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A B S T R A C T

Droughts are one of the disastrous natural hazards which has severe impacts on agricultural production,
economy, and society. One of the critical steps for effective drought management is developing a robust
forecasting model and understanding how the variables affect the model outcomes. The present study forecasts
SPI-12 at a lead time of 3 months, using the Long Short-Term Memory (LSTM) model, and further interprets the
spatial and temporal relationship between variables and forecasting results using SHapley Additive exPlanations
(SHAP). The developed model is tested in four different regions in New South Wales (NSW), Australia. SPI-
12 was computed using monthly rainfall data collected from Scientific Information for Land Owners (SILO)
for 1901–2018. The model was trained from 1901–2000 and tested from 2001–2018, and the performance
was measured using Coefficient of Determination (R2), Nash–Sutcliffe Efficiency (NSE) and Root-Mean-Square-
Error (RMSE). To understand the underlying impact of variables on the model outcomes, SHAPley values
were calculated for the entire testing period and also at three different temporal ranges, which are during
the Millennium Drought (2001–2010), post drought period (2011–2018) and at a seasonal scale (summer
months). The comparison of the results shows a significant variation in the impact of variables on forecasting,
both temporally and spatially. It also shows the need to study the model outcomes for specific regions and for
a shorter duration than the entire testing period. This is a first of its study towards interpreting the forecasting
model in drought studies, which could help understand the behaviour of drought variables.
. Introduction

The number of studies on natural hazards has increased in the
1st century, as climate change has led to the occurrence of more
isastrous and frequently occurring hazards. Of all the natural hazards,
ne that has affected large parts of the world is drought and is expected
o rise due to factors like anthropogenic activity and climate change
Van Loon, Glesson, Clark, et al., 2016). Droughts begin with a defi-
iency in precipitation, which then slowly propagates to a reduction
n soil moisture conditions, causing agricultural drought and declines
n streamflow, leading to hydrological drought and finally impact-
ng society’s social and economic aspects. Also, this may not happen
hronologically, and sometimes hydrological and agricultural drought
an occur simultaneously. However, it can be said that the meteorolog-
cal drought will be the first step towards a chain reaction. Generally,
roughts can be categorized into four types: (a) Meteorological, (b)
ydrological, (c) Agricultural, and (d) Socio-economic impacts (Mishra
Singh, 2011). Although various researchers have advocated to further

ategorize droughts into different drought types, like Mishra and Singh
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(2011) suggested to include groundwater drought; Vicente-Serrano,
Quiring, Peña Gallardo, et al. (2020) urged to include environmental
droughts and Slette et al. (2019) suggested ecological droughts to be a
separate drought type, however, such adaptation is yet to happen.

The challenges towards understanding droughts are plenty, with
the first obstacle being its definition, i.e., when does a drought start
and when it ends. This challenge becomes more complicated as it is
dependent on who is defining it and what metric is being used for
by definition to measure it (Lloyd-Hughes, 2014). Therefore, drought
indicators and indices have been developed, which would provide a
general idea about droughts (Haile, Tang, Li, et al., 2020). For mete-
orological droughts, several researchers have defined drought indices
based on different variables, and (Yihdego, Vaheddoost, & Al-Weshah,
2019) provide an extensive list of various drought indices based on
drought type. Standard Precipitation Index (SPI) is one of the most used
(Hayes, Svoboda, Wall, & Widhalm, 2011) drought index, one that is
arguably the most popular and accepted drought index developed by
McKee, Doesken, and Kleist (1993). Compared to other drought indices,
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it has multiple advantages, like consistent spatial interpretation, less
computationally complex, which makes it suitable for prediction and
risk analysis (Anshuka, van Ogtrop, & Willem Vervoort, 2019). As
the calculation is exclusively based on rainfall, it has proven to be
very useful in data sparse areas, where other drought affecting factors
like soil moisture, streamflow etc. are unavailable (Hayes, Svoboda,
Le Comte, et al., 2005).

The forecasting of meteorological drought can be carried out by
either forecasting drought affecting variable (rainfall) or drought in-
dicators (SPI) (Woli, Jones, Ingram, & Paz, 2013). The influence of
atmospheric circulation patterns or teleconnections has been found to
influence rainfall, thereby affecting drought occurrences (Feng, Wang,
Luo, et al., 2020; Stahl & Demuth, 1999). Further, it has been well
established that the future droughts would be affected, due to climatic
influence; however, the inclusion of climatic indices to improve fore-
casting has received conflicting results. In a work by Ganguli and Reddy
(2014) suggested that the addition of climatic indices improves predic-
tion, whereas Morid, Smakhtin, and Bagherzadeh (2007) suggested it
has minimal improvement in model performance.

