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Abstract—Increased electrification in the residential and trans-
port sectors is changing the energy demand profiles significantly
which results in reshaped peak demand. These changes in
demand profiles can cause grid overloading and jeopardize
network reliability especially when the excessive use of electricity
within a network is uncoordinated. In this paper a comprehensive
energy management system (EMS) is proposed which schedules
the optimal charging/discharging of electric vehicles (EVs) in a
low voltage (LV) residential network to minimize the cost of
electricity for energy consumers and manage the peak power
demand to avoid overloading of the grid. The proposed EMS also
accounts for uncertainties associated with the forecasts, exploits
the energy storage available in EV batteries while considering the
battery capacity degradation to avoid excessive charge/discharge
cycles and prioritizing the preferences of energy consumers.
The proposed EMS is assessed by means of simulation studies
considering an LV residential neighborhood in Sydney, Australia.
The results indicate the effectiveness of the proposed strategy
to minimize the cost of electricity for the EV owners while
managing the peak demand for the grid operators. Comparison
with the state-of-the-art EV scheduling strategies indicates that
the proposed strategy can improve the load factor of the local
network up to 36%, the peak-to-average-ratio (PAR) up to 27 %,
and cost-reductions up to 56%.

Index Terms—Electric Vehicle, Vehicle-to-Grid (V2G), Energy
Management, Stochastic Modelling, Mixed-Integer Program-
ming, Peak Demand Management

I. INTRODUCTION

The energy demand in the residential sector has significantly
increased in Australia and other parts of the world during
the last two decades, and this trend is predicted to continue
in the future [1]. Electricity is the most used energy source
in the residential sector which accounts for more than 40%
of household end-use [2]. Similarly, electrification of the
transport sector is on the rise due to favorable regulations
and technological advancements. More than 2 million plug-
in electric vehicles were sold in 2019 [3].

The increase in electrification of the residential and transport
sector is changing the energy demand profile significantly,
thereby reshaping the peak demand on the local electricity
network. This change in the peak demand profile is a threat to
network operators especially when the energy consumption is
uncoordinated. The increasing energy demand could either be
mitigated with network capacity enhancement or by managing
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the load at the demand side. Demand side management (DSM)
is one approach to extend grid limits somewhat further without
investing too much in the network fortification [4]. Network
fortification being excessively cost dependent is expected to
be the last choice for most network operators. However, the
DSM requires investment in terms of incentivizing the con-
sumers, sometimes in return for compromising their freedom
of using the utilities at will. Dynamic tariffs and demand
response programs are introduced globally to influence respon-
sive consumers to alter their consumption profiles. Light-duty
EV owners can easily take advantage of this by scheduling
their EV charging during off-peak tariff periods [5]. Thus,
EV management strategies are progressively being received
to increase monetary motivating forces during peak demand
periods that sell energy to the grid utilizing the vehicle-to-
grid (V2G) or vehicle-to-building (V2B) functionalities [6],
[7].

Most light-duty EVs are normally charged at private
dwellings [1] and can frequently expend the peak demand
of the entire building. With such increase in electricity de-
mand the networks can experience their capacity limits and
violate operational constraints. Without significant framework
fortifications, most low voltage (LV) residential distribution
networks will not have the option to oblige this expanding
EV charging request because of their restricted capacity limits
[8]. Therefore, the localized capacity issues of increased EV
integration into the distribution network require sophisticated
EV management strategies [9].

The problem of scheduling charging/discharging of EVs
to minimize the cost for EV owners and manage the peak
load for grid operator is addressed in literature. Authors in
[10] investigated the joint optimization of EVs and home
energy scheduling with the objective of minimizing the total
cost of electricity while considering user comfort preferences.
A method for charge/discharge scheduling for an EV is
implemented in [11]. A local and global optimal scheduling
charging and discharging scheme of EVs is developed in [12].
A two-stage scheduling strategy for electric vehicles at large
scale is proposed by [13] to reduce the negative impact of
the uncontrolled charging of EVs on the grid. A method of
coordinated optimal control between PV-based storage and
PEV storage is developed in [14], considering the stochastic
nature of solar PV generation and load demand to minimize
the cost of electricity purchase. Authors in [15] mainly focused
on the minimization of total energy cost and reduction of
peak-to-average ratio of energy usage for multiple homes in
a community. A web-based registration system that gathers
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the actual upcoming energy requirements from EV owners
to schedule the charging needs is presented in [16]. An
apartment-level EV charging coordination scheme is proposed
by [17] to reduce the peak EV charging load and minimize
the apartment-level EV charging cost.

However the proposed models in [10]-[12], [15], [17] do not
account for the uncertainty associated with the errors in fore-
casts. Authors in [10]-[12], [14]-[16] did not model the bat-
tery capacity degradation to avoid frequent charge/discharge
cycles of EV batteries while exploiting the complimentary
battery storage from EVs. Authors in [12], [13], [17] did
not consider the EV owners travel patterns to ensure user
preferences. References [13], [16], [17] did not account for
the impact of distributed energy resources on scheduling EVs.
While [13] is mainly effective for large scale estimations of
charge/discharge impacts of EVs on the grid.

