCAM (ESA) and MUC1 (Mucin-1/EMA) and the basal

antigen CALLA were used in combination to fractionate

the human breast epithelium and examine their colony-

forming ability in in vitro [47]. EpCAM had previously

been shown to be a cell surface marker of breast and

colorectal carcinomas [49]. Three different colony-forming

populations were discovered in these 3D culture systems;

the first, a MUC?CALLA-/EpCAM? population that

produced CK8/CK18- and CK19-positive alveolar colonies

in ECM; the second, a MUC-/CALLA?/EpCAM- popu-

lation that produced colonies of exclusively myoepithelial

cells expressing CK14; and lastly, a MUC- to ±/CALLA±/

EpCAM? bi-lineage population that gave rise to large

branched colonies of both myoepithelial (CK14?) and

luminal (CK8/18? and CK19?) cells [47]. Hence it was

postulated that two progenitor populations maintained

cellular homeostasis in the human breast; a bipotent pro-

genitor (MUC- to ±/CALLA±/EpCAM?) that could give

rise to both luminal and myoepithelial cells and a luminal

(or alveolar) restricted progenitor (MUC?/CALLA-/Ep-

CAM?) that could give rise alveolar colonies. As ESA/

EpCAM expression was predominantly found within the

luminal layer of human breast tissue, these results suggest

that this bipotent progenitor may be luminal in origin.

Adding the marker for CD49f (integrin alpha 6/VLA) could

further fractionate these human progenitor populations

[48]. EpCAM?/CD49f?/MUC1? sorted cells produced

luminal (alveolar) restricted colonies expressing CK8/18

and CK19, akin to the MUC?/CALLA-/EpCAM? dis-

covered above. The bipotent progenitors were found in a

population similarly characterized by EpCAM?/CD49f?,

but had lower expression of MUC, higher expression of

CALLA and showed rhodamine 123 efflux properties.

Cells derived from this population could give rise to clonal

mixed colonies of centrally located EpCAM?/CK19?

luminal cells surrounded by a halo of CK14? myoepithelial

cells and demonstrated bipotent progenitor activity. The

expression pattern of CALLA and MUC1 in the EpCAM?/

CD49f? population suggested this bipotent progenitor

might be located in the basal compartment, in contrast to

previous findings [47]. The discrepancy between these two

studies may reflect the addition of fibroblast feeder layers

the later study providing niche-derived signals that main-

tain the identity of these cells, as had been observed

previously in the mouse [30].

Similar results were obtained in the laboratories of

Eaves and Petersen. Like the studies above, markers for

EpCAM and CD49f were used to fractionate the lineage-

negative epithelium into a mammary stem cell population

(EpCAMlo/CD49fbright), lineage-restricted luminal progen-

itor (EpCAM?/CD49f?) and mature luminal (EpCAM?/

CD49f-) and myoepithelial lineages (EpCAM- to lo/

CD49f?) [50, 51]. Using these methodologies, human

stromal cells are characterized by an EpCAM- and CD49f-

negative immunophenotype and high expression for alde-

hyde dehydrogenase 1 (ALDH1) [52]. A human breast

luminal progenitor can also be identified from the lineage-/

EpCAM?/CD49f? fraction using the combinations of

luminal markers CD133 (referred to previously as Promi-

nin 1)/MUC1 and basal makers CD10/THY1 [53]. The

basally located MUC1-CD133-(CD10/THY1)? subset of

CD49f? cells contained the majority of the bipotent breast

colony-forming cells as assessed by their immune-pheno-

type in 2D colony-forming assays on collagen-coated

plates. The (MUC1/CD133)?CD10-THY1-/CD49f? con-

tained mostly luminally restricted progenitors.

Interestingly, progesterone receptor transcripts were enri-

ched in the bipotent progenitor population and not in the

luminal restricted progenitors, with the opposite pattern

observed for the estrogen receptor, suggesting that the

expression of these steroid hormones receptors is not

always overlapping. The corresponding populations in the

CD49f- population contained mature luminal cells devoid

of colony-forming ability. Hence, it was hypothesized that

the human breast was composed of undifferentiated bipo-

tent progenitor cells that give rise to committed progenitors

that differentiate into myoepithelial and luminal cellular

lineages and each cell can by purified based on the

expression of EpCAM/CD49f and additional luminal

(MUC1/CD133) and basal markers (CD10/THY1).

Parallel populations were obtained using a different

combination of cell surface markers in the mouse. In

studies from the laboratories of Eaves and Visvader, anti-

bodies for CD24 and the integrins CD49f (integrin alpha

6/VLA) and CD29 (b1 Integrin) were used in combination

and examined for their ability to fractionate the epithelium

into its cellular compartments. In these studies, mouse

lineage cells were depleted using antibodies against CD31?

(endothelial), CD45? (hematopoietic), TER119/Ly76?

(erythroid) and CD140a/Pdgfr alpha? (fibroblasts, ([4]

only) prior to fractionation. CD49f and CD29 had previ-

ously been identified as markers of stem cells in the mouse

epidermis [54–56]. Given that the mammary gland origi-

nates in the ectoderm [57] such as the epidermis, there may

indeed be an overlap in the expression of stem and pro-

genitor markers between these organs. Expression of CD24

and high expression of either CD29 or CD49f resolves a

population enriched for mammary repopulating units, i.e.

those that can give rise to complete mammary outgrowths

on transplantation. This population predominantly expres-

sed markers of basal/myoepithelial cells (CK14? and alpha

SMA), although the mammary repopulating units/stem

cells comprise only a small percentage of this population (1

mammary repopulating unit in 63-64 CD24?/CD29hi or

CD49fhi cells). Importantly, mammary outgrowths gener-

ated from limiting numbers of these mammary
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repopulating units could be serially passaged, thereby

demonstrating their self-renewal capacity. The actual fre-

quency of mammary stem cells may up to 5 % based on the

frequency of takes from single cell transplants (6 takes in

102 transplants [3] ); however, the question still remains

whether immuno-phenotype of mammary stem cells is

indeed that of predominant basal/myoepithelial population.

Interestingly, neither Sca-1 expression or Hoeschst 33342

and rhodamine 123 efflux properties were enriched in the

CD24?/CD29hi or CD49fhi cells, suggesting that the later

sorting strategies were superior to these earlier methods.

The CD24?/CD29lo or CD49flo population enriched a

population of luminal mammary epithelial cells that gave

rise to alveolar structures and expressed milk proteins

when placed into the 3D culture [3, 4, 58] providing evi-

dence for the existence of a more committed luminal

progenitor. Although the efficiency of mammary stem cells

to repopulate a mammary gland was significantly reduced

at limiting cell dosages [4], both studies provided the first

direct evidence that a single mammary stem cell, defined as

CD24?/CD29hi or CD49fhi, could be isolated by flow

cytometry and when transplanted could give rise to a

functional mammary gland. The existence of this stem cell

was demonstrated by Smith and colleagues, and here was

its first isolation. In contrast to the mouse mammary epi-

thelium, CD24 expression is confined to the luminal

compartment in the human breast, and highlights a critical

difference between the two species [53, 59]. Interestingly,

mammary cell-autonomous loss of CD24 and CD49f

resulted in no defects in mammary reconstitution capacity

suggesting that although these two proteins are able to

mark and enrich for mammary stem cells, they are not

required for mammary stem cell function [60, 61].