The challenge for accurate drought forecasting lies in the length of
the available time series, timescale of the drought index, and the model
used. A minimum of 30 years of data is required to understand any
drought characteristic. Anshuka et al. (2019) in their review article on
drought forecasting using the SPI index discussed the capabilities of
various models to forecast at different SPI time scales and lead times
(forecast range). The study suggested that the best lead times for SPI
forecasting can be found for 1–3 months. However, the selection of
SPI timescale is dependent on the objectives and the drought type
being studied, along with the local features such as catchment or area
type, land-use changes of the study area (Vasiliades, Loukas, & Liberis,
2011), with some suggesting longer time scales to be used and the
other suggesting the opposite. Their study also suggested that SPI at
longer time scales are better forecasted as the values are smoother and
emphasizes the need to test different time scales before integrating it
in drought management. Therefore, the present study forecasts SPI12
at a lead time of 3 months.

Due to the multivariate nature of drought, modellers are often
puzzled to identify which variables to use (Deo, Kisi, & Singh, 2017;
Dikshit, Pradhan & Alamri, 2021; Hao, Singh, & Xia, 2018). The key
finding for improving drought forecasting was the inclusion of temporal
lag components of climatic indices as predictors in the model. Various
studies have utilized the climatic drivers and have shown improvement
in forecasting drought indices or drought variables (Abbot & Marohasy,
2014; Özger, Mishra, & Singh, 2012). This aspect becomes more critical
for drought studies in Australia, where the relation between climatic
drivers and rainfall is found to be the highest in the world (Kirono,
Chiew, & Kent, 2010). There are several indices which depict the
changes, as a single index cannot capture all the different climatic
aspects (Hanley, Bourassa, O’Brien, et al., 2003). Therefore, various in-
dices have been proposed in the literature and in the present study, we
use the climatic variables (pressure indices and SST indices) described
in Table 1.

The forecasting of drought events can be performed via statistical
(Han, Wang, Zhang, & Zhu, 2010), physical (Pozzi, Sheffield, Stefanski,
et al., 2013), and data-driven (Deo et al., 2017) approaches. The
physical-based study involves complex models using several variables
and high computational resources, which is quite challenging. Whereas
data-driven models like machine learning models are far less compli-
cated and use less computational resources than physical-based models.
Although the use of physical-based models has led to comparable
forecasting results, it has been well proven that data-driven models are
more useful and can sometimes achieve even better accuracy than phys-
ical models (Abbot & Marohasy, 2014). Among the data-driven models,
machine learning (ML) techniques have often been used to forecast
droughts and have proven to be very successful (Deo & Şahin, 2015;

Dikshit, Pradhan, & Alamri, 2020a, 2020b). Several studies have been
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conducted to forecast drought at different lead times using different
drought indicators for various parts of the world. Interested readers
can look at the important review articles by AghaKouchak, Farahmand,
Melton, et al. (2015), Hao et al. (2018), Hao, Yuan, Xia, Hao, and
Singh (2017), Mishra and Singh (2011). These review articles discuss
the various models, variables, and the data types used in the literature
to forecast drought at various spatial and temporal scales.

However, as several such variables affect different lag times, ML
models succumb to the curse of dimensionality and overfitting. How-
ever, deep learning model is a new prospect and provides new possi-
bilities towards improving forecasting capabilities. Several prominent
researchers have highlighted and proved that the use of deep learning
would eventually surpass ML forecasting capabilities and provide a new
direction towards regression problems (Ham, Kim, & Luo, 2019; LeCun,
Bengio, & Hinton, 2015; Reichstein, Camps-Valls, Stevens, et al., 2019).
Such concerns of overfitting and dimensionality can be overcome by
using LSTMs, wherein the forget gate determines the amount of in-
formation which can pass through (Goodfellow, Bengio, Courville, &
Bengio, 2016; Olah, 2015). Although, LSTM has been often used for
different fields of study, like finance, climatic studies, environmental
variables, its use for forecasting drought indices/variables is in the early
stages. Apart from the quest to forecast at higher lead times, the inter-
pretation of the results in terms of lags of the variables used to forecast
drought is generally not conducted in drought literature. Despite the
outperformance of data-driven models, one major challenge is to inter-
preting the models and examining the relationships between variables
and forecasting results, along with the interrelationships among the
variables. Therefore, in the present study, we look towards developing
a robust and explainable forecasting model and interpreting the results,
which would help understand how LSTM uses the variables to forecast
droughts. Previous work by Dikshit and Pradhan (2021b) showcased
the importance of SHAP for drought prediction under different drought
conditions. In the present study, we focus on understanding the ex-
plainable models for drought forecasting at shorter lead times, and its
interaction under different time periods (annually, seasonally).

One of the most affected drought regions in the world is Australia,
which is the second driest continent in the world and has suffered
from several droughts (Howden, Schroeter, Crimp, & Hanigan, 2014).
The present work focusses only on the south-eastern part of the coun-
try, New South Wales (NSW). The region faces synergistic pressures
and stress due to change in climatic conditions leading to warmer
temperatures, intensified by strong El Niño resulting in frequent to
severe drought occurrences (Abbot & Marohasy, 2014; Deo et al.,
2017; Dikshit & Pradhan, 2021b; Verdon-Kidd & Kiem, 2009). Drought
occurrences reduce streamflow which leads to significant economic
losses, especially in the agriculturally sensitive Murray–Darling Basin
(MDB) (Van Dijk, Beck, Crosbie, et al., 2013). Therefore, an accurate
forecasting model with the understanding of the affecting variables
could help drought management and mitigate drought risk. Conse-
quently, the present study focusses on four different regions in NSW,
with two regions located inside MDB and two located along the coast.
In summary, the objectives of the study are: (i) Forecast SPI 12 at a
lead time of 3 months using LSTM; (ii) Interpret the forecasted models
using SHAP; and (iii) Examine the interpretation results for different
regions.