This paper proposes a comprehensive energy management
system which schedules the optimal charging/discharging of
EVs in a LV residential network to minimize the cost of elec-
tricity for energy consumers and manage the peak power de-
mand to avoid overloading of the grid. Mixed integer program-
ming based approach is used to optimize the charge/discharge
scheduling of EVs while considering all associated constraints.
The error in day-ahead forecasts is compensated by stochastic
approach by generating and evaluating large number of sce-
narios. The proposed model also accounts for battery capacity
degradation to avoid insignificant charge/discharge cycles of
EV batteries. Constraints are added to ensure that travel needs
of EV owners are given priority rather than excessive use of
EVs for V2G & V2B services. The key contributions of this
paper are to:

1) design a framework for coordinated management of EVs

to minimize cost for EV owners and reduce peak demand,

2) develop an energy management system which exploits
the complimentary energy storage available with EVs
through V2G & V2B flexibilities, while accounting
for battery capacity degradation to avoid excessive
charge/discharge cycles and prioritizing travel needs of
EV owners,

3) design and implement a comprehensive energy man-
agement system that also accounts for the uncertainties
associated with the predicted parameters

The remainder of this paper is organized as follows: the
system architecture for the proposed EV management frame-
work is presented in Section II, followed by the proposed
methodology for EV management in Section III, the numerical
validation and case studies are discussed in Section IV, results
are presented in Section V and discussed in Section VI, while
Section VII concludes this article.

II. SYSTEM ARCHITECTURE

The outline of the framework design for the proposed EV
management strategy is shown in Figure 1. The strategy is
developed for an LV residential neighborhood, wherein the
aggregator does the fundamental data trades between the
individual household and the grid. The aggregator can be a
delegate of the grid operator or an independent third party
operator.

Energy Market
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3 9 series data
|
- - Aggregator
— Physical connection| | i A | el
. ] Pt |
— — — » Information flow one T > piefetencey
Grid
R . Prediction
Uncertainty
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EV charge-discharge
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Fig. 1. System architecture of the proposed EV management framework.

EV owners send their day-ahead preferences to the aggre-
gator. The aggregator predicts the day-ahead load profiles of
all household consumers, EV owners, and weather inputs for
solar PV generation based on the historical time series data-set.
Despite, precise estimations for day-ahead predictions, there
is still a factor of uncertainty associated with the predicted
outputs. A stochastic approach is adopted to compensate for
the uncertainty factor. The aggregator generates large number
of scenarios for the predicted parameters and takes into ac-
count the impact of each scenario while computing the optimal
schedule for EVs unlike the deterministic models, which only
depend on single set of inputs for optimal scheduling.

The aggregator receives maximum demand allocation for
the local network from the grid operator. This input works
as a maximum capacity constraint for managing the peak
demand. Based on this information, the aggregator determines
the optimized charge-discharge schedules for the EVs in the
network. The proposed strategy assumes that each residential
neighborhood is managed by a single aggregator. Each aggre-
gator is responsible for coordinating with the EVs within its
cluster. The functionality for EV charge-discharge scheduling
model is implemented on the aggregator. The aggregator
receives the following information:

1) travel preferences from EV owners

2) household load preferences from household owners
3) TOU tariff structure from the market

4) maximum demand limits from the grid

In addition, the aggregator has access to the historical time-
series data-set of connected load, EV users travel patterns,
and solar PV generation to make predictions for day-ahead
scheduling. The aggregator predicts day-ahead household load,
solar PV generation, and EV availability based on historical
time-series data-sets. Then the aggregator determines the un-


Sohaib
Highlight

Sohaib
Highlight

Sohaib
Highlight

Sohaib
Highlight

Sohaib
Highlight


certainty factor based on the proposed stochastic model. The
aggregator then dispatches the charge-discharge scheduling of
EVs based on mixed-integer programming model subject to
grid constraints. The aggregators assumed in this paper do not
take part in the energy market. The aggregators just deal with
the local EV flexibilities and provide grid support services;
therefore, the competition among aggregators is past the extent
of this article.

III. EV SCHEDULING MODEL

The proposed EV management system schedules the charge-
discharge of EVs in day-ahead stages and determines the
demand and supply to minimize the energy cost. The proposed
system predicts the household load, expected solar generation
and EV availability in the first stage.

As the scheduling is determined in the day-ahead stage,
different sources can contribute towards uncertainty. In this
article we consider inflexible household load demand, on-
site solar generation and EV travel profiles as the sources of
uncertainty. In the second stage the uncertainty model accounts
for the errors associated with day-ahead predictions which may
lead to the un-optimized scheduling decisions.

Once the model have the adjusted predictions incorporated
with the processed uncertainties, the model process the given
predictions to produce an optimized schedule of EV charge-
discharge while considering the constraints.

