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This article looks at the national and global actors, social networks, and narratives that have
influenced Jatropha’sworldwide acceptability as a biofuel crop. Jatropha Curcas is a genus of
around 175 succulent shrubs and trees in the Euphorbiaceae family (some of which are
deciduous, such as Jatropha Curcas L.). It’s a drought-tolerant perennial that thrives in poor or
marginal soil and produces a large amount of oil per hectare. It is easy to grow, has a fast
growth rate, and can generate seeds for up to 50 years. JatrophaCurcas has been developed
as a unique and promising tropical plant for augmenting renewable energy sources due to its
various benefits. It is deserving of being recognised as the only competitor in terms of concrete
and intangible environmental advantages. Jatropha Curcas is a low-cost biodiesel feedstock
with good fuel properties and more oil than other species. It is a non-edible oilseed feedstock.
Thus it will have no impact on food prices or the food vs fuel debate. Jatropha Curcas emits
fewer pollutants than diesel and may be used in diesel engines with equivalent performance.
Jatropha Curcas also makes a substantial contribution to the betterment of rural life. The plant
may also provide up to 40%oil yield per seed based onweight. This study looks at the features
characteristics of Jatropha Curcas as biodiesel feedstock and performance, and emissions of
internal combustion engine that operates on this biodiesel fuel.
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INTRODUCTION

One of the most major sources of pollution in the environment is pollutants created by the burning of
fossil diesel fuel. Diesel engine pollutants have a substantial impact on both the environment and
human health. Researchers are looking into the clean combustion of diesel engines using other fuel
sources due to a number of factors, including worldwide environmental concerns, growing
petroleum costs, and the expected depletion of fossil diesel fuel. For decades, scientists have
been working throughout the world to discover new alternative fuels that are widely available,
technically feasible, economically viable, and environmentally beneficial (Valipour, 2014).

Alternative energy sources are needed to address the world’s growing energy demands.
Biodiesel fuels are being researched as a possible replacement for diesel due to the predicted
future depletion of fossil fuel sources and the present rising cost of such fuels. It has a higher
cetane index and emits less carbon dioxide emissions, among other advantages. Biodiesel is a
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clean-burning, oxygenated mono-alkyl ester fuel
manufactured from natural, renewable sources like new or
used vegetable oils and animal fats (Enweremadu and
Mbarawa, 2009). Italy and the United States both saw
significant increases in output (where production more than
tripled). Thanks to new laws, biodiesel has grown its
acceptance and market share in Europe (Lieberz, 2021). In
Asia, Singapore, Indonesia, Malaysia and China, as well as
Latin America such as in Argentina and Brazil, biodiesel
production was quickly rising. Indonesia expects to grow
biodiesel production by 23% by 2030, while biodiesel usage
is expected to rise by 7% over the next decade.
(Kondalamahanty, 2021). In Asia as well as Latin America,
biodiesel output was quickly increasing (Argentina and Brazil)
(Agarwal, 2007).

Energy supply and security have been a critical concern
throughout the globe in the last decade. The combustion of
liquid fuels produces energy, which enables a country’s
economic development and prosperity. Greenhouse gases and
other forms of air pollutants are emitted by fossil fuels, which
negatively influence the environment. It was also noted that
biodiesel is becoming more widely accessible for the
transportation sector by mixing with traditional diesel fuel
(Sarin et al., 2007). Growing environmental concerns,
dwindling petroleum reserves, and our country’s agriculture-
based economy are all driving reasons behind the promotion
of biodiesel to be sustainable transportation fuel.

Biodiesel is a sustainable liquid bioenergy resource that might
be used to replace diesel fuel. It has the potential to reduce
pollutant emissions and may be used without modification in
compression ignition engines. As an alternative fuel, biodiesel
possesses qualities that are comparable to diesel fuel.
Transesterification is the process of turning large, branching
triglycerides into smaller, straight-chain methyl esters in the
presence of a solvent, employing an alkali, acid, or enzyme as
a catalyst (Fattah et al., 2020). The transesterification process aids
in the reduction of oil viscosity. In the presence of homogeneous
catalysts such as sodium hydroxide (NaOH), potassium
hydroxide (KOH), and sulphuric acid, the method works
effectively (Demirbaş, 2002; Salaheldeen et al., 2021).
Methanol and ethanol are the most often used solvents, with
methanol being favoured due to their inexpensive cost and
physical and chemical properties. They efficiently break down
sodium hydroxide in these alcohols and react swiftly with
triglycerides. Transesterification requires a 3:1 stoichiometric
molar ratio of alcohol to triglycerides. To push the equilibrium
to a maximum ester yield, the ratio must be greater in reality
(Ramesh et al., 2006; Singh and Padhi, 2009; Manik and Prabu,
2013).

Because it contains no sulphur, aromatic hydrocarbons,
metals, or crude oil leftovers, biodiesel is an alternative and
clean fuel that emits less greenhouse gas emissions. It has the
following key benefits: 1) it may be combined with diesel fuel in
any quantity, 2) it can be used in a diesel engine without
modification, 3) it contains no toxic ingredients, and 4) it
emits less harmful pollutants into the environment (How
et al., 2012; Ng et al., 2012). Biodiesel is increasing in

popularity across the globe, particularly in underdeveloped
nations. The first generation of biodiesel feedstocks is edible
oils. Edible oils have been used to make biodiesel in the
United States and Europe because they are readily accessible,
have a high biodiesel production rate, and are simple to process
owing to their low free fatty acid content. However, as seen in
many countries, particularly in densely populated countries such
as China, India, and Indonesia, their use has raised concerns such
as food vs fuel concerns, environmental concerns such as the
destruction of vital soil resources, deforestation, and the use of
much of the available arable land (Mahapatra and Mitchell, 1999;
Nurfatriani et al., 2019; Taheripour et al., 2019). All of these
problems impeded the economic feasibility of producing
biodiesel from food oils. The cost of feedstock is often
assumed to contribute to 75% of the entire cost of biodiesel
(soyabean oil, for instance) (Mizik and Gyarmati, 2021).
Exploration of innovative low-cost agricultural non-edible
crops and the use of by-products in biodiesel production
might significantly reduce biodiesel costs, especially in
developing countries where edible oils are prohibitively costly
(Wang and Ding, 2012; Silitonga et al., 2019; Ambat et al., 2020;
Ong et al., 2021).

The first generation biofuel is unsustainable since it competes
with edible vegetable oils for food and biodiesel production
(Bhatia et al., 2021). Consequently, much effort is being
invested into developing biodiesels from non-edible vegetable
oils such as Jatropha Curcas. (Takase et al., 2015), Madhuca
Indica (Saravanan et al., 2010), Calophyllum Inophyllum (Azad
et al., 2016; Milano et al., 2018), Ceiba Pentandra (Putri et al.,
2012; Khan et al., 2015), Sapium Sebiferum (Wang et al., 2011),
Euphorbia Lathyris (Wang et al., 2011; Zapata et al., 2012),
Reutealis Trisperma (Kusmiyati et al., 2019), and Pongamia
Pinnata oils (Sharma et al., 2009; Khayoon et al., 2012).
Second-generation non-edible feedstocks may assist with food
security while also lowering manufacturing costs dramatically.
Because non-edible oil has a high percentage of free fatty acids,
the biodiesel produced is viscous. Other oil sources must be
investigated in order to make biodiesel production more feasible.

The use of Jatropha Curcas as a biodiesel feedstock has
exploded in popularity in recent years. It is a tropical plant
that may be grown as a commercial crop or as a hedge to
protect fields from grazing animals and prevent erosion in low
to high rainfall areas (Kumar and Sharma, 2008). This crop’s oil
can readily be transformed into a liquid biofuel that fulfils
American and European requirements for biofuel (Koh and
Mohd Ghazi, 2011; Teo et al., 2019). In addition, the press
cake may also be used as a fertiliser, and organic waste
materials can be digested to produce biogas, the bulk of which
is methane (Staubmann et al., 1997; Sharma et al., 2016; Siddiki
et al., 2021). The plant itself is said to be capable of preventing and
controlling soil erosion, as well as acting as a living barrier and
reclaiming wasteland.