2. Study area

The NSW region has a long history of drought events lasting for a
few months to several years. The recent Millennium Drought lasting
(2001–2009) can be described as the worst drought on record for
southeast Australia (Van Dijk et al., 2013). The effect of climate change
has made the situation of drought even worse for NSW, which has led to
an increase in drought frequency and intensity along with heatwaves,
aggravating drought conditions (Cai, Purich, Cowan, van Rensch, &

Weller, 2014). Dey, Lewis, Arblaster, and Abram (2019) examined the
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Table 1
Description of the climatic variables used in the present study.
Climatic variable Description

Southern Oscillation Index (SOI) Indication of the development and intensity of El Niño or La Niña events
Pacific Decadal Oscillation (PDO) Long-lived ENSO like pattern of Pacific climate variability
Southern Annular Mode (SAM) Pressure diploe between the Antarctic and Southern Hemisphere mid latitudes
Indian Ocean Dipole (IOD) SST dipole between the western and eastern tropical Indian Ocean
Nino 3.4 Mean SST over the Nino 3.4 region (5◦N–5◦S, 120◦–170◦W)
Nino 4.0 Mean SST over the Nino 4 region (5◦N–5◦S, 160◦E–150◦W)
Nino 3.0 Mean SST over the Nino 3.0 region (◦5N-5◦S, 150◦–90◦W)
Table 2
Geographic coordinates of the study sites.

Station ID Location Coordinates Elevation (m)

63005 Bathurst −33.43◦S, 149.56◦E 713
54003 Barraba −30.38◦S, 150.61◦E 499
50031 Peak Hill −32.72◦S, 148.19◦E 285
58012 Yamba −29.43◦S, 153.36◦E 27.4

historical rainfall changes and observed a decrease in mean rainfall
since 1950. The present study focuses on four different regions (Fig. 1),
Barraba, Bathurst, Peak Hill and Yamba. Of these, Barraba and Bathurst
are situated within MDB, and the other two (Peak Hill and Yamba) are
situated in the coastal part of the state. (See Table 2)

The variation in rainfall patterns in NSW has been found to be linked
to the climatic drivers arising from the Pacific Ocean, Indian Ocean,
and the Southern Ocean. The changes arising due to the Pacific Ocean
are known as El Niño/Southern Oscillation (ENSO) and Pacific Decadal
Oscillation (PDO). The understanding of the ENSO phase is defined
using an index, based either on SST or atmospheric changes (Hanley
et al., 2003). The presence of a single index accurately defining ENSO
is currently lacking (Huang, L’Heureux, Lawrimore, et al., 2013). The
SST based indices influencing NSW are Niño3.0, Niño3.4 and Niño4.0,
and the atmospheric based index is the Southern Oscillation Index (SOI)
(ESRL Earth System Research Laboratory, 2020). The anomalies arising
in the Southern Ocean are called as Southern Annular Mode (SAM), and
from the Indian Ocean is Indian Ocean Dipole (IOD). Droughts in the
region have been traditionally linked to ENSO events (Nicholls, Lav-
ery, & Frederiksen, 1996). However, Ummenhofer, England, McIntosh,
et al. (2009) found that IOD variations majorly drove the Millennium
Drought. This shows that climatic drivers do affect droughts, and the
future drought events would be affected due to these changes.

As drought occurrence is a resultant of a multitude of reasons, we
chose 8 different variables that influence droughts in the region as
predictors in the model (Deo et al., 2017). These include the meteo-
rological parameters, climatic indices and the sea surface temperatures
(SSTs). The data for the meteorological parameters were collected from
Scientific Information for Land Owners (SILO). The data was collected
from 1901–2018, of which 85% (1901–2000) was used to train the
model, and the remaining was used as a testing period.

2.1. Standard precipitation index

SPI was conceptualized by McKee et al. (1993), which involves
fitting a gamma probability density function for the distribution of
monthly precipitation data at different time scales. The classification
of droughts based on the index values representing various drought
conditions is depicted in Table 3 (Morid et al., 2007). The detailed
understanding of the calculation of the SPI index has been explained
in Belayneh, Adamowski, Khalil, and Ozga-Zielinski (2014) and Deo
et al. (2017). SPI is determined by fitting the probability distribution
and transforming to a normal distribution, to achieve the mean value
of zero (Naumann, Barbosa, Carrao, Singleton, & Vogt, 2012). It can
be computed for various time series (1, 3, 6, 9, 12, 24 months),
which depict different drought types. The calculation of SPI values is

dependent on the choice of the probability density function 𝑓 (𝑅) of
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Table 3
Drought classification according to SPI definition (Morid et al., 2007).