A. Prediction Model

An artificial neural networks (ANN)-based prediction model
is used in this paper that forecasts household load, solar
PV generation and EV availability from historical time-series
dataset considering seasonal (i.e. summer, winter, autumn, and
spring) and daily (i.e. week-days and weekends) variations.
ANN is a reliable forecasting method in many applications in-
cluding forecasting of household load, wind speed and weather
[18]. A back-propagation learning algorithms is used in this
paper which is commonly used algorithm in the feed- forward
ANN. The forecast values, Z(t’ h € {Dd th),A(th X(t h)}
can be expressed as:

d,s
Z(th

Z oif <w0j -+ Zwijzfih> +or+d (1)
j=1 i=1
where n is the number of hidden layers in the ANN model,
the weights from the layers are indicated by w;;and 6; . The
o+ is a random shock, where wg;and gy represent the bias
terms of the ANN. The superscripts d represents the type of
the day and s represents the season of the year. The subscripts
t & h represents the time of day and the individual household

respectively.

B. Stochastic scenario generation of uncertain variable

The EV charge-discharge schedule is determined in the day-
ahead stage, therefore different sources can contribute towards
uncertainty. Only the variables which can have high impact on
the decision-making for EV charge-discharge scheduling are
considered. The uncertainty modelling and scenario generation
of these variables are discussed in the following subsections.

1) Household load demand and PV generation: Household
load and solar PV generation vary from day to day (i.e.
week-day/weekend) and from season to season (i.e. sum-
mer/autumn/winter/spring). Considering the seasonal and daily
variations, the probability distributions functions (PDFs) of the
historical time series data for household load and solar PV
generation are first estlmated. Then, stochastic scenarios of
the uncertain variables, X( £.h) {]L?tsh), K 5y} are generated
using the following models.

d d, d,
X = £ (EDlaslielsy o)

<_((t Wlas (i)’

1 2(0‘(t D PP

= e ¢)
(tsh) V2r

where u 0 h and or( 5 h) represent the mean and standard
deviation of the historical data, respectively. Here ¢ is the time
of day, d is the day of the week, and s is the season of the year.
X‘(i o€ {L( tn) Kie.n) } represent the uncertain variables, i.e.
household load and PV generations.

2) EV Availability: Similar to load demand and PV genera-
tion, the vehicle travel pattern varies from day to day and from
season to season. Therefore, the historical time series data for
EV travel patterns is used to extract the probability distribution
functions (PDFs) for EV availability, travel distance, and
range efficiencies. The availability is the binary variable that
indicates if an EV is at home for charging or discharging, i.e.
it is 0 when EV is away and 1 when an EV is at home. From
the PDF of EV availability according to historical data, the
availability of a particular EV at time ¢ and day of the week
d, can be estimated as:

Al =1 ((tyh)|d||N(dt,h)apElt7h))

N¢, d
- < é’h)> Bty (1= Bfyy) M =00 3)

P(t,n)
where N‘(it’ n) Tepresents the number of scenarios for each EV
to estimate the availability of an EV at home for charg-
ing/discharging and p‘(’lt’h) is the success probability of the
scenario.

Once the availability is estimated in a scenario, the status
of the EV in that scenario is then calculated. Four EV statuses
have been identified for the proposed EV management model:
available, not available, departed, and arrived. The EV status
is calculated according to Algorithm 1, which identifies when
a particular EV arrives home or departs from home to assign
corresponding statuses.

3) EV travel and range efficiency: The actual range of
an EV can differ substantially in real-life situations and can
be much shorter than the figures given by the manufacturers
[19]. Therefore, instead of using a constant number for EV
efficiency, the proposed method incorporates the uncertainty
associated to the range efficiencies of the EV. This paper
considers the seasonal effect on the efficiency and modelled
the different range of efficiencies for summer and winter. The
EV efficiency and daily commute distance of EV for scenario
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Algorithm 1 Status Matrix

1: for t € T do

2 for h € H do

3 for i €1 do

4 for d € weekday, weekend do

5 if A‘(it’h’i) =1 then

6 S‘(it,h’i) =1 > available
7: else if (1 = A((it,h,i)) =1 then

8: Szlt,h,i) =4 > departed
9: else

10: S?t,h’i) =3 > arrived
1 Sd =2 > not available

(t:hvi)
12: end procedure

generation are estimated based on Eq. (4) from the historical
time series data-set.

(—(t,wd,s)
d,s
e\ i @)

where ,]I((it”sh) € {D‘(inh),IEft)}. The mean distance traveled
and the mean efficiency of an EV are represented by u‘(it’h)
respectively. The superscripts d & s represents the day of the
week and seasonal inputs respectively.

J(dih) = f ((ta h)|d,s||ﬂzi£7sh)> = Tds
Fen)

C. Uncertainty Modelling

Large number of scenarios are generated for the param-
eters with high uncertainty. These scenarios are generated
based on historical time series data. The uncertainty factor
could be due to human behavior or unpredictable weather
conditions. These parameters include household load L?t’fh’i),
solar generation Kft, hoi)? EV availability A‘(it’ hoi) at home for
charging/discharging operations, distance traveled ]D)?t’ hi) by
EV owners when they are away from home and efficiency of
EVs th,i . Here the subscripts ¢, h & i represent the time
of day, the household and the scenarios, respectively. The
superscripts d & s represents the day of the week and the
season of the year respectively.