Although the markers that define the different populations

in the human and mouse vary (Table 1), similarities in the

transcriptomes of each population can be observed [62].

For example, the expression of the transcription factors

Twist2, Slug, Id4, p63 and Sox11, the Notch ligand Jag2

and WNT/b-catenin pathway members, Fzd8 and Tcf4 are

highly expressed in the mammary stem cell populations of

both species. In luminal progenitor cells high expression of

Elf5, cKIT, CYP24A1 and ALDH1a3 is observed, as is

true for Foxa1, Myb, ER, PR, Prlr, Tnfsf11 (Rank ligand)

in the mature luminal populations.

To further characterize the luminal populations, the

Visvader laboratory used an antibody for CD61 (Integrin

beta 3/GPIIIa), which defines the megakaryocytic cell

lineage. CD61 expression defines two overlapping popu-

lations in the CD24?/CD29lo luminal subset in the mouse

[5, 63]. This population is highly enriched for luminal

(CK18?) colony-forming cells that give rise to alveolar

structures in 3D culture, whereas the CD61- population

had luminal morphology, expressed luminal markersT
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(CK18) and was devoid of colony-forming ability. The

proportion of CD61? positive cells dramatically decreased

during pregnancy (decreasing 15-fold by 18 days post

coitus) consistent with increasing differentiation toward

mature alveolar cells characterized by a CD24?/CD29lo/

CD61- immuno-phenotype [5]. Hence, CD61 expression

in the CD24?/CD29lo defined a luminal progenitor

(CD61?) and mature luminal cells (CD61-). Later, the

Visvader laboratory demonstrated that the CD24?/CD29lo

population could be alternately fractionated into a cKIT?

progenitor population that likely overlaps with the previ-

ously identified CD24?/CD29lo/CD61? luminal progenitor

population [64]. cKIT/CD117 or receptor tyrosine kinase is

highly enriched in the luminal progenitors of both human

and mouse epithelium [62]. Furthermore, negative or low

expression of cKIT in the CD24?/CD29lo population that

also expressed CD14 (cKIT-/lo/CD14?) can further purify

the luminal fraction into an alveolar progenitor population

that expressed milk in the absence of a lactogenic stimulus,

and a mature luminal population (cKIT-/CD14-). More

recently, the activity of the MMTV promoter within

mammary epithelial cell populations was reported to dis-

tinguish a multipotent progenitor population from within

CD24?/CD29lo cells with alveoli-forming capacity, par-

ticularly in response to pregnancy, but without potential for

self-renewal by serial transplantation [65]. These progeni-

tors showed an ELF5 high phenotype, while the non-

alveoli forming progenitors showed a pattern of gene

expression indicative of the hormone-sensing lineage.

Multipotency was inferred from the formation of alveoli

and milk protein production, but also that p63? myoepi-

thelial cells were formed. Whether these cells are able to

make both myoepithelial and epithelial cells remains con-

troversial. If so, this may represent a new lineage of

alveolar-myoepithelial cells, in contrast to a separate ductal

myoepithelial cell lineage, which could also explain the

contrasting myoepithelial cell susceptibility to apoptosis

during involution, and their net-like, rather than sheath-

like, arrangement in alveoli and ducts, respectively.

The currently definitive work on progenitor cell phe-

notypes was published in 2012 by Shehata, Stingl and

colleagues [66]. Having distinguished luminal and basal

populations in Lin- cells from mouse mammary gland

using EpCAM and CD49f, they divided the luminal pop-

ulation into three subpopulations on the basis of Sca1 and

CD49b staining. High colony-forming frequency and low

multipotent stem cell activity were associated with high

CD49b expression, indicating this population comprised

progenitor cells with either some limited capacity for

dedifferentiation to stem cells, or with some incomplete

stem cell differentiation. High estrogen receptor expression

(ER) and expression of GATA3 and FoxA1 were found in

progenitors marked by high Sca1 staining, while low/no

ER expression but high Elf5 and Lmo4 expression, along

with expression of milk proteins such as Mfge8 and Lalba,

basal markers such as K5 and high ALDH activity were

found in the progenitor population with low Sca1 staining.

High ALDH activity has previously been shown to mark

human mammary stem cells [67] and here marks a ER?

luminal progenitor cell. Similarly, high ALDH activity

together with high expression of ERBB3 can purify lumi-

nal alveolar progenitor cells from the EpCAM?/CD49f?

luminal progenitor compartment isolated from human tis-

sue [66]. These results are supported by additional work in

human tissue showing that ALDH activity is in fact the

lowest in EpCAM-/lo/CD49f? mammary stem and bi-

lineage progenitors but is greatest in the EpCAM?/CD49f?

luminal progenitors, a point when mammary cells become

committed to the luminal lineage [68]. Thus, a clear pro-

genitor cell dichotomy exists with gene expression patterns

indicative of a determined cell fate, either as the founders

of the lineage acting as hormone-sensing cells in the case

of the ER/FoxA1/Gata3 progenitors (also called luminal or

ductal progenitors) or as founders of the milk-secreting cell

lineage in the case of the Elf5/Lalba/Mfge8 cells (also

called alveolar progenitors).

Lineage tracing to map cell fate decisions

The various markers discussed above enrich, but do not

purify, mammary stem and progenitors cell populations. It

is unclear how tissue disaggregation, niche removal and its

random replacement during transplantation alter stem and

progenitor cell phenotype and activity [19, 69, 70]. A

potential solution to these issues is to genetically mark the

stem and progenitor cells, and then chase the mark

throughout development, to define the cell lineage that the

target cells produce. The key to lineage tracing is the initial

accurate marking of the intended starting population,

especially when targeting populations other than multipo-

tent stem cells, to avoid the confusion caused by

the marking of off-target cells. These techniques, coupled

to high-resolution imaging have recently become a reality

[69, 71, 72] and the pioneers of these techniques have

discovered both the advantages and pitfalls of these tech-

niques. The gastric epithelium is a prime example [71, 73–

75]. These studies employed the Lgr5 promoter, identified

as a putative stem cell marker, to drive the marking allele, a

Tamoxifen-inducible Cre that activated a LoxP-flanked

Rosa26LacZ reporter. Lgr5? cells were restricted to the

base of the pylorus crypts, and lineage tracing revealed that

they were rapidly self-renewing cells that gave rise to

multiple gastric epithelial progeny throughout adulthood,

hence possessing all the qualities of a stem cell [73]. When

these cells were deleted, however, there was no effect and
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the crypts remained intact. This revealed the presence of a

