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Abstract—Emerging smart grid technologies and increased 
penetration of renewable energy sources (RESs) direct the power sector 
to focus on RESs as an alternative to meet both baseload and peak load 
demands in a cost-efficient way. A key issue in such schemes is the design 
and analysis of energy-trading techniques involving complex 
interactions between an aggregator and multiple electricity suppliers 
(ESs) with RESs fulfilling a certain demand. This is challenging because 
ESs can be of various categories such as small/medium/large scale, and 
they are self-interested and generally have different preferences towards 
trading based on their types and constraints. This paper introduces a 
new contract-theoretic framework to tackle this challenge by designing 
optimal contracts for ESs. To this end, a dynamic pricing scheme is 
developed that the aggregator can utilize to incentivize the ESs to 
contribute to both baseload and peak load demands according to their 
categories. An algorithm is proposed that can be implemented in a 
distributed manner by trading partners to enable energy trading. It is 
shown that the trading strategy under a baseload scenario is feasible, 
and the aggregator only needs to consider the per unit generation cost of 
ESs to decide on its strategy. The trading strategy for a peak load 
scenario, however, is complex and requires consideration of different 
factors such as variations in the wholesale price and its effect on the 
selling price of ESs, and the uncertainty of energy generation from RESs. 
Simulation results demonstrate the effectiveness of the proposed scheme 
for energy trading in the local electricity market.  
 

Index Terms--contract theory, electricity suppliers, energy trading, 

microgrid, renewable energy. 

I.  INTRODUCTION 

ITH increasing fossil-fuel prices and climate change, many 
countries have started to rely on renewable energy sources 

(RESs) to meet the growing electricity demand [1][2]. For example, 
Australia sets a target of a 20% share of renewable energy in its 
electricity supply by 2020 [3]. Such a widespread growth of RESs 
and advancements in smart-grid technology will open new 
opportunities for electricity trading between aggregators and 
electricity suppliers (ESs). However, the effectiveness of the trading 
largely depends on the willingness of ESs to participate. In reality, 
ESs are self-centered and want to maximize their benefits regardless 
of whether a certain demand is met or not [4]. Meanwhile, an 
aggregator is also a profit-seeking entity interested to maximize its 
utility. As such, considering the rationality of the different electricity 
entities, an incentive scheme is required to motivate them to trade 
energy.    
     Existing incentive-driven energy trading schemes can be generally 
classified into three types: 1) price-based, 2) game-theoretic, and 3) 
contract-theoretic. Pricing is a powerful tool for energy management 
incorporating an increasing penetration of RESs.  
…………………………………………………………………… 

Uzma Amin is with the School of Engineering, Macquarie University, NSW 2109, 

Australia, email: uzma.amin@hdr.mq.edu.au. 

M. J. Hossain is with the School of Electrical and Data Engineering, University of 
Technology Sydney, NSW 2007, Australia, email: jahangir.hossain@uts.edu.au. 

Wayes Tusher is with the School of ITEE, University of Queensland, QLD 4072, 

Australia, email: w.tusher@uq.edu.au 
Khizir Mahmud is with the School of Electrical Engineering and 

Telecommunications, University of New South Wales, NSW 2052, Australia, email: 

khizir.mahmud@unsw.edu.au. 
 

 

 
 

It stimulates consumers to behave in an economically optimal way by 
changing their consumption patterns when electricity prices are high. 
In [5] and [6], a zero-pricing and a dynamic period partition time of 
use (TOU) program is proposed respectively, considering current 
market policies and the surge of renewable-energy development to 
improve the effectiveness of TOU at the residential level. In [7]-[9], 
various load-scheduling and energy storage control strategies are 
proposed using real-time pricing (RTP) mechanisms for residential 
sites with integrated renewable generation. Although price-based 
strategies are easy to deploy, their main challenges are to maintain 
reliability, predictability, and stability of the grid. For instance, it is 
shown in [10]-[11] that large-scale implementation of price-based 
programs under the RTP schemes creates power grid stability 
problems.   
 Game theory, a well-developed mathematical tool that facilitates  
the modeling of rational users [4], has been used to analyze the 
trading decisions of electricity suppliers and consumers in a smart 
grid [12]-[16]. For instance, in [12], a game-theoretic approach is 
adopted to fairly allocate and reduce using distributed generators’ 
(DGs) participation in an energy management system. The 
researchers in [14] present a non-cooperative distributed-
coordination control approach to coordinate the individual’s benefits 
in a multi-grid environment, and employs differential game theory to 
achieve the global objectives. However, most of these game-theoretic 
models are based on symmetric information models assuming that 
players have all the necessary information for electricity trading such 
as the per-unit generation cost of electricity of each supplier and their 
type.   
     Given this context, researchers focused on the contract-theory 
approach to incentivize trading participants in the presence of 
asymmetric information where actual category, type and the marginal 
cost of electricity of each supplier is unknown to form a practical 
scenario [17]. It is based on the principal-agent theory, in which a 
principal offers the right contract items to the agents to achieve 
maximum utility, and the agents truthfully select the contract items 
according to their type, for example, consumption and generation, to 
maximize their utilities [18]-[19]. Recently, several studies have used 
contract theory to model the electricity market mechanism. For 
example, in [20], a contract-based scheme is proposed to coordinate 
many electric vehicles (EVs) to achieve the charging/discharging 
request. In [21], a framework is proposed to facilitate electricity 
trading between aggregators, suppliers, and consumers. In this 
scheme, a coalition of suppliers will sell excess power and revenue is 
divided among partners based on the asymptotic shapely values. The 
work in [22] presents a peer-to-peer energy-trading scheme that 
consists of energy-contract offers between fuel-based generators and 
end-users with inflexible and flexible loads. In [23], a contract-theory 
based direct energy-trading model is used to address the intermittency 
of RESs.  
 Indeed, these existing studies have significantly contributed in the 
area of energy management through energy trading techniques. 
However, further research work is required to establish the energy 
trading benefits to the existing power system to implement the energy 
trading markets in grid-connected systems [24]. Moreover, in real 
electricity markets, high volatility and high prices are observed with 
the deregulation of electricity markets due to various reasons [25], 
therefore, optimal trading strategies that consider price uncertainties 
are needed. These studies would facilitate the integration of energy 
trading mechanisms into energy policy. One possible way to show 
that the energy trading mechanisms can complement the traditional 

Energy Trading in Local Electricity Market with 

Renewables- A Contract Theoretic Approach  
Uzma Amin, M. J. Hossain, Senior Member, IEEE, Wayes Tusher,  Senior Member, IEEE and Khizir 

Mahmud 

W 

mailto:jahangir.hossain@uts.edu.au
mailto:w.tusher@uq.edu.au
mailto:khizir.mahmud@unsw.edu.au


 

power systems is to establish its benefit for an energy retailer 
(aggregator) considering price variations. The current work is an 
attempt to establish such a benefit of energy trading strategy by 
proposing a framework of a dynamic price based trading strategy that 
can help the aggregator to reduce its cost of energy supply to the 
consumers and energy purchased from the wholesale market at peak 
demand periods.  
 In a developed strategy, the aggregator as a principal strategically 
sets the purchasing price per unit of electricity for various types of 
ESs at peak demand periods considering the effect of high wholesale 
price during peak demand on their selling price and uncertainty in 
their reliability. With this strategy, the aggregator ensures either the 
purchase of energy from the wholesale market reduces to zero (thus, 
reducing the cost of peaking power plants) or ESs pay the penalty 
charges for not providing the required amount of power. In response 
to the price offered by the aggregator, ESs, as agents of the scheme, 
participate in the strategy by accepting the contracts based on their 
type if it satisfies their constraints. This way the proposed scheme 
brings a win-win situation for both trading partners.  
     To this end, this paper aims to design a contract-based incentive 
scheme for various categories of ESs with different types, assuming 
a heterogeneous setting where aggregators and ESs have different 
preferences toward the buying/selling price for different trading 
scenarios. The contributions of this study are summarized as 1) A new 
contract-theoretic framework is developed that enables different 
categories of ESs with various types to individually and strategically 
trade available surplus power with an aggregator in a hierarchical 
electricity trading system; 2) A novel dynamic pricing mechanism is 
proposed which assumes that an electricity supplier (ES) selling price 
varies depending on the current market state, such as fluctuation in 
the wholesale price and accomplishing the base and peak load 
demand; 3) A new contract-based distributed algorithm for electricity 
trading is presented that guarantees the optimal utility of both parties 
in various trading scenarios; 4) The aggregator maximization 
problem is formulated as a principal-agent contract-based approach, 
and the number of constraints of the optimization problem is 
simplified to develop an equivalent simpler model for the original 
problem. Further, optimal contracts are theoretically derived for both 
baseload and peak load scenarios. 
 This study is mainly motivated by the work in [21]-[23], but the 
developed contract-theoretic scheme in this paper is substantially 
different from these studies. In contrast to [21], the proposed scheme 
enables ESs to trade their electricity individually and strategically, 
and the aggregator incentivizes various types of ESs considering their 
per-unit generation cost. Unlike [22], where a scalable price 
adjustment process (with fixed increments in buying and selling 
price) is developed to constitute a network of agreed contracts, a 
dynamic pricing scheme is proposed in this paper where ESs selling 
price varies depending on the current market state. Compared to the 
direct electricity-trading scheme in [23], the proposed method 
incentivizes various types of ESs considering a hierarchical 
electricity-trading framework with an aggregator as a profit-seeking 
entity. Although [23] considers different types of suppliers for 
electricity trading, it does not categorize them and assume a constant 
selling price for a certain available power which may deteriorate the 
ESs utility. It is because ESs unit production cost may increase when 
RESs are not generating much due to their stochastic nature. Table I 

summarizes the proposed scheme differences with [23].  