SPI values Drought categories

≤ −2 Extremely dry
−1.99∼−1.5 Severely dry
−1.49∼−1 Moderately dry
−0.99∼0.99 Near normal
1∼1.49 Moderately wet
1.5∼1.99 Severely wet
≥ 2 Extremely wet

rainfall (𝑅). We used the gamma probability density function, which
has been majorly used (Deo et al., 2017) and can be defined as:

𝑓 (𝑅) = 1
𝛽𝛼𝜏(𝛼)

𝑅𝛼−1𝑒
−𝑥
𝛽 (1)

where, parameters, 𝛼 and 𝛽 can be estimated using maximum likelihood
solution; 𝛼 = 1

4𝐴 (1 +
√

1+4𝐴
3 ); 𝛽 = 𝛼

𝑅
, where 𝐴 = ln

(

𝑅
)

− (
∑

ln (𝑅))∕𝑀 ;
and 𝑀 is the number of rainfall observation months.

The positive and negative values depict higher and lower mean
precipitation, respectively. The drought event initiates when the value
reaches −1 and terminates upon reaching positive
value (Morid, Smakhtin, & Moghaddasi, 2006). The calculation of the
index was carried out in ‘𝑅’ software using the available packages. The
present study determines SPI values at a time scale of 12 months.

Fig. 2, illustrates different drought characteristics like drought on-
set, end, intensity. The figure depicts SPI-12 values for Bathurst Agri-
cultural Station during the Millennium Drought from January 2001
to December 2010. As per the running sum technique (Yevjevich,
1967), the drought onset begins with the SPI value moves towards
negative values and ceases when the value moves towards positive
value. As seen in Fig. 2, a dip in rainfall values leads to a drop in SPI
values, and drought duration can be determined by the accumulation of
consecutive months, suggesting negative SPI values with peak intensity
being the minimum SPI value.

3. Models

3.1. Basics of LSTM architecture

Fig. 3 illustrates the LSTM structure wherein a cell is the basic
building block and its state is the key to the model. The cell states can
be determined by three gates types: (i) input, (ii) forget; and (iii) output
gate. Essentially, the input gate determines whether to allow including
new inputs, the forget gate decides whether to discard currently used
information as it may or may not be important anymore, and the output
gate controls the amount of information that needs to pass through.

The details of the LSTM architecture can be found in Dikshit,
Pradhan and Huete (2021) wherein the authors have used the same
approach to forecast monthly SPEI for New South Wales. However, due
to the change in the input data, the architecture used in the present
study was slightly modified. In general, the LSTM architecture consisted
of an input layer, one LSTM layer and dense layer (also known as fully
connected layers). The input of the whole network is in 3D tensor form,
which is the sample size, sequence length and the number of features.
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Fig. 1. Location of the Murray–Darling Basin (MDB) and four studied regions in NSW.
Fig. 2. SPI-12 during the Millennium Drought (2001–2010) for Bathurst Agricultural station.
Sample size equals the training dataset, which in this case is from 1901–
2000. The sequence length is the temporal size of the input data which
would be used to forecast SPI-12, and herein the best sequence length
was found to be 12. In simple terms, the last 12 months’ value of the
variables is used to forecast the 13th month’s SPI-12.

To forecast at longer lead times, two approaches are usually used,
(i) recursive approach and (ii) direct approach. In case of recursive
approach, the parameters of the sequence length are used to forecast
the first monthly step, and thereafter the forecasted result is used to
determine the values of the next time step. For a direct approach, the
parameters of the previous time steps are used to forecast ahead at
all lead times. Mishra and Desai (2006) forecasted SPI using Artificial
4

Neural Network (ANN) in Kansabati river basin, India and examined
both the approaches. Their study found that forecasting at higher lead
times using a direct approach produced better results instead of a
recursive based approach. Therefore, in this study, we used a direct
based approach. To prevent overfitting, a dropout layer is added post
LSTM layer and is empirically set to 0.25 (Dikshit, Pradhan & Huete,
2021). The number of neurons in the LSTM layer was 200, and 8 in
the dense layer. The number of features was 8, and was implemented
with Keras using GPU TensorFlow 2.0 as the backend (Francois, 2015).
Fig. 3 depicts the flowchart used in the present study and a general
representation of the LSTM architecture.
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Fig. 3. Methodology adopted in the present study.
The activation function used for all the station data was ‘sigmoid’;
he loss function used was ‘Mean Square Error (mse)’ and the opti-
izer used was Adam. These aspects are crucial, as changing it may

ield to different results (Dikshit, Pradhan & Huete, 2021). In several
xperiments, especially on loss and activation function, we found that
his architecture involving the number of neurons and sequence length
erformed the best. Although one can argue that the use of Stacked
STM (multiple LSTM layers), or a hybrid LSTM architecture would
ave provided better results, it is important to note that the primary
bjective of the study is to introduce SHAP algorithm for drought
orecasting as a way to explain the model outcomes. At present, the ex-
lainable models (SHAP) have not been developed enough to decipher
omplex architectures.