second stem cell pool, marked by Bmi-1 expression and

label retention and located at the ?4 position, that pro-

duced the Lrg5? cells but which could also directly

produce the cells of the crypt. Therefore, there are two

types of stem cell in the intestine, and whether one or both

are stem cells remains controversial. A worrying aspect of

these experiments is that the tamoxifen used to mark the

Lrg5? cells caused the apoptotic death of these cells [76,

77], which enhanced the production of cell progeny from

Lrg5? cells. Apoptotic suppression by genetic overex-

pression of Bcl-2 or knockout of Chk2 caused enhanced

production of Bmi1 cells, pointing to an apoptotic artifact,

but using a background, that may have influenced the

observations made. A further lesson from the studies of the

intestinal crypt is the ability of cells to dedifferentiate to

become stem cells. Buczaki and colleagues [78] used a

version of label retention, where the CreA fragment of the

CRE recombinase was fused with Histone 2B. Induction

(using beta-naphthoflavone) in double transgenic mice that

express CreB from the Rosa26 locus and the histone 2B-

CreA fusion gene, caused the CreA fragment to be retained

on histones of cells that had not divided. Administration of

intravenous dimerizing agent resulted in heterodimeriza-

tion of CreA and CreB to form a functional recombinase,

which marked non-proliferative cells. These cells were

chased and shown to become differentiated Paneth cells,

but could revert to become stem cells following tissue

damage that repopulated the crypt. Thus, the definition of a

stem cell needs to be carefully considered. In solid tissues,

stemness may be an activity, rather than an entity, that is

available to many cells to meet the spatial constraints of

solid tissue regeneration. This may be a key difference to

the stem cells of the immune system, which have provided

the paradigm for the mammary stem cell hierarchy. As we

will see, the problems of tamoxifen deletion of stem cells

and injury-induced formation of stem cells have most

recently arisen in the interpretation of mammary lineage

tracing.

As discussed above, the earliest examples of lineage

tracing in the mammary gland were performed in the Smith

laboratory using MMTV integration [12], and the same

laboratory was later involved with the description of an

adjunct mammary epithelial cell population [79] that was

later termed ‘‘parity-induced’’ mammary epithelial cells

(PI-MECs) [80], but is actually better described as ‘‘parity-

labeled’’ or ‘‘parity-amplified’’ as they are present before

pregnancy [81]. The description of this population pio-

neered inducible lineage tracing in the mammary gland

[79]. Here, transgenic mice-expressing Cre recombinase

under control of the mammary (and pregnancy)-specific

promoter for whey acidic protein (WAP) was crossed with

mice ubiquitously expressing a floxed Rosa/LoxP/Stop/

LoxP/lacZ gene. Lineage marking was induced by preg-

nancy. Cre-mediated recombination resulted in the

permanent expression of b-galactosidase, detected as a blue

color after X-Gal staining. Not all marked alveolar cells

underwent apoptosis during involution, and up to 20 % of

cells remained marked in involuted parous glands, com-

pared to 1 % in nulliparous glands. Transplantation showed

that these cells could produce both ducts and alveoli. These

cells accumulated as the lactation-deficient phenotype in

Prlr heterozygote animals resolved with repeated preg-

nancy and they serve as the cell of origin for neu-induced

tumors [80]. Interestingly, although the vast majority of

these cells are restricted to the alveolar lineages, some cells

show multipotency, seen as myoepithelial cells staining for

both beta-galactosidase and smooth muscle actin [82], or

using a WAP-driven Cre-activated GFP reporter, as GFP?

cells staining for K14. GFP? cells were able to reproduce

entire mammary glands in 4 of 11 attempts following the

transplant of 104 cells, suggesting multipotency [83]. GFP?

cells were observed within the CD24?/CD49fhi population.

WAP is thought to be a milk protein and so is considered

to mark differentiated cells, however, WAP is a direct

transcriptional target of the ETS transcription factor Elf5

[84]. Thus, WAP-driven lineage tracing may be equivalent

to Elf5-driven lineage tracing, albeit at reduced efficiency.

We have hypothesized that Elf5 expression has two major

effects in the mammary gland [85, 86]. When it is first

expressed it causes stem cells to become alveolar progen-

itor cells [87, 88], therefore defining the progenitor cell

populations by inducing epithelial characteristics [89].

Further increases in Elf5 expression, in response to hor-

monal influences [88] force a fate decision within the

progenitors, to become the Elf5hi secretory population, or if

estrogen signaling dominates to become the Elf5lo ER?

hormone-sensing population. WAP-directed lineage trac-

ing has the potential to infrequently label some very early

progenitor cells, which may still possess multipotency, and

some ER? sensor cells, but most of the labeled cells will be

the progenitors of secretory cells and their mature progeny

that form the alveoli. Thus, the observations of PI-MECs

with multipotency, self-renewal and common long-lived

alveolar progenitor activity can be readily understood. The

relationship of PI-MECs to alveolar progenitors, the sensor

cell population and Elf5 expression has recently been

defined by the laboratory of Pietersen and colleagues [90].

Using the WAP–CRE approach to activate a floxed-stop-

Rosa26 YFP cassette they observed overwhelming labeling

of the ER- secretory alveolar lineage, with just 6 % of the

ER? hormone-sensing lineage showing labeling. As no

YFP? cells were observed in the basal compartment by

flow cytometry, or by immunofluorescence or co-staining

with SMA, Pietersen and colleagues speculate that trans-

plantation may be the cause of observations of PI-MECs
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contributing to the myoepithelial lineage, though in these

types of experiments labeling inefficiency may also be a

cause. Conclusions based on the failure to make an

observation must be made with caution. qPCR measure-

ment of Elf5 in flow-sorted populations from involuted

parous glands showed that alveolar progenitors expressed

Elf5 and that a subset of these progenitors were labeled

with YFP. The equivalent progenitor activity of labeled and

unlabeled progenitor populations was seen in the YFP

expression pattern during subsequent pregnancies, with

alveoli showing either near complete or no/low frequency

of labeling, indicating their clonal origin and functional

equivalence [90]. These results support the contention that

WAP-driven labeling reports Elf5 activity, though at well

less than 100 % efficiency, and marks long-lived alveolar

progenitors. Elf5-driven fate mapping was reported this

year using doxycycline-inducible activation of the confetti

reporter under the control of the proximal region of the

Elf5 promoter [91]. Only luminal cells were marked. These

cells were long lived and a number contributed to the

formation of the alveoli during pregnancy, seen as multi-

colored alveoli. Again the conclusions that were drawn

regarding the absence of labeling in the ducts and of

myoepithelial cells must be treated with caution given that

marking cannot be 100 % efficient.

