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Abstract: 

Collaboration is one of the most important contributors to scientific advancement and a crucial aspect of 
an academic’s career. However, the explosion in academic publications has, for some time, been making 
it more challenging to find suitable research partners. Recommendation approaches to help academics 
find potential collaborators are not new. However, the existing methods operate on static data, which can 
render many suggestions less useful or out of date. The approach presented in this paper simulates a 
dynamic network from static data to gain further insights into the changing research interests, activities 
and co-authorships of scholars in a field – all insights that can improve the quality of the 
recommendations produced. Following a detailed explanation of the entire framework, from data 
collection through to recommendation modelling, we provide a case study on the field of information 
science to demonstrate the reliability of the proposed method, and the results provide empirical insights 
to support decision-making in related stakeholders - e.g., scientific funding agencies, research institutions 
and individual researchers in the field.  

Keywords  network analytics · collaboration recommendation·link prediction · semantic 

analysis · dynamic network 

Introduction 
Scientific collaboration is essential for enhancing the productivity of researchers (Wang et al. 2019b; 
Landa et al. 2020) and driving innovation (Lee et al. 2011; Zhang et al. 2017a). The process of selecting 
collaborators for research is complex, and although affected by multiple factors, e.g., geographical 
location (Terveen and McDonald 2005) and social context (Lee and Schleyer 2010), the relevance of 
their research content is crucial as well (Chaiwanarom and Lursinsap 2015). Nowadays, the information 
overload due to the emergence of big scholarly data is making this process even more time-consuming 
(Schreiber et al. 2017; Zhou et al. 2017), and it is impossible to identify potential research partners by 
relying only on personal networks and social relationships. Hence, an effective algorithm for 
recommending possible collaborators could be useful. Existing methods for recommending scientific 
collaborators can be broadly categorized into three types: collaborative filtering (CF) (Haruna et al. 
2017), content-based methods (Sugiyama et al. 2010), and social network-based methods (Liben-Nowell 
and Kleinberg 2007; Shibata et al. 2011). Hybrid models of the above strategies have also been proposed 
(Chen et al. 2018; Işık et al. 2018). However, the following gaps remain in literature: (1) Most previous 
studies are based on static data and fail to characterize the changes in academic activities, since 
collaborative relationships change over time (Bian et al. 2014; Zhang et al. 2017b); (2) Data sparsity is 
a major challenge for conventional recommendation systems, as it may result in information loss and 
performance reduction (Wang et al. 2019a; Zhang et al. 2021); (3) Conventional text analytics for 
research content typically focuses on the collinear relationship of keyword frequency while ignoring the 
internal semantics between keywords (Sun et al. 2018; Zhou and Jiang 2020), which may lead to an 
inaccurate similarity analysis. 

Our study was aimed at developing a novel recommendation methodology for academic 
collaborations based on dynamic network analytics, considering the research content in scholarly papers 
as well as the topological structure of bibliometric networks. In other words, the proposed framework 
considers the changing landscape of academic collaborations and research interests over time. The 
bibliometric input to the model is simulated as a data stream. The integral tools in the framework include 
link prediction, text analysis, and machine learning techniques. Specific functions include: (a) link 
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prediction combined with an autoregressive integrated moving average (ARIMA) model (Box and 
Jenkins 1976) to transform static co-author network indicators into dynamic ones for analysis; (b) the 
use of time-sliced author–keyword matrices to track changes in researchers’ interests over time and to 
alleviate data sparsity (Lai and Tsang 2016); (c) the use of a Word2Vec model (Mikolov et al. 2013) to 
detect underlying semantics in large-scale texts by mapping words from vocabularies to vectors and help 
further similarity measures; and (d) the use of bagging support vector machine (BSVM) (Kim et al. 2002b) 
to identify existing collaboration patterns and, from these patterns, recommend new ones. 

To demonstrate the reliability and feasibility of our method, we conducted a case study in the 
information science discipline and compared the results with those obtained using four conventional link 
prediction baselines and three state-of-the-art baselines. Expert knowledge-based evaluations were 
performed, and the results not only demonstrate the ability of our method in recommending scientific 
collaborators, but also shed new light on this field of study and its practices.   

Related Work 
A brief review of the relevant literature in each research stream follows, including scientific collaboration 
recommendation, link prediction, and similarity measurements of research interests. 

Scientific Collaboration Recommendation 
Scientific collaboration is important in scientific research (Sun et al. 2019; Wang et al. 2019b). Through 
scientific collaboration, researchers from different academic backgrounds having different knowledge 
skills and thinking modes can form interdisciplinary research teams, thus complementing each other and 
sharing knowledge, abilities, and resources (Gui et al. 2019). Collaboration networks represent an 
important medium to examine scholarly communication (Hoang et al. 2019; Kim and Diesner 2019; He 
et al. 2021). 

Scientific collaborators can be recommended using three major methods (Zhang et al. 2019b; Molaei 
et al. 2021): 1) CF, which makes use of past academic information of researchers, such as historical 
publications or partnerships, to predict future potential collaborators (Zhang et al. 2019b; Molaei et al. 
2021); this method can be further divided into model-based CF (Guo et al. 2016) and memory-based CF 
(Meyffert et al. 2013); 2) Content-based methods, which recommend collaborators based on content-
related features in published literature (Zhang et al. 2019b; Yang et al. 2020), namely titles, abstracts, 
and keywords (Alinani et al. 2018; Wang et al. 2018), by employing latent Dirichlet allocation (Blei et 
al. 2003) and its variant as representative models (Li et al. 2018b; Gao et al. 2018); 3) Social network-
based methods, which analyze the cooperation mechanism by extracting the characteristics of 
collaboration networks (Wang et al. 2019b; Yang et al. 2020). In addition, some hybrid methods have 
been proposed to leverage the specific advantages of the above models and improve the overall 
recommendation result (Liu et al. 2018; Zhang et al. 2019a; Xia et al. 2021).  

Link Prediction 
Link prediction means estimating the possibility of either an unknown link or a future link between two 
nodes in a network, such as a co-author or citation network, that are not connected or do not appear to be 
connected (Lu and Chen 2020; Chen et al. 2021). There are three main link prediction methods: 
similarity-based algorithms, maximum likelihood methods, and probabilistic models (Lü and Zhou 2011; 
Wang et al. 2017). 