These scenarios are fed into the optimization model ex-
plained in Section III-D. The optimization model evaluates
the impact of each scenario on the scheduling of EVs for each
household as defined in Egs. (5) to (8). The charge/discharge
scheduling of EVs are computed based on equally weighted
probabilities of each scenario. The proposed EMS minimize
the aggregated cost of electricity for the aggregator while
considering the impact of large number of possible scenarios
instead of evaluating the EV schedule based on deterministic
input parameters.

D. Optimization Model

The objective function is designed to minimize the ag-
gregated cost of electricity for the aggregator. It is the ag-
gregated sum of the cost of electricity for each household.

The aggregated cost for each household is composed of the
cost of electricity traded between the grid and respective
household along with the costs of battery capacity degradation
for EVs as a result of charge/discharge cycles. battery capacity
degradation is explained in Equations (23) and (24). The
details of energy transactions and optimization constraints are
mathematically modelled in Equations (5) to (14) and (17)
to (22).

TC =min» Y (HCp) )
teT heH
HC ) = EByp + EStp + BDyp, (6)
1
EBum =Y — (a(nh,i)Pﬁ’h’i)At\I’j) %)
— p;
i€l
1 -
BSum = (BenoBiaadV)  ©
iel 7
1
BDgpy = — (C?’t,h,@) ©)
i€l Pi
Qe,h,i) T Biehyi) = 1 (10)
(t,h,0)Bit,hyiy = 0 (11)
(e,ni) Pl pgy 2 0 (12)
Bithy Pl psy <O (13)

where the subscripts ¢ represents the time of day, h represents
the specific household & ¢ represents a specific scenario for
predicted parameters. HCyp is the cost of electricity for
each household, E'B; j, is the cost of energy bought by each
household, E'S; , is the cost of energy sold by each household
and BD; is the cost of battery capacity degradation of
each EV. IP((GL hyi) is the power traded by each household with
the grid. The objective function is designed to minimize the
total cost T'C, considering the associated constraints for each
household. The general sign convention used for IP’% hoi) ie.
the power transactions between the grid and household are:

« Power drawn by the consumer from grid is treated posi-
tive at the rate of U;” $/kWh
« Power supplied back to the grid by consumer is treated
negative at the rate of U, $/kWh
A (t,n,5) and By p 4 are the auxiliary variables indicating the
power drawn from the grid and power supplied back to the grid
respectively. Egs. (10) to (13) are the constraints to optimize
the power drawn by individual household from the grid. The
power balance equation for each household is presented in
Eq. (14).

where, P%t’h’i) is the household load, PX’h’i) is the charg-
ing/discharging power of EV and ]P’]%i, hyi) is the power gener-
ation from solar PV. When ]P’% hi) is positive, the values of
auxiliary variables are: « = 1 and 5 = 0, in this situation the
consumer draws power from the grid. In other case, when
the system has excess energy i.e. Pﬁ’h,i) is negative, the
system feeds back power to the grid. The model has the
flexibility to apply different energy transaction rates for energy
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sale/purchase. Similarly, IP’X’ hi) is positive when the EV of
respective household charges and negative when discharging.

A constraint for maximum aggregated power drawn by all
consumers from the grid i.e. PG, is set to manage the peak
demand from grid’s perspective while minimizing the cost of
energy consumption for the individual consumers. Another
constraint applied to the proposed EMS i.e. PV, limits the
maximum aggregated power due to charging/discharging of
EVs at any given time. This constraint is worked out such
that the network capacity limits provided by the grid operator
are never exceeded.

> Blina <P® (15)
heH
D Py <P a6)
heH

The state of charge of EV batteries is modelled in Eq. (17).
The model considers the lower and upper bounds of battery
state of charge to optimize the effective battery life Eqs. (20)
and (21). The model also has the flexibility to prioritize the
travel needs of the consumers Eq. (22).

d ViV
PRy . A(t,h,i)?hp(t,h,i) a7
(t,h,) (t—1,h,7) ]P)X
\% is Vc
P < P§;7h7i) <Py (18)
EnDf, 1.4

Py = —— e D) (19)

(t,h,1) =

Py

Sy = O (20)
5X,h,i) < 5X (21)
5?;7,“) > ]P"?t’hyi) (22)

where ]P’XC'“’ & ]P’Xd“ represents the maximum charging and
discharging power limits for EVs. A‘(it’h’i) is the availability
of an EV at home for charging/discharging and ]D)‘(it’ hi) is the
distance traveled by an EV at any given time ¢ on a given day
of the week d and scenario .

The battery capacity degradation as a function of charging-
discharging power is estimated based on the work done by
authors in [20] and is replicated in Eq. (23).

Opv = (110 + 730 + 150° + 970"+
2
(12 +760) [BY| + VI (23)

(Cyt,h,i) = (A'(ityh’i)ﬂ]pv 9)

Respective cost of battery capacity degradation is modelled
in Egs. (23) and (24) for stationary battery storage and the EV
battery. Here Ilpv represents the battery capacity degradation
in kWh 6 is the cost of battery degradation in $/Wh, v is the
battery voltage and ~y is the battery degradation coefficient.

(24)
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Fig. 2. Input parameters for the model.

IV. NUMERICAL VALIDATION

This segment discusses the simulation studies to validate the
adequacy of the proposed strategy for grid support services
while fulfilling consumer preferences for EV charging.