Blanpain and colleagues [92] investigated the issue of

transplantation altering stem cell activity. They observed

that K14-driven and doxycycline-inducible marking of

fetal mammary cells during late pregnancy labeled both

epithelial and myoepithelial cells, but that the same pro-

cedure immediately postpartum, or during puberty or

pregnancy, only labeled myoepithelial cells. A K5-driven

and tamoxifen-inducible system reproduced this result

[92]. Using luminal drivers such as K8 and K18, and

tamoxifen induction, only labeled epithelial cells were

observed. When K14-driven and doxycycline-induced

labeling of cells was performed in a 4-week-old mice, then

enzymatically disaggregated and transplanted, the myoep-

ithelial restriction was broken and both luminal and

myoepithelial cells were labeled. Recombination trans-

plantation experiments using these marked myoepithelial

cells mixed with increasing ratios of unmarked luminal

epithelial cells showed that the presence of luminal epi-

thelial cells inhibited the multipotency of the myoepithelial

stem cells. Thus, the conclusion drawn was that the epi-

thelial and myoepithelial lineages share a common stem

cell in utero, but from birth the gland is maintained by

unipotent stem cells that are restricted to the epithelial and

myoepithelial lineages. Postpartum multipotent stem cell

activity is either revealed, or produced, by transplantation.

Physiologically, the multipotent stem cell may be very

important for recovery from injury, such as mastitis, which

has a very high incidence in mammals during lactation.

Parallels between these unipotent stem cells (or are they

better called progenitor cells?) can be drawn with the

luminal- and myoepithelial-derived progenitors discovered

in earlier studies using markers of luminal cells (MFGM/

MAM-6/EpCAM) and myoepithelial cells (JB6/CALLA/

CK14), respectively [27, 28, 31, 32]. Whether these pro-

genitors represent the same cellular populations remains to

be determined.

Since the publication of this work by Blanpain and

colleagues, a number of papers have supported or ques-

tioned its conclusions. van Amerongen and colleagues [93]

used Axin2-driven and tamoxifen-inducible lineage tracing

of Wnt-responsive cells. When mammary cells were

labeled during the fetal period, marked cells were restricted

to the luminal fate with no marked basal cells observed by

flow cytometry. Labeling postpartum produced the oppo-

site result, labeling of basal not luminal cells. When these

cells were transplanted both luminal and basal layers of the

ductal tree were produced, and alveoli were now derived

from cells previously marked as basal. This pattern of

marking was transplantable and suggests activation of

multipotent stem cell activity by transplantation. Post-

pubertal animals continued to show a basal pattern of

labeling. During pregnancy this pattern persisted, but

newly formed alveoli showed labeled cells that produced

milk at the end of pregnancy. After multiple pregnancies

and involutions, this labeling pattern persisted in the ducts

and regressing alveoli. These findings, which are compat-

ible with the Blanpain model, show that Wnt activity

occurs in both the basal and luminal progenitor compart-

ments, but whether one becomes the other, as would occur

in a multipotent stem cell model, will require labeling with

confetti [94] or brainbow [72] to demonstrate clear clonal

decent. The ability of the mammary fat pad to influence a

mammary-like differentiation fate is well known [95, 96],

so there is precedent for mammary cells being so

influenced.

Visvader, Lindeman and colleagues [91] have used K5-

driven doxycycline-inducible linage tracing to demonstrate

that multipotent stem cells do operate during normal

development and are not simply a product of transplanta-

tion. The use of confetti mice allows the stochastic

production of multiple colors, allowing the simultaneous

observation of multiple clones within the same region of

mammary architecture [94]. Using this model in adult

mice, they observed labeled cells in both luminal and

myoepithelial lineages, and these cells contributed to

alveolar morphogenesis. A K14-driven and tamoxifen-

activated model, and a Lrg5-driven tamoxifen-activated

model produced the same result-labeled cells in both

myoepithelial, luminal and alveolar cells, consistent with

the activity of a multipotent stem cell during normal

mammary development. The disparity between this study
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and the previous studies is stark. Possible reasons include

model differences in promoter specificity and/or tran-

scriptional activity due to transgene insertion sites or the

different promoter fragments utilized, producing labeling

in different cell lineages and with different efficiencies.

The use of 2D rather than 3D confocal imaging is another

difference. The ability of high doses of tamoxifen to kill

mammary stem cells offers another distinction; however,

doxycycline is not thought to cause this problem (as yet),

and many of the divergent results were produced using

doxycycline, not tamoxifen to induce labeling. Drawing on

the lessons learned from the mapping of the cellular hier-

archy of the intestinal epithelium, where fast and slow stem

cells operate, and phenotypic plasticity occurs, the resolu-

tion of these disparate observations is likely to be in the

undiscovered complexities of the mammary hierarchy.

Lgr5?, a marker of pyloric stem cells, has also been

used to trace mammary cell lineages [97]. Just 5 % of

the CD24mid/CD49hi mammary stem cell-enriched popu-

lation expresses Lgr5. Interestingly, lineage tracing of

Lgr5? cells from the first day after birth resulted in

labeling of the luminal progenitor cell compartment only,

and only when cells were traced from the twelfth day of

birth did Lgr5? cells label the myoepithelial compart-

ment. The switching in the Lgr5? progenitor cell activity

may reflect changes in Wnt signals from the microen-

vironment at different developmental stages. Importantly,

these results add further evidence that distinct mammary

progenitors have discrete roles at various stages of

development.

There may be several new progenitor cells that are yet

to be revealed. Fascinating evidence for this comes from

the study of Sale and colleagues who traced Notch2

expression [98]. Small Notch2-expressing cells formed

rings around a large Notch2 cell, and these colonies

occurred in a repetitive and equally spaced arrangement

within the terminal end bud and the trailing duct, where

the pattern persisted post-pubertally. Large Notch2? cells

appeared with random frequency throughout the duct. All

Notch2? cells expressed keratin 8 and not keratin 14

showing them to be exclusively epithelial. They fall

within the CD24?CD29low population and many are also

CD61? suggesting there are potential progenitor cells

among them. Transplantation showed no outgrowths

from these populations and lineage tracing showed no

clonal alveolar development, indicating that these cells

are not classical progenitors. Small cell strings were

localized at tertiary branch points, and forcing the

expression of the diphtheria toxin receptor under Notch2

control resulted in the cessation of branching when

diphtheria toxin was administered mid-puberty. At

pregnancy, diphtheria toxin prevented correct alveolar

morphogenesis, resulting in poorly organized hyperplastic

regions where alveoli should have formed, and little milk

protein synthesis. These cells show morphologic simi-

larity to the small light cells and large light cells

previously identified using ultra-structural microscopy in

the Smith laboratory [20]. The source of these cells

remains unknown. Regardless, it is clear that the lineages

within the mammary gland are far more complex than

currently realized.

Lineage tracing studies have therefore identified new

progenitor subtypes that have discrete roles in a stage-

dependent context. Importantly, these techniques have

revealed key differences in the lineage potential of mam-

mary stem and progenitors in unperturbed glands in vivo

compared to those where these populations have been

isolated by flow cytometry and examined in mammary

reconstitution assays. The extent of the overlap between

these new progenitor subtypes and those identified in early

morphological and prospective isolation studies remains to

be determined. The advent of superior lineage tracing

techniques, for example those that employ Brainbow or

Confetti transgenic mice [72, 94], paves the way for a more

advanced understanding of the mammary cellular hierar-

chy. The challenge now is choosing appropriate genes to

drive lineage marking. The best genes for this purpose are

those that define the various lineages within the mammary

gland.