TABLE I  

DIFFERENCES BETWEEN PROPOSED SCHEME AND EXISTING SCHEME 
 

  The rest of the paper is organized as follows. Section II presents 
the system model with details about the aggregator and ESs 
modeling. Section III details a theoretical derivation of the contract-
based approach for the baseload scenario and an optimal solution of 
the formulated problem, and Section IV discusses the peak load 
scenario and the electricity-trading algorithm. Numerical case studies 
are provided in Section V, followed by the conclusion in Section VI. 

II.  SYSTEM MODEL 

Figure. 1 shows the three-level hierarchical system model 
considered in this study. The power grid is at the top level, and the 
aggregator is at the second level. The electricity distribution network 
is at the third level and consists of various categories of ESs and 
traditional consumers with no generation sources. The generation 
sources in a small, medium and large scale building can be solar 
panels and wind turbine units and this study assumes that the ESs are 
geographically distributed within a small area. Since the modeling of  
 
generators is not a focus of the current research work, therefore, only 
surplus power available from ESs is considered. Traditionally, the 
aggregator purchases time-varying electricity from the power grid at 
the wholesale price and sells it to traditional users, where most of the 
traditional users still enjoy a fixed flat rate, and ESs inject their 
surplus power into the power grid at a low feed-in-tariff rate. When 
the wholesale price is less than (greater than or equal to) the flat rate 
at a given time, it is referred to as baseload (peak load) demand 
throughout this paper. In a traditional electricity market, for baseload 
demand, the aggregator generates a profit but may suffer a loss when 
the peak demand scenario occurs. The aggregator can maximize its 
profit by obtaining cheaper electricity through the proposed contract-
based incentive mechanism in both scenarios; however, it needs to 
consider the current market state and uncertainty of RESs. The 
aggregator has three significant roles in the developed framework: 1) 
it acts as an intermediary among different categories of ESs and 
traditional users. It collects surplus electricity from ESs and sells the 
collected electricity to traditional users; 2) it interacts with several 
geographically distributed ESs to satisfy a certain demand; 3) it buys 
electricity from the power grid when the supply from ESs is less than 
the consumers’ demand. 
     To reflect the diversity of ESs, they are classified into three main 
categories based on the installed capacity of RESs. 1) small-scale 
electricity suppliers (ES𝑠𝑠): suppliers who have installed small-
capacity wind turbines or solar panels on their rooftops 2) medium-
scale electricity suppliers (ES𝑠𝑚) with medium-capacity renewable-

energy systems 3) large-scale electricity suppliers (ES𝑠𝑙): suppliers 
who have installed large-capacity wind-turbine or solar systems. We 
consider a scenario in which one aggregator as a principal offers the 

right contract items and S ES𝑠𝑠, M ES𝑠𝑚, L ES𝑠𝑙  acting as agents 
accept the contract according to their type. This study assumes that 
ESs do not sell at a loss, so their selling price covers all costs 
including network and net-metering charges. 

A.  Aggregator Model 

Suppose that the aggregator pays d, e, f dollars to obtain s, m, l 

amount of power from ES𝑠𝑠, ES𝑠𝑚 and ES𝑠𝑙  respectively. Let W be 
the total amount of power the aggregator procures from ESs and R(s), 
R(m), R(l) be its benefit after obtaining s, m and l units of power. The 
aggregator’s benefit reduces if the required power demand is not 
fulfilled, for example, if s+m+l<W. The aggregator gains maximum 
 

Aspect  Previous Scheme [23] Proposed scheme 
Trading mechanism Direct electricity 

trading 
Hierarchical electricity 
trading framework 

ESs categorization No categorization Categorized into three main 
types and developed trading 
strategy for each category 

Trading scenarios No classification Two trading scenarios based 
on the load demand 

Selling price Constant selling price Different selling price for 
different trading scenario  

Wholesale price 
fluctuations impact on 
the buyer's decision  

Not considered  Buyer decides on its strategy 
taking into account 
wholesale price fluctuations  
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Fig. 1 Proposed three-layer electricity trading model. 

benefit when the required power demand is met, i.e., s+m+l =W. The 
equation s+m+l = W suggests  that  the  required  power  demand  is  
 
fulfilled from small, medium and large scale electricity suppliers and 
it’s not required to purchase the electricity from the wholesale 
market. Since the supply from electricity suppliers is cheaper than the 
wholesale market, therefore, aggregator profit is maximum when all 
required power is obtained from electricity suppliers. 

Thus, with a transaction (d, s), (e, m) and (f, l), the aggregator 
utility (𝑈𝐴), which is the benefit minus the cost, is given by 
 

𝑈𝐴 = (R(s)+R(m)+R(l)) – (d + e + f) (1) 

The first term in (1) is the sum of the benefits gained from the various 
categories of ESs, and the second term is the payment made to ESs to 
obtain the desired amount of power. A self-interested aggregator will 
determine the quantity of power and the cost to obtain that power 
from various categories of ESs to maximize its utility in a trading 
process. 

B.  Seller Modeling 

In this paper, we assume that ES𝑠𝑠, ES𝑠𝑚 and ES𝑠𝑙  can provide 
(2-20 kW), (21-160 kW) and (161-350 kW) of surplus power 
respectively, based on the installed capacity of their generation 
facilities. Any supplier who can provide excess power in the range of 
(2-20 kW) falls in the category of ES𝑠𝑠. As renewable energy sources' 
intermittency has a major impact on a supplier with minimum 
available surplus power by reducing their reliability, therefore, ESs 
with at least 2 kW surplus power is considered as a small scale 
electricity supplier in this study. Moreover, ESs with 0kW cannot 
participate because they do not have a surplus power available for 
trading. Similarly, customers who can provide surplus power in the 

range of (161-350 kW) at a given time are in the category of ES𝑠𝑙 . 
The heterogeneity of ESs within their category is further 
characterized based on the per-unit generation cost. ESs’ per-unit 
generation cost varies significantly depending on many factors, i.e. 
investment on RESs installation, their generation reliability, and 
maintenance costs. It is assumed that ESs do not sell at a loss; 
therefore, their selling price should be higher than the generation cost 
for profit. These cost elements are hidden from the aggregator and are 
only known to the ESs.  

Let the ES𝑠𝑠, ES𝑠𝑚 and ES𝑠𝑙  selling price be 𝑎̇, 𝑎̈, and 𝑎 
respectively. The aggregator payment should be greater than or equal 
to the selling price of the various categories of ESs because they will 

not sell at a loss. Let there be S type ES𝑠𝑠, M type ES𝑠𝑚 and L type 

ES𝑠𝑙  according to their selling price. Therefore, ESs whose selling 
price falls into the 𝑖𝑡ℎ, 𝑗𝑡ℎ, 𝑎𝑛𝑑 𝑘𝑡ℎ cost level 𝑎̇𝑖, i ϵ S = {1,….., S }, 𝑎̈𝑗, 

j ϵ M= {1,…, M }, 𝑎𝑘, k ϵ L= {1,….., L}, are called i-type ES𝑠𝑠, j-type 

ES𝑠𝑚 and k-type ES𝑠𝑙 . For generalization, the  assumptions given in 
equation (2) is considered.  