A. Simulation Setup

The proposed EV management strategy is assessed by
means of simulation on an LV residential network in Sydney,
Australia. The system supplies power to 175 segregated private
dwellings. It is considered that around one-third (50 out of
175) of the houses in the network are equipped with EVs
having V2G abilities and consent to participate in the grid
support services. The maximum power supply capacity for the
feeder is considered as 350 kW.

The prediction model generates day-ahead household load,
solar generation Fig. 2 and EV travel patterns for 175 house-
holds. For validation of maximum peak demand, only the re-
sults of summer weekend and winter week-day are presented.
The prediction model uses a 3 layered feed-forward neural
network trained by the Levenberg-Marquardt algorithm. It was
initiated with five neurons in the hidden layer and repeated
by increasing the neurons up to 40. The best results were
produced at 20 neurons in the hidden layer which is used for
getting the forecasts. The historical data which is used by the
prediction model, is divided into three subsets; the training set,
the validating set and the testing set. 70% of the total dataset
was allocated for training the model and the remaining 30%
was equally divided for validation and testing purposes.

TABLE 1
TARIFF PARAMETERS.

Tariff periods TOU tariff  Feed-in tariff
Peak (2PM-8PM) 0.548 $AU 0.107 $AU
Off-peak (10PM-7AM) 0.149 $AU 0.085 $AU
Shoulder (7AM-2PM, 8PM-10PM)  0.246 $AU 0.102 $AU

The proposed strategy is developed using general algebraic
modelling system (GAMS) and MATLAB. The EV travel
patterns are modelled in MATLAB. The optimization problem
in Egs. (5) to (24) is formulated in the GAMS and solved
using a commercially available solver i.e. Baron [21], with an
absolute and relative optimality gap of zero. The simulation
was setup on an Intel Core i7 2.00 GHz computer with 16
GB RAM. Data exchange (GDX) is used for communica-
tions between MATLAB and GAMS. The MATLAB neural
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TABLE II
EV SCHEDULING STRATEGIES SETUP.

Scheduling Uncoordinated \ Decentralized \ Aggregated
Strategies Strategy-1 Base(w/o EVs) Strategy-2 Strategy-3 Strategy-4 Strategy-5 Strategy-6 Strategy-7 Strategy-8 Proposed
Constrained Power v’ v’ v’ v’
Uncertainty Estimation v’ v’ v’ v’
network toolbox (nntool) has been used to train the feed- V. RESULTS

forward ANNs. MATLAB provides builtin transfer functions
that have been used for the hidden and output layers as follows:
hyperbolic tangent sigmoid (tansig) for the hidden neurons; a
pure linear function (purelin) for the output neurons [18].

For simplicity, we have considered a mid-range V2G capa-
ble EV with a rated battery capacity of 24 kWh and a usable
battery capacity of 19.2 kWh (i.e. 80% depth of discharge),
as in [22], [23]. To model the continuity, the final SoC
requirements at the end of the day is considered the same
as the initial SoC at the beginning of the day. The time of use
tariff (TOU) and the feed-in-tariff are taken from [22], [23]
are presented in Table L.

B. EV Scheduling Strategies

In light of the inputs discussed in the previous sections,
the numerical simulations are conducted for the proposed EV
management strategy. Likewise, to compare the effectiveness
of the proposed strategy, the outcomes are compared with the
accompanying cutting edge EV management strategies defined
in Table II. The strategies mainly differ in either of the three
main features:

« the strategies are either Aggregated (strategy-6, strategy-
7, strategy-8 and proposed strategy) or Decentralized
(strategy-2, strategy-3, strategy-4 and strategy-5)

« the strategies either Include the grid capacity constraint
(strategy-2, strategy-4, strategy-7 and proposed strat-
egy) or Exclude the grid capacity constraint (strategy-3,
strategy-5, strategy-6 and strategy-8)

o the strategies either Include the uncertainty estimation
(strategy-2, strategy-3, strategy-6 and proposed strat-
egy) or Exclude the uncertainty estimation (strategy-4,
strategy-5, strategy-7 and strategy-8)
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Fig. 3. Aggregated load profile (winter).

Based on the input data, the aggregator assesses the needs
of individual household and creates a day-ahead optimization
schedule to minimize the cost for individual households and
reduce the peak demand for the grid. the results are presented
for both summer and winter to validate that the model is
effective for a wide range of inputs.

A. Effect of EV scheduling on Peak Demand

The comparison of aggregated load profiles for all the
strategies discussed above are presented in Figs. 3 and 4
respectively for summer and winter. The figure compares
the effectiveness of the proposed method with the other EV
scheduling strategies for grid overloading mitigation. It can
be seen that the aggregated peak demand remains below the
grid constraint set by the grid operator for all the strategies
where grid constraint is applicable (i.e. proposed strategy,
strategy-2, strategy-4 and strategy-7). For other strategies
where aggregated peak demand constraint was not applied, the
aggregated peak demand exceeds the maximum grid capacity
limits. Higher demand is seen during the winter week-day
compared to summer weekend due to number of vehicles
returning home from work and plugging in to charge upon
arrival. Whereas, on summer weekend most EVs return home
in the later hours of the evening and plug-in to recharge.