Regulation of the mammary cellular hierarchy

The Smalley laboratory showed that a hormone-sensing

population exists separately from stem cell activity [43].

It is widely accepted that steroid receptor expression

segregates from proliferating cells, and that paracrine

signals from steroid receptor-positive cells must con-

tribute to the proliferation of adjacent hormone receptor-

negative cells [44, 45, 99]. The mammary stem cell-

enriched population is likely negative for the expression

of steroid hormone receptors, so the question remains,

how do steroid hormones regulate the proliferation and

self-renewal abilities of mammary stem cells? That ste-

roids do influence stem cells was demonstrated by the

Khokha and Visvader laboratories [6, 100]. At diestrous,

when progesterone levels are highest, the absolute

numbers of CD24?/CD49fhi mammary repopulating units

in the mammary gland increase by up to 14-fold over

that observed at estrous [100]. Furthermore, the size and

repopulating capacity of the CD24?/CD29hi mammary

stem cell population decreased in ovariectomised mice

and increased in mice treated with estrogen [6] and

progesterone [6, 100]. Three weeks of treatment with the

aromatase inhibitor Letrozole, which inhibits the syn-

thesis of estrogen, is sufficient to significantly decrease
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the numbers and activity of mammary stem cells [6].

These results suggested that a paracrine mediator is

responsible for the proliferation and maintenance of

mammary stem cells, and a likely candidate was the

progesterone-regulated RankL [100]. In fact, it is now

understood that PR has two modes of mitogenic action

in the mammary gland; firstly a cyclin D1-dependent

stimulation of proliferation of PR? cells, and secondly a

RankL-mediated paracrine action on nearby PR- mam-

mary epithelial cells [101]. Indeed, treatment of mice

with a RankL-neutralizing antibody decreased both the

numbers and the colony-forming ability of CD24?/

CD29hi mammary stem cell-enriched population [6].

Hence, mammary stem cell maintenance likely occurs

via paracrine signals that include RankL, which is

released from neighboring steroid receptor-positive cells

where it is induced by steroid hormones. RankL activi-

ties are not confined to the mammary stem cell

compartment as RankL can also stimulate the expression

of the transcription factor Elf5 in progesterone receptor-

negative luminal progenitor cells and promote alveolar

development [88]. In these experiments, progesterone

treatment of mice alone resulted in an expansion of the

CD24?/CD29hi mammary stem cell-enriched compart-

ment, confirming progesterone driven action on

mammary stem cells. Progesterone also resulted in

a depletion of the CD24?/CD29lo/CD61? luminal pro-

genitor cell population and drove its differentiation

toward the CD24?/CD29lo/CD61- mature luminal cell.

Forced expression of Elf5 in the luminal compartment,

together with progesterone treatment, completely deple-

ted the luminal progenitor population and resulted in the

expansion of the mature alveolar lineage. RankL-neu-

tralizing antibody blocked the action of progesterone in

this model and suggested that most of the action of

progesterone on luminal cell differentiation is dependent

on RankL paracrine signaling. Forced Elf5 expression

also reduced stem cell numbers, suggesting an action of

Elf5 to differentiate these cells. Hence, both mammary

stem and luminal cells are regulated by paracrine signals

from committed steroid receptor-positive luminal cells.

Paracrine signals from basal epithelial populations

may also control the proliferation and fate of the luminal

epithelium. Forster and colleagues provide evidence for

this. Genetic deletion of the transcription factor p63 in

K14-positive basal epithelium resulted in profound

defects luminal cell proliferation and differentiation

during pregnancy [102]. No changes in basal cell number

or proportion were detected; however, the proportion of

luminal progenitors (CD24?/CD29lo/CD61?) accumu-

lated in the mammary glands of mice, suggesting that

they had failed to differentiate into mature alveolar cells.

These p63-competent luminal epithelial cells could be

made to differentiate into large alveolar-like colonies

when cultured in complete medium suggesting that a

p63-dependent paracrine factor released from basal cells

may be responsible for their fate. This factor was found

to be neuregulin (Nrg1, heregulin-alpha), produced by

the basal epithelia, and found to be a direct transcrip-

tional target of p63. Exogenous Nrg1 rescued the

lactation phenotype in recombined glands with basal cell

p63 deletion, and this occurred through activation of the

ERBB4/Stat5A in neighboring luminal epithelial cells

[102]. Hence, in addition to paracrine signals that travel

from luminal sensor population to other luminal cells

and basally located mammary stem cells, basal cells

themselves can send signals back to regulate the fate of

the luminal epithelium. This ‘teamwork’ likely underlies

every aspect of breast development and homeostasis and

is only beginning to be unraveled [103].

Transcription factors govern large genomic networks

and regulate cell fate specification within the mammary

cellular hierarchy. For example, the expression of the

transcription factor Gata3 is highly enriched in the

CD24?/CD29lo/CD61- mature populations and mam-

mary specific loss of this transcription factor resulted in

at least a twofold increase in the size of this population,

whether isolated from a virgin gland or during preg-

nancy. Furthermore, forced expression of Gata3 in the

CD24?/CD29hi mammary stem cell-enriched population

resulted in the expression of markers of luminal cell

differentiation and milk proteins. These results suggested

that Gata3 is essential for luminal cell fate specification

at multiple stages of the mammary cellular hierarchy [5].

The fate of the CD24?/CD29lo/CD61? luminal progeni-

tor is also driven by the Ets transcription factor Elf5.

Mammary specific loss of Elf5 results in complete fail-

ure of alveolar morphogenesis and milk secretion [8].

Conversely, forced expression of mammary specific Elf5

results in precocious alveolar differentiation of virgin

epithelium and milk production together suggesting that

Elf5 is the master regulator of alveolar morphogenesis. A

greater proportion of the CD24?/CD29lo/CD61? luminal

progenitor population is observed in Elf5 knockout

mammary glands and the converse was true in transgenic

animals expressing Elf5, where forced expression of Elf5

eroded the CD24?/CD29lo/CD61? luminal progenitor

and specified its differentiation along the alveolar cell

lineage. It is likely that Elf5 expression is a key deter-

minant in the differentiation of stem cells to progenitor

cells, via its epithelializing influence [86, 87], which

distinguishes the myoepithelial and epithelial lineages

and correlates with the loss of epigenetic silencing of

Elf5 in epithelial cells, but not the stem and myoepi-

thelial compartments. Elf5 is then also involved in the

determination of the two progenitor lineages via a
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Fig. 1 The stem cell niche during mammary development and

carcinogenesis. a Traditional view of the mammary hierarchy: a

mammary stem cell resides at the top of the hierarchy, present in the

embryonic mammary gland and possibly in the adult. It gives rise to

committed bipotent progenitor cells, which under the influence of

extracellular and intracellular cues give rise to progenitors and mature

cells in their respective lineages. b The mammary hierarchy exists

within a cellular niche that has different activities, and locations, with

each developmental stage. c The activity of the niche is disrupted

during carcinogenesis, the exact nature of which may produce the

heterogeneous cancer subtypes observed
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mutual negative regulatory loop involving ER and

FoxA1, so that one or the other phenotype is fixed by

dominant transcriptional repression of the other [85, 86,

104].