A recent review by Che Hamzah et al. (Che Hamzah et al.,
2020) highlights the potential of Jatropha Curcas as an
environmentally benign biodiesel feedstock for boosting
Malaysia’s socio-economic growth and meeting the country’s
rapidly growing energy demands. Singh et al. (Singh D. et al.,
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2021) reviewed the physicochemical properties, techniques of
extracting oil, production of biodiesel, as well as diesel
performance and emission characteristics of biodiesel from
Jatropha Curcas. However, their study is non-exhaustive, and
a comparative analysis of extraction is missing. In another review
by Meher et al. (Meher et al., 2013), authors pointed out that
tropical and sub-tropical nations have started growing Jatropha
curcas to make biodiesel. They suggested methane synthesis from
the de-oiled cake, fuel briquette manufacturing from the husk and
pyrolysis of Jatropha Curcas biomass to bio-oil with
physicochemical qualities equivalent to crude petroleum as
additional viable biofuel products from Jatropha Curcas
growth. Several authors have also discussed performance and
emission characteristics; however, those are outdated. Our
present review addresses the botanical description of Jatropha
Curcas and oil extraction techniques used by different researchers
and oil and biodiesel physicochemical properties to date.
Furthermore, the current status of performance and emission
research employing Jatropha Curcas biodiesel and its blends is
highlighted. Finally economic viability studies along with future
research directions are also discussed.

BOTANICAL DESCRIPTION OF JATROPHA
CURCAS

Jatropha Curcas is a drought-resistant shrub or tree that grows
wild or in semi-cultivated environments. (Kumar and Sharma,
2008). Depending on soil quality and rainfall, the oil from
Jatropha curcas nuts and seeds may be obtained after
2–5 years after cultivation. Jatropha Curcas nuts or seeds are
produced in quantities ranging from 0.5 to 12 tonnes per year per
hectare. Jatropha Curcas farming is effective in the tropics, where
annual rainfall ranges from 250 to 3,000 mm (Foidl et al., 1996).
The genus Jatropha Curcas belongs to the Euphorbiaceae family’s
Jatropheae tribe, and there are roughly 170 species recognised
currently (Carels, 2009). The genus Jatropha gets its name from

the Greek words “Jatros,” which means “doctor,” and “trophy,”
which means “food,” and references to the plant’s past medicinal
uses (Kumar and Sharma, 2008). Jatropha Curcas is a dense shrub
or small tree that may reach a height of 3–5 m (Figure 1). Under
ideal circumstances, it may reach a height of 10 m. It has 2n � 22
chromosomes and is a diploid species (Carels, 2009).

Despite having a native range that spans South and Central
America, South-East Asia, Africa, and India the plant now has a
pantropical distribution with distinct Jatropha Curcas seed
provenances (Garnayak et al., 2008; Kumar and Sharma, 2011;
Moser, 2011). Jatropha Curcas may thrive in a variety of rainfall
conditions, from 250 to over 1,200 mm per year (Divakara et al.,
2010). This plant can tolerate temperatures between 20 and 26°C,
as well as rich soil, proper drainage, and pH values between 5.0
and 6.5 (Katwal and Soni, 2003). This plant requires well-drained,
well-aerated soils and thrives in low-nutrient, marginal soils,
shedding its leaves during the dry season (Openshaw, 2000).
Plantation areas of 2 m × 2 m, 2.5 m × 2.5 m, and 3 m × 3 m,
according to Heller, are adequate and generate higher fruit
harvests (Heller, 1996). The second year of operation begins to
produce fruit, and by the fourth or fifth year, the economic output
has stabilised.

In Mexico, there are two sorts of genotypes: hazardous and
non-toxic (Becker and Makkar, 1998). It’s possible that the plant
will survive for up to 50 years (Achten et al., 2010). It’s a
deciduous plant with a morphological discontinuity and an
articulated growth habit. A primary taproot and four shallow
lateral roots make up the root system (Abdelgadir and Van
Staden, 2013). Smooth greenish-bronze bark and transparent
latex cover the glabrous branches. Smooth, 5-lobed, heart-
shaped leaves, ten to 15 cm long, dark green, cordate or
round, acute at the apex, cordate at the base, alternating, and
dropping once a year (Nayak and Patel, 2010; Kamal et al., 2011).
The flowers are borne in axillary clusters on a 3–5 cm tall stem
with whole, lanceolate, or linear bracts that are highly pubescent
and yellowish-green, and enormous glandular discs on the

FIGURE 1 | Jatropha Curcas L plants.

FIGURE 2 | Jatropha Curcas L flowers (Perumal and Sanmugam, 2015).
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blooms (Figure 2) (Perumal and Sanmugam, 2015). 5 ovate-
elliptic sepals, less than 4 mm long, 5 oblong-obovate petals,
6–7 mm long, densely hairy inside, and eight stamens make up
the male flower. Female flowers are 4 mm long, with loose oblong
petals and bigger sepals (Raju and Ezradanam, 2002; Abdelgadir
et al., 2009).

Jatropha Curcas oil production is expected to reach 1,590 kg/
ha (Vyas and Singh, 2007; Gui et al., 2008; Janaun and Ellis, 2010).
Fruits are trilobite ovoid capsules with three cells and a length of
23–30 mm by a width of 28 mm. The seeds of Jatropha Curcas
have a thin shell and an oblong shape with a dark back colour
(Dehgan, 2012). The mature Jatropha Curcas seeds are 212 cm in
length and may easily be cracked to extract the oil. Toxins such as
phorbol esters, curcin, trypsin inhibitors, lectins, and phytates are
present in such high amounts in most provenances’ blackish

seeds (Figure 3, Figure 4, Figure 5) that the seeds, oil, and seed
cake are not for human consumption without detoxification
(Raju and Ezradanam, 2002; Kumar and Sharma, 2011).

Plants of substantial economic importance in this family
include:

(i) Roots: Manihot Esculenta (cassava)
(ii) Rubber: Hevea Brasiliensis
(iii) Nuts: Caryodendron Orinocense (tacay nut)
(iv) Vegetables: Sauropus Androgynous (katuk)
(v) Oils: Ricinus Communis Linn (castor bean); Aleurites spp.

(tung trees)
(vi) Sapium Sebiferum (Chinese tallow tree)
(vii) Physic nut. Hydrocarbon: Euphorbia spp.
(viii) Medical: Croton spp.; Jatropha spp.

JATROPHA OIL EXTRACTION METHODS

Jatropha Curcas oil is stored in the fruit as triacylglycerol (TAG);
to liberate these lipids, the cell wall must be weakened or
disrupted. Lipid recovery from various organic sources may be
accomplished using a variety of lipid extraction techniques. The
type and oil content of lipid components varies. Many approaches
are being used in order to improve the process by extracting the
highest amount of oil from the Jatropha Curcas seed at the lowest
possible cost (Mariana et al.). Mechanical extraction (cold press
technique and expeller-pressed method) and solvent-based
extraction were utilised in many developing nations to extract
the oil content from the seeds (Soxhlet extraction method). Due
to technological improvements in recent years, a few new
technologies in oil extraction have been established, including
supercritical fluid extraction, ultrasound-assisted extraction, and
microwave-assisted extraction. Oil extraction techniques are
intended to deliver high extraction yields and create high-
value meals by obtaining high-quality oil with minimum
unwanted components. In the next part, the extraction process
and its benefits and drawbacks will be examined in depth. The

FIGURE 3 | Jatropha Curcas plant with fruit (Evangelista and Cermak,
2007).

FIGURE 4 | Jatropha Curcas seeds with shells (Rao and Rao, 2013).

FIGURE 5 | Jatropha Curcas seeds (Rao and Rao, 2013).

Frontiers in Energy Research | www.frontiersin.org January 2022 | Volume 9 | Article 8154164

Riayatsyah et al. Jatropha Curcas as Biodiesel Feedstock

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Jatropha Curcas biodiesel production processes is presented in
Figure 6.