(a)   𝑎̇𝑖  > 𝑎̈𝑗  >𝑎𝑘, Ɐ i ϵ S, j ϵ M, k ϵ L 

} 

 

(2) 
(b)   𝑎̇1>𝑎̇2 …> 𝑎̇𝑆 , 𝑎̈1>𝑎̈2…> 𝑎̈𝑀, 𝑎1>𝑎2. . > 𝑎L 
(c)                   𝑎̇𝑖 > 𝜆𝑅𝑇𝑃, Ɐ i ϵ S 
(d)           𝑎̈𝑗 , 𝑎𝑘 < 𝜆𝑅𝑇𝑃, Ɐ j ϵ M, k ϵ L 

In (2), 𝜆𝑅𝑇𝑃 is the wholesale price to obtain electricity from the 
grid. The assumption (2.a) is based on the installed capacity of the 
RESs at ESs premises. As the RESs’ installed capacity increases, the 
unit production cost decreases because the RESs have very low 
maintenance costs, and this ultimately reduces the selling price. (2.b) 
is based on the type of ESs in a category, to further categorize the ESs 
in a category; they are arranged in ascending order (lower to higher 
type) based on the selling price and the surplus power procured by an 
aggregator. (2.b) suggests that lower-types ESs can provide power at 
a higher cost; meanwhile, higher-type ESs can provide power at a low 
rate; thus, the aggregator will obtain more power from higher-type 
ESs  to  optimize  its profit. (2.c)  and  (2.d)  represent  two  main two  

 

trading scenarios that can happen in the market. (2.c) indicate that the 
ES𝑠𝑠 selling price is higher than the wholesale price while (2.d) 

indicate that the ES𝑠𝑚 and ES𝑠𝑙  selling price is lower than the 
wholesale price. It is because ES𝑠𝑠 lower installed capacity and 
uncertainty in generation lead to higher per-unit generation cost 
which may surpass the wholesale price at any given time as 

mentioned in (2.c). Contrary, ES𝑠𝑚 and ES𝑠𝑙  per-unit generation cost 
is low due to high installed capacity, therefore, they are capable to 
sell at a price lower than the wholesale price to attract the aggregator 
as described in (2.d). However, the medium and large-scale ESs 
selling price is different because their installed capacity and per-unit 
generation cost vary. 
     For trading the selling price of ESs should be < 𝜆𝑅𝑇𝑃; otherwise, 
the aggregator has no benefit to trade with ESs. Based on this, 
following (2.c), the aggregator does not prefer to trade with ES𝑠𝑠. 
Hence, a trading strategy is required for ES𝑠𝑠 that is different from 

the ES𝑠𝑚 and ES𝑠𝑙  trading scheme to take part in a trading process. 
By considering different scenarios the developed strategy increases 
the possibility of successful trading by stimulating more ESs. 

Traditionally, ES𝑠𝑠 inject surplus power to the power grid at the 
feed-in-tariff rate (𝜆𝑇 , which is usually very low. Therefore, ES𝑠𝑠 
are willing to sell power at a cost lower than 𝑎̇ but higher than 𝜆𝑇 to 
participate in a trading process and further enhance their profit. Let 
φ𝑎̇ be the price at which ES𝑠𝑠 are ready to sell their surplus power, 
where φ is the ratio of the revised selling price and the per-unit 

production cost of ES𝑠𝑠. The feasible range of φ𝑎̇ is 𝜆𝑇<φ𝑎̇<𝜆𝑅𝑇𝑃 
to ensure the rationality of both trading partners.  

Suppose that, by selling s, m and l units of power, the ES𝑠𝑠, ES𝑠𝑚 

and ES𝑠𝑙  the benefit is d, e, and f payments respectively from the 
aggregator. Thus, their utility obtained in the power transaction 
considering the selling price can be defined as:  

As ESs do not want to sell at a loss, it is assumed that U(d, s), U(e, 

m), U(f, l)> 0, when d , s> 0, e, m> 0,  f, l> 0. If a supplier does not 

take part in the trading, it will get nothing. In this condition the utility 

is U(0, 0) = 0. 

U(d, s)  = d – φ𝑎̇s 

} (3) U (e, m) = e – 𝑎̈m 

U (f, l)   = f – 𝑎l 



 

III.  CONTRACT-BASED APPROACH FOR BASELOAD SCENARIO 

     This section derives the aggregator’s optimal contracts, i.e., 
ð∗={ 𝑑𝑖

∗, 𝑠𝑖
∗ , 𝑖 𝜖𝑆} for the baseload scenario, where the wholesale 

price is less than the flat rate. In this scenario, the aggregator 
generates profit through a traditional trading scheme but can further 
enhance its profit by adopting the proposed contract incentive 
mechanism.  

To model the interactions of the aggregator and the ESs, the 
framework of a contract-based approach is adopted. In the considered 
scenario, the aggregator wants to purchase a certain amount of power 

from ES𝑠𝑠, ES𝑠𝑚 and ES𝑠𝑙  in the local electricity market. Although 

the actual selling price of ES𝑠𝑠, ES𝑠𝑚 and ES𝑠𝑙  is not known to the 
aggregator, it needs to determine the quantity of power each type of 
ES can provide and the cost to obtain that power so that its utility is 
maximized.  

Suppose that the aggregator trading scheme for the i-type ES𝑠𝑠 is 
given in the form of (𝑑𝑖 , 𝑠𝑖 , where 𝑑𝑖 is the agreed payment and 𝑠𝑖 is 
the amount of power the aggregator would obtain from the i-type 
ES𝑠𝑠. Therefore, the set inclosing the aggregator schemes for all S 
ES𝑠𝑠 constructs a contracts ð ={ 𝑑𝑖 , 𝑠𝑖 , 𝑖 𝜖𝑆} with  𝑑𝑖 , 𝑠𝑖  being 

called a contract item. Similarly,  𝑒𝑗 , 𝑚𝑗 ,  𝑓𝑘, 𝑙𝑘  are contract items 

for j-type ES𝑠𝑚 and k-type ES𝑠𝑙  respectively.  
 
For a contract theoretic approach, the solution must be incentive 

compatible and individually rational.  

Definition 1: A trading strategy  𝑑𝑖 , 𝑠𝑖 ,  𝑒𝑗 , 𝑚𝑗 ,  𝑓𝑘 , 𝑙𝑘  is said to 

be individually rational (IR), if for i-type ES𝑠𝑠, j-type ES𝑠𝑚 and k-

type ES𝑠𝑙 , we have: 

𝑈𝑖 𝑑𝑖 , 𝑠𝑖 = 𝑑𝑖 − φ𝑎̇𝑠𝑖 ≥ 0 

} 

 

(4) 𝑈𝑗 𝑒𝑗 , 𝑚𝑗 = 𝑒𝑗 − 𝑎̈𝑚𝑗 ≥ 0 

𝑈𝑘 𝑓𝑘, 𝑙𝑘 = 𝑓𝑘 − 𝑎𝑙𝑘 ≥ 0 

Here, 𝑈𝑖(·), 𝑈𝑗(·), 𝑈𝑘(·) is the utility function for i-type ES𝑠𝑠, for j-

type ES𝑠𝑚 and k-type ES𝑠𝑙 . The IR constraint confirms that ES𝑠𝑠, 

ES𝑠𝑚 and ES𝑠𝑙  will have a positive utility if they follow this scheme, 

hence motivating ESs to participate in the trading process actively.   

Definition 2:  A trading strategy  𝑑𝑖 , 𝑠𝑖 ,  𝑒𝑗, 𝑚𝑗 ,  𝑓𝑘, 𝑙𝑘  is said to 

be incentive-compatible (IC) within a category if, for the  i-type ES𝑠𝑠, 

j-type ES𝑠𝑚 and k-type ES𝑠𝑙 , we have:  

𝑈𝑖 𝑑𝑖 , 𝑠𝑖 ≥  𝑈𝑖 𝑑𝑖′ , 𝑠𝑖′           i ≠ 𝑖′, i, 𝑖′ϵ S 

} 

 

(5) 𝑈𝑗 𝑒𝑗 , 𝑚𝑗 ≥  𝑈𝑖 𝑒𝑗′ , 𝑚𝑗′    j ≠ 𝑗′, j , 𝑗′ϵ M 

    𝑈𝑘 𝑓𝑘, 𝑙𝑘 ≥  𝑈𝑘 𝑓𝑘′ , 𝑙𝑘′     k ≠ 𝑘′, k, 𝑘′ϵ L 

Equation (5) ensures that an i-type ES𝑠𝑠 selects a contract item 

designed according to its selling price. If a lower i-type ES𝑠𝑠 selects 

a contract item designed for a higher i-type ES𝑠𝑠 then the high 

demand for power may degrade its utility. Similarly, if a higher i-type 

ES𝑠𝑠 selects a contract item designed for a lower i-type ES𝑠𝑠 then, 

due to the lower power demand, payment cannot compensate for the 

total production cost. Thus, with IC constraints, i-type ES𝑠𝑠, j-type 

ES𝑠𝑚 and k-type ES𝑠𝑙  gain no profit by hiding the true cost and 

falsely select the contract item of others’ type, because only their type 

of contract within a category brings maximal utility. Likewise, a 

trading strategy should meet the IC constraint according to the ESs’ 

category.   

     Definition 3: A trading strategy, i.e.,  𝑑𝑖 , 𝑠𝑖  is said to be incentive-

compatible (IC) according to its category, if for the i-type ES𝑠𝑠, we 

have: 

𝑈𝑖 𝑑𝑖 , 𝑠𝑖 ≥  𝑈𝑖 𝑒𝑗, 𝑚𝑗    Ɐ i ϵ S, j ϵ M, i ≠ j 
} (6) 

𝑈𝑖 𝑑𝑖 , 𝑠𝑖 ≥  𝑈𝑖 𝑓𝑘, 𝑙𝑘      Ɐ k ϵ L, i ϵ S, i ≠ k 

Equation (6) confirms that ES𝑠𝑠 choose the contract item designed 

according to their category of supply capacity. If an i-type ES𝑠𝑠 

selects the contract item designed for a j-type ES𝑠𝑚 or k-type ES𝑠𝑙  

then its utility is degraded, as the aggregator demands a higher 

amount of power that is available, and the opposite is true for j-type 

ES𝑠𝑚 or k-type ES𝑠𝑙 . Similar equations hold and considered for j-

type ES𝑠𝑚 and k-type ES𝑠𝑙  IC constraints according to their category 

and are not discussed here due to a limitation on page numbers.   