In the case of uncoordinated scheduling i.e. strategy-1,
the aggregated demand exceeds the maximum capacity in
the evening, as almost all the EVs arrive at home and start
charging during evening hours. It can also be noticed that the
aggregated demand exceeds the maximum capacity during off-
peak hours for the decentralized scheduling strategy. This is
the rebound effect, as most of the EVs in the decentralized
scheduling system do not charge in the peak-load hours due
to high TOU tariff rates and they start charging as soon as
the TOU tariff is reduced. Hence shifting the peak demand
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Fig. 4. Aggregated load profile (summer).



from conventional peak hours to off-peak hours. On the
other hand, due to the coordinated EV management of the
proposed method, the aggregated demand always stays below
the maximum capacity utilizing the EV flexibilities. It also
falls below the EV charging excluded aggregated demand (w/o
EV case in the figure) as a portion of the load demand is
also supplied via V2G and V2B of the EVs thereby reducing
the overall demand on the grid, especially during peak tariff
periods.

In the case of uncoordinated scheduling, for example:
strategy-1, the aggregated power demand surpasses the maxi-
mum capacity limit in the evening, as practically all the EVs
show up at home and begin charging during evening hours.
It can likewise be seen that the aggregated power demand
exceeds the maximum capacity limit during the off-peak hours
for the decentralized scheduling strategy. This is the bounce
back impact, as the majority of the EVs in the decentralized
scheduling system does not charge in the peak load hours
because of the high TOU tariff rates and they begin charging
when the TOU tariff is decreased. Subsequently, shifting the
peak demand from usual peak hours to the off-peak hours. On
the other hand, because of the coordinated EV management of
the proposed strategy, the aggregated power demand always
remains below the maximum capacity limit by utilizing the
EV flexibilities. It also falls below the EV charging excluded
aggregated demand (i.e. w/o EV case in Figs. 3 and 4) as a
portion of the load demand is also supplied via V2G and V2B,
thereby reducing the overall demand on the grid, especially
during the peak tariff periods.

It can be seen in Fig. 5 that the aggregated peak demand
of the proposed strategy remains below the defined grid
maximum constraint. However, exact like comparison of the
proposed scheduling strategy with the decentralized scheduling
i.e. strategy-2, shows that the maximum aggregated peak
constraint is violated in winter. This is because the maximum
power constraint for strategy-2 is set on individual households
with EV. Therefore, individual maximum power limits are
met for each household but aggregated the aggregated peak
demand constraint is violated in the decentralized strategy.

B. Effect of EV scheduling on grid impact assessment param-
eters

At a high level, the impact of grid is monitored based on the
indices called load factor (LF) and peak-to-average power ratio
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Fig. 5. Peak demand comparison of all strategies.

(PAR). Table IIT compares the LF and PAR of the proposed
method with the other EV scheduling strategies. It can be noted
that the LF and PAR for the proposed scheduling strategy are
better than all the other strategies except strategy-1 in summer.
Although, the LF and PAR of strategy-1 are better than the
proposed strategy, but the aggregated cost of strategy-1 is
significantly higher. The cost comparison is shown in Fig. 6.
The LF and PAR of the proposed strategy and the like-for-
like comparison i.e. strategy-2, is almost equal in summer.
However, the LF of the proposed strategy is 36% higher than
strategy-2 in winter and the PAR of the proposed strategy is
27% lower than strategy-2 in winter.

C. Effect of EV scheduling on cost of electricity

The aggregated costs of electricity for all the strategies
are presented in Fig. 6. It can be seen that all the strategies
reduce the cost of electricity compared to the uncoordinated
strategy. The decentralized scheduling strategy i.e. strategy-2,
appears to be the best in terms of reducing the total cost of
electricity, even better than the proposed strategy. Strategy-2
reduces the cost of electricity by 57% in summer and 66% in
winter compared to strategy-1 (i.e. the uncoordinated strategy).
Whereas, the proposed strategy reduced the cost by 53% and
56% respectively for summer and winter compared to the
uncoordinated strategy-1.

The decentralized scheduling strategy, i.e. strategies 2 to 5,
shifts the EV charging from peak load periods to off-peak load
hours. The proposed EV management strategy likewise offers
critical cost savings contrasted with uncoordinated scheduling
strategies for all the EV owners. However, the decentralized
scheduling strategy performs better than the proposed strategy
as far as cost savings are concerned. This is on the grounds
that the proposed strategy minimizes the energy cost while
complying with the grid constraints, which keeps a portion
of the EVs from charging during off-peak periods as it
would prompt over-loading circumstances. Despite the fact
that a particular TOU tariff is utilized for validation, similar
outcomes are expected for various tariff structures used in the
energy markets far and wide.

Therefore, EV owners should be offered attractive incentives
that urge them to take interest in such grid support services
regardless of the tariff structure. However, from the grid
operator’s point of view, it would be financially doable to
offer the EV owners the expected cost savings they would
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Fig. 6. Aggregated cost comparison of all strategies.
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TABLE III
GRID IMPACT ASSESSMENT PARAMETERS.