Link prediction has been widely used in the analysis of scientific collaboration networks (Cho and 
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Yu 2018; Wang et al. 2019b). Liben-Nowell and Kleinberg (2007) were among the first bibliometricians 
to study link prediction by graphing co-authorship networks. Since then, many improvements have been 
made to this technique. For example, its accuracy has been improved by combining multiple static 
predictors (e.g., common neighbors, Jaccard, and Adamic-Adar (AA)) with machine learning 
(Benchettara et al. 2010; Guns and Rousseau 2014). Some researchers have predicted links in 
heterogeneous networks (Li et al. 2018a; Lande et al. 2020). For example, Yang et al. (2020) proposed a 
link prediction model to dynamically reflect the changes in academic cooperation by analyzing institution 
networks and co-author networks. 

Recently, some novel link prediction methods have been proposed, including the Node2Vec-based 
approach (Grover and Leskovec 2016), variational graph autoencoder (VGAE) (Kipf and Welling 2016), 
and stacking models, for nearly optimal link prediction (OLP) (Ghasemian et al. 2019). 

Similarity Measurements of Research Interests 
Pearson’s correlation, Salton’s cosine, and Euclidean distance are all common similarity measures and 
are widely-used in co-citation analysis, co-word analysis, co-authorship analysis (Leydesdorff 2005; Eck 
and Waltman 2008). For example, Zhao and Strotmann (2010) introduced author bibliographic coupling 
analysis as a method to map the research activities of active authors for a more realistic picture of the 
current state of research in a field. However, the purpose of these methods is mainly to establish hidden 
and indirect academic relationships by means of third-party literature.  

Semantic similarity measurements operate on the content of a researcher’s work. Divided into two 
types, knowledge-based and corpus-based (Zhu and Lan 2014), both quantify the degree to which two 
words are semantically related using information drawn from a source database (Mcinnes and Pedersen 
2013). In the case of knowledge-based methods, for example, Meng et al. (2013) used WordNet to 
measure semantic similarity but with a hybrid measure that combines path, information content, and 
feature-based approaches. Corpus-based methods have emerged since WordNet stopped being supported 
and can draw on a variety of different sources (Pradhan et al. 2020). For example, Deerwester et al. (2010) 
proposed latent semantic analysis as a way to improve the detection of relevant documents based on the 
terms found in queries. Kong et al. (2016) proposed a novel collaboration recommendation model that 
uses Word2Vec to generate more accurate feature descriptions of each researcher.  

Methodology 
Our framework, depicted in Fig. 1, identifies potential collaborations based on two elements: 1) the 
topological structure of an evolving network; and 2) the attributes of the nodes, which represent the 
research interests of authors.
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Fig. 1. Our dynamic network analysis framework  
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Inputs and Data Pre-processing  
The input is research articles gathered from the Web of Science (WoS), which include data such as titles, 
abstracts, keywords and authors. A natural language processing (NLP) technique is used to retrieve terms 
from the titles and abstracts, and then a term clumping process removes noise, consolidates terms, and 
identifies core terms (Zhang et al. 2014).  

To capture the data’s dynamic features, the entire dataset is cut into several slices to simulate a data 
stream, i.e., based on the publication year of research articles, the entire dataset can be expressed as 
{𝐷𝐷𝑡𝑡 , 𝑡𝑡 = 1,2, … ,𝑇𝑇}, where 𝑇𝑇 denotes the number of slices, and 𝐷𝐷𝑡𝑡 denotes the 𝑡𝑡𝑡𝑡ℎ slice.  

Collaboration Network-based Similarity Measurement 

Co-author Network Construction 
The first step in measuring the similarity between authors is to construct two types of co-author networks. 
One is a static co-author network based on a co-author matrix of the entire dataset. The other is a dynamic 
network based on the co-author matrices from each time slice. The relationship between the dynamic 
network 𝐺𝐺𝑡𝑡  and the static network 𝐺𝐺𝑠𝑠 can be described as: 

𝐺𝐺𝑠𝑠 = ∑𝐺𝐺𝑡𝑡                                  (1) 

Link Prediction-based Index Measurement 
The next step is to calculate three topological indicators of the static network 𝐺𝐺𝑠𝑠 . These are link 
predictors based on the structural attributes of the network. 

(1) Common Neighbors (CN; Newman 2001). Two nodes x and y are likely to have a link if they 
have sufficient common neighbors. The index of CN 𝑆𝑆𝑥𝑥𝑥𝑥𝐶𝐶𝐶𝐶 is calculated as 

𝑆𝑆𝑥𝑥𝑥𝑥𝐶𝐶𝐶𝐶 = ∑ 𝑤𝑤𝑥𝑥𝑥𝑥 +𝑤𝑤𝑥𝑥𝑥𝑥𝑍𝑍∈𝛤𝛤(𝑥𝑥)∩𝛤𝛤(𝑥𝑥)                          (2) 

where 𝑤𝑤𝑥𝑥𝑥𝑥 and 𝑤𝑤𝑥𝑥𝑥𝑥 denote the weights of the edges between node z and x, and y and z, respectively, 
𝛤𝛤(𝑥𝑥)  and 𝛤𝛤(𝑥𝑥)  denote the sets of neighbors of x and y, and 𝛤𝛤(𝑥𝑥) ∩ 𝛤𝛤(𝑥𝑥)  denote the common 
neighborhoods of x and y. 

(2) Local Path (LP; Zhou et al. 2009). This is a path-based similarity index. It considers the 
contribution of third-order neighbors (the nodes that can be reached by the target node through two edges) 
based on the common neighbor index. In this paper, this index is adopted for a weighted network. The 
path distance of the node is defined as the reciprocal of the sum of the reciprocal weights. According to 
the index, a greater weight of the edge between nodes indicates the less connectivity of the path. Thus, 
the higher the index, the closer the relationship between nodes. LP 𝑆𝑆𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿 is calculated as 

 𝑆𝑆𝑥𝑥𝑥𝑥𝐿𝐿𝐿𝐿 = (𝐴𝐴2)𝑥𝑥𝑥𝑥 +  𝛼𝛼(𝐴𝐴3)𝑥𝑥𝑥𝑥                      (3) 
where 𝛼𝛼(0 ≤ 𝛼𝛼 ≤ 1) is a tunable parameter, A is the adjacency matrix of the network 𝐺𝐺𝑠𝑠, and (𝐴𝐴𝑛𝑛)𝑥𝑥𝑥𝑥 
represents the number of paths with a length equal to n.   