A well-designed contract should also consider the supply capacity 

of ESs according to their category and type, i.e., 

𝑠𝑖,𝑚𝑖𝑛 ≤  𝑠𝑖 ≤ 𝑠𝑖,𝑚𝑎𝑥            Ɐ i ϵ  S 

} 

 

(7) 𝑚𝑗,𝑚𝑖𝑛 ≤  𝑚𝑗 ≤ 𝑚𝑗,𝑚𝑎𝑥             Ɐ j ϵ  M 

𝑙𝑘,𝑚𝑖𝑛  ≤ 𝑙𝑘 ≤ 𝑙𝑘,𝑚𝑎𝑥             Ɐ k ϵ  L 

s.t.     𝑚𝑗,𝑚𝑖𝑛 >𝑠𝑖,𝑚𝑎𝑥       j = 1, i = S  

             𝑙𝑘,𝑚𝑖𝑛 > 𝑚𝑗,𝑚𝑎𝑥      k = 1, j = M  

where 𝑠𝑖,𝑚𝑖𝑛 , 𝑠𝑖,𝑚𝑎𝑥 , 𝑚𝑗,𝑚𝑖𝑛 , 𝑚𝑗,𝑚𝑎𝑥 , 𝑙𝑘,𝑚𝑖𝑛 , 𝑙𝑘,𝑚𝑎𝑥 are the 

minimum and maximum supply capacity of ES𝑠𝑠, ES𝑠𝑚 and 

ES𝑠𝑙respectively. Several ESs of various categories will fulfill the 

aggregator demand, therefore we can write  

W =∑ 𝑛𝑖𝑠𝑖
S
𝑖=1 + ∑ 𝑛𝑗𝑚𝑗

M
𝑗=1 + ∑ 𝑛𝑘𝑟𝑘

L
𝑘=1  (8) 

where 𝑛𝑖, 𝑛𝑗, 𝑛𝑘 is the number of i-type ES𝑠𝑠, j-type ES𝑠𝑚 and k-

type ES𝑠𝑙  respectively, and W is the total hourly power demand.  

It is assumed that by employing the latest forecasting techniques 

[26] and other strategies (i.e., using storage devices, and hybrid 

generation system) [27], [28], the ESs can overcome the generation 

uncertainty to provide the contracted amount of power. In this way, 

the aggregator can procure the required quantity of power from ESs. 

As renewable generation forecasting and hybrid generation systems 

is not a focus of this paper, therefore, it is not discussed in this study. 

The power demand is the amount of desired power that aggregators 

would like to purchase from ESs and the amount of traded electricity 

is the quantity of power received from all electricity suppliers. The 

power demand can be equal or higher than the traded electricity. If 

the electricity suppliers fulfill the power demand then the amount of 

traded electricity is equal to the power demand. Otherwise, the 

amount of traded electricity is less than the demand and aggregator 

purchases the deficit power from the wholesale market. 

As it is assumed that aggregator and ESs are contracting under 

incomplete information; therefore, the aggregator does not know the 

actual category, type, and the number of each type of ESs. Even 

though obtaining such asymmetric information of each category and 

type of ES is a challenging task, in the literature, a multi-armed bandit 

model is available to build a learning algorithm to explore the 

asymmetric information. In a multi-armed bandit model, each 

contract item is regarded as an arm, and the learning algorithm is a 

procedure of the exploration (type) versus exploitation (profit) trade-

off. Interested readers are referred to [20], [29], [30] for more detail 

about the learning algorithms and the bandit model. 

A.  Optimal-Contract Calculation 

The aggregator’s best trading strategies i.e., optimal contracts 

towards all 𝑆-type ES𝑠𝑠, 𝑀-type ES𝑠𝑚, 𝐿-type ES𝑠𝑙  can be obtained 

by solving the following maximization problem using MATLAB. 

                              max𝑈𝐴 = ∑ 𝑛𝑖 𝑅 𝑠𝑖 − 𝑑𝑖 
S
𝑖=1 +

                    ∑ 𝑛𝑗 𝑅 𝑚𝑗 − 𝑒𝑗
M
𝑗=1  + ∑ 𝑛𝑘 𝑅 𝑙𝑘 − 𝑓𝑘

L
𝑘=1    

 

(9) 

s.t.  (4) (5) (6) (7) and (8) (9.a) 

From equation (9.a) it can be deduced that the optimal contract-

designing problem is a complex problem with  S2 + M2 + 

L2  where IR and IC constraints for small, medium and large scale 



 

ESs respectively, which results in computational complexity. Here, it 

is required to derive necessary and sufficient conditions for 

simplifying the problem by reducing the constraints. Likewise, in 

[23], [31], the optimal solution elements, i.e., the payments {𝑑𝑖,𝑒𝑗,𝑓𝑘} 

and the amount of electricity traded {𝑠𝑖,𝑚𝑗,𝑙𝑘}, are monotonically 

increasing in i-type, j-type, and k-type ESs respectively. Hence, 

following Lemma 1 & 2 in [31] and Lemma 1 in [23], the number of 

IR and IC constraints can be reduced from S2 to S+1, M2 to M+1 and 

L2 to L+1 to form linear constraints as follows:   

𝑑1 ≥ φ𝑎̇1𝑠1,  𝑒1 ≥ 𝑎̈1𝑚1,  𝑓1 ≥ 𝑎1𝑙1  (10) 

 𝑠𝑆 > 𝑠𝑆−1 … . . > 𝑠1> 0 

} 

 

(11)  𝑚𝑀 > 𝑚𝑀−1 … . . > 𝑚1> 0 

 𝑙𝐿  > 𝑙𝐿−1 …… > 𝑙1> 0 

To understand the process of obtaining (10) and (11), the 
interesting readers can follow the proof of Lemma 1 provided in the 
supplementary information in [23] and the proof of Lemma 1 & 2 
provided in Appendix A and B in [31]. To solve the maximization 
problem several models and theories are required, all of which cannot 
be included in the paper due to page limitations. Therefore we have 
referred existing information and only included a new algorithm and 
model in the paper.  

Equation (10) implies that if the IR constraint holds for the lowest-
type ES, whose energy is most expensive in a category, and then the 
IR constraint for all other types is automatically satisfied.  Following 
the assumption (2.b) 𝑎1>𝑎2 … .> 𝑎L, (11) implies that the aggregator 
procures more power from the ESs whose energy is cheaper, which 
means that ESs with a cheaper energy option can gain more profit. 
With equation (10) and (11) suppositions, the number of IR and IC 
constraints is reduced and equation (9) can be written as: 

             max𝑈𝐴 = ∑ 𝑛𝑖 𝑅 𝑠𝑖 − 𝑑𝑖 
S
𝑖=1 +

         ∑ 𝑛𝑗 𝑅 𝑚𝑗 − 𝑒𝑗
M
𝑗=1  + ∑ 𝑛𝑘 𝑅 𝑙𝑘 − 𝑓𝑘

L
𝑘=1    

 

(12) 

s.t.   (7) (8) (10) and (11) (12.a) 

The above maximization problem can be solved using a linear 

programming technique.  

Theorem 1. The proposed energy trading strategy of the aggregator 

that maximizes its utility is the optimal energy trading strategy.   

Proof: To determine the optimal contract items that maximize the 

aggregator utility, it is assumed that the power demands from ES𝑠𝑠, 

ES𝑠𝑚 and ES𝑠𝑙  are known and satisfy equation (11). That is, the 

optimal price and the given contracted power amount are positively 

correlated with one another. Therefore, as the amount of contracted 

power increases, the optimal trading increases as well. Now, 

considering the linearity of the contract function in equation (12), the 

optimal contract items 𝑑𝑖
∗ 𝑠𝑖 , 𝑒𝑗

∗ 𝑚𝑗  and 𝑓𝑘
∗ 𝑙𝑘  can be derived 

using Theorem 1 [22] as follows:  

 

𝑑𝑖
∗ 𝑠𝑖 = 

φ𝑎̇𝑖𝑠𝑖  if i =1 

} (13) 
𝑑𝑖−1

∗ + φ𝑎̇𝑖 𝑠𝑖 − 𝑠𝑖−1   if i =[2,…S] 

𝑒𝑗
∗ 𝑚𝑗 = 

𝑎̈𝑗𝑚𝑗  if j =1 

} (14) 
𝑒𝑗−1
∗ + 𝑎̈𝑗 𝑚𝑗 − 𝑚𝑗−1   if j =[2,…M] 

     

𝑓𝑘
∗ 𝑙𝑘 = 

𝑎𝑘𝑙𝑘  if k =1 

} (15) 
𝑓𝑘−1

∗ + 𝑎𝑘 𝑙𝑘 − 𝑙𝑘−1   if k =[2,…L] 

 By substituting the values of 𝑑𝑖
∗ 𝑠𝑖 , 𝑒𝑗

∗ 𝑚𝑗  and 𝑓𝑘
∗ 𝑙𝑘  in (12), the 

optimal amount of electricity, i.e., 𝑠𝑖
∗,𝑚𝑗

∗, 𝑙𝑘
∗  that the aggregator buys 

from different ESs can be obtained as:  