Evaluation

Scheduling Strategies

o Season
Criteria Strategy-1 Strategy-2 Strategy-3 Strategy-4 Strategy-5 Strategy-6 Strategy-7 Strategy-8 Base(w/o EVs) Proposed
LF Summer 0.51 0.49 0.49 0.46 0.46 0.40 0.46 0.39 0.48 0.49
PAR Summer 1.94 2.04 2.05 2.16 2.17 2.53 2.18 2.56 2.09 2.06
LF Winter 0.63 0.52 0.54 0.54 0.52 0.46 0.72 0.46 0.66 0.71
PAR Winter 1.58 1.91 1.84 1.84 1.92 2.19 1.40 2.20 1.51 1.40

achieve by opting for optimized EV charging. The other
option and convenient solution to address grid capacity issues
(particularly for LV network) are to put resources into network
fortification. Economic feasibility analysis in [24] shows that
incentivizing the EV owners for their flexibility would be a sig-
nificantly more prudent alternative than putting resources into
the network fortifications. Therefore, using DSM adaptability
to address grid capacity issues is valuable for both stakeholders
i.e. the consumer and the grid.

D. Effect of EV penetration on performance

The penetration levels of EVs can seriously influence the
network loading conditions and this can affect the exhibition
of the proposed EV management strategy for grid support
services. Consequently, three contextual analyses are con-
ducted to assess the effectiveness of the proposed strategy
with various penetration levels of EVs in the network. In
case 1 around one-third (50 out of 175) of the houses have
EVs, which is equivalent to the outcomes discussed in the
previous sections. In case 2 around two-third (120 out of
175) EV penetration is considered, while case 3 considers
that all houses have EVs (i.e. 100% penetration). The travel
patterns, charge-discharge efficiencies and SoC requirements
are selected according to Section IV-B.

The aggregated load profiles for the network in all cases are
shown in Fig. 7. The aggregated peak demand of the proposed
strategy remains blow the maximum capacity constraint set
by the grid in all cases. It can also be noted that if the EV
owners adopt uncoordinated charging strategy, it will result in
challenging the grid capacity constraint even for case-1 (i.e.
one third EV penetration).

The distributions of the EV owners’ daily electricity costs
for all cases are illustrated by the box plots in Fig. 8. It can
be noted that the median cost of electricity for EV owners

[Max. capacity (kw)

Power [kW]

o case-1 (porposed strategy) —#*— case-1 (strategy-1)

case-2 (porposed strategy) —#— case-2 (strategy-1)

case-3 (porposed strategy) —%— case-3 (strategy-1)
1 I 1 1 1 1

2 4 6 8 10 12 14 16 18 20 22 24
Time of day

Fig. 7. Load profiles at different EV penetration levels.

remains almost same except for slight variations, regardless
of the EV penetration level. However, the maximum cost of
the EV owners are higher as the EV penetration increase.

This is because more EVs in the network create energy
demand, and while the system constraints are in place, the
aggregated peak demand cannot exceed the peak demand
constraint, therefore access energy is drawn from EVs in the
neighborhood using the V2G flexibilities. Excessive charge-
discharge of EV batteries can lead to battery degradation and
its cost is incorporated in the proposed strategy. However,
appropriate financial incentive packages are required to en-
courage EV owners’ participation in the grid support functions.
In addition, attractive incentives are also essential to ensure
sufficient participation from the EV owners with adequate
flexibility to address critical grid issues [25].

E. Effect of uncertainty modelling on performance

The proposed model accounted for uncertainties associated
with the predicted parameters which is missing in [10]-[12],
[15], [17]. The uncertainty associated with the predicted pa-
rameters can cause significant variations in the computed cost
savings for the aggregator. The performance of the uncertainty
model proposed in this article is evaluated using a case study.
The aggregated cost of electricity for the proposed model is
computed while considering large number of possible scenar-
ios for each predicted parameter i.e. household load, solar
generation, EV availability, distance traveled by EV when it is
not available and the efficiency of EVs. For fair comparison, all
the possible scenarios of predicted parameters are individually
computed using strategy-7 i.e. aggregated model with grid
constraints but no uncertainty modelling. Therefore, strategy-
7 represents the deterministic version of the proposed model
which excludes uncertainty modelling.

The aggregated costs are computed using the proposed
EMS i.e. including uncertainty modelling, and strategy-7 i.e.

Cost [$AU]

case-1 case-2

Fig. 8. Cost comparison at different EV penetration levels.
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Fig. 9. Aggregated cost for all scenarios during summer comparing the impact
of uncertainty modelling between strategy-7 and proposed EMS.

an equivalent strategy excluding uncertainty modelling. The
results of 10 randomly selected scenarios are presented in
Figs. 9 and 10. It can be noted that the computed aggregated
costs for individual scenarios using strategy-7 varies from
the aggregated costs computed using the proposed EMS. The
aggregated cost computed based on the deterministic model
can vary significantly from the actual cost of electricity.
However, the proposed EMS evaluates a modest aggregated
cost of electricity thus reducing the uncertainty associated with
the predicted parameters. It can therefore be concluded that
the proposed model can effectively reduce the uncertainties
associated with the predicted parameters.