(3) SimRank (SimR; Jeh and Widom 2002). This indicator reflects the similarity between two nodes 
on the assumption that the more similar the two nodes are, the more likely they are to be connected in 
the future. SimR 𝑆𝑆𝑥𝑥𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  is calculated as 

𝑆𝑆𝑥𝑥𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �
1,                                     𝑥𝑥 = 𝑦𝑦

𝛽𝛽
∑ ∑ 𝑆𝑆𝑣𝑣𝑣𝑣′𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑣𝑣′∈𝛤𝛤(𝑦𝑦)𝑣𝑣∈𝛤𝛤(𝑥𝑥)

𝑛𝑛𝑥𝑥𝑛𝑛𝑦𝑦
,𝑥𝑥 ≠ 𝑦𝑦                      (4) 

where 𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑥𝑥 represent the degrees of node x and y (the degree of a node is determined by the 
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number of its connected edges). Node v is a node in the set of x’s neighbors, node v’ is a node in the set 
of y’s neighbors, 𝑆𝑆𝑣𝑣𝑣𝑣′

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  is the index of SimR between node v and v’, and 𝛽𝛽(0 ≤ 𝛽𝛽 ≤ 1) is a decay 
factor. 

Dynamic Link Prediction Model Construction 
The above indicators are good measures of the similarities in static networks. However, they tend to 
profile static topological structures and fail to reflect the varying characteristics over time; this reduces 
the scientificity and accuracy of the recommendation results. For example, suppose that in a dynamic co-
author network with five snapshots over time, author A collaborated with B for 10, 0, 0, 0, 0 times in 
order, which means that they did not collaborate at all in the subsequent four time slices. We can infer 
that one of them may have changed his/her research or has retired, in which case it becomes inappropriate 
to recommend A to B or B to A. However, in the entire static collaboration network, the total frequency 
of collaboration between A and B is 10, which is high. If the prediction was made directly based on the 
static network, A was likely to be recommended to B.  

The ARIMA model, introduced by Box & Jenkins (1976), is a method for time series analysis. It can 
predict the data of the (𝑇𝑇 + 1)𝑡𝑡ℎ time through the time series of the 1𝑠𝑠𝑡𝑡~𝑇𝑇𝑡𝑡ℎ time. It is represented as 
(p, d, q), where p is the number of autoregressive integrate terms, q is the number of moving average 
terms, and d is the number of orders required to convert a nonstationary sequence into a stationary 
sequence. 

We incorporate the ARIMA model into our framework as a method to calculate the weight of a 
potential link in (𝑇𝑇 + 1)𝑡𝑡ℎ time based on the time-series constructed by the occurrence frequency of 
each link in 1𝑠𝑠𝑡𝑡~𝑇𝑇𝑡𝑡ℎ time, in order to form a dynamic link prediction model. According to Huang and 
Lin (2009), the optimal parameters of the ARIMA model may fall within 𝑝𝑝 = 0, 1, 2, 3; 𝑑𝑑 = 0, 1; and 
𝑞𝑞 =  0, 1, 2, 3. The Akaike information criterion (AIC) can be used as a measure (Akaike, 1974) to 
assess the quality of each combination and select the model with the lowest AIC score.  

The link occurrence score 𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥 for the link (𝑥𝑥,𝑦𝑦) is set to be the potential for the link occurrence 
frequency in the (𝑇𝑇 + 1)𝑡𝑡ℎ time, which is greater than 1: 

𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥 = Pr (𝑥𝑥�𝑥𝑥𝑥𝑥𝑥𝑥+1 > 1)                                    (5)  

where 𝑥𝑥�𝑥𝑥𝑥𝑥𝑥𝑥+1 denotes the link occurrence frequency of nodes x and y at the time slice 𝑇𝑇 + 1, and Pr 
(𝑥𝑥�𝑥𝑥𝑥𝑥𝑥𝑥+1 > 1) denotes the probability that 𝑥𝑥�𝑥𝑥𝑥𝑥𝑥𝑥+1 is greater than 1. 

Index Measurement for Dynamic Networks 
In this part, three static link prediction indices, namely the common neighbors, local path (LP), and 
SimRank (SimR), are transformed into dynamic indices based on 𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥. Based on the design described 
by Huang and Lin (2009), three new dynamic indices are introduced. 𝐷𝐷 − 𝑆𝑆𝐶𝐶𝑥𝑥𝑥𝑥 represents the common 
neighbors 𝐷𝐷 − 𝐿𝐿𝐿𝐿𝑥𝑥𝑥𝑥 represents the local path, and 𝐷𝐷 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥 is the SimRank between the nodes x 
and y in the dynamic network, calculated as  

𝐷𝐷 = �𝑆𝑆 + 𝑀𝑀
𝜀𝜀
� ∗ �𝑆𝑆𝑆𝑆𝑥𝑥𝑥𝑥 + 𝑆𝑆𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆

𝜀𝜀
� , 𝜀𝜀 > 1                    (6) 

where D represents  
𝐷𝐷 − 𝑆𝑆𝐶𝐶𝑥𝑥𝑦𝑦, 𝐷𝐷 − 𝐿𝐿𝐿𝐿𝑥𝑥𝑥𝑥 , or 𝐷𝐷 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥𝑦𝑦, S can be either 𝑆𝑆𝑥𝑥𝑦𝑦𝑆𝑆𝐶𝐶, 𝑆𝑆𝑥𝑥𝑦𝑦𝐿𝐿𝐿𝐿, or 𝑆𝑆𝑥𝑥𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , M can represent 𝑆𝑆𝑆𝑆𝑛𝑛𝑐𝑐𝑛𝑛, 
𝑆𝑆𝑆𝑆𝑛𝑛𝐿𝐿𝐿𝐿, and 𝑆𝑆𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , which are the minimum values of 𝑆𝑆𝑥𝑥𝑦𝑦𝑆𝑆𝐶𝐶 , 𝑆𝑆𝑥𝑥𝑦𝑦𝐿𝐿𝐿𝐿,  and 𝑆𝑆𝑥𝑥𝑦𝑦𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  in the static network 
𝐺𝐺𝑠𝑠, 𝑆𝑆𝑆𝑆𝑛𝑛𝑠𝑠𝑐𝑐 is the minimum value in 𝑆𝑆𝑆𝑆𝑥𝑥𝑦𝑦, and 𝜀𝜀 is a tunable parameter. From Eq. (6), it is apparent 
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that the dynamic index is equal to the static index multiplied by the probability generated from the 
ARIMA model, which aims to realize the combination of static link prediction and time series analysis.  