𝑑𝑖 φ𝑎̇𝑖⁄   if i =1 

𝑠𝑖
∗= 

𝑛𝑖𝑑𝑖 + 𝑛𝑖−1𝑑𝑖−1  𝑛𝑖 + 𝑛𝑖−1 ⁄ φ𝑎̇𝑖 

+ 𝑠𝑖−1
∗  

 if  

i =[2,…S] } 

(16) 

𝑚𝑗
∗= 

𝑚𝑗 𝑎̈𝑗 ⁄   if j =1 

} 
(17) 𝑛𝑗𝑒𝑗 + 𝑛𝑗−1𝑒𝑗−1  𝑛𝑗 + 𝑛𝑗−1 ⁄ 𝑎̈𝑗  

+ 𝑚𝑗−1
∗  

 If 

 j= [2,…M] 

𝑙𝑘
∗= 

𝑙𝑘 𝑎𝑘⁄   if k =1 

} 
(18) 𝑛𝑘𝑓𝑘 + 𝑛𝑘−1𝑓𝑘−1  𝑛𝑘 + 𝑛𝑘−1 ⁄ 𝑎𝑘 

+ 𝑙𝑘−1
∗  

 if  

k =[2,…L] 

 Since the optimal solution is derived based on equation (10) and 
(11), which considered individual rationality and incentive 
compatibility, the following corollary can be stated: Corollary 1. The 
proposed energy-trading contract is both individually rational and 
incentive compatible.  

IV.  CONTRACT-BASED APPROACH FOR PEAK LOAD SCENARIO 

     This section derives the optimal contracts, i.e., 

ð∗={ 𝑓𝑘
∗́ ,  𝑙𝑘

∗ , г𝑘 , 𝑖 𝜖𝐿} during the peak demand for time slots when 
the wholesale price is greater than or equal to the flat rate. To design 
an optimal contract strategy for this scenario, the aggregator needs to 
consider various factors such as the intermittency problem of RESs 
and the wholesale price spikes effect on the ESs’ selling price. 

A.  Seller and Buyer Modeling 

Peak load demand refers to a period when the electricity demand 
peaks at its highest level and it causes wholesale price spikes. At these 
times, the wholesale price may exceed the fixed flat rate [32], and the 
aggregator suffers a loss through the traditional trading scheme. It can 
generate profit by obtaining cheaper electricity from ESs; however, 
the aggregator benefit of trading with ESs in this scenario depends on 
the consistency of RESs’ generation and the selling price of ESs. Due 
to the intermittent and uncontrollable characteristics of the output of 
RESs, potential ESs may not be able to provide the contracted power 
during the peak demand period, and thus the aggregator utility 
deteriorates.  For that reason, the aggregator introduces the concept 
of a reliability level to capture the power supply uncertainty of ESs. 
This reliability level is expressed using a random variable г, and it 
expresses the probability to meet the contracted energy by ESs within 
the contracted periods. The ESs’ reliability levels are assumed to be 
within the range of [0, 1] for simplicity, and it is drawn identically 
and independently. The reliability level г = 0, when the power 
provided by ESs by the end of the contracted time is zero. Likewise, 
the reliability level г = 1, when the power provided by ESs by the end 
of the contracted time becomes equal or more than the contracted 
quantity. As to the power that ESs cannot provide, there is one way 
to complement it: the aggregator buys deficit power from the power 
grid but imposes penalty charges to ESs for the cost of the 
complement power. Considering the huge penalty charges in the case 
of power shortages, ESs will set a higher selling price for the same 
amount of power compared to the baseload scenario. 

B.  Contract-Based Approach Formulation 

Let 𝜆𝑅𝑇𝑃
́  be the price to obtain electricity from the power grid 

when peak demand occurs. In this paper, we assume that 𝜆𝑅𝑇𝑃
́ > 

𝜆𝑅𝑇𝑃  > 𝑎̇, 𝑎̈, 𝑎. Let г𝑖 be the reliability level of ES𝑠𝑠 and 𝑑́ the 
payment to obtain s amount of power in a peak demand scenario. If 
ES𝑠𝑠 are unable to provide the contracted amount of electricity at 
times of wholesale price spikes, then they suffer penalty charges for 

the supply shortage. Penalty charges are assumed to be equal to 𝜆𝑅𝑇𝑃
́ . 

As 𝜆𝑅𝑇𝑃
́ >>𝑎̇; therefore, to encourage ES𝑠𝑠 to make contracts for the 

peak demand scenario with a probability of high penalty charges in 
case of supply shortages, the aggregator pays more than the baseload 
scenario to obtain the same amount of power; therefore, we assume 

𝑑́>d. Moreover, in reality 𝜆𝑅𝑇𝑃
́  is public information, which is known 

to both the aggregator and ESs. Thus, ESs are unwilling to sell their 



 

electricity at the same rate in both scenarios. Therefore, in this 

paper, 𝑑́ is set to be positively correlated to 𝜆𝑅𝑇𝑃
́  to maximize the ESs 

utility. 
  For the peak demand scenario, the aggregator will design the 

contract item (𝑑́𝑖,𝑠𝑖 , г𝑖) for i-type ES𝑠𝑠, where 𝑑́𝑖 is the payment to 
obtain the 𝑠𝑖 amount of electricity from ES𝑠𝑠 when peak demand 
occurs. The cost to supply the contracted amount 𝑠𝑖 is 𝑠𝑖𝜑𝑎̇г𝑖 and the 

power deficit cost is 𝑠𝑖 1 − г𝑖 𝜆́𝑅𝑇𝑃. The total cost will be 

𝑠𝑖𝜑𝑎̇г𝑖+𝑠𝑖 1 − г𝑖 𝜆́𝑅𝑇𝑃. In this case, the  ES𝑠𝑠 utility function, which 
is benefit minus cost, is given as 

𝑈́𝑠 𝑑́, 𝑠, г  = 𝑑́𝑖 −  φ𝑎̇𝑖𝑠𝑖г𝑖 +  1 − г𝑖 𝑠𝑖𝜆́𝑅𝑇𝑃  (19) 

     Similarly, the ES𝑠𝑚
 and ES𝑠𝑙  utility function for this case can be 

obtained by replacing the baseload payments  𝑒𝑗, 𝑓𝑘) by the peak 

demand scenario payments (𝑒́𝑗, 𝑓́𝑘  respectively. 

𝑈́𝑚 𝑒́, 𝑚, г = 𝑒́𝑗 −  𝑎̈𝑗𝑚𝑗г𝑗 +  1 − г𝑗 𝑚𝑗𝜆́𝑅𝑇𝑃  

}(20) 
𝑈́𝑙 𝑓́, 𝑙, г = 𝑓́𝑘 −  𝑎𝑘𝑙𝑘г𝑘 +  1 − г𝑘 𝑙𝑘𝜆́𝑅𝑇𝑃  

The first term in equation (19) and (20) is the benefit that ESs 
obtain by selling s, m, l  amounts of electricity. The second term is 
the cost to produce the s, m, l amounts of power and the third term is  
the cost to complement the deficit power. The third term is zero when 
г= 1, which indicates the condition when ESs maximize their utility 
by providing the contracted amount of power. However, the ESs’ 
utility decreases as г decreases because the cost to complement the 

power increases. In equation (19) and (20), 𝑑́𝑖,  𝑒́𝑗,  𝑓́𝑘 can be  

calculated for two conditions. 

    1)  𝜆𝑅𝑇𝑃
́  =𝜆𝐹𝑅  

When the difference between 𝜆𝑅𝑇𝑃
́  and 𝜆𝐹𝑅 is zero, it represents 

the breakeven condition for the aggregator in a traditional electricity 
market, as the buying and selling price is the same. In this case, the 
aggregator trades with ESs to make a profit and ESs are willing to 
sell their surplus power at a higher rate than for the baseload scenario. 

Let 𝑎𝑖̇
́ , 𝑎́̈𝑗, 𝑎́𝑘 be the payment made by the aggregator to obtain s, m, 

l amounts of power from ES𝑠𝑠, ES𝑠𝑚 and ES𝑠𝑙  respectively in this 
condition. Thus, the ESs’ utilities obtained in the transaction can be 
defined as:   

𝑑́𝑖 = 𝑎𝑖̇
́ 𝑠𝑖г𝑖 +  1 − г𝑖 𝑠𝑖𝜆́𝑅𝑇𝑃          Ɐ {i=1…. . 𝑆} (21) 

 𝑒́𝑗= 𝑎́̈𝑗𝑚𝑗г𝑗 +  1 − г𝑗 𝑚𝑗𝜆́𝑅𝑇𝑃       Ɐ {j=1…. . 𝑀} (22) 

 𝑓́𝑘= 𝑎́𝑘𝑙𝑘г𝑘 +  1 − г𝑘 𝑙𝑘𝜆́𝑅𝑇𝑃        Ɐ {k=1…. . 𝐿} (23) 

where 

𝑎𝑖̇
́ =φ𝑎̇𝑖+0.015, 𝑎́̈𝑗  = 𝑎̈𝑗 + 0.015, 𝑎́𝑘 =𝑎𝑘 + 0.015 (24) 

s.t. φ𝑎𝑖̇
́ , 𝑎́̈𝑗, 𝑎́𝑘< λFR (24.a) 

Equation (24) suggests that in this condition the per-unit payment 
to ESs is 0.015 $/kWh higher than the baseload scenario for the same 
amount of power as that procured by the aggregator. The concept of 
selling the same amount of electricity at different prices is reasonable 
and follows the idea of a flexible pricing tariff that energy retailers 
offer to consumers. Based on this idea, consumers are charged with 
different rates depending on the time of electricity usage (off-peak, 
peak) for the same amount of electricity consumed.  