The NOTCH signaling pathway has also been shown to

play a role in lineage specification in the mammary gland.

The Notch pathway involves juxtacrine signaling between

cells in direct contact with each other via the Notch

transmembrane ligands (Delta-like DLL1, 3, 4 and Jagged

Jag1–2) of one cell and the Notch transmembrane receptors

(Notch 1–4) on a neighboring cell [105]. The cleaved

intracellular domains of the Notch receptors (NICD)

translocate to the nucleus where they also activate pro-

grams of transcription. The Notch active intracellular

domain is released by gamma secretase cleavage permit-

ting its translocation to the nucleus where it interacts with

the CSL complex to activate the transcription of target

genes that include Hes and Hey. The expression of Notch

ligands, receptors and transcriptional targets is differen-

tially regulated in mammary stem, luminal progenitor and

mature luminal enriched populations [106]. Interestingly,

Notch4 was first discovered as an integration site for

MMTV, previously termed Int3, which resulted in the

constitutive expression of a cleaved form of Int3/NICD4,

which drives the formation of mammary tumors [107, 108].

The expression of NOTCH1-signaling components is

greatest in the luminal lineages, and forced expression of

the active NICD1 in CD24?/CD29hi mammary stem cell-

enriched population directs this population towards the

luminal cell lineage [106]. Conversely, knockdown of

CBF-1, a target of NICD1 resulted in expansion and

increased repopulating capacity of the mammary stem cell-

enriched population. The effects of Notch in mammary

stem cells are likely mediated at least in part via signals

from Elf5 [87]. Interestingly, forced Notch signaling in

luminal progenitor cells resulted in an expansion of this

compartment and the formation of luminal (CK8?/CK18?/

E-cadherin?/SMA-/p63-) hyperplastic alveolar nodules

when transplanted into de-epithelialized mammary glands

[106]. Similar regulation of human breast stem and pro-

genitor cells is apparent in the human breast [109]. Further,

inappropriate expression of Notch results in transformation

of luminal progenitor cells. These data demonstrate that

Notch is essential for restricting the expansion of mam-

mary stem cells and for driving luminal cell commitment.

Recent evidence suggests a number of additional sig-

naling pathways and transcription factors can regulate

specific aspects of the mammary cellular specification [7,

9]. Hence, lineage specification and homeostasis of mam-

mary stem and progenitor cells is governed by interactions

among steroid hormone-signaling paths, lineage-specific

transcription factors and signals derived from the extra-

cellular niche.

Stem cells in cancer

Substantial evidence confirms the existence of cancer stem

cells in several tissues. The existence of cancer stem cells

was demonstrated in human leukemia, where limiting

dilution xenotransplantation of CD34?/CD38- leukemic

cells recapitulated the entire original tumor, whereas

CD34?/CD38? and CD34- leukemic cells were not

tumorigenic at any cellular concentration [110, 111].

Subsequent studies demonstrated that the tumorigenic

potential was not restricted to these markers as human

CD34?/CD38? leukemia cells also produced tumors in

mice [112–115]. In an attempt to isolate and understand

tumorigenic from non-tumorigenic breast cancer cells, Al-

Hajj and colleagues [40] used antibodies against CD24

(Heat stable antigen/HAS/BA-1) and CD44 (H-CAM/Pgp-

1) to separate heterogeneous cell types in patient-derived

xenografts grown in immune-compromised mice. These

cell surface receptors bind cell adhesion molecules on

neural stem cells and melanoma cells [116, 117]. Cells

derived from leukocytes, endothelial cells, mesothelial

cells, and fibroblasts were eliminated using the lineage

markers CD2, CD3, CD10, CD16, CD18, CD31, CD64,

and CD140b [40]. Lineage cells that were positive for

CD44 and had no or low expression of CD24 (CD44?/

CD24-/lo) were enriched for tumorigenic activity [40]. In

contrast, CD24? contained differentiated tumor cells that

failed to form tumors. Further enrichment of tumorigenic

cells was achieved with additional staining using an anti-

body to ESA or EpCAM. Importantly, ESA?/CD44?/

CD24-/lo cells isolated from patient xenografts in mice

could give rise to the complete cellular heterogeneity

observed in the primary tumor in serially passaged xeno-

grafts, hence lineage-/ESA?/CD44?/CD24-/lo tumorigenic

cells were self-renewing and multipotent cancer stem cells

[40]. Whether these tumorigenic cells represent the cellular

origins of breast cancers remains to be determined.

Since these experiments, an understanding of cancer

stem cells has evolved rapidly [118–123]. The CD44?/

CD24lo definition has also been found to enrich for cancer

stem cells in the Her2/Neu mammary tumor mouse model

[124]. Similar to observations of cancer stem cell pheno-

types in hematopoietic malignancies, CD44?/CD24lo is not

a universal marker of cancer stem cells in breast cancer.

Furthermore, differences in the oncogenic mutations that

drive transformation have profound effects on the fre-

quency and phenotype of cancer stem cells. This is true for

mouse models of mammary cancer. The CD24?/CD29lo/

CD61? immuno-phenotype enriched a population of can-

cer stem cells in Wnt1-driven tumors, and in part in tumors

that develop in p53 heterozygote mice, but not in tumors

driven by overexpression of Her2/Neu [125]. Although

these studies clearly demonstrate the existence of small
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population of cancer stem cells, like the situation in normal

mammary gland, no markers have been found to reliably

define cancer stem cells in mammary cancers.

The progenitor cell as the major origin of breast cancer

Stem cells could serve as the cell of origin of cancer as they

are self-renewing, long-lived and hence likely to accumu-

late mutations over time [126–128]. Efforts have been made

to match the intrinsic molecular subtypes of breast cancer

with distinct cancer stem cells. Tumors could arise from

committed progenitor cells, with enough residual multipo-

tent potential to give rise tumor cellular heterogeneity,

comprised of lineage-committed tumor cells and small

proportions of tumor-initiating cells. Stem cells may

acquire the first genetic aberration and give rise to progeny

that is predisposed to further mutations, triggering the onset

of the disease [119]. Tumors display a dichotomy of hor-

mone-responsive and non-responsive cells, where

expression of ER and PR is variable within each intrinsic

molecular subtype [128]. This dichotomy resembles that

observed in the normal mammary gland. Whether tumors

arise from transformed mammary stem cells that acquire

heterogeneity through clonal evolution, or whether cancer

arises from committed progenitor(s) or transit-amplifying

cells is still unclear. It is more likely that both mechanisms

coexist with different incidence in distinct breast cancer

subtypes.