Research Interest-based Similarity Measurement 
We chose the Word2Vec model (Mikolov et al. 2013) to represent researchers’ interests in the form of 
vectors, and the Euclidean distance was used to measure the similarity between the interests. 

Vector Representation of Keywords 
We selected the skip-gram model in the Word2Vec suite to construct keyword vectors (Mikolov et al. 
2013). This is because, between the two common modules in Word2Vec—skip-gram and CBOW—the 
former has proven to have a small advantage with bibliometric data (Zhang et al. 2018; Hu et al. 2018). 
The inputs for the training are word sequences generated from the text in the abstracts and titles, and the 
keywords are mapped as a vector originating from a point in a multidimensional semantic space using 
the skip-gram model. 

Vector Representation of Research Interests 
The authors’ interests are converted into vector representations by loading the keyword vectors created 
in the previous step into an author–keyword matrix 𝑀𝑀𝑘𝑘

𝑡𝑡 . The research interest vector 𝑉𝑉𝑉𝑉𝑆𝑆𝑎𝑎𝑡𝑡  of the author 
a in the time slice t can be calculated from  

𝑉𝑉𝑉𝑉𝑆𝑆𝑎𝑎𝑡𝑡  = ∑𝐹𝐹𝑡𝑡(𝑘𝑘,𝑎𝑎) ∗ 𝑉𝑉𝑘𝑘𝑡𝑡                              (7) 
 
where 𝐹𝐹𝑡𝑡(𝑘𝑘, 𝑎𝑎) represents the co-occurrence frequency of keyword k and author a in the time slice t, 
and 𝑉𝑉𝑘𝑘𝑡𝑡  denotes the vector of keyword k in time slice t. 

Similarity Measurement for Time Slice-based Author Interests 
The similarity between the vectors representing author interests is calculated in each time slice based on 
the Euclidean distance. In the Word2Vec model, word vectors are normalized, and in this case, we need 
a more discriminative method to represent the distance between vectors. Therefore, we focus on the 
absolute distance between the word vectors rather than the relative distance (e.g., cosine measurement) 
and then transform the similarity in the research content into the Euclidean distance of the research 
content vector. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑉𝑉𝑎𝑎𝑎𝑎𝑡𝑡  denotes the similarity in the research interests between authors a and b in the 
time slice t, that is, the similarity between 𝑉𝑉𝑉𝑉𝑆𝑆𝑎𝑎𝑡𝑡  and 𝑉𝑉𝑉𝑉𝑆𝑆𝑎𝑎𝑡𝑡 , and it is defined as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑉𝑉𝑎𝑎𝑎𝑎𝑡𝑡 = 1
𝜌𝜌𝑎𝑎𝑎𝑎
𝑡𝑡                               (8) 

where 𝜌𝜌𝑎𝑎𝑎𝑎𝑡𝑡  is the Euclidean distance between authors a and b in the time slice t. 

Similarity Measurement for Research Interests 
Once the similarities for each time slice have been calculated, we determine the overall similarity in the 
interests between two researchers by adding the vectors. 𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑎𝑎𝑎𝑎 represents the similarity between the 
research interests of authors a and b, which can be calculated as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑎𝑎𝑎𝑎 = ∑ 𝛾𝛾𝑥𝑥−𝑡𝑡𝑥𝑥
𝑡𝑡=1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑉𝑉𝑎𝑎𝑎𝑎𝑡𝑡 (0 < 𝛾𝛾 < 1)                  (9) 

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑉𝑉𝑎𝑎 ,𝑎𝑎
𝑡𝑡  denotes the similarity in the research interests between authors a and 𝑏𝑏 in time 𝑡𝑡, and 

𝛾𝛾𝑥𝑥−𝑡𝑡  represents the weight of the time slices.  
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Recommendations for Potential Collaborations  
Each of the indicators described above becomes an input vector to the SVM model for classification, and 
the known collaborations between researchers form the labeled training set. We selected SVM because 
it includes an approximation algorithm that reduces the computational complexity in terms of both time 
and dimensionality. Although a single SVM cannot learn the exact parameters of global optimization and 
therefore cannot provide optimal classification performance on all test examples, according to Kim et al. 
(2002a), a bagging algorithm can help mitigate this problem. Following Kim et al. (2002b), we therefore 
applied the BSVM to improve the stability and detection accuracy of the classifier. 

Feature Vector Construction 
The feature vectors for each author comprise topological indicators, i.e., (𝐷𝐷 − 𝑆𝑆𝐶𝐶, 𝐷𝐷 − 𝐿𝐿𝐿𝐿, 𝐷𝐷 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 
and the author interest vectors (𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆).  

Recommendation Model 
The feature vectors are used as inputs to the model, and any existing collaborations between authors are 
assembled into a training set for the BSVM algorithm. Existing collaborations are flagged as a binary 
“author-pair” label, where 1 implies that the two researchers have co-authored a paper, and 0 implies 
otherwise. The data from time slice 1 to 𝑇𝑇 − 1 are used for training, and the data in time slice 𝑇𝑇 are 
used for validation. The final output is a list of potential collaborators for each author. 

Validation Measurement 
For our case study, we chose five evaluation metrics to verify the accuracy of the recommendation results: 
Area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, and F1 (Shani 
et al. 2001). Our calculation methods for each indicator are explained as follows.  

We consider two networks G t1  and G t2  (t1 <  t2) with a given set of the same continuous time 
slices. To evaluate a prediction, we calculate the score of each pair of nonexistent nodes in G t1 and then 
observe whether these pairs of nodes generate edges in G t2. If the score is higher than or equal to a pre-
set threshold, a connection between the two nodes is very likely in the future. If it falls below the threshold, 
a future connection is unlikely. Thus, with these statistical predictions, it is possible to build a confusion 
matrix, such as the one presented in Table 1 (Junuthula et al. 2016). 