.2. SHAP methodology

The SHapley Additive exPlanations value (SHAP) algorithm was
riginally developed as a concept in game theory to determine an
ndividual player’s contribution to a collaborative game (Lundberg &

ee, 2017; Ribeiro, Singh, & Guestrin, 2016; Shapley, 1953). In game

5

theory, this concept was applied to determine the importance of a
single player in a collaborative team game. The idea was to distribute
the total gain among players based on their contributions towards the
outcome. The SHAP values provided a solution to the problem of a fair
reward to every player and assigning a unique value determined by
local accuracy, consistency, and null effect (Shapley, 1953).

The Shapley values estimate both the magnitude and the direction
of each feature towards the model’s outcomes. Positive indicates more
contribution in the right direction and negative indicates contribution
in the opposite direction towards achieving the prediction outcomes.

In particular, the importance of a feature 𝑖 is defined by the Shapley
value in Eq. (2):

∅𝑖 =
∑

𝑆⊆𝑁∖{𝑖}

|𝑆|! (𝑛 − |𝑆| − 1)!
𝑛!

[𝑣 (𝑆 ∪ {𝑖}) − 𝑣(𝑆)] (2)

where, ∅_𝑖 is the contribution of feature 𝑖,𝑁 is the set of all the features,
n is the number of features in 𝑁,𝑆 is the subset of 𝑁 which contains
the feature i and 𝑣 (N) is the base value meaning the predicted outcome
for each feature in N without knowing the feature values.

SHAP provides multiple explainers for different AI based models: (i)
Tree Explainer (e.g. — XGBoost); (ii) Kernel Explainer (e.g. — Random
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Table 4
Statistical metrics of the forecasted results at different locations.

Location RMSE R𝟐 NSE

Bathurst 0.252 0.921 0.906
Barraba 0.253 0.918 0.884
Yamba 0.302 0.901 0.862
Peak Hill 0.279 0.911 0.879

Forest); (iii) Gradient Explainer and (iv) Deep Explainer (Christoph,
2019). Using the relevant explainer, four different types of interpre-
tation can be conducted, which are: (i) Summary Plot; (ii) Dependence
Plot; (iii) Individual Force Plot; and (iv) Collective force plot. The
summary plot explains the relative importance of each variable on
the model outcome. The dependence plot explains the effect a single
feature has on the predictions made by the model. The individual
force plot explains the effect of a single feature affecting positively
or negatively towards the model results. The collective force plot is
similar to individual force plot, with the only change being adding all
the features in a single diagram. Although, there are several types of
plot, readers are referred to Christoph (2019) for an in-depth detail.

4. Results

This section presents the forecasted results using the LSTM archi-
tecture and the various plots generated using the SHAP algorithm.
The statistical metrics used for analysing model performance are the
coefficient of determination (𝑅2), Nash–Sutcliffe Efficiency (NSE) and
he root-mean-square-error (RMSE) method (Chai & Draxler, 2014;
ikshit, Pradhan, & Alamri, 2020c; Krause, Boyle, & Bäse, 2005; Nash
Sutcliffe, 1970). RMSE is frequently used as a metric, as it penalizes

arge errors and is suitable for forecasting purposes (Dikshit, Pradhan &
uete, 2021). 𝑅2 ranges from 0 to 1, where 1 depicts an exact match,
nd 0 denotes no association. Contrarily, a lower RMSE value illustrates
etter performance. The mathematical equation of these metrics are
iven in Eqs. (3)–(5):

2 =

⎛

⎜

⎜

⎜

⎜

⎝

∑𝑛
𝑖=1

(

𝑆𝑃𝐼𝑜 − 𝑆𝑃𝐼𝐹
)(

𝑆𝑃𝐼𝐹 − 𝑆𝑃𝐼𝐹
)

√

∑𝑛
𝑖=1

(

𝑆𝑃𝐼𝑜 − 𝑆𝑃𝐼𝐹
)2

√

∑𝑛
𝑖=1

(

𝑆𝑃𝐼𝐹 − 𝑆𝑃𝐼𝐹
)2

⎞

⎟

⎟

⎟

⎟

⎠

2

(3)

𝑅𝑀𝑆𝐸 =

√

√

√

√

𝑛
∑

𝑖=1

(𝑆𝑃𝐼𝑜 − 𝑆𝑃𝐼𝐹 )2

𝑛
(4)

𝑁𝑆𝐸 = 1 −
∑𝑛

𝑖=1(𝑆𝑃𝐼𝑜 − 𝑆𝑃𝐼𝐹 )2
∑𝑛

𝑖=1(𝑆𝑃𝐼𝑜 − 𝑆𝑃𝐼𝑜)2
(5)

here, 𝑆𝑃𝐼𝑜 and 𝑆𝑃𝐼𝐹 are observed and forecasted values, with 𝑆𝑃𝐼𝑜
and 𝑆𝑃𝐼𝐹 are the mean of the observed and forecasted observations,
nd n being the number of data points. Table 4 presents the forecasted
esults in terms of statistical metrics, and Fig. 4 depicts the plots
etween the actual and the forecasted results.