Mechanical Extraction
Mechanical pressing is a conventional oil recovery technology,
and it has the lowest rate of oil recovery and is typically favoured
by small businesses since it is less costly and safer than solvent
extraction and requires less maintenance. Figure 7 shows a
schematic representation of a screw press machine. A helical
body (worm) that spins in a tight area creates the pressing force in
the mechanical pressing technique, which may be operated by
either hydraulic presses or screw presses (press chamber). The
hydraulic presses were replaced with continuous screw presses,
which required less labour. A vertical feeder and a horizontal
screw with increasing body diameter progress along the length of
the press to put pressure on the oilseeds. The barrel of the screw
has slots along the length of it, allowing growing internal pressure
to first release air and then drain the oil through the barrel. At the
end of the screw, the de-oiled cake is discharged, and the Jatropha
Curcas oil is collected in a trough underneath the screw
(Romanić, 2020). The screw press’s key benefit is that it can
handle enormous amounts of Jatropha Curcas seed with little
effort, and continuously oil extraction may be done. A screw press
is a machine that extracts oil by pressing seeds and nuts through a
chamber with high friction and pressure. There is no additional
heat added to the process, but the seeds are squeezed using
friction, which generates heat between 60 and 100°C (Ionescu
et al., 2014). The oil will be extracted once the seeds have been
crushed. The seeds will stay in the press to form a hard “brick”
that may be used as animal feed. The cold-pressed technique
involves pressing the seed using an oilseed press to generate cold-
pressed oil with less heat utilised or created during the process. To
get the oil, the seed was put in the press and crushed by the
machine. In comparison to an expeller press, the procedure may

FIGURE 6 | Jatropha Curcas biodiesel production processes.

FIGURE 7 | Schematic diagram of (A) screw press design and (B) cold
press oil extraction setup.
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be carried out at a significantly lower temperature (50°C) (Saleem
and Ahmad, 2018). Prior to the pressing process, the oilseed
materials are subjected to various pre-treatments such as
washing, conditioning, heating, flaking, and dehulling in order
to maximise the volume and quality of oil recovered from the raw
material. In the past, significant attempts were made to increase
the oil extraction efficiency of screw presses. As a result, the
majority of researches concentrated on improving pressing
process factors such as applied pressure, pressing temperature,
andmoisture conditioning of the supplied sample (Ofori-Boateng
et al., 2012; Subroto et al., 2015).

Other advancements to oil screw presses were the design of the
machines and the materials used in their manufacture. For
Jatropha Curcas, Chapuis et al. (Chapuis et al., 2014)
conducted pilot-scale research to determine the effects of seed
pre-treatment (whole, crushed, and deshelled seeds), as well as
screw press operating settings (shaft rotating speed and press cake
output section). According to their findings, seed preparation
affects the quality and efficiency of oil extraction. The intact seed
is found to have high reproductivity, but crushed seeds and
deshelled seeds created unstable pressing conditions (Chapuis
et al., 2014). Yate et al. (Yate et al., 2020) performed research on
the mechanical extraction of Jatropha Curcas using a screw press
type expeller. Their research looked at the oil yield under various
operating settings, including changing the extraction
temperature, screw rotating speed, and diameter of the nozzle
at the end of the press. With the maximum examined
temperature (90°C), the nozzle diameter is 11 mm, and the
rotating speed is 40 rpm, the highest yield was achieved (Yate
et al., 2020). This mechanical screw oil extraction press may also
be utilised for other feedstocks like Calophyllum Inophyllum,
according to Bhuiya et al. (Bhuiya et al., 2020), who conducted
their research to see how processing parameters affect extraction
output. With a moisture percentage of 14.4%, the kernels were
able to provide roughly 78% of oil production. Mechanical screw
presses are suitable for higher oil yield feedstocks since roughly
8–14% of the oil remaining in the cake and residual material. This
approach is not ideal for low oil yield feedstock; instead, solvent
extraction would be more appropriate.

Solvent-Based Extraction (Soxhlet
Extraction Method)
Leaching is a solvent-based extraction method that involves
extracting the soluble fraction (solute or leachate) from
Jatropha Curcas seeds into a liquid solvent (Bhuiya et al.,
2020). Chemical extraction has grown popular in the oil
extraction business because of the high percentage of oil
output and the expectation of producing high-quality oil. Due
to their polar nature, different solvents may give varied oil yields
when using the solvent extraction process. Oil extraction solvents
such as hexane, propane, ethane, tetrahydrofuran (THF), ethanol,
dichloromethane, methanol, and the methanol-water binary
system were all widely employed (Haile et al., 2019; Zhang
et al., 2019; Alrashidi et al., 2020). Even if there is great purity
and high oil production by utilising solvent, there is still energy
squandered throughout the lengthy extraction process. An

experiment used Soxhlet extraction to do a Response surface
methodology optimisation analysis of crude oil. The solvent to
seed ratio, reaction temperature, and extraction duration were the
analytical parameters. The extraction was carried out using
n-Hexane as the solvent, with solid-to-solvent ratios of 3:1, 5:
1, and 7:1 (v/w) and three distinct extraction times of 4, 5, and 6 h
(hrs). The reaction temperature varies between 60 and 70 C (Jose
et al., 2011). Another study used a solvent extraction approach on
Calophyllum Inophyllum feedstock and found that extraction
using solvent (hexane) yielded the best yield of 86.4%,
outperforming mechanical screw presses (Bhuiya et al., 2020).
Alrashidi et al. (Alrashidi et al., 2020) tested the Soxhlet
extraction technique for Nigella sativa L seed using several
solvents. The results demonstrate that employing ethanol as a
solvent yields the maximum oil yield (40.2%), whereas the
methanol-water combination yields the lowest oil yield
(28.3%). Rajeshwaran et al. (Rajeshwaran et al., 2020) used
polar and non-polar solvents to extract oil from Prosopis
Julifera feedstock for 3–8 h. They investigated the solid-to-
solvent ratio, reaction time, and reaction temperature and
reported that a solid-to-solvent ratio of 1: 9 (w/v) and a

FIGURE 8 | Schematic diagram of Soxhlet extractor.
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reaction temperature of 60 C for 9 h yielded an optimum yield of
37%. Haile et al. (Haile et al., 2019) reported that they investigated
the oil extraction yield onMoringa Stenopeta seed collected from
various locations using hexane and petroleum ether. The results
show that petroleum ether is much more suitable for extracting
these oils, producing 35.3–44.3% oil yield, whereas hexane
produced 34.8–42.3% oil yield. Solvent extraction is a
significantly more effective way of recovering oil from oilseeds
than mechanical extraction since it involves dissolving oil by
contacting oilseeds with a liquid solvent. The oilseed preparation,
temperature, mode of operation, and equipment design all affect
oil recovery efficiency. The oil and solvent combination
separation is difficult with this approach, making it more
appropriate for a small-scale manufacturing plant. A schematic
diagram of the Soxhlet extractor is presented in Figure 8.