Table 1. Link prediction confusion matrix 

  Prediction 
  Existing Edges Nonexistent Edges 

Actuality 
Existing Edges True Positive, TP False Negative, FN 
Nonexistent Edges False Positive, FP True Negative, TN 

(1) AUC. The value of the AUC is the area under the ROC curve, which can be derived by sweeping 
the threshold using the false positive rate (FPR) as the abscissa and the true positive rate (TPR) as the 
ordinate. The formulae for the two rates are as follows:  

𝑇𝑇𝐿𝐿𝑆𝑆 = 𝑥𝑥𝐿𝐿
𝑥𝑥𝐿𝐿+𝐹𝐹𝐶𝐶

,𝐹𝐹𝐿𝐿𝑆𝑆 = 𝐹𝐹𝐿𝐿
𝑥𝑥𝐿𝐿+𝑥𝑥𝐶𝐶

                             (10) 

If all the scores are generated from an independent and identical distribution, the AUC value should 
be approximately 0.5. Therefore, a value exceeding 0.5 reflects the extent to which the algorithm 
outperforms pure chance (Lü and Zhou 2011). As per the recommendation made by Fawcett (2005) and 
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Huang et al. (2018), we set the threshold as 0.5, because our goal was to identify all the factors conducive 
to the collaboration as much as possible. 

The formulae for the other evaluation metrics are as follows: 
(2) Accuracy:   

    𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑉𝑉𝑎𝑎𝑐𝑐𝑦𝑦 = 𝑥𝑥𝐿𝐿+𝑥𝑥𝐶𝐶
(𝑥𝑥𝐿𝐿+𝐹𝐹𝐿𝐿+𝑥𝑥𝐶𝐶+𝐹𝐹𝐶𝐶)

                         (11) 

(3) Precision:  

          𝐿𝐿𝑉𝑉𝑃𝑃𝑐𝑐𝑆𝑆𝑠𝑠𝑆𝑆𝑃𝑃𝑛𝑛 = 𝑥𝑥𝐿𝐿
𝑥𝑥𝐿𝐿+𝐹𝐹𝐿𝐿

                              (12) 

(4) Recall:  

𝑆𝑆𝑃𝑃𝑐𝑐𝑎𝑎𝑆𝑆𝑆𝑆 = 𝑥𝑥𝐿𝐿
𝑥𝑥𝐿𝐿+𝐹𝐹𝐶𝐶

                            (13) 

(5) F1:   

𝐹𝐹1 = 2(𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑠𝑠𝑆𝑆𝑃𝑃𝑛𝑛∗𝑆𝑆𝑃𝑃𝑃𝑃𝑎𝑎𝑅𝑅𝑅𝑅)
𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑠𝑠𝑆𝑆𝑃𝑃𝑛𝑛+𝑆𝑆𝑃𝑃𝑃𝑃𝑎𝑎𝑅𝑅𝑅𝑅

                         (14) 

Empirical Study 
We chose Information Science (IS) as the research field to conduct an in-depth analysis to demonstrate 
the application of our method. IS is a relatively mature field, with large amount of literature data and 
more common scientific collaboration. Furthermore, as information scientists ourselves, it is convenient 
to find experts who are willing to help us verify the reliability of the recommendation results. However, 
this is not to say that our methodology is only suitable for this research area; it can be extended to broader 
research fields. 

Following the studies conducted by White and McCain (2010) and Hou et al. (2018), we selected 22 
leading IS journals. As listed in Table 2, 12 of the journals were the highest-ranked from 2005 to 2008; 
the remaining 10 were the highest-ranked from 2009 to 2016.  

Table 2. Sources of journal data 

No Journal Name (2005–2008) Journal Name (2009–2016) 

1 
Annual Review of Information Science and 

Technology 
Scientometrics 

2 
Information Processing & Management (and 

Information Storage & Retrieval) 

Journal of the Association for Information 

Science and Technology 

3 
Journal of the American Society for Information 

Science1 

Information Research an International 

Electronic Journal 

4 Journal of Documentation Journal of Informetrics 

5 Journal of Information Science Information Processing and Management 

6 
Library & Information Science Research (and Library 

Research) 
Journal of Documentation 

7 
Proceedings of the American Society for Information 

Science (and electronic or digital libraries; 
Journal of Information Science 

                                                        
1 JASIST changed its name from Journal of the American Society for Information Science and Technology to Journal of the 

Association for Information Science and Technology in 2014. 
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Proceedings of the ASIS Annual Meeting) 

8 Scientometrics Library and Information Science Research 

9 Electronic Library Research Evaluation 

10 
Information Technology and Libraries (and Journal of 

Library Automation) 
ARIST 

11 Library Resources & Technical Services  

12 
Program—Automated Library and Information 

Systems 
 

Inputs and Data Pre-processing  
Using the Web of Science (WoS) database, we retrieved a total of 4,593 articles publishing in these 
journals between 2005 and 2016, from which VantagePoint’s2  natural language processing function 
helped extract 5,068 authors and 86,718 terms. After term clumping to remove noise and consolidate 
synonyms/same authors, 777 authors and 4,758 terms remained. More data on this process are provided 
in Tables 3 and 4. 

Table 3. Stepwise results of the term clumping process for author names 

Step Description Terms 

0 raw author name 5068 

1 name disambiguation 4421 

2 remove authors less than three time steps 777 

Table 4. Stepwise results of the term clumping process for keywords 

Step Description Terms 

0 raw terms retrieved by NLP technique 86718 

1 remove single words 74815 

2 remove terms starting/ending with nonalphabetic characters, e.g., “10%” 71442 

3 normalize to British spelling 69714 

4 remove common terms in scientific article, e.g., “introduction” 55182 

5 consolidate terms based on expert knowledge, e.g., “information retrieval” and “IR” 47513 

6 consolidate terms with the same stem 31742 

7 remove meaningless terms 28030 

8 remove words less than 3 4758 

Table 5 lists the descriptive statistics of the co-author network (2005 to 2016). Note that the weight 
of the nodes denotes the number of articles associated with this node, and the weight of the edges 
represents the co-occurrent frequency between its connected nodes. 

Table 5. Descriptive statistics of co-author network (2005 to 2016) 

      
Weight  

Max.   Min.      Mean        Standard deviation 

Nodes  

Edges 

153 

72 

   1 

   1 

   8.0077 

   2.7458                 

14.065 

4.0172 

                                                        
2 https://www.thevantagepoint.com/ 
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Considering the stability of academic research and the granularity of data, the entire dataset was 
divided into six two-year slices (see Table 6), and co-author and author–keyword matrices were 
constructed for each time slice based on the co-occurrence data. 