The advantage of using LSTM over conventional machine learning
odels is that it learns variable weights across time steps, unlike

earning uniform weights in the latter case. As anomalies exist among
he variables, decay over weights across time periods is necessary (Dik-
hit, Pradhan & Huete, 2021). The forget gate in a LSTM architecture
aptures the decay weighted lag–lead sequence relationship effectively
ithout the vanishing gradient issue, thereby affirming its use over

onventional neural networks architectures.

.1. Summary plot

As expected, Fig. 5 shows rainfall to be the most important factor.
or all the locations, Niño4 plays the second most important factor, post
6

that there is no clear trend, and as we go from top to bottom, the bottom
half becomes less significant based on the mean SHAP values.

Previous researches on drought forecasting in the region has also
shown Niño indices playing a key role. As an example, Feng et al.
(2020) used a machine learning algorithm, Random Forest, to forecast
monthly SPI and found Niño3.4 to be the most important factor.
However, it is important to note that not all the locations show the
same variable significance and the actual mean values of SHAP are
minimal. As and when higher lead times are forecasted, these indices
would play a more important role, thereby increasing their mean SHAP
values. Such variable importance plots can also be illustrated using
different machine learning models. However, the interaction among the
variables is not discussed in the literature, and thereby, the next section
would look at the dependence plot feature of the SHAP algorithm.

4.2. Dependence plot

The understanding of the interdependence of the variables affecting
the forecasting results has long been a challenge among researchers.
The dependence plot feature in SHAP can help in understanding the
dependence of all the variables in forecasting SPI-12. The 8 variables
included in the forecasting model, would lead to a total of 56 plots.
Herein, we present (Fig. 6) the relationship among the two most
important variables for all the locations, during the testing period.

Fig. 6 illustrates the dependence plots among the two most impor-
tant variables during the testing period, with the left coordinate axis
representing the SHAP values, the right coordinate axis representing the
Niño4, abscissa representing the rainfall values and the colour ranging
from blue to pink showing importance from low to high. In general, a
monthly rainfall of more than 100 mm, increases the prediction results,
and when it is less than 100 mm, there is no clear trend and depends on
the location and Niño4. As an example, in the case of Bathurst, there is
no linear trend, which is the same in the case of Peak Hill and Yamba.
The spread in these plots suggests that other variables must interact
with rainfall. However, in case of Barraba, a low rainfall with high
Niño4 values increases the model predictions. Such critical analysis
can be performed among all the variables, however, when looking at
the SHAP values of the summary plot, the first 2 variables (Bathurst
and Peak Hill) or first 3 variables (Barraba and Yamba) were the most
critical.

Although these plots can prove to be useful, they do not explain
how the variables affect the model results at different temporal ranges.
Hence, to better examine the effect of variables on model results, we
developed 3 different dependent plots, representing different tempo-
ral ranges. These two different temporal ranges are: (i) during the
Millennium Drought (2001–2010); (ii) after the Millennium Drought
(2011–2018); and (ii) seasonal scale, to understand the temporal vari-
ation in a particular season (herein, we provide only the summer
months, December–January–February (DJF). Such in-depth analysis
would help in understanding how the interaction of variables affects
the model results at various stages of the testing period.

4.2.1. Temporal based dependent plots
When examining the dependence plots under different temporal

ranges, it provides contrasting results. Fig. 7 depicts the dependence
plots between rainfall and Niño4 at three different temporal ranges for
all the locations, with the axis being similar to Fig. 6.

The summary plots above depict the interaction of the rainfall and
Niño4 in predicting the SPI-12 value. Although at the first glance all the
plots show an upward trend depicting the positive impact of rainfall on
SPI, the spread in the plot suggests that the other variable must interact
with SPI prediction. For example, in all the plots when the rainfall is
less than 100 mm, there are many observations with similar rainfall
that both decrease and increase the prediction. Therefore, higher SHAP

rainfall values indicate monthly rainfall of more than 100 mm.
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Fig. 4. Variation between the actual and the forecasted results at different locations.
Although the effect of Niño4 compared to other climatic variables
as more prominent, and therefore we restrict ourselves to examine

he interrelationship only among these variables. Herein, we analysed
he various scenarios which affect the model results either positively
r negatively. Higher rainfall values indicate monthly rainfall of more
han 100 mm, whereas higher Niño4 values indicate values more than
.25.

During the Millennium Drought (2001–2010), the distribution of the
ink dots suggests that, when rainfall is less than 100 mm, generally
here are many observations where higher Niño4 values in Barraba and
eak Hill leads to a decrease in the prediction results. Whereas, the
ffect of lower Niño4 values in both these regions was not predictable
s the observations are scattered (blue points) with some positively
ffecting the model outcome and some negatively affecting the model
utcomes. Whereas, for Bathurst and Yamba region, most of the low
iño4 values increased the prediction results and high Niño4 values
ehaved differently and therefore, the general trend cannot be seen.