Research in hematopoietic malignancies provides evi-

dence that committed progenitors cells may serve as cells

of origin for malignancy [129]. Similar results have been

shown for breast cancers [52, 119, 130] as was demon-

strated by Molyneux et al. in 2010 [131]. In this study

deletion of Brca1 in Blg (b-lactoglobulin)-positive luminal

progenitors from p53?/- mice produced ER-basal tumors

that phenocopied Brca1 mutant tumors, whereas depletion

of Brca1 in the CK14? basal progenitor produced basal-

like breast cancers that did not resemble those found in

human patients, suggesting that Brca1 tumors likely arise

from a luminal progenitor. This work is supported by the

result that the luminal population is larger in Brca1

mutation carriers and possesses growth factor-independent

growth properties [52]. Similarly, constitutive activation of

the Notch1 pathway in luminal progenitors resulted in their

transformation and resulted in hyperplasias with luminal

characteristics [106]. Transformed committed progenitor

cells may also dedifferentiate and acquire stem cell-like

properties. A model for committed progenitors that acquire

stem cell properties during regeneration/wound-healing

responses has being described for prostate testis and pan-

creas [51, 132, 133]. These data support the notion that

malignancy may originate in the progenitor cell

compartment and result in the establishment of heteroge-

neous subtypes of breast cancer.

Following this hypothesis, factors which determine the

cell fate decisions of the normal progenitor cell are likely

to be key determinants of tumor phenotype, response to

therapy and molecular subtype. Thus, transcription factors

that specify normal mammary cell fate, such as Elf5 or

Gata3, also have a profound effect on tumor progression

[64, 86, 89, 134, 135] and therapeutic resistance [86]. For

example, forced expression of Elf5 in ER-positive luminal

breast cancer cells reduced ER and FOXA1 expression and

suppressed the luminal subtype molecular signature [86].

Knockdown of Elf5 in basal breast cancer cells also

resulted in a shift in their molecular signature toward a

claudin-low and normal-like subtype of breast cancer

suggesting that Elf5 is a key determinant of breast cancer

intrinsic molecular subtype. Elf5 expression is greatly

increased when MCF-7 breast cancer cells acquire

Tamoxifen or Faslodex resistance by long-term exposure to

these anti-estrogens, and these cells also become dependent

on Elf5 for their proliferation, suggesting that Elf5 is a key

determinant for anti-estrogen resistance [86].

Additional sources of breast cancer heterogeneity

In addition to the cell of origin, many other factors con-

tribute to the observed molecular tumor heterogeneity

[136–139]. Transcription factors figure prominently in the

differential signatures [64, 85, 86, 140, 141]. Tumors

exhibit marked morphological heterogeneity [127, 142].

Clonal evolution of tumors could result in tumor hetero-

geneity [143] via the acquisition of advantageous

mutations that confer survival advantages [126]. Further-

more, heterogeneity may arise in response to the tumor cell

microenvironment, where for example, tumor cells directly

in contact with blood vessels are different from those in an

anaerobic environment far from the vasculature [144]. The

effect of the microenvironment is a critical source of tumor

heterogeneity [126, 145, 146]. The suggestion that mam-

mary stem cells are located in a ‘suprabasal’ niche within

the mammary gland [22, 32, 47, 48, 147], imply that such

cells will be poised to respond to extracellular cues that

regulate their fate [148]. There are examples in multiple

tissues suggesting that the niche provides signals to

maintain the self-renewal capacity of stem cells and upon

exiting of this niche, stem cells undergo differentiation

[149]. The existence of a stem cell niche [150], and the

effect of hormones and paracrine factors on mammary stem

cells during mammary gland development [88, 151–153],

may similarly affect cancer stem cells resident in breast

tumors. Furthermore, tumors contain more than tumor

cells; for example, endothelial cells, immune-infiltrated
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populations and fibroblasts. Each cell type plays an

important role during the initiation and progression of the

disease [154–156]. Epigenetics have been shown to play a

strong role during development [157] including mammary

development [104, 158], defining different lineages and

specifying epithelial functions. Therefore, it is reasonable

to think, epigenetic remodeling is similarly crucial for the

definition of tumor populations as a mechanism to define

committed decisions [159–161]. Together with genomic

instability, the underlying epigenetic mechanisms of nor-

mal mammary morphogenesis must be considered as a key

factor that contributes to tumor heterogeneity [162] as

many types of cancer retain certain a hierarchal organiza-

tion. In mouse models of mammary cancer, distinct

oncogenic insults produce different cancers supporting the

importance of the genetic mutation for the generation

of heterogeneous tumor phenotypes. [125, 163, 164].

Implications for therapy

Cancer stem cells provide an attractive target for the

development of novel cancer therapies and are likely

arbiters of the failure of anticancer therapies and relapse

[165]. Furthermore, cancer stem cells are considered to be

intrinsically resistant to chemotherapy [162] and radiation

[166]. Endocrine therapies, such as tamoxifen and aroma-

tase inhibitors for ER? disease or herceptin, have proven

efficacious [167], but may only target the ER? and HER2-

overexpressing mature tumor cell types and not multipotent

undifferentiated cancer stem cells [128]. These thera-

pies may also target the tumor microenvironment and

indirectly affect tumor cell interactions with the cancer

stem cell [168]. For example, it has been demonstrated that

a mechanism of action of trastuzumab is to attract immune

cells to the tumor site generating antibody-dependent cel-

lular cytotoxicity [169, 170].

New treatments have been developed that have been

designed to target cancer stem cells. An 11-gene stem cell

signature based on the Bmi-1 renewal pathway can predict

poor prognosis in multiple types of cancer including breast

cancer [171]. New therapies include those that induce

lineage maturation of cancer stem cells. Such a therapy has

been used in acute promyelocytic leukemia [172] or glio-

blastoma [173], producing growth arrest in tumor cells by

forcing their terminal differentiation. The rational behind

this type of therapy is not only to overcome intrinsic cancer

stem cell resistance and sensitize them to conventional

therapy, but also to prevent tumor cell dissemination. This

is because it has been suggested that although differenti-

ated tumor cells are able to seed in distant organs, only the

cancer stem cell will produce clinically relevant macrom-

etastasis [162, 174].