Table 6. Detailed information on the six sequences 

Time Slice 2005–2016 
T1: 

2005–2006 

T2: 

2007–2008 

T3: 

2009–2010 

T4: 

2011–2012 

T5: 

2013–2014 

T6: 

2015–2016 

Nodes 777 437 547 621 575 555 214 

Edges 1049 235 318 480 388 364 234 

Density 0.0038 0.0025 0.0021 0.0025 0.0024 0.0024 0.01 

Similarities in the Collaboration Network  
With the matrices built, we constructed a full co-author network covering the entire period (2005 to 2016) 
using VOSviewer (Eck and Waltman 2010), as shown in Fig. 2, and calculated the three link predictors, 
i.e., CN using Eq. (2), LP using Eq. (3), and SimR using Eq. (4). 
   
    

Fig. 2. Co-author network (2005 to 2016) 

We also generated a co-occurrence network of the authors for each of the six time slices. These appear 
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in Fig. 3. These networks show changes in the authors’ relationships over time. For example, some 
collaboration teams have been relatively stable for a long duration, such as the ones indicated by the red 
and purple areas in Fig. 3(a), whereas the others are far more dynamic. For example, the collaboration 
between Bornmann and Leydesdorff was not apparent until 2011 (red nodes in Fig. 3(d)) and, since then, 
many other collaborators have co-authored with these researchers in various combinations. 

       

  
(a) (b) 

  

(c) (d) 

 
 

(e)  (f) 
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Fig. 3. Co-author networks by time slice: (a) from 2005 to 2006, (b) from 2007 to 2008, (c) from 2009 to 2010, (d) 

from 2011 to 2012, (e) from 2013 to 2014, and (f) from 2015 to 2016. 

Similarities Between Researchers’ Interests  
The next stage was to calculate the similarities between researchers’ interests. We trained the skip-gram 
model based on the results of the term clumping with the Gensim package in Python. Since higher 
dimensions have been shown to capture better semantics (Wang et al. 2015), we set the number of 
dimensions of the vectors to 300, and the keywords were converted into semantic-level vectors using the 
trained model. 

Subsequently, based on the author–keyword matrix 𝑀𝑀𝑘𝑘
𝑡𝑡  and the keyword vectors, we constructed the 

overall author interest vectors (Eq. (7)), for each time slice (Eq. (8)), and for each author pair SimAI (Eq. 
(9)).  

With a total of 2,120 author pairs, we calculated the dynamic link predictors 𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆, 𝐷𝐷 − 𝐿𝐿𝐿𝐿, 𝐷𝐷 −
𝑆𝑆𝐶𝐶, and 𝐷𝐷 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. Table 7 provides the descriptive statistics.  

Table 7. Descriptive statistics for the author pairs 

 Maximum value Minimum value Average value Standard deviation 

𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 0.9688 0.0000 0.4226 0.2406 

𝑫𝑫− 𝑳𝑳𝑳𝑳 0.0513 0.0000 0.0026 0.0035 

𝑫𝑫−𝑪𝑪𝑪𝑪 5.8698 0.0000 1.1706 1.0803 

𝑫𝑫− 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 1.4627 0.0003 0.0194 0.0760 

Recommendations for Potential Collaborators  

Our method described above suggests using the data from time slice 1 to time slice 𝑇𝑇 − 1 as the training 
set (approximately 70% of the dataset), with the remaining 30% 𝑇𝑇 as the validation set. However, when 
we tried this split, we found that there were few partnerships in 𝑇𝑇. Additionally, compared with the other 
time slices, there were significantly more changes in this time slice. Therefore, to ensure data coherence, 
we used the time slice 1 to time slice 𝑇𝑇 − 2 as the training set (70%) and 𝑇𝑇 − 1 as the validation set 
(30%). 

Evaluation with Statistical Metrics 
We selected five standard quantitative metrics (AUC, accuracy, precision, recall, and F1) as our 
validation measurements.  

First, we conducted a pre-training on the dataset of 1000 and adjusted the parameters 𝛾𝛾 with a step 
size of 0.1 (with α = 0 and β = 0). Following the experiments conducted by Huang and Lin (2009), we 
set 𝜀𝜀 in Eq. (6) as 2. The results showed a relatively stable AUC value when 𝛾𝛾 = [0.1–0.4], [0.5–0.8], 
and [0.9]. Therefore, we selected the first value of each interval and set 𝛾𝛾  to 0.1, 0.5, and 0.9, 
representing low importance, intermediate importance, and high importance, respectively. Subsequently, 
we conducted a pre-training on the dataset of 1000 (with γ = 0.1) and adjusted the parameters α and β 
with a step size of 0.1. The results showed that our method exhibited the best performance in terms of 
the AUC when α = 0.2 and β = 0.1. Therefore, we set α = 0.2 and β = 0.1.  

Second, we compared our method with four conventional static indicators (common neighbors, AA, 
PA, and Jaccard). The calculation method of the common neighbors is expressed in Eq. (2), and the 
methods of the other indicators are given below: 
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(1) Preferential attachment (PA; Zhou et al. 2009). This index considers the information of 
neighboring nodes and has been proven to be the best neighbor-based predictor for collaborations (Yan 
and Guns 2014). PA 𝑆𝑆𝑥𝑥𝑥𝑥𝐿𝐿𝑃𝑃 can be expressed as 

𝑆𝑆𝑥𝑥𝑥𝑥𝐿𝐿𝑃𝑃 = 𝑛𝑛𝑥𝑥𝑛𝑛𝑥𝑥                              (15) 
where 𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑥𝑥 denote the degrees of the nodes x and y, respectively. 

(2) Adamic-Adar (AA; Adamic and Adar 2003). This index assigns more weight to neighbors with 
fewer connections, rather than simply counting the common neighbors (Adamic and Adar 2003). AA 
𝑆𝑆𝑥𝑥𝑥𝑥𝑃𝑃𝑃𝑃 can be expressed as 

𝑆𝑆𝑥𝑥𝑥𝑥𝑃𝑃𝑃𝑃 = ∑ 1
𝑅𝑅𝑃𝑃𝑙𝑙𝑛𝑛𝑧𝑧𝑥𝑥∈𝛤𝛤(𝑥𝑥)∩𝛤𝛤(𝑥𝑥)                               (16) 

where 𝑛𝑛𝑥𝑥 represents the degree of the node z. 
(3) Jaccard (Liben-Nowell and Kleinberg 2007). This index can be considered as the normalization 

of the common neighbors (Guns and Rousseau 2014). Jaccard 𝑆𝑆𝑥𝑥𝑥𝑥
𝐽𝐽𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝑟𝑟  is calculated as 