Supercritical Fluid Extraction
The supercritical fluid extraction (SCFE) method was offered as
an alternative to traditional oil and oilseed processing. The
essential oil sector is the most common use of this procedure.
Solvents employed include ethanol, isopropyl alcohol, acetone,
iso-hexane, n-hexane, propane, and other supercritical fluids,
comparable to those used in the Soxhlet extraction procedure.
Supercritical extraction with carbon dioxide (SC-CO2) is a
method that uses carbon dioxide as a solvent above its critical
pressure and temperature. It is suggested for edible applications
in the food industry (Xiong and Chen, 2020). The CO2 used as a
solvent in the supercritical fluid extraction procedure is readily
removed from the Jatropha Curcas oil. After the oil has been
extracted, the pressure in the system will be released, the CO2 will
return to the gas phase, and the oil will be precipitated from the
CO2-Jatropha Curcas oil combination. This eliminates the need
for manual separation; nonetheless, whether CO2 is emitted or
recycled is dependent on the SCFE’s design. Other solvents, such
as ethanol, hexane, and others, are more difficult to separate, and
the finished product is usually not suitable for culinary use but is

suitable for other industries. The yield, fatty acid profile, and
bioactive components of Pachira Aquatica feedstock are studied
in relation to the kind of pressurised fluid used and the extraction
process parameters. When n-propane was used instead of CO2 as
a co-solvent, greater oil yields were obtained. Although the yield
achieved with propane extraction was lower than that obtained
with Soxhlet extraction, the processing time was significantly
reduced (30 min vs 16 h) (De Lara Lopes et al., 2020; Fetzer et al.,
2021). Another study found that extracting spent coffee ground
oil using high-pressure CO2 and ethanol as the solvent raised the
extraction yield to 16% with the working parameter of ethanol
and spent coffee ground ratio: 2:1, the temperature of 80°C,
20 MPa, and extraction period of 25 min (Haile et al., 2019).
Coffee oil may also be extracted from wasted coffee grounds using
Norflurane as a solvent at pressures ranging from 5 to 11 bar. For
75–285 min of extraction, the oil recovery efficiency is around
92% (Cante et al., 2020). Cumaru seed oil extractions utilising
propane at subcritical temperatures were carried out using a piece
of improvised laboratory-scale equipment, as shown in Figure 9
(Fetzer et al., 2020). Temperature (20, 40, 60°C), pressure (2, 6,
10 MPa), and average particle size (2, 1.7, 1.0, 0.5 mm) of Cumaru
seed were all altered in the study, and the findings revealed that
98% of the total oil contained in the seeds could be extracted at
60°C, 10 MPa, and 0.5 mm. According to the research,
compressed propane supplied much more unsaturated fatty
acids than Soxhlet extraction using n-hexane due to the fatty
acid profile (Fetzer et al., 2020).

Ultrasound-Assisted Extraction
Ultrasound-assisted extraction (UAE) is a technique for
extracting plant components that might possibly be used to
extract Jatropha Curcas oil. In comparison to previous
methods, this technique allows for the extraction of natural
substances in shorter timeframes, with greater reproducibility,
less solvent consumption, and easier procedures. The effect of
cavitation, which causes microbubbles to implode and plant

FIGURE 9 | The compressed propane system setup. Ball valves V1 and V2; needle valve V3; blockage valve V4; needle valve V5.
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tissue cell walls to burst, is connected to the mechanism of action
of ultrasound (Suganya et al., 2014). This damage accelerates the
mass transfer of the solvent to the matrix’s internal area and the
soluble components to the solvent, creating turbulence and
solvent penetration into the plant matrix, as well as the release
of intracellular material. In an ultrasonic bath, in-direct contact
ultrasonic extraction was performed. Stevanato and Silva used
ultrasound-assisted extraction (UAE) and ethanol as the solvent
in their study to extract oil from radish seed (RSO). The
temperature had the greatest influence on oil extraction, with
a maximum oil yield of 25% reached 60°C, a solvent to seed ratio
of 12 ml g1, and a 60-min extraction time (Stevanato and Da
Silva, 2019).When compared to the UAE approach, the oil output
is reduced by over 50% without the use of ultrasonic. Ultrasound
is said to be capable of performing an in-situ procedure, in which
extraction and transesterification are both accomplished at the
same time. Tan et al. did a similar experiment to manufacture
biodiesel from Jatropha Curcas seed using ultrasonic irradiation.
According to their findings, extraction efficiency is about 84%
when employing 5% vol H2SO4 with a 3:1 solvent-to-methanol
volume ratio, a 60% ultrasonic amplitude, and a reaction duration
of 150 min with a low acid value of 5.3 mg KOH/g (Tan et al.,
2019; Zhang et al., 2019). The experimental setup for ultrasound-
assisted surgery is shown in Figure 10. Suganya et al. used
ultrasonic irradiation to extract and convert the oil from
macroalgae Enteromorpha compressa biomass utilising tetra
hydro furan (THF) as a cosolvent and H2SO4 as a catalyst to
extract and convert the oil into biodiesel. The parameters used
were 30 vol% THF as a co-solvent, 10 wt% H2SO4, 5.5:1 methanol
to algal biomass ratio, and 600 rpm mixing intensity at 65°C for
90 min of ultrasonic irradiation duration, yielding a maximum
biodiesel production of 98.89% (Suganya et al., 2014). Many
people believe that ultrasonic irradiation may manufacture the
oil’s end product in one step (in-situ), saving the solvent and
catalyst needed in the intermediate steps.

Microwave-Assisted Extraction
Suganya et al. used ultrasonic irradiation to extract and convert
the oil from macroalgae Enteromorpha Compressa biomass
utilising tetra hydro furan (THF) as a cosolvent and H2SO4 as
a catalyst to extract and convert the oil into biodiesel. The
conditions were 30 vol% THF as a co-solvent, 10 wt% H2SO4,
5.5:1 methanol to algal biomass ratio, and 600 rpm mixing
intensity at 65°C for 90 min of ultrasonic irradiation time,
providing a maximum biodiesel output of 98.89% (Suganya
et al., 2014). Many people believe that ultrasonic irradiation
may manufacture the oil’s end product in one step (in-situ),
saving the solvent and catalyst needed in the intermediate steps
(Tsubaki et al., 2019). Fiorini et al. employed a microwave-
assisted extraction technique to extract Cannabis Sativa L.
oil, as shown in Figure 11. In an optimisation study using a
central composite design, the microwave irradiation power
(W/g), extraction time (minutes), and water delivered to the
plant matrix after moistening (%) were investigated (CCD)
(Fiorini et al., 2020). Based on the optimisation results, the
maximum oil yield was 0.15% (Fiorini et al., 2020). Ibrahim
et al. extract oil from the non-edible Hura Crepitans seed,
which is native to Nigeria. Hura Crepitans is said to be rich
in oil, with oil content ranging from 36 to 64%. Extraction
parameters such as extraction duration (5–15 min), heating
power (180–540 W), solid/solvent ratio (1:10–1:40), and
solvent type were optimised (ethyl acetate, n-hexane and
acetone). Using an extraction period of 5 min, the heating
power of 180 W, a solid/solvent ratio of 1:40, and ethyl
acetate as the working solvent, an optimal extraction yield of
72.2 wt% was attained (Ibrahim et al., 2019). Kumar et al.
(Kumar et al., 2018) used a redesigned and modified
microwave from a commercial microwave to extract oil from
Pongamia Pinnata seeds. Microwave power levels of 300, 600,
and 900 W were used to extract oil, with the results indicating
that the optimal conditions were 600 W for 14 min with a yield
of 20%.

FIGURE 10 | Experimental setup for ultrasound-assisted in situ
esterification.

FIGURE 11 | ETHOS X advanced microwave extraction system (A);
glass reactor (Pyrex) of 5 L of capacity (B) (Fiorini et al., 2020).
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Comparison of Oil Extraction Methods
As previously discussed, several oil extraction techniques have
been extensively employed; this section will go through the
advantages and disadvantages of each process. The type of
feedstock extracted, the cost and the environmental impact of
thematerial used for extractions are frequently taken into account
when choosing an extraction process. A part od the rude oil as
main product, the biomass waste are the major byproducts of
jatropha oil production. Biomass by-products are often discarded
into the environment, however, they may be utilised as resin,
fertiliser, adsorbent, briquettes, and bioactive compost
(Primandari et al., 2018). Based on application, cost, efficiency,
and environmental dangers, the advanced of current oil

extraction methods have been explored in depth. Therefore, to
a get a clear idea on this issue, a critical comparison of several
extraction methods are presented in Table 1.

CHARACTERISTICS OF JATROPHA
CURCAS OIL AND BIODIESEL

The properties of vegetable oils significantly differ from diesel
fuel, however with an appropriate treatment Jatropha Curcas oil
can achieve a comparable property as biodiesel and may be used
in diesel engines in buses, lorries, cars and other vehicles. It has
been successfully tested and has excellent stability at low

TABLE 1 | The advantages and disadvantages of extraction.

Extraction methods Advantages Disadvantages References

Mechanical extraction • When compared to hand pressing, it has a
higher oil extraction efficiency (68–80%).

• Labour and time-intensive Hayyan et al. (2022)

• In mechanical extraction, pre-heating may
boost efficiency by up to 91%.