VI. DISCUSSION

An aggregated coordinated framework for charge/discharge
scheduling of EVs in an LV residential network is proposed
in this paper to minimize the cost of electricity for EV owners
and manage the peak demand for grid operators. A compre-
hensive optimization model for charge/discharge scheduling of
EVs is obscure in the existing literature which considers the
uncertainties associated with the forecasts, utilizes the batteries
on wheels through V2G & V2B flexibilities, accounts for
the battery capacity degradation to avoid exploitation of EV
batteries, and prioritizes EV owner’s preferences.

Simulation results presented in the results section show that
the model can reduce the cost of electricity for EV owners
significantly while effectively managing the peak load on the
grid even with the 100% penetration of EVs as shown in Fig. 7.
Detailed analysis show that the adaptability from the EV
owners can moderate any grid capacity issues even with full
EV penetration. However, the consumer’s participation may re-
quire attractive incentive plans to guarantee the accessibility of
EV flexibilities in such grid support services. The adaptability
of the proposed strategy makes it versatile for a large network
with a higher penetration level of EVs and other distributed
and flexible energy resources. The robustness of the model
is validated for different data inputs including the seasonality
(summer/winter), day of the week (week-day/weekend), and
different levels of EV penetration.

It can be argued that the uncertainty model proposed in this
paper does not completely eliminate the risk of uncertainty
associated with the predicted parameters. However, it can be
noted that the proposed stochastic approach adopted in this
study reduces the risk of under or over estimation of the cost
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Fig. 10. Aggregated cost for all scenarios during winter comparing the impact
of uncertainty modelling between strategy-7 and proposed EMS.

of electricity for the aggregator. This approach is better than
the deterministic approach as the later can lead to significantly
higher variations in the estimated cost of electricity. The
future work will focus more on improving the effectiveness
of the uncertainty model to minimize the risk of under or
estimation for the aggregator while also exploring the large
scale applications of EV aggregation with potentially higher
impact on the grid.

VII. CONCLUSION

A comprehensive energy management system for electric
vehicle (EV) charge-discharge scheduling is proposed in this
paper to minimize the cost of electricity and manage the peak
demand in an LV residential network. In contrast to most EV
scheduling models, the proposed EMS accounts for uncer-
tainty associated with day-ahead prediction, modelled battery
capacity degradation to avoid excessive charging/discharging
of EV batteries and ensured that EV owner’s preferences are
not compromised. EV charge/discharge schedule is optimized
using mixed-integer-programming approach and uncertainty
of forecasted parameters is compensated using stochastic ap-
proach.

The proposed EMS is evaluated via simulation of an LV
residential neighborhood in Australia. The simulation results
indicate that the proposed framework can effectively prevent
grid overloading despite high EV penetration in the network.
The proposed strategy can effectively incorporate EV owners’
preferences while providing grid-support services. The sim-
ulation results prove the efficacy of the proposed strategy by
significantly reducing the cost of electricity of the EV owners.
Comparison with the state-of-the-art strategies indicate that the
proposed strategy can improve the load factor up to 36%, the
peak-to-average-ratio up to 27% and cost up to 56% compared
to uncoordinated scheduling.

It has been evaluated that EVs can provide significant cost
saving opportunities for the EV owners while supporting the
grid operators to manage the peak demand, when managed
appropriately. Other than residential applications, EVs serving
the fleets with predictable schedules can be far more effective
in offering grid support services. The future work will be
more focused on improving the uncertainty modeling and also
analyzing the potential of EVs used in commercial fleets to
provide grid support services.
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NOMENCLATURE

Indices and Sets

t time of day € T
h households € H
d day of week [week-day,weekend]
S season [summer,winter]
i scenario € I
Parameters
‘(it’ hii) EV status on day d of house h at time interval
t and scenario ¢
]D)E"t) hoi) EV distance travelled on day d of house h at
time interval ¢ and scenario 7 [km]
Al by EV availability on day d of house h at time
interval ¢ and scenario ¢ [0,1]
]th’i) EV efficiency in season s of house h and
scenario 7 [kWh/km]
(2 Time-of-use tariff
n Feed-in-tariff
Di Probability of scenario ¢
]P’Ec’lg Max charging power of EV [kW]
P, s Max discharging power of EV [kW]

Max SoC limit of EV [%]
Min SoC limit of EV [%]

, Charge-Discharge efficiency of EV [%]
0 Battery degradation cost constant [$/Wh]
vy Coefficient of battery degradation
]P’]?g’ hoi) Household load [kW]
(th,4) Solar generation [kW]
PC Grid capacity limit [kKW]
PV Aggregated maximum charging power limit for
EVs [kW]
Variables
Qi) Binary auxillary variable [0,1]
ﬂ%}’h’i) Binary auxillary variable [0,1]

t,
r
(t,h,7)

EV charge-discharge power [kW]
Power demand from grid [kW]
EV state-of-charge [%]

hyi)
h,i)

P Battery capacity degradation [kWh]
Cliniy EV battery degradation cost [$/kWh]

C Total cost of electricity for the aggregator [$]
HC ¢ p) Cost of electricity for each household [$]
EB,n) Energy bought by each household [$]

ES n) Energy sold by each household [$]
BD 1) Cost of battery capacity degaradtion for each

EV [$]
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