𝑆𝑆𝑥𝑥𝑥𝑥
𝐽𝐽𝑎𝑎𝑃𝑃𝑃𝑃𝑎𝑎𝑃𝑃𝑟𝑟 =

∑ 𝑤𝑤𝑥𝑥𝑧𝑧+𝑤𝑤𝑦𝑦𝑧𝑧𝑧𝑧∈𝛤𝛤(𝑥𝑥)∩𝛤𝛤(𝑦𝑦)
∑ 𝑤𝑤𝑥𝑥𝑧𝑧+𝑤𝑤𝑦𝑦𝑧𝑧𝑧𝑧∈𝛤𝛤(𝑥𝑥)∪𝛤𝛤(𝑦𝑦)

                           (17) 

where 𝛤𝛤(𝑥𝑥)∪ 𝛤𝛤(𝑦𝑦) is the set of neighbors of x and y. 
Furthermore, we compared our methods with three state-of-the-art link prediction methods, including 

Node2Vec-based approach, VGAE, and stacking models, for nearly OLP. 
Tables 8 and 9 list the experimental results, from which we can make the following observations: 
(1) When γ = 0.1, our method achieved the best performance. Specifically, we compared the values 

of each metric under the same data scale when 𝛾𝛾 took different values and increased the maximum value 
of each index in Table 8. Regardless of the dataset, our method achieved the best results in terms of AUC 
and F1 when γ = 0.1. When γ = 0.5, our method produced the best accuracy on the dataset of 1000 and 
the best recall on the datasets of 500 and 100. When γ = 0.9, our method achieved the best precision on 
the dataset of 1000.  

(2) Compared with the results of the other four static network analysis methods, our method (with γ 
= 0.1) achieved the best performance in terms of the AUC, accuracy, precision, and F1, regardless of the 
dataset. On average (Table 9), the AUC value for our method was 8% higher than that for the common 
neighbors, 19% higher than that for the AA, and 25% higher than those for PA and Jaccard. Meanwhile, 
the average value of the precision for our method was almost 100% higher than that for the other four 
static network analysis methods. Note that when the data scale was 1000, both PA and Jaccard achieved 
a recall of 0.96, outperforming our method. Intuitively, the static similarity indices, such as the common 
neighbors, PA, AA, and Jaccard, fully capture historical collaborations. In other words, author pairs that 
have collaborated historically tend to have a high static similarity, leading to a high recall for static 
network analysis methods when the recommendation set is relatively high but the positive sample size 
of the test set is relatively small. As mentioned in the methodology section, these static network analyses 
fail to reflect the characteristics that vary over time, thus resulting in a lower precision, accuracy, and F1. 

(3) Compared with the three state-of-the-art methods, our method (with γ = 0.1) achieved the best 
performance on all five indicators, regardless of the scale of the dataset (1000, 500, or 100). Specifically, 
the average value of the AUC for our method was 27% higher than that for Node2Vec and 19% higher 
than that for VGAE. Furthermore, the average accuracy, average precision, and average F1 for our 
method were 31%, 37%, and 25% higher than those for OLP, respectively.  

From the observations above, we find that the proposed model significantly outperformed the four 
conventional approaches and the three state-of-the-art link prediction methods. 
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Table 8. Model performance and method comparison 

Methods 
Scale of 

dataset 

Evaluating Indicators 

AUC Accuracy Precision Recall F1 

Dynamic 

network 

analysis 

γ = 0.1 

1000 0.97 0.92 0.81 0.92 0.86 

500 0.91 0.87 0.87 0.90 0.88 

100 0.93 0.90 1.00 0.91 0.96 

γ = 0.5 

1000 0.91 0.94 0.73 0.70 0.71 

500 0.90 0.81 0.72 0.95 0.82 

100 0.92 0.90 0.88 0.93 0.91 

γ = 0.9 

1000 0.95 0.84 0.86 0.69 0.76 

500 0.89 0.85 0.86 0.84 0.85 

100 0.91 0.89 1.00 0.88 0.93 

Static 

network 

analysis 

Common 

neighbors 

1000 0.94 0.86 0.19 0.78 0.31 

500 0.86 0.83 0.39 0.78 0.52 

100 0.77 0.70 0.73 0.78 0.75 

AA 

1000 0.77 0.35 0.34 0.92 0.50 

500 0.81 0.41 0.25 0.29 0.27 

100 0.74 0.61 0.26 0.04 0.07 

PA 

1000 0.62 0.32 0.33 0.96 0.49 

500 0.73 0.45 0.30 0.29 0.30 

100 0.86 0.62 0.31 0.05 0.08 

Jaccard  

1000 0.62 0.33 0.33 0.96 0.49 

500 0.73 0.45 0.30 0.29 0.30 

100 0.86 0.62 0.31 0.05 0.08 

State-

of-the-art 

link 

prediction 

methods 

Node2Vec 

-based 

1000 0.74 0.82 0.78 0.81 0.79 

500 0.74 0.70 0.79 0.74 0.76 

100 0.70 0.89 0.78 0.85 0.81 

VGAE 

1000 0.80 0.80 0.81 0.78 0.79 

500 0.76 0.78 0.82 0.85 0.83 

100 0.77 0.87 0.83 0.80 0.81 

OLP 

1000 0.85 0.52 0.53 0.63 0.58 

500 0.88 0.71 0.59 0.78 0.67 

100 0.89 0.78 0.76 0.82 0.79 

Note: The numbers in bold in Dynamic network analysis represent the best values of indicators 
obtained by our method under different γ values and different scales of dataset. While the numbers in 
bold in Static network analysis highlight when the data scale was 1000, both PA and Jaccard 
outperformed our method. 
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Table 9. Model performance comparison (average value) 

Methods 

Average indicator values 

Average 

AUC 

Average 

accuracy 

Average 

precision 

Average 

recall 

Average F1 

Our method 0.92 0.88 0.86 0.86 0.85 

Common 

neighbors 
0.86 0.80 0.44 0.78 0.53 

AA 0.77 0.46 0.28 0.42 0.28 

PA 0.74 0.46 0.31 0.43 0.29 

Jaccard 0.74 0.47 0.31 0.43 0.29 

Node2Vec-based 0.73 0.80 0.78 0.80 0.79 

VGAE 0.78 0.82 0.82 0.81 0.81 

OLP 0.87 0.67 0.62 0.74 0.68 

 

Expert Evaluation 

To further qualitatively evaluate our results, we assembled an expert panel comprising 8 of the top 50 
most productive bibliometricians. Each was given the recommendations generated for their own potential 
collaborators, which included the researcher’s name, affiliation, and three of their publications. They 
were invited to score on each one. The scoring system was on a scale of 0 and 1, where 1 indicates one 
of the following depending on the circumstance: 

–  If they have never collaborated, a full willingness to collaborate in the future. 