    2)  𝜆𝑅𝑇𝑃
́  > 𝜆𝐹𝑅  

     This condition represents the case where the aggregator suffers a 
loss through a traditional trading scheme, as the buying price is higher 
than the selling price. In this case, the aggregator’s objective is to 
avoid loss through trading with ESs. The aggregator loss is positively 
correlated to the (λRTP

́  -𝜆𝐹𝑅) price difference that directly depends on 
λRTP

́  because 𝜆𝐹𝑅 is constant. This is intuitive since, ESs, being 
rational, would also correspond their selling price to λRTP

́ . Let the 

aggregator payments is  𝑎𝑖̅̇, 𝑎𝑗̅̈, 𝑎𝑘⃛
̅̅ ̅ to procure s, m, l amounts of power 

from ESs respectively in this scenario. Thus, the ESs’ utility 
functions are given as: 

𝑑́𝑖=𝑎𝑖̅̇𝑠𝑖г𝑖+ 1 − г𝑖 𝑠𝑖𝜆́𝑅𝑇𝑃              Ɐ {i=1…. . 𝑆} (25) 

𝑒́𝑗=𝑎𝑗̅̈𝑚𝑗г𝑗+ 1 − г𝑗 𝑚𝑗𝜆́𝑅𝑇𝑃           Ɐ {j=1…. . 𝑀} (26) 

𝑓́𝑘=𝑎𝑘⃛
̅̅ ̅𝑙𝑘г𝑘+ 1 − г𝑘 𝑙𝑘𝜆́𝑅𝑇𝑃            Ɐ {k=1…. . 𝐿} (27) 

where 

𝑎𝑖̅̇ = φ𝑎̇𝑖+ (λRTP
́  -𝜆𝐹𝑅)∗ 0.2,    𝑎𝑗̅̈ = 𝑎̈𝑗+ (λRTP

́  -𝜆𝐹𝑅)∗ 0.2 

𝑎𝑘⃛
̅̅ ̅ = 𝑎𝑘+ (λRTP

́  -𝜆𝐹𝑅)∗ 0.2 

  (28) 

s.t. φ𝑎𝑖̅̇, 𝑎𝑗̅̈, 𝑎𝑘⃛
̅̅ ̅< λFR   (28.a) 

φ𝑎𝑖̅̇, 𝑎𝑗̅̈, 𝑎𝑘⃛
̅̅ ̅ >  φ𝑎𝑖̇

́ , 𝑎́̈𝑗 , 𝑎́𝑘   (28.b) 

The following can be inferred from equation (28); 1) in this 
condition the 0.1 $/kWh price difference of λRTP

́  and 𝜆𝐹𝑅 corresponds 
to the 0.02 $/kWh increment in per-unit payment to ESs compared to 
the baseload scenario for the same amount of power obtained by the 
aggregator; 2) every time there is an increment of 0.1 $/kWh in the 
λRTP

́  and 𝜆𝐹𝑅 price difference due to an increase in the wholesale price 
(λRTP

́ ) leads to an increment of 0.02 $/kWh in the per-unit payment to 
ESs. This is to ensure that as λRTP

́  increases the ESs’ benefit also 
grows. However, the ESs’ revenue increases with an increase of λRTP

́ , 
until the per-unit payment is less than the flat rate. This is because a 
per-unit payment equal to the flat rate is the saturation point and 
beyond that, the aggregator utility becomes negative, thus (24.a) and 
(28.a) assure the aggregator utility under different scenarios.  

The value 0.015 in (24) and 0.2 in (28) are determined by carefully 
considering various constraints defined for the peak load scenario. 

 

 The value 0.015 satisfy the constraint (24.a) defined for a condition 

when peak wholesale price is equal to the flat rate and value 0.2 

satisfy constraints (28.a) and (28.b) defined for a condition when peak 

wholesale price is greater than the flat rate. Any value higher or lower 

than these values does not meet the constraint conditions. Also, (24), 

(28), (28.b) are designed carefully considering the various cost 

constraints mentioned in (2) to generate the dynamic pricing 

mechanism considering the current market state for trading between 

the aggregator and the ESs.  

C.  Optimal Contract Calculation 

Similar to the baseload scenario to derive the aggregator’s optimal 
trading strategies for the peak load scenario, it is required to define 
the following constraints: IR, IC, ESs’ supply capacity and total 
power demand. The ESs’ supply capacity and the IC constraints are 
the same as for the baseload scenario as defined in equation (7) and 
(11) respectively, whereas the aggregator’s total peak power demand 
is given as: 

𝑊′ =∑ 𝑛́𝑖𝑠𝑖
S
𝑖=1 + ∑ 𝑛́𝑗𝑚𝑗

M
𝑗=1 + ∑ 𝑛́𝑘𝑟𝑘

L
𝑘=1  (29) 

 where 𝑊́ is the total hourly peak power demand of the aggregator 

and 𝑛́𝑖, 𝑛́𝑗, 𝑛́𝑘 is the number of i-type ES𝑠𝑠, j-type ES𝑠𝑚 and k-type 

ES𝑠𝑙  respectively contributing to fulfilling the peak load demand. 

Since the peak demand (𝑊́) is higher than the baseload demand (W), 

it is assumed that 𝑛́𝑖, 𝑛́𝑗, 𝑛́𝑘 > 𝑛𝑖, 𝑛𝑗, 𝑛𝑘 correspondingly. 

     The IR constraint under conditions 1 and 2, respectively in 
simplified form is given below following (10). 

𝑑́1 ≥ φ𝑎1̇
́ 𝑠1,   𝑒́1 ≥ 𝑎́̈1𝑚1,   𝑓́1 ≥ 𝑎́𝑘𝑙1 (30) 

𝑑́1 ≥ φ𝑎1̅̇𝑠1,   𝑒́1 ≥ 𝑎1̅̈𝑚1,   𝑓́1 ≥ 𝑎1̅⃛𝑙1 (31) 

Equation (30) and (31) imply that if the IR constraint of the 
supplier whose energy is most expensive in a category is satisfied, 
then the IR constraint for all other ESs will automatically exist since 

we made the assumption (𝑎1́̇>𝑎2̇
́ >…𝑎𝑀̇́ ), (𝑎1̇

̅̅ ̅ >  𝑎2̇
̅̅ ̅ … > 𝑎𝐿̇

̅̅ ̅) by 
following (2.b). The aggregator’s optimal contracts for the peak load 
scenario considering all types of ESs can be obtained by solving the 
following optimization problem:  

        max  𝑈́𝐴 = ∑ 𝑛𝑖 𝑅 𝑠𝑖 −   𝑑́𝑖  
S
𝑖=1 + ∑ 𝑛𝑗 𝑅 𝑚𝑗 −M

𝑗=1

                                    𝑒́𝑗  + ∑ 𝑛𝑘 𝑅 𝑙𝑘 −   𝑓́𝑘 
L
𝑘=1    

 



 

s.t.   (7) (11) (29) and (30)        for condition 1 (32) 

s.t.   (7) (11) (29) and (31)       for condition 2 

The solution of (32), i.e. (𝑑𝑖
∗́ , 𝑠𝑖

∗, г𝑖), (𝑒𝑗
∗́ , 𝑚𝑗

∗, г𝑗), (𝑓𝑘
∗́ , 𝑙𝑘

∗ , г𝑘 , Ɐ i ϵ  

S, j ϵ M, k ϵ L, can be easily obtained by following subsection III(A), 

where φ𝑎̇𝑖, 𝑎̈𝑗, 𝑎𝑘 are replaced by 𝑎𝑖̇
́ , 𝑎́̈𝑗, 𝑎́𝑘 for condition 1 and 

replaced by 𝑎𝑖̅̇, 𝑎𝑗̅̈, 𝑎𝑘⃛
̅̅ ̅ for condition 2. 

D.  Electricity Trading Algorithm 

This section presents a procedure for the aggregator to procure 
power from ESs and an algorithm for electricity trading between an 
aggregator and ESs that can be implemented by both parties in a 
distributed manner. Following the optimal contracts, i.e., {𝑑𝑖

∗, 𝑠𝑖
∗}, 

(𝑑𝑖
∗́ , 𝑠𝑖

∗, г𝑖) etc., from the previous sections, the aggregator achieves 
a higher utility from higher types of ESs than from lower types in a 

category, i.e. 𝑈𝑘
𝐿>𝑈𝑘

𝐿−1, 𝑈𝑗
𝑀>𝑈𝑗

𝑀−1, 𝑈𝑖
𝑆>𝑈𝑖

𝑆−1. Moreover, the 

aggregator utility from the lowest type of ESs in a large-scale 
category is higher than from the highest type of ESs from a medium-
scale category. As similar conditions apply to medium and small-

scale category ESs, we can write 𝑈𝑘
1>𝑈𝑗

𝑀 & 𝑈𝑗
1 >𝑈𝑖

𝑆, subject to the 

difference between the requested amount of power and the surplus 
power from any ES is within a -2.5% variation. 