• Only applicable for a limited type of feedstock. Ayoub et al. (2021)

• No oil contamination with solvent

• Less oil production Tsubaki et al. (2019)

• One of the cheapest extraction process

Yate et al. (2020)

Solvent-based extraction
(Soxhlet extraction method)

• With a less quantity of solvent, a large amount
of plant material may be removed.

• The solvent can be used repeatedly.
• Does not require filtration after extraction.
• Does not depend upon the type of matrix.
• A very simple technique.
• Several extractions can be conducted in

parallel.
• able to extract more sample mass than other

techniques.
• easy continuous operation and ease of

automation.

• If the plant material heat-labile chemicals, the danger of
thermal destruction of certain compounds will occur
occasionally.

• The extraction procedure takes a long time and requires
a lot of effort.

• The method enables the manipulation of a small number
of variables.

• The quantity of time and solvent required to result in a
considerable volume of solvent.

• Because of the toxic solvent, it is not environmentally
friendly.

• Unwanted products and other contaminants should be
dissolved.

Rasul, (2018)
Ayoub et al. (2021)
Haile et al. (2019)
Zhang et al. (2019)
Guo and Lee, (2011)
Cunha and Fernandes,
(2018)
Zhang et al. (2018)

Supercritical fluid extraction • The approach is suitable for thermal labile
chemicals and is also eco-friendly.

• Supercritical conditions and increased solvent
solubility result in a greater extraction rate.

• Because CO2 is more readily available and
inflammable, it is a less expensive solvent to
utilise.

• A less amount of solvent is used.
• Extraction time is reduced.

• A significant of investment cost.
• High pressure and temperature are required.
• Possibilities of impurities
• Compounds that are thermally labile should not be used.
• There are several parameters to optimise.
• Technical complexity is increasing.
• Losses might be variable.
• Possibility clogging of the system is a.

Ajila et al. (2011)
Ayoub et al. (2021)
Xiong and Chen, (2020)
Zougagh et al. (2004)
Janda et al. (1993)
Sairam et al. (2012)

Ultrasound-assisted
extraction

• Environmental friendly method • The dispersion of ultrasonic energy is not uniform. Ajila et al. (2011)
• Can replace the solvents with generally

recognized as safe solvents
• The use of ultrasonic waves causes the internal

structure of chemicals in the oil to degrade.
Ayoub et al. (2021)

• Extraction efficiency is high. • A large amount of solvent is required.
Carreira-Casais et al. (2021)

• Extraction time is shorter.
Zougagh et al. (2004)
Naziri et al. (2016)

• Thermo labile chemicals benefit from this.
• Process that saves energy.
• More time may be spent without changing the

molecular structure.

Microwave-assisted
extraction

• The extraction time is shorter and higher
extraction yield

• When the solvent or desired substance is non-polar or
volatile, this approach is ineffective.

(Danlami et al., 2014)
(Ayoub et al., 2021)

• The use of microwave heating to extract oil
eliminates CO2 emissions.

• High maintenance cost for industrial scale. Gutiérrez-Escobar et al.
(2021)

• When compared to traditional heating, just a
fraction of the energy is used.

• No high temperature solution.
Delazar et al. (2012)

• Reduce the amount of solvent use.

• The addition of solvent is not permitted in this single
step. . Jain et al. (2009)
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temperatures, making it an interesting option for use in jet fuels.
A study looked at the chemical composition, toxic/anti-metabolic
components, and impact of different treatments on their levels in
four Mexican Jatropha Curcas provenances (Herrera et al., 2006).
The authors looked at the proximate composition, total soluble
sugars, and starch content of Jatropha Curcas seed kernel meal
from a range of agroclimatic zones in Mexico. The crude protein
(31–35%), and fat levels of the samples differed somewhat
(55–58%). Coatzacoalcos has a crude protein percentage of
62.0%, whereas Castillo de Teayo has a crude protein value of
65.0%. The crude protein content of the samples was greater in
several treatments. The fibre level of Jatropha Curcas meals was
lower than that of soybeanmeal in their research but equivalent to
other seed provenances from Cape Verde (4.7%), Senegal (5.6%),
Burkina Faso (5.3%), India (4.5%), and Nicaragua (4.5%). (4.5%).
4.5% 3.8% point (pp. 86, 87). Whole kernels had comparable
gross energy content (31.1–31.6 MJ/kg). Both total soluble sugars
and starch content were less than 6%. The researchers used
previously available information to compare the fatty acid
composition of three Jatropha Curcas seed oils. All of the oil
samples included oleic, linoleic, palmitic, and stearic fatty acids.
Oleic acid was the most common fatty acid in the Veracruz
samples, whereas linoleic acid was the most frequent fatty acid in
the Morelos samples. This variation might be due to soil and
climatic conditions. According to the study, unsaturated fatty
acids make up the majority of the oil (oleic and linoleic acid). The
results are quite comparable to those published earlier for
Jatropha Curcas seed provenances from other countries
(Banerji et al., 1985; Nasir et al., 1988; Gübitz et al., 1999).

The most prevalent fatty acid in crude Jatropha Curcas oil
(CJCO) is oleic (44.5%), followed by linoleic (35.4%), palmitic
(13.1%), and stearic (13.1%), 5.8% of the population. Because it
contains 80.9% unsaturated fatty acids, CJCO has outstanding
low-temperature properties (oleic and linoleic acids). In crude
Calophyllum Inophyllum oil (CCIO), unsaturated fatty oleic
(46.1%) and linoleic acid (24.7%) are discovered in higher
quantity than saturated fatty palmitic acids (14.7%) and stearic
acid (13.2%). In addition, crude Calophyllum Pentandra oil
(CCPO) contains 39.7% linoleic acid, 19.2% palmitic acid, and
18.5% malvaloyl acid. Sarin et al., and Abdullah et al.,
respectively, reported similar CJCO, CCIO, and CCPO
composition findings (Abdullah et al., 2010; Sarin et al., 2010).
Emil et al. (Emil et al., 2010) was extracted oil from Jatropha
Curcas seeds taken from Malaysia, Indonesia, and Thailand, and
the fatty acid content (FAC) was determined using gas
chromatography (GC). They discovered that oleic acid
(42.4–48.8%) and linoleic acid (28.8–34.6%) are the most
abundant fatty acids in Jatropha Curcas oil. Saturated fatty
acids like palmitic and stearic acid have molecular weights of
13.25–14.5 and 7–7.7%, respectively. Table 2 presents FAC of
Jatropha Curcas oil by various studies.

Numerous researchers investigated the physicochemical and
thermal characteristics of Jatropha Curcas oil. For example,
Mohammed-Dabo et al. (Mohammed-Dabo et al., 2012)
evaluated the fatty free acid (FFA) content, viscosity, calorific
value, acid, iodine, saponification parameters, and cetane number
of Nigerian Jatropha Curcas seed oil. Table 3 shows the key

physicochemical characteristics of raw Jatropha Curcas oil
provided by important studies.

The characteristics of Jatropha Curcas biodiesel are crucial
since they define the fuel’s ultimate attributes. Vegetable oil’s
increased viscosity is a key drawback when used as a diesel engine
fuel. The viscosity of biodiesel is reduced when it is converted.
The fatty acid content of biodiesel is closely related to its
characteristics. The structural fatty acid content of non-edible
oil, which has a substantial number of double carbon chains,
affects biodiesel physicochemical qualities such as cetane number,
oxidation stability, the heat of combustion, and viscosity (Atabani
et al., 2013). These properties indicate the quality of the fuel. The
kinetic viscosity of the fuel determines its flow, spray, and
atomisation properties. High viscosity reduces spray and
atomisation and increases fuel consumption thus less viscosity
is conducive for better performance (Arbab et al., 2013; Kuti et al.,
2013). High density creates high viscosity, which causes
inefficient combustion, poor engine performance, and poor
emission characteristics (Alptekin and Canakci, 2009; Arbab
et al., 2013). Cetane No. (CN) is connected to ignition delay
time, or the interval between fuel injection and ignition. A greater
CN causes a shorter ignition delay. For CI engine fuel, a higher
CN is desired (Razak et al., 2021). A fuel’s heating value is the
amount of heat created during burning per unit of fuel. Fuel with
a higher heating value is preferred since it helps combustion and
increases engine performance (Arbab et al., 2013). According to
Pinzi et al. (Pinzi et al., 2009) a longer carbon chain length results
in a greater heating value, which has a significant impact on
biodiesel’s cold flow properties. Table 4 shows a comparison of
physicochemical properties of Jatropha Curcas biodiesel and
diesel and corresponding biodiesel standard in Europe.