– If they have previously collaborated, they are still willing to maintain the collaboration. 
The experts were also given the opportunity to provide additional comments to accompany their 

scores or to assess the recommendations through written feedback rather than via the scoring system. 
Five provided scores and three opted for written feedback. Table 10 lists the results of the five experts 
who scored the recommendations.  

Table 10. Results of expert evaluation 

 Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 

Max 0.8 1 1 1 0.8 

Min 0.7 0 0.7 0.1 0.1 

Avg 0.73 0.36 0.88 0.52 0.38 

Std 0.05 0.45 0.15 0.33 0.26 

Mean of the 

group averages  
0.57 

 
As shown, the maximum score for three of the experts is 1 and 0.8 for the other two, indicating a 

relatively high satisfaction level with the recommendations. The minimum scores appear to be discrete: 
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two experts had a minimum score of 0.7, which is still indicative of a strong agreement. Notably, experts’ 
assessments were not only based on the information we provided, but also based on their understandings 
of the recommended collaborators. Specifically, some experts scored high (greater than or equal to 0.7) 
because they have similar research interests but had not worked together before. Some of the low scores 
(less than or equal to 0.5) can be attributed to the fact that these experts considered some practical reasons 
or did not understand the recommended collaborators.  

However, the mean of the scores was only 0.57. While there is room for improvement, an average 
score of approximately 0.6 is considered to be acceptable for most real-world recommender systems. We 
also noted that the standard deviation value was rather high in the case of Experts 2 and 5; this result 
would have been interesting to explore further had they provided comments.  

The three experts who provided detailed comments for each recommended collaborator raised some 
interesting issues about collaboration styles, e.g., interpersonal relationships and working philosophies, 
which make recommending collaborators a uniquely different proposition from recommending a product 
to a consumer. One of the experts mentioned that some of the researchers in our recommendations were 
retired and therefore unlikely to collaborate, and another expert knew the recommended collaborator well; 
however, there is currently no reason for this expert to collaborate with the recommended author. 

Since our experts are leading figures in the field of IS, their assessments are representative. Based on 
the results of scoring and email comments provided by the experts, we can confirm that our 
recommendation system has certain practical significance. However, whether scholars cooperate or not 
often depends on several complex factors. Historical partnerships and similarities in research interests 
are just a part of these factors. Our recommendation approach cannot consider all the factors associated 
with the researchers themselves, such as the fact that some may have retired or others may have various 
interpersonal relationships. 

Discussion and Conclusions 
This study established a recommendation system for scientific collaborations that can capture deeper 
insights by considering the changing landscapes in academic collaborations. Incorporated with the 
ARIMA model, the static network and time-series link prediction method were combined to capture the 
dynamic evolution of the collaboration between authors. Time-sliced author–keyword matrices were 
integrated with the Word2Vec model to alleviate the flow of data sparsity in the co-author network, 
improve the accuracy of similarity measures, and track changes in authors’ interests over time. The 
BSVM, which is a popular ensemble learning model, was incorporated into the framework to improve 
the performance of potential collaborative recommendations. Quantitative evaluations of the framework 
on a case study of 22 leading journals in information science between 2005 and 2016 showed that our 
method has acceptable levels of AUC, accuracy, precision, recall, and F1. A qualitative evaluation was 
also conducted by a panel of eight experts. 

Technical Implications 
Link prediction has been widely used in collaboration recommendation systems. However, most studies 
are limited to simple applications of existing models and indicators that do not reflect the changes in 
scholarly endeavors and collaboration networks over time. With our framework, the ARIMA model 
transforms conventional static indicators of future links into dynamic ones, and the experimental results 
of this study confirm its advantages in collaboration recommendation systems. Such a design can be 
applied not only to co-author networks, but also to other types of networks to capture topological changes.  
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The conventional co-word analysis focuses on the collinear relationship of keyword frequency. In 
our framework, the Word2Vec model is applied to reduce the noise between different terms but with 
similar meanings, and the semantic and contextual relationships between keywords are fully considered. 
This makes the similarity measures of authors’ research interests more accurate. Additionally, the 
Word2Vec model is suitable for large-scale datasets. Therefore, we believe that our method will be 
effective for large-scale semantic analysis. 

Possible Applications 
Three applications of this framework are immediately apparent: 
1) Our method can not only provide services for individual researchers to find academic partners, but 

also help scientific funding agencies and research institutions to conduct top-level layouts and 
organize and guide researchers to achieve strong alliance. 

2) By simply replacing the corpus of academic papers with other ST&I data, such as patents or articles 
in industry journals, the framework could become a recommendation engine for enterprises seeking 
cooperation partners or, conversely, as a competitor analysis tool. 

3) As a method integrating topological analysis with semantic analysis, our framework is suitable for 
performing many other bibliometric tasks via network-based analysis, such as identifying emerging 
technologies or suggesting research topics to academics who wish to change or extend their fields 
of interest. 

Limitations and Future Studies 
Some of the limitations of the current research and related future directions are summarized as follows: 
1) Selecting collaborators is a complex decision-making process that is influenced by many factors: 
geography, organization culture, working style, and gender. Developing a quantitative system that 
considers all these factors is both a challenge and opportunity—and one that we leave to time and future 
endeavors of researchers in this field, including ourselves; 2) Currently, link prediction methods can only 
predict connections that might appear in the future; they cannot predict those that might disappear. An 
interesting direction for future research may be to consider profiles of academic activity as an indicator 
of when collaborations or academic careers might be nearing their end; 3) Our focus in the case study 
was limited to information science and, therefore, only articles published in information science-related 
journals were included in the corpus. Nevertheless, it is reasonable to assume that at least some of these 
authors have interests in other fields and have therefore published papers in journals that were not 
included in our dataset. A promising next step may be to use a global dataset to test our method and 
explore empirical insights for multiple disciplines and research areas; 4) This paper emphasizes the 
accuracy with which scientific collaborators can be recommended, rather than the efficiency of the 
recommendation system. In addition, keyword processing and network construction are complex and 
may be time-consuming. In the future, we hope to leverage multithreading to improve the efficiency of 
the current recommendation system. 
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