 

In a developed electricity-trading scheme, each type of ES 

provides a certain excess power at a specific rate. If the difference 

between the surplus power and the requested amount of power is 

more than -2.5%, then the ES either rejects the contract or will 

provide that requested power at a higher rate. This is because an ES 

opportunity cost increases if it may not be able to capitalize on unsold 

power; therefore, it would like to sell as much as it could have [33]. 

In this situation, it is more economical for the aggregator to buy 

power from an ES whose surplus power is within the -2.5% variation 

of the requested quantity. This way, the proposed scheme enables all 

types of ESs within a category to take part in a trading process, 

depending on the demand in an hour.  

The basic functionality of the contract-based electricity trading 

approach is provided in Algorithm 1. Firstly, the trading strategy 

receives the electricity demand from an aggregator, pricing 

information including wholesale price and flat rate, number of 

electricity suppliers and their reliability level and supply capacity.  

Then, aggregator based on the supply capacity of each supplier 

computes the IC constraints using (11). After this, the wholesale 

electricity price is compared with the flat rate to solve the relevant 

part of the algorithm. For instance, when the wholesale price is less 

than the flat rate then step 3 of the algorithm is followed. In step 3, 

the aggregator calculates the IR constraint using (10). The IR and IC 

constraints are the basic conditions of the trading process for an 

aggregator. These are to ensure that ESs receives the non-negative 

utility and gain maximum benefit by truthfully selecting the contract 

items of their type. Further, the aggregator derives the optimal 

contracts by solving the maximization problem as defined in (12) and 

sends the optimal contracts to each supplier to purchase the electricity 

from them. Finally, considering that the IR and IC conditions are met, 

electricity suppliers accept the contracts and provides the requested 

quantity of power to the aggregator.  

 
Algorithm 1. Contract-Based Electricity Trading Algorithm 
1: Initialize: W, 𝑊́, λ𝑅𝑇𝑃, λ𝑅𝑇𝑃

́ , λ𝐹𝑅, ESs’ reliability level г𝑖, г𝑗, г𝑘, 

and ESs’ supply capacity, number of ESs, i.e., 𝑛𝑖, 𝑛́𝑖. 

2: Aggregator computes the IC constraint using (11) for steps 3, 4 

and 5.  

3: if λ𝑅𝑇𝑃<λ𝐹𝑅 

 Aggregator computes the IR constraint of the lowest type of ES 

that satisfies (10). Further, it solves the problem (12) to derive 

optimal contracts (𝑑𝑖
∗, 𝑠𝑖

∗), (𝑒𝑗
∗, 𝑚𝑗

∗), (𝑓𝑘
∗, 𝑙𝑘

∗ ) as described in 

subsection III. A. 

4: else λ𝑅𝑇𝑃
́ =λ𝐹𝑅 

 Aggregator calculates the IR constraint of the lowest type of ES 

that satisfies (30). Further, it solves the problem (32) for condition 

1 to derive optimal contracts (𝑑𝑖
∗́ , 𝑠𝑖

∗, г𝑖), (𝑒𝑗
∗́ , 𝑚𝑗

∗, г𝑗), (𝑓𝑘
∗́ , 𝑙𝑘

∗ , г𝑘) 

as defined in IV. C.   

5: else if λ𝑅𝑇𝑃
́ >λ𝐹𝑅 

 Aggregator computes the IR constraint of the lowest type of ES 

that satisfies (31). Further, it solves the maximization problem 

(32) for condition 2 to derive optimal contracts as described in 

subsection IV. C.   

endif 

6: Aggregator sends the contracts, i.e., (𝑑𝑖
∗, 𝑠𝑖

∗), (𝑑𝑖
∗́ , 𝑠𝑖

∗, г𝑖), i ϵ S, to 

ESs and purchases electricity from them.  

7: ESs accept the contracts and the aggregator procures power from 

ESs following subsection IV.D.   

 

 

V.  NUMERICAL RESULTS 

In this section, the performance of the proposed contract-based 
approach is presented and evaluated for both baseload and peak load 
demand scenarios considering one aggregator and 48 ESs from which 
there are 10, 16 and 22, i-type ES𝑠𝑠, j-type ES𝑠𝑚 and k-type ES𝑠𝑙  
respectively. ES𝑠𝑠 selling prices (φ𝑎̇𝑖  are chosen randomly from a 
range of [0.38 to 0.65] $/kWh from highest to lowest type in a small-
scale category, and the value of φ is 0.67. Likewise, ES𝑠𝑚 and ES𝑠𝑙  
selling prices (𝑎̈𝑗 , 𝑎𝑘) vary from [0.34 to 0.64] and [0.11 to 0.32] 

$/kWh following highest to lowest type in a medium and large-scale 
category respectively. The demand of the aggregator is chosen 
randomly from a range of [500-7000] kWh. The unit price to buy 
electricity from the wholesale market is 0.67 $/kWh for the baseload 
and the peak load scenario, the price varies from 0.68 to 5.4 $/kWh. 
Since, in the real-time market, the wholesale electricity price 
fluctuates at each time interval of the market, the electricity price 
during peak demand hours can be multiple times the electricity price 
during baseload demand [34]. Therefore, in this study, the wholesale 
price variation from 0.67 $/kWh to 5.4 $/kWh is considered to show 
the effectiveness of the proposed strategy under various conditions. 

 The aggregator sells the electricity to retail customers at a fixed 
flat rate of 1.1 $/kWh. The feed-in-tariff rate is $0.11/kWh and its 
value is taken from [35]. All cost values are chosen following the 
assumptions in (2). Since the Australian electricity market operates 
on a 30-minute time interval [36][37] therefore, simulations are 
performed for seven different hours from 10 am to 4 pm on a 30-
minute basis. It is because the aggregator demands and ESs’ surplus 
powers are updated each hour. Table II lists the various simulation 
cases to evaluate the performance of the designed contract-based 
incentive scheme. 

TABLE II  

SIMULATION CASES TO EVALUATE THE DEVELOPED INCENTIVE SCHEME 



 
 

A.  Performance of the Proposed Contract-Based Scheme 

1. Aggregator Profit Under Base Case and Case 1 

This case study compares the aggregator profit under the traditional 
and contract-based trading scheme, and the results are shown in Fig. 
2. It is observed that given the same power demand at different hours, 
the contract-based electricity-trading scheme outperforms the 
traditional scheme in terms of aggregator profit. In the traditional 
scheme, an aggregator obtains electricity from the power grid at a 
wholesale price; however, the contract-based scheme allows the 
aggregator to obtain more profit by purchasing cost-effective 
electricity from ESs. The reason is that, in the contract approach, each  
the contract is designed for the corresponding ESs’ type, and the 
maximum profit is generated by following the IR and IC constraints 
(10) and (11) respectively. Nonetheless, in a traditional scheme, the 
aggregator purchases the bulk amount of electricity at the wholesale 
price, sells it to retail consumers at a fixed flat rate, and thus cannot 
improve its profit.  
 
 
 
 

 
 

Fig. 2 Profit generated by aggregator with different schemes under Case I. 

2. Aggregator Utility for Base Case and Case II 

     The objective of this study is to compare the performance of two 
schemes when wholesale price becomes equal to a flat rate. The 
simulation results are shown in Fig. 3 demonstrates that for the same 
power demand, as in Case I, the profit with the traditional trading 
scheme under this case is zero. This is because the retail revenue from 
customers is equal to the purchasing cost. However, the aggregator 
generates profit by trading with ESs through the contract-based 
trading scheme at the breakeven point. For instance, at 4 pm with 1.96 
MW demand, the aggregator profit is 1.67 $/kWh and the ESs’ 
revenue is 0.30 $/kWh following the subsection IV.B.1 trading 
strategy. Given the same setting as in Fig. 2, Fig. 3 reveals that the 
aggregator profit at 4 pm is reduced from 1.67 to 1.62 $/kWh because 
it is paying more to get the same amount of power in Case II. 
 

 
Fig. 3 Aggregator and ESs utility with different schemes for Case II. 

3. Comparison of Aggregators’ Profit for Base Case and Case III  

The simulations, in this case, compare the performance of two 
schemes when wholesale price surpasses the fixed flat rate. This 
happens when the power demand increases in extreme weather 
conditions and wholesale price climbs, which causes a financial loss 
of aggregator under the traditional trading scheme. However, 
aggregator gains profit by adopting the contract-based trading 
scheme as shown in Fig. 4. The result reveals that the aggregator 
generates revenue by employing the designed strategy mentioned in 
subsection IV.B.2. For example, at 3 pm with 6 MW demand, the 
aggregator’s loss with the traditional scheme is -4.20 and its profit 
with the contract-based scheme is 4.50 with ESs’ revenue of 2.10. It 
is clear that the ESs’ revenue is positively correlated with energy 
demand and a rise in wholesale price, and is higher than the previous 
case. This is because ESs correspond their selling price with the 
wholesale price.  