After the Millennium Drought (2011–2018), most Niño4 observa-
ions with lower Niño4 values increased the forecasting results, while
ost of the higher value observations behaved unpredictably in im-
acting on the forecasting results in Yamba and Bathurst. In case of
arraba and Peak Hill, the random distribution of the pink and blue
ots indicates that the effect of Niño4 is unpredictable irrespective of
t being high or low.
7

Furthermore, when analysing from a seasonal point of view, i.e., the
summer season (DJF), the majority of higher Niño4 values decreased
the prediction results in Barraba and Peak Hill and disperse distribu-
tion of lower value indicates that these observations can decrease or
increase the prediction. For Yamba, most of the higher Niño4 values
(pink dots), increased the forecasting results and were not predictable
in case of average values (purple points) and lower values (blue points).
However, for Bathurst, the majority of the lower Niño4 observations
improved the model results and were neutral for higher Niño4 values.

As the figures show, the dependence among the variables affecting
the model’s results varies spatially and temporally. Such examination
provides evidence in understanding the effect of climatic indices on
forecasting results. It is important to note that this is a preliminary
study suggesting the use of explainable models towards forecasting
drought, and more in-depth analysis can also be done for forecasting
at higher lead times.

5. Discussions

The inclusion of climatic variables has been found to improve the
forecasting results using data-driven models for longer lead times. How-
ever, with the inclusion of several variables, involving lag components,
neural networks often succumb to overfitting. The use of interpretable
AI could not only help to explain the model outcomes but also for
selecting important features, thereby building a more efficient and
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Fig. 5. Summary plots illustrating the variable importance at different locations using LSTM for SPI-12 forecasting at lead times of 3 months.
Fig. 6. Dependence plots between the two most important variables during the testing period. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
8
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Fig. 7. Dependent plots between rainfall and Niño4 at different temporal ranges (during the drought (2001–2010), after the drought (2011–2018) and summer season (2001–2018)
from left to right) for all the four locations.
a

robust model. The present study analyses the model outcomes, which
were carried out for 4 different regions of New South Wales, of which
two were situated in the agriculturally sensitive MDB region and two
were located near the coast. Further, the emphasis of this study is on
analysing the importance of individual features using SHAP to have a
better understanding of the variables’ impacts on the model outcome.

A deep learning RNN-based approach, LSTM was used to forecast
SPI-12, which was trained on 100 years of data (from 1901 to 2000)
and 18 years of data (from 2001 to 2018) was used to test the model.
The model used 7 different climatological variables to forecast SPI-12
at a lead time of 3 months. The performance of the model showed
𝑅2 value more than 0.9 in all the regions. Although the use of hybrid
models can lead to better forecasting results, the primary objective of
the article is to introduce SHAP in the field of drought forecasting.
SHAP algorithm provides multiple plots which help to identify the
importance and dependence of the variables on the model outcome.

For example, the SHAP summary plot, which ranks features based
n their impact on the model result shows that Niño4 is the most
mportant feature in the model after rainfall. Deo et al. (2017) used
ifferent machine learning models to forecast monthly SPI highlighted
he importance of lagged Niño indices for better accuracy in forecasting
esults. Feng et al. (2020) forecasted SPI-8 using the Random Forests
odel for the Australian wheat belt region and found Niño3.4 to be

he dominant climatic variable. Power, Delage, Chung, Ye, and Mur-
hy (2017) show that a nonlinear relationship exists between rainfall
nomalies and ENSO events. The low raking of IOD and SAM variables
an stem from the fact that it majorly affects rainfall in Western
ustralia (Feng et al., 2020), and therefore is less likely to influence
PI in the studied area (Risbey, Pook, McIntosh, et al., 2009).
9

Although, it has been well-proven that adding lagged climatological
variables increases the accuracy of the drought forecasting model, there
is no study that shows how these variables are interacting individually
to affect the model outcome. To explore this interaction, we plot SHAP
dependence plots among the two most important variables (rainfall
and Niño4 in this case) for all the regions, with rainfall on the 𝑥-
xis and the SHAP value of it on the 𝑌 -axis by changing Niño4 in

this model. These dependant interactions were initially plotted for the
entire testing period. The result (Fig. 6) shows that when the rainfall
is approximately more than 100 mm, the trend of the observations
is upward (higher SHAP rainfall values), suggesting that it increases
the forecasting. However, due to the dispersion of the observations,
such clear demarcation was not present when monthly rainfall was less
than 100 mm. Therefore, we divided the dependence plots at shorter
meaningful temporal periods to take full advantage of the information
hidden in temporal trends. Hence, we divided the dependence plots
at three different temporal ranges, the first two being during and post
the Millennium Drought and the third being only the summer months
(D–J–F) for the entire testing period.

As shown in Fig. 7, this division into temporal ranges provided a
more clear depiction of how the variables affected the model outcomes
at different locations. Fig. 8 provides a summary of the model effects
on forecasting results, in terms of increasing and decreasing effect
on model results. Blue colour shows an increase in model outcomes,
whereas the orange colour shows a decrease in outcomes.