The effectiveness of centrifugal separators to remove
pollutants is influenced by their density. The centrifugal
cleaning process is driven by the density differential between
the impurities in the fuel and the fuel oil itself. Amidst this
comparison, biodiesel produced from Jatropha Curcas oil showed
a density of 879 kg/m3 (Foidl et al., 1996) 876.2 kg/m3 (Sarin et al.,
2007), 876.2 kg/m3 (Dharma et al., 2017), respectively, which are
fulfilling the requirement the limits stated by European
legislation. Viscosity, which is also an essential attribute of
lubricants, is one of the most significant fuel qualities of
biodiesel and diesel fuel generated from petroleum. Various
biodiesel and diesel standards specify allowable kinematic
viscosity ranges. The viscosity of biodiesel must be below
5 mm2/s and 6 mm2/s as required by EN ISO 3104 and D445,
respectively, to achieve complete combustion with minimum
coke deposit in the engine. Jatropha curcas has a viscosity of
4.84 cSt (Foidl et al., 1996), 4.16 cSt (Sarin et al., 2007) and
4.57 cSt (Dharma et al., 2017), respectively. All viscosity met
the requirement stipulated in the ASTMD445 method. Although
the actual viscosity of biodiesel depends on the fatty acid
composition of the oil or fat from which it is made and also
on the extent of oxidation and polymerization of the biodiesel.
The lowest temperature at which a fuel generates enough vapour
to induce ignition and flame production is known as the flash
point. The flash point of biodiesel is greater than that of normal
diesel. Furthermore, biodiesel’s flash point criteria is greater than
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that of diesel requirements. Biodiesel has a flash point of 150°C on
average, while diesel fuel has a flash point of 55°C–66°C (Tat and
Van Gerpen, 1999). FP was measured through EN ISO 3679 and
ASTM D93. The flash point of the Jatropha Curcas Biodiesel was
191°C (Foidl et al., 1996), 163°C (Sarin et al., 2007), 125.5°C
(Dharma et al., 2017) respectively, which is slightly lower than
palm biodiesel (182.5°C) but higher than CI biodiesel (123.5°C),
the reported flash point is still in the range stipulated in both test
method. Calorific value is defined as the amount of heat emitted

by a fuel when it is entirely burned and measured at a constant
volume or constant pressure, with the hot gas cooled to its
original temperature (Sharudina et al., 2018). Based on EN
14213, the calorific value should be higher than 35 MJ/kg. The
calorific value was 38.5 MJ/kg (Foidl et al., 1996) and 39.46 MJ/kg
(Dharma et al., 2017). The acid number (AN) is one of the
analytical parameters usually employed to evaluate the quality of
biodiesel. It represents the corrosive potential of biodiesel, which
can reduce the lifetimes of fuel tanks and vehicle engines. The

TABLE 2 | Fatty acid composition of the Jatropha Curcas oil.

Fatty acids (no
of carbon atoms:degree
of unsaturation)

Fatty acid relative composition (%) in oil

Emil et al. (2010) Foidl et al. (1996) Sarin et al. (2007) Ashraful et al. (2014) Kumar and Sharma,
(2011)

Decanoic acid (10:0) — 0.1 — — —

Myristic acid (14:0) 0.1 0.1 — 1.4 1.4
Palmitic acid (16:0) 13.2–14.5 13.6–15.1 14.2 13.6–15.1 15.6
Palmitoleic acid (16:1) 0.6–0.7 0.8–0.9 1.4 0.8–0.9 —

Stearic acid (18:0) 7.0–7.7 7.1–7.4 6.9 7.1–7.4 9.7
Oleic acid (18:1) 42.4–48.8 34.3–44.7 43.1 34.3–44.7 40.8
Linoleic acid (18:2) 28.8–34.6 31.4–43.2 34.4 31.4–43.2 32.1
Linolenic acid (18:3) 0.1–0.2 0.2–0.3 — 0.2–0.3 —

Arachidic acid (20:0) 0.2–0.3 02.-0.3 — 02.–0.3 0.4
Behenic acid (22:0) — 0.2 — —

TABLE 3 | The physicochemical characteristics of Jatropha Curcas oil.

Parameter Emil et al.
(2010)

Bilal et al.
(2013)

Mohammed-Dabo et al.
(2012)

Foidl et al.
(1996)

Samniang et al.
(2014)

%FFA 1.69–9.20 14.6 14.8 0.29–1.27 —

Iodine value 92.53–107.57 — 100.56 95.2–106.6 84.2
Saponification value 193.55–216.09 198.76 202.34 190.1–192.4 199.2
Density (kg/m3) 902.4–909.5 (at 20 °C) 920.4 874 920 —

Kinematic Viscosity (cSt) 39.20–53.94 (at 40 °C) 66.74 — 37–38.8 (at 30 °C) 33.55 (at 40 °C)
Acid value (mg KOH/g) — 29.06 29.6 0.92 7.0

TABLE 4 | Fuel properties comparison Jatropha Curcas biodiesel and mineral diesel and corresponding biodiesel standard for Europe.

Properties Jatropha Curcas
Biodiesel (Foidl
et al., 1996)

Jatropha Curcas
biodiesel (Sarin
et al., 2007)

Jatropha Curcas
biodiesel (Dharma

et al., 2017)

Mineral Diesel EN 14214
(Tsoutsos et al.,

2019)

Density (kg/m3) at 15 °C 879 — 876.2 840 ± 1.732 860–900
Kinematic Viscosity at 40 °C (cSt) 4.84 4.16 4.57 2.44 ± 0.27 3.4–5.0
Pour Point (°C) 3 ± 1 — 2 6 ± 1 N.A.
Flash Point (°C) 191 163 125.5 71 ± 3 Min. 101
Conradson Carbon residue (%, w/w) 0.01 < 0.01 — 0.1 ± 0.0 Max. 0.05
Oxidation stability (h) — 3.23 14.01 — Min. 8 h
Acid value (mg KOH/gm) 0.24 0.48 0.46 — Max 0.5
Sulphated ash (%, w/w) 0.014 0.002 0.01 ± 0.0 Max. 0.02
Calorific Value (MJ/kg) 38.5 — 39.46 45.343 —

Sulphur (% w/w) < 0.001 0.004 — 0.25 Max. 0.05
Carbon (% w/w) 77.1 — — 86.83 —

Hydrogen (% w/w) 11.81 — — 12.72 —

Oxygen (% w/w) 10.97 — — 1.19 —

Cetane No. 51–52 57.1 59 (Cetane index) 48–56 Min 51
Free glycerol (% mass) 0.015 0.01 — Max 0.020
Total glycerol (% mass) 0.088 0.02 — Max 0.250
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ASTM D 6751 biodiesel acid-number limit was harmonized with
the European biodiesel value of 0.50. ASTMD 664 is the standard
reference method for measuring the acid number of both ASTM
biodiesel and petroleum-derived diesel. The existing literature
revealed Jatropha Curcas has a near the borderline of 0.24 mg
KOH/g (Foidl et al., 1996), 0.48 mg KOH/g (Sarin et al., 2007)
and 0.38 mg KOH/g (Dharma et al., 2017), respectively.
Oxidation stability is the important property of fatty acid
methyl esters and affects biodiesel primarily during extended
storage. Biodiesel tends to be less resistant to oxidation than
petroleum diesel. Thus, the higher the unsaturated chain of fatty
acids, the lower its stability. The oxidation process was initiated
with peroxides, forming a volatile organic compound such as
aldehydes and ketones. The minimum induction time according
to ASTM D6751 is 3 h. Jatropha Curcas exhibits an oxidation
time of 3.23 h (Sarin et al., 2010), and 14.01 h (Dharma et al.,
2017) shows superior oxidation stability. It can be shown that the
stability of biodiesel is strongly influenced by the makeup of
unsaturated esters. Polyunsaturated esters are much more
susceptible to oxidation than saturated or monounsaturated
esters.