 
 
 
 
 
 
 

 

 
Fig. 4 Aggregator and ESs revenue with different schemes under Case III. 

4. ESs’ payment versus wholesale price spikes (Case IV)  

This case study aims to examine the effect of wholesale price spikes 
and ESs reliability level on the payment they received. Figure 5 
reveals that the payments received by ESs from the aggregator to 
meet a specific power demand increase as the wholesale price 
increases. It is intuitive that, as the wholesale price grows, ESs have 
a strong incentive to increase their selling price. The payments 
received by ESs, i.e., for 1-2 and 4-7 MW demand are in the scenario 
where the ESs are paying no penalty charges because they are 
providing all the contracted amount of electricity with r=1. However, 
as the reliability level goes down, the ESs’ profit significantly 
reduces, i.e., for 2-4 MW demand because the penalty charges for 
deficit power is higher than their selling price. Thus, to ensure that 
ESs benefit in a trading process with a probability of penalty charges, 
ESs set a higher selling price than in the base case for the same 
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demand as the wholesale price increases following (28). This way, 
the proposed strategy aligns the ESs’ benefit with wholesale price 
spikes. 
 
 

 
      Fig. 5 ESs payment at various wholesale prices. 

5. Power Obtained from Different Categories of ESs (Case V) 

This study aims to illustrate how much electricity the aggregator 

procures in the optimal contracts from various types of ESs in various 

categories. It is seen from Fig. 6 that the aggregator obtains most of 

the required power from ES𝑠𝑙  followed by ES𝑠𝑚 and ESss. Further, 

within a category, the aggregator trades more electricity with higher 

types of ESs than with lower types following subsection IV.D. The 

main reason is that the aggregator will obtain more power from ESs  

 

 

 

 

 

 

 

 
Fig. 6 Power procured from ESs based on their category and types. 

 

whose energy is cheaper to derive more profits. It also reveals that, 

as electricity demand increases lower types of ESs are included in the 

contract to meet that demand. Additionally, ESss can participate in a 

trading process despite their high per-unit production cost as 

discussed in subsection II.B. Moreover, the difference between the 

profits gained by the aggregator through trading at a given demand is 

affected by the amount of electricity obtained from various types of 

ESs and the corresponding payments. 

6. Optimal Revenue of ESs (Case VI)  

In this case, we study the existence of optimal revenue for a given 
demand and how it is affected by the variations in the wholesale price. 
Figure7 demonstrates that, in each case where a certain demand is 
given, an optimal revenue does exist at which the ESs utility reaches 
a maximum and stays constant. The main reason is that the aggregator 
will pay more to ESs to meet a certain demand as the wholesale price 
increases until the per-unit payment to ESs is less than the flat rate 

following the subsection IV.B payment constraint (28.a). This is 
because the aggregator’s utility becomes negative when the per-unit 
payment to ESs is more than the flat rate. Figure 7 highlights that 
ESs’ revenue increases as the wholesale price grows from 1.2 to 4.2 
$/kWh; after that, it remains constant with further increases in the 
wholesale price. This way the designed scheme ensures the benefit of 
both trading partners and a win-win result arises.  

 
Fig. 7  ESs optimal revenue at various wholesale price spikes. 

7. Trading Partners Utility versus Reliability (Case VII) 

In Case VII, the aggregators and the ESs’ utilities are evaluated at 
three different reliability levels with variations in the wholesale price, 
as shown in Fig. 8. It can be deduced that two factors reduce the 
aggregator utility: 1) increments in the wholesale price 2) low-
reliability level of ESs. This is because, as the wholesale price 
increases, the ESs’ selling price rises, and the aggregator has to pay 
more to procure power. Moreover, as a low-reliability level is 
negatively correlated with the deficit power, the aggregator’s total 
payment  to  purchase  a  certain  amount of demand grows because it 

 

  

 

purchases the deficit power from the wholesale market at a high price. 
Furthermore, from the ESs’ perspective, the penalty charges to 
balance the deficit power at low-reliability levels significantly reduce 
the ESs’ revenue, and this impact is more prevalent at a high wholesale 
price. For instance, at wholesale price 3, ESs and aggregator utility 
decrease from 12.9 to 10.1 and 11.7 to 8.37, respectively, with a 
change in the reliability level from 0.8 to 0.6. 

 

 
Fig. 8 Aggregator and ESs revenue at different reliability levels. 

B.  Comparison with Existing Game-Based Schemes 

In this subsection, the developed noncooperative contract-based 

scheme with dynamic pricing (CBS-DP) performance in terms of cost 

incurred by the aggregator at peak times is compared with two 

existing schemes for electricity trading, i.e., noncooperative 



 

Stackelberg game with flat pricing (NSG-FP) [12] and 

noncooperative Stackelberg game with TOU pricing (NSG-TP) [16]. 

The performance of these schemes is evaluated for the peak load 

scenario where the aggregator total cost to incur a power at peak times 

for the same demand is considered. For comparison, it is assumed that 

the ESs' reliability level is 0.7 which implies that due to generation 

uncertainty the ESs are capable to provide 70% of the required 

demand at peak time and the results are shown in Fig. 9.  

From Fig. 9 it can be seen that among the three schemes, the CBS-

DP performs the best and NSG-FP performs the worst. It is because 

the NSG-FP scheme does not consider ESs reliability level but in 

reality, the supply deficit appears as ESs reliability goes down. In this 

case, the aggregator has to procure an insufficient part of the energy 

from the wholesale market at a higher price, which results in a much 

higher payment.  

 

 
Fig. 9 The proposed scheme comparison with game-based schemes 

 

 

The NSG-TP scheme, for a given demand, performs better than the 

NSG-FP because it tackles the ESs reliability issue by taking 

advantage of TOU pricing with a storage device. It stores energy 

when the grid price is low and this stored energy provides a certain 

fraction of the deficit energy to the aggregator at peak times. 

However, the aggregator has to buy a certain fraction of its 

requirement at a high price from the wholesale market depending on 

the storage device characteristics. Moreover, the NSG-TP scheme 

does not offer an attractive incentive mechanism to ESs providing 

electricity at peak times which may result in low participation of ESs 

in the trading process when the demand is high. These factors 

deteriorate the aggregator utility under the NSG-TP scheme and the 

aggregator total cost with a proposed scheme is minimum.   

In the developed strategy, the ESs’ supply shortage is under control 

by the mechanism of the penalty factor. The aggregator’s loss is made 

up of the compensation from ESs, and thereby on average, the cost 

saving is 31.38% for the proposed scheme compared to the NSG-TP 

approach. Likewise, the average cost is 45.34% lower than that of the 

NSG-FP technique. Additionally, the proposed scheme offers the 

incentives considering IR and IC constraints and fluctuations in the 

wholesale price which motivates the ESs to provide the electricity at 

peak demand time compared to other schemes.  

VI.  CONCLUSION 

In this paper, a novel framework is developed for studying the 
complex interactions between an aggregator and different categories 
of ESs of various types to trade their surplus power to the aggregator 
strategically in the smart grid. The interaction between aggregator 
and ESs is formulated as an optimal-contract design problem, and 
optimal contracts are theoretically derived for both baseload and peak 
load scenarios. By adopting the proposed scheme, the aggregator can 

maximize its profits while stimulating ESs to satisfy the load demand 
with positive utility. Comprehensive simulation results show the 
effectiveness of the proposed contract-based incentive mechanism 
over a conventional trading scheme. The results indicate that with the 
proposed scheme the aggregator can procure the same amount of 
energy with only 22.55% and 16.41% of the payment in baseload and 
peak load scenario respectively with the traditional scheme. 
Meanwhile, the developed strategy brings significant profit 
increment of 38.14%, 51.37%, and 72.22% for 1.2, 1.8 and 2.4 $/kWh 
wholesale price respectively compared to a conventional scheme. 
Moreover, the proposed scheme is more useful with a dynamic 
pricing mechanism to reduce the total cost at peak time compared to 
existing noncooperative game based schemes.  

The designed incentive mechanism is characterized for regular 

distributions, as the aggregator only needs to publish an optimal unit 

price to ESs for implementation. Moreover, it is easily deployable on 

a large scale in smart-grid operations of the future because of its 

compatibility with the current electricity-tariff structure. This work 

can be extended to study the more practical scenario i.e. if multiple 

sets of small/medium/large scale ESs exist and they compete with 

each other to sell their electricity. The challenging task is to prioritize 

the same category and type of ESs to procure energy in the electricity 

trading market under the circumstances of asymmetric information. 

Another future aim is to investigate the strategies for ESs when their 

surplus power is much larger than the demand. For instance, a) 

feeding the power back to the grid; b) storing the remaining surplus 

power by charging batteries or electric vehicles; c) individually 

selling power to the neighbor buildings and/or other aggregators, etc 

[38]. The final future area of research is to establish a methodology 

for calculating local network charges and how they can affect the 

scale of electricity trading in a distribution network [39. 40]. 
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