Conclusions and Perspectives

The mammary cellular hierarchy exists as a dynamic state

and which is intrinsically plastic (Fig. 1, cell types from the

seminal publication of Chepko and Smith [20]). The mul-

tipotent stem cell is thought to sit within a controlling

niche, where is poised to respond to exogenous cues and

signals from the niche microenvironment, to give rise to

more lineage-restricted oligopotent stem cells during post-

natal development. We know very little about the nature of

the niche, from its composition to the way it may control

mammary stem cell function, and these aspects are among

the key unanswered questions of mammary biology. We

can infer a little more regarding its location. During

embryogenesis, the mammary placodes form and invade

the underlying mesenchyme, to form the rudimentary

ductal network found at birth [176]. Within the placode,

the initial niche architecture is presumably laid down, with

the leading edge of invasion carrying a niche into the

mesenchyme. During ductal elongation, the niche repro-

duces itself while also depositing copies along the length of

the duct. Puberty activates the multipotent stem cells at the

ductal termini, which may divide in specific directions, so

that division along the plane of ductal elongation produces

myoepithelial-committed oligopotent stem cells in the

forward direction and luminal-committed oligopotent stem

cells in the reverse direction. In turn, these stem cells

produce the two major cell lineages of the mammary epi-

thelium, with terminal end bud cap cells, derived from

forward stem cell divisions, becoming the myoepithelial

layer, and the terminal end bud body cells, derived from

reverse divisions of the stem cell differentiating to become

the luminal lineages. If the stem cells divide in a direction

across the niche they may reproduce themselves, and so

seed the mammary epithelium with multipotent stem cells

as the terminal end bud advances. As ductal elongation

proceeds, the niche bifurcates to produce the characteristic

‘‘Y’’-shaped branch points. These myoepithelial and epi-

thelial niches deposited along the duct must cooperate to

produce ductal side branching, recognized as ‘‘T’’-shaped

branch points, in response to estrous/menstrual cycles and

pregnancy [182, 183]. Alternatively, there may be only one

type of niche and stem cell, which is able to vary the type of

cells it produces depending on context. Transplantation, or

the conditions of initial mammary development postpartum

or at puberty cause it to act as a mutipotent stem cell in

response to wound-healing stimuli, while lineage tracing

in vivo shows it to behave as an oligopotent stem cell with

more restricted epithelial or myoepithelial commit-

ment [91, 92]. Non-Waddington stem/progenitor cell

dedifferentiation and transdifferentiation should also be

considered as a response to disruption of the niche. How the

niche may contribute to cancer heterogeneity is also a key
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question. Currently, it appears that the luminal progenitor is

the basis of most breast cancers, comprised of luminal and

basal subtypes (Fig. 1) with the stem cells producing much

rarer mesenchymal subtypes such as the claudin-low can-

cers. Additional progenitor lineages may yet be discovered,

say for example one driven by progesterone that may

account for the luminal B type of cancers [175]. If the stem

cell is the target of oncogenic change, and the niche retains

its responses to external stimuli, then a wide variety of

tumor phenotypes could be produced from the same core

group of cells, with the niche replicating itself within the

tumor and its metastases. New technologies such as lineage

tracing, single cell whole genome analysis and our rapidly

evolving understanding of epigenetic control make this an

exciting time in mammary biology.
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Appendix: Mammary gland morphology

and development

The mature mammary gland is composed of a bi-layered

epithelium consisting of luminal cells that give rise to the

milk-secreting alveoli during pregnancy, surrounded by

contractile myoepithelial cells that contribute to milk

ejection during lactation. These layers of epithelium are in

close proximity to the extracellular matrix (ECM) and sit in

a bed of stroma consisting of adipocytes and fibroblasts,

and infiltrated with the blood and lymph vasculature.

Macroscopically, mouse mammary epithelium forms

a complex network of ducts terminating in alveolar buds

connected to the nipple by a single canalized duct. In the

human, terminal ductal lobular units cap the ends of the

ducts and are made up ductules and alveolar buds.

Reproductive hormones from the endocrine system, toge-

ther with secreted factors from epithelial cells and the

extracellular matrix, drive cell fate and functional differ-

entiation within the mammary epithelium in a spatial and

temporal manner during all stages of mammary

development.

Mammary gland or breast morphogenesis occurs lar-

gely after birth from a rudimentary ductal tree that forms

during embryogenesis (Fig. 2). Mammary embryonic

development gland is initiated at embryonic day 10–11 in

the mouse and at 4 weeks in the human [57, 176], where

primordial mammary buds emerge from thickenings of

the ectoderm (placodes) along the milk line that forms

primitive mammary buds and at birth the rudimentary

ductal tree [176, 177]. Each duct is capped with terminal

end buds which are composed of an outer layer of

undifferentiated cap cells, inner layers of highly prolif-

erative luminal epithelial cells and an apoptotic plate

behind the luminal cells resulting in ductal canalization

[178]. The rudimentary mammary epithelium enlarges

isometrically until puberty, largely under the influence of

growth hormone and estrogen [179–181].

Pituitary gonadotropins trigger the onset of puberty

[182] and mammary ductal branching morphogenesis in

response to oscillating levels of estrogen and progester-

one during the estrous cycle [183, 184]. The cyclical

surges of ovarian hormones post-puberty result in con-

tinuous rounds of proliferation and incomplete apoptosis,

and result in the establishment of a complex network of

ducts that penetrate to the extremities of the fat pad

[185–188].

Pregnancy triggers alveolar morphogenesis and is under

systemic control of luteal progesterone, pituitary prolactin

and later placental lactogen. The mammary epithelium

undergoes rapid proliferation resulting in increased

branching and the development of the alveolar epithelium,

which terminally differentiates into the alveolar epithelium

capable of milk secretion at mid-pregnancy [189, 190]. At

weaning, this newly formed alveolar epithelium regresses

via apoptosis leaving the ductal epithelium largely as it was

prior to pregnancy [191], although it is now recognized that

some parity-induced mammary epithelial cells remain [79,

82] concomitant with permanent changes gene and protein

expression [192].

b Fig. 2 Mammary gland development, embryonic to pregnancy and

beyond. a The mammary gland emerges from mammary placodes that

form along the milk line at embryonic day 10–11. At birth, the

mammary epithelium emerges from the placode and grows isomet-

rically until puberty when rapid expansion of the epithelium extends

the ducts throughout the fat pad. Ductal side branches sprout from the

lateral surfaces of the ducts in multiple rounds of proliferation

throughout each estrous cycle and results with the complete filling of

the mammary fat pad. This process is collectively termed ductal

morphogenesis. Pregnancy induces alveolar morphogenesis where

proliferation establishes the alveolar epithelium, which then differ-

entiates into milk-secreting alveoli at mid-pregnancy (lactogenesis

I/secretory initiation). The final phase of differentiation results in milk

and lipid movement into the alveolar lumens ready for lactation

(Lactogenesis II/secretory activation). Milk ejection maintains lacta-

tion, and after weaning the mammary gland undergoes rapid

programmed cell death (involution), returning the gland to a near-

virgin state. b Mammary whole mounts (Carmine alum stain top row)

and mammary cellular architecture (hematoxylin and eosin histology

bottom row) in virgin, 6 days post coitus (dpc), 12 dpc, 18 dpc and

1-day postpartum (1dpp) murine mammary glands. Ductal epithelial

cells (arrow), myoepithelial cells (arrowhead) and adipocytes (A) are

indicated. Alveoli form a sphere-like single layer of epithelial cells

enveloping a circular lumen (X) and contain cytoplasmic lipid

droplets from 18 days post coitus, after secretory initiation (asterisk).

At parturition, tight junctions between alveolar cells close and milk

proteins and lipid are secreted into the alveolar lumen (X). An

expansion of the vasculature (open arrows) and reduction in area is

also apparent in the stroma
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