ENGINE PERFORMANCE AND EMISSION
OF USING JATROPHA CURCAS BASED
BIODIESEL
Biodiesel fuels have a greater oxygen concentration, they burn
more efficiently (Elkelawy et al., 2019). To evaluate engine
performance, the researchers usually look at 1) engine torque,
2) brake power (BP), 3) brake specific fuel consumption (BSFC),
4) brake specific energy consumption (BSEC), 5) brake thermal
efficiency (BTE), and 6) exhaust gas temperature (EGT). To
investigate the emissions, the authors usually examine 1)
nitrogen oxides (NOx), 2) hydrocarbon emissions (HC), 3)
carbon dioxide (CO2), 4) carbon monoxide (CO), and 5)
smoke opacity (SO). In certain circumstances, blended
biodiesel outperforms regular diesel fuel in terms of BP
(Sahoo et al., 2009; Fattah et al., 2014). Some researches have
shown that using jatropha biodiesel reduces BTE (Chauhan
et al., 2010; Kathirvelu et al., 2017). BP drops as the amount of
biodiesel in the fuel blend increases (Thapa et al., 2018). BTE,
on the other hand, diminishes when the amount of Jatropha
biodiesel in the fuel mix grows (Madiwale et al., 2018). The
increasing proportion of Jatropha biodiesel in the
diesel–biodiesel blend reduces HC emissions (Chauhan et al.,
2012). Reksowardojo et al. (Reksowardojo et al., 2007) reported
that when compared to diesel fuel, an increase in biodiesel
percentage results in a reduction in HC emissions of
14.91–27.53 percent. Lower HC emissions are usually
observed at full load conditions than other load conditions
(Senthilkumar and Sankaranarayanan, 2016). In most cases, the
NOx emissions from Jatropha biodiesel are greater than those
from diesel fuel (Abed et al., 2019). CO emissions from Jatropha
biodiesel and its blends are usually reduced by 10–40%
compared to that of diesel at full load condition (Huang
et al., 2010; Singh A. et al., 2021). The rise in CO emissions

is noticed when the load percentage increases (Sundaresan et al.,
2007). Smoke opacity falls as the biodiesel content in the blend
rises, but increases when the load increases for Jatropha
biodiesel and its blends (Chauhan et al., 2012; Pandhare and
Padalkar, 2013). The engine performance and emissions while
utilising Jatropha Curcas based biodiesel for different test
conditions are summarised in Table 5.

Economic Viability of Jatropha Biodiesel
Production
Francis et al. (Francis et al., 2005) reported that Jatropha Curcas
thrives on underutilised locations with little water and poor soil,
according to reports, and it may yield oilseed as early as the first
year of growth, although on a small scale. In the tropics, the
feasibility of commercialising Jatropha cultivation on fertile
land to replace other food and income crops has been
questioned. In the tropics, the feasibility of commercialising
Jatropha Curcas cultivation on fertile land to replace other food
and income crops has been questioned. Wahl et al. (Wahl et al.,
2009) reported that Based on a yield of 2000 kg per year from
mature trees, yearly operational expenditures for 1 ha of
Jatropha Curcas are estimated to be about USD 200. Picking
and post-harvest processing make for a large number of total
expenses, they said. Thus annual expenditures are strongly
reliant on production. Because Jatropha Curcas growing
requires a lot of labour, it’s difficult to achieve or sustain
economic viability. Jatropha Curcas can be intercropped with
annuals, perennials, or trees which boosts soil productivity acts
as a soil cover and gives instant extra revenue to farmers (Wahl
et al., 2009). When Jatropha Curcas production is low or
nonexistent, yet land maintenance and opportunity expenses
must be paid, this is required the most. The less space between
rows for intercrops, the more soil the Jatropha Curcas plants
cover. As a result, intercrop output declines with time, which
does not always correspond to an increase in Jatropha Curcas
yield. The use of Jatropha Curcas species local to specific
countries, as well as the development of Jatropha Curcas on
degraded lands that cannot now be used for agriculture, would
be less problematic and more acceptable. Navarro-Pineda et al.
(Navarro-Pineda et al., 2017) investigated Biodiesel production
from Jatropha Curcas in Yucatán state, Mexico: economic
feasibility and energy balance The nett energy ratio of
biodiesel production is 2.88 when all energy outputs
(glycerine, press cake, and pellets) are taken into account.
The system generates more energy than it consumes if the
nett energy ratio is larger than one. Biodiesel production,
however, is not economically feasible based on the criteria
used in this study. They estimated that achieving economic
viability would need a seed yield of 3,250 kg/ha per year. As a
result, future research should concentrate on inventing,
developing, and improving technology to modernise the seed
gathering, seed processing, oil extraction, and biodiesel
manufacturing processes. The agronomic performance, water
and nutrient requirements, and pest and disease susceptibility
of Jatropha should be examined in more detail for commercial
and economically successful production.
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TABLE 5 | Summary of the review of engine performance and emissions by using Jatropha Curcas based biodiesel.

References Scope of the study Performance findings Emission findings

Rajak et al. (2020) Performance and emission of JB20, JB40, JB60
were evaluated in a single-cylinder diesel engine
operating at 1,500 rpm with CRa 18.5 and at
various loads (25, 50, 75, and 100%)

• The BTE values for JB20 are slightly lower
(0.5–2.06%) and

• The BSFC values for JB20 are more
(3.6–2.2%) compared to diesel fuel

• At all engine loads, the NOx emission was
lower for Jatropha Curcas blends

• Jatropha Curcas blends were found to lower
smoke emission

Dharma et al. (2017) Performance and exhaust emissions of a single-
cylinder DI diesel engine fuelled with biodiesel-
diesel mixes made from Jatropha-Curcas and
Ceiba Pentandra. Blending 10, 20, 30, 40, and
50 vol% of J50C50 biodiesel with diesel yields
B10, B20, B30, B40, and B50 blends.

• When compared to other fuel mixes, the B10
blend has greater engine torque, braking
power, and BTE, with values of 34.07 Nm,
3.5 kW, and 34.1%, respectively.

• For all of the J50C50 biodiesel-diesel blends
studied in this research, the B10 blend had the
lowest CO, NOx, and SO values at an engine
speed of 1900 rpm.

Kavitha et al. (2019) Three mixes are available: 90% diesel, 7.5% JB,
and 2.5% ethanol (D 90J7.5E1.25), 95% diesel,
3.75% JB, and 1.25% ethanol (D95J3.75E1.25),
and 98% diesel, 1.5% JB, and 0.5% ethanol (D
95J3.75E1.25) (D98J1.5E0.5).

• When compared to diesel, the BTE of
D90J7.5E2.5 and D95J3.75E1.25 rose by
2.13 and 3.24%, respectively, at 0.937 kW.
When compared to diesel, the BSFC of the
blend D90J7.5E2.5 fell by 2.68% at
0.937 kW.

• When compared to diesel, D90J7.5E2.5
shows a moderate reduction in NOx

emissions, whilst D95J3.75E1.25 shows a
slight rise in NOx emissions.

• Increasing biodiesel mix lowered HC and NOx

emissions while reducing biodiesel blend
reduced CO emissions.

Xu et al. (2017) Under light load operation of a diesel engine, the
influence of fuel supply parameters on
performance and emission characteristics of a
20% mix of Jatropha Curcas biodiesel (J20).

Rashed et al. (2016) In a diesel engine, the performance and
emissions of moringa biodiesel (20%) were
examined and compared to palm, Jatropha
Curcas, and diesel fuel.

• The average BP for biodiesel fuel blends was
somewhat lower (6.92–8.75%) than diesel,
whereas BSFC values were higher
(5.42–8.39%).

• Biodiesel blends significantly decreased CO
(22.93–32.65%) and HC (11.84–30.26%)
emissions, but somewhat increased NO
(6.91–18.56%) emissions when compared to
diesel fuel.

Sahoo et al. (2009) Biodiesel (B20, B50, and B100) compares to
diesel in terms of performance and emissions.

• For a full load, the use of JB20 and JB50
showed 0.09–2.64% and 0.05–3.8%
improvement in power respectively.

• The reduction in smoke for JB20, JB50, and
JB100 at full load and rated speed was
28.57%, 40.9%, and 64.28%, respectively.

• Change in BSEC for JB20, JB50, JB100
were 2.86, 6.0, 12.37% at rated speed,
respectively.

Ong et al. (2014) JB10, JB20, JB30, and JB50 engine
performance and emissions were tested in a
diesel engine at full load.

• The lowest BSFC 261 g/kWh, 281 g/kWh
and 290 g/kWh at 1900 rpm were reported
for JB10 and the highest BSFC was 401 g/
kWh, for JB50 at 2,400 rpm.

• JB10 had the lowest NOx of 86.10 ppm at
1900 rpm and the highest NOx of
120.36 ppm at 2,400 rpm

• JCB resulted in higher BTE compared to
other tested biodiesels

• They reported a decreased HC emission for
JB10 compared to diesel

Chauhan et al.
(2010)

Preheated Jatropha Curcas oil’s performance
and emissions in a medium-capacity diesel
engine

• Preheated Jatropha Curcas oil is indicated
as a viable diesel engine fuel replacement.

• Unheated Jatropha Curcas oil emits more CO
than diesel fuel or warmed Jatropha
Curcas oil.• Considering the BTE (brake thermal

efficiency), BSEC, and gaseous emissions,
80°C was determined to be the best fuel
input temperature.

• HC emissions are lower with warmed oil at
100 °C than with diesel.

• The BTE of Jatropha Curcas oil that had
been warmed was greater than that of
unheated Jatropha Curcas oil.

• Jatropha oil (unheated or warmed) has a
greater BSEC than diesel.

Elango and
Senthilkumar,
(2011)

Performance and emission characteristics of a
diesel engine running on various Jatropha
Curcas oil/diesel mixtures (10–50%).

• The BSFC of B20 is somewhat greater than
diesel, although other mixes are closer to
diesel.

• The exhaust gas temperatures were greater
because the engine was air-cooled, which
increased NOx emissions.

• For the same power output, B20 obtained a
maximum brake thermal efficiency of 29.4%,
while diesel reached 30.9%.

• Blends of up to 20% lowered CO2 emissions
significantly while just slightly lowering BTE.

(Continued on following page)
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FUTURE RESEARCH DIRECTIONS

Biodiversity is important in supporting ecosystem processes and
may be thought of as a basis for ecosystem services. It may also
function as an ecological service in and of itself (Mace et al., 2012).
The following elements are regarded as important drivers of
biodiversity loss connected with biofuels: 1) habitat degradation
or change in land use, 2) species invasiveness, 3) pollution, and 4)
climate change Among them, habitat degradation is recognised to
be a significant contributor to biodiversity loss, followed by species
invasiveness (Kgathi et al., 2017). It has not yet been possible to get
significant and sustainable volumes of Jatropha oil for large-scale
biodieselmanufacturing. As a result, the development of new Jatropha
projects has been slowed, and numerous current initiative projects
have been cancelled (Ewunie et al., 2021). Insufficient market
opportunity, insufficient government incentives, lack of clear
regulations and legislation, ownership issues, arable land scarcity,
inadequate technology in seed collecting and processing, and poor
agronomic performance Jatropha seed were the key obstacles to
sustainable Jatropha biodiesel production.

Engine types, operating procedures, combustion processes,
and diverse biodiesel fuel attributes all have a substantial impact
on the performance, combustion, and emission characteristics of
diesel engines running on Jatropha biodiesel. Extensive
experimental effort on molecular and genetic enhancement is
also required to provide enough and high-quality feedstock for
long-term biodiesel production. Future research should
concentrate on either increasing the fuel qualities of Jatropha
biodiesel and modifying diesel engines to improve performance
and emission characteristics. Finally, before developing large-
scale biodiesel production, the economic, social, environmental,

and technological potential of Jatropha for sustainable biodiesel
production should be studied.

CONCLUSION

The properties and performance of biodiesel made from Jatropha
were examined and reported. In terms of raw resources, Jatropha-
based biodiesel does not compete with human food because of the
existence of certain harmful components, non-edible plant oils
are not acceptable for human consumption, according to tests
conducted around the world and findings available in the
literature. Jatropha plants, unlike other food plants, do not
need rich soil. These plants are widely accessible in
underdeveloped nations, and they are particularly cost-
effective when compared to edible plant oils. When utilised
in an internal combustion engine, Jatropha-based biodiesel
produces less pollution. The engine performance of Jatropha
biodiesel is equivalent to that of petroleum-based diesel. Good
economic performance and necessary public policies are
essential components in achieving commercial Jatropha-
based biodiesel manufacturing success. However, Jatropha
biodiesel is made through a simple triglyceride and fatty oil
transesterification process that is aided by alkaline or acidic
catalytic agents. The latter has a number of drawbacks;
researchers have looked for enzymes that are less harmful
to the environment. Furthermore, in order to maximise
productivity, effective agricultural techniques that match
local environmental circumstances must be used (soil,
climate, etc.). Because fossil fuel (coal, oil, and gas) reserves
are fast depleting, it is predicted that Jatropha-based biodiesel

TABLE 5 | (Continued) Summary of the review of engine performance and emissions by using Jatropha Curcas based biodiesel.

References Scope of the study Performance findings Emission findings

Agarwal and
Agarwal, (2007)

The effect of raising the fuel temperature to
reduce the viscosity of Jatropha Curcas oil on
the engine’s combustion and emission
characteristics

• When comparing diesel with heated
Jatropha Curcas oil, the BSFC and EGT for
unheated Jatropha oil were shown to be
greater.

• In comparison to diesel, emission
characteristics rose as the quantity of
Jatropha Curcas oil in the blends increased.

• Unheated Jatropha Curcas oil has a lower
BTE than heated Jatropha Curcas oil and
diesel.

• For warmed Jatropha Curcas oil, CO2, CO,
HC, emission, and smoke opacity were found
to be comparable to diesel.

Forson et al. (2004) In a single-cylinder direct-injection diesel engine,
the performance of Jatropha Curcas oil and
diesel mixtures. Diesel, Jatropha Curcas oil, and
diesel/Jatropha Curcas oil blends of 97.4%/
2.6%, 80/20%, and 50/50 by volume were used
in the tests.

• The best braking power, thermal efficiency,
and specific fuel consumption were attained
using a 97.4% diesel/2.6% Jatropha blend.

• CO readings are lower at higher loads (higher
than 4 Nm) for fuels with less than 2.6% oil by
volume.

Senthil Kumar et al.
(2003)

Single fuel operation in a single-cylinder direct
injection diesel engine at 1,500 rpm using plain
Jatropha Curcas oil and its esters (100% JB) as
fuel.

• When compared to diesel, Jatropha Curcas
oil had a somewhat lower BTE.

• Compared to diesel, both Jatropha Curcas oil
and JB emit more HC than diesel, with
increases of 10 and 30% respectively.• MaximumBTEs are 27.4, 29 and 30.2%with

Jatropha Curcas oil, JB and diesel. • CO2 emissions followed a similar pattern.
• Jatropha Curcas oil and JB had maximum

smoke levels of 4.4 BSU and 4 BSU,
respectively. It is 3.8 BSUb in the case of
diesel.

aCompression ratio.
bBosch Smoke Units.
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will be a viable long-term alternative. Because these fossil fuel
resources are limited, if they are used over an extended period
of time, global resources will ultimately run out. To
summarise, the Jatropha is differentiated by the many
ecological, energy, and economic advantages connected with
its commercial usage, and increased use of this plant is helpful
to the environment and food production.
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