The analysis shows different scenarios where climatic indices im-
pact the model outcomes, with Niño4 impacting the results at every
temporal range. As illustrated in the above figure, the blue colour is
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Fig. 8. Evident trends on the model results at different temporal ranges for all the locations. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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dominant in the majority of the cases, with some cases reflecting a
negative impact. This also shows that the involvement of climatic vari-
ables affects differently at different regions. When comparing spatially
between the coastal and basin areas, a clear pattern indicating similar
changes was not observed. As it was explained, such results were
not possible if the analysis was limited to investigate the interaction
of the variables in the entire testing period. Therefore, in order to
better understand the outcome of the drought forecasting model, it is
important to analyse the results for a shorter duration. Such an analysis
could help to understand how the effect of variables affects the model
results at different time frames and understand the temporal trends.
Future studies should look towards using an explainable algorithm to
not only examine the model outcomes but also for feature selection,
thus enabling more transparency in the use of neural networks for
drought forecasting.

6. Conclusions

Droughts are one of the most complex natural hazards owing to
a variety of factors, including climatological and climatic variables.
However, one characteristic of droughts which makes it different from
other hazards is the longer timeframe it takes to have a significant
impact on socio-economic aspects. This gives researchers time to focus
on forecasting aspects, which would help in understanding the differ-
ent phases of drought. Here, we focus on forecasting meteorological
drought (SPI-12) for four different regions in NSW of Australia, at a lead
time of 3 months. The choice of the index was based on two reasons; (i)
Literature suggested that SPI-12 was a good indicator for droughts in
NSW (Dikshit & Pradhan, 2021a); and (ii) SPI at longer time scales can
be better forecasted due to smoother values compared to SPI at shorter
time scales (Anshuka et al., 2019). Although the research on drought
forecasting has seen the use of several data-driven models resulting
in high forecasting accuracy, the interpretability of the models is yet
to be conducted. Therefore, the primary objective of the article was
to examine the relationships between drought affecting variables and
forecasting results. Also, we analysed the interrelationships between
variables and how it affects the forecasting. The study uses a deep
learning approach, namely, Long Short Term Memory (LSTM) model
to forecast SPI-12 and SHAP to interpret the model. The input data
was collected from SILO and divided into two parts, training (1901–
2000), and testing (2001–2018). The findings from the study can be
summarized as:
1. LSTM can be used as a useful architecture to forecast droughts, which
leads to 𝑅2 value of more than 0.9.
2. The use of SHAP helps understand how climatic indices affect the
model results. The summary plot depicts the most important variables,
which were rainfall and Niño4. The SHAP dependent plots demon-

strated how the inclusion of climatic variables improved the forecasting

10
results. The results indicated that for a monthly rainfall of less than
100 mm, it improved the forecasting results.
3. Although, the dependent plots provide a relative understanding of
the variable impact, breaking it into different temporal ranges leads to
a more clear understanding of how the variables effect various time
periods.

The use of Deep Explainer in SHAP algorithm is still in its infancy.
The present work suggests that it could prove to be useful to understand
the relationships among the variables, in drought forecasting. Future
works would look towards the use of SHAP for long lead time drought
forecasting and improving the algorithm to handle the raster datasets,
which would help examine the spatial variation of the variables.

CRediT authorship contribution statement

Abhirup Dikshit: Conceptualization, Methodology, Modelling,
riting - original draft. Biswajeet Pradhan: Conceptualization, Super-

vision, Validation, Visualization, Writing - review & editing, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The authors are thankful to the Scientific Information for Land
Owners (SILO) for providing the rainfall data. We also thank Sahar
Soleimanimatin, UTS for her analytical insights on interpreting the
SHapley results. The study was supported by the Centre for Advanced
Modelling and Geospatial Information Systems (CAMGIS), Faculty of
Engineering & IT, University of Technology Sydney. A.D. was supported
by the IRTP scholarship funded by the Department of Education and
Training, Govt. of Australia.

References

Abbot, J., & Marohasy, J. (2014). Input selection and optimisation for monthly rainfall
forecasting in Queensland, Australia, using artificial neural networks. Atmospheric
Research, 138, 166–178.

ghaKouchak, A., Farahmand, A., Melton, F. S., et al. (2015). Remote sensing of
drought: progress, challenges and opportunities. Reviews of Geophysics, 53, 452–480.

nshuka, A., van Ogtrop, F. F., & Willem Vervoort, R. (2019). Drought forecasting
through statistical models using standardised precipitation index: A systematic
review and meta-regression analysis. Natural Hazards, 97, 955–977.

elayneh, A., Adamowski, J., Khalil, B., & Ozga-Zielinski, B. (2014). Long-term SPI
drought forecasting in the Awash River Basin in Ethiopia using wavelet neural
network and wavelet support vector regression models. Journal of Hydrology, 508,
418–429.

http://refhub.elsevier.com/S2666-8270(21)00096-7/sb1
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb1
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb1
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb1
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb1
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb2
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb2
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb2
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb3
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb3
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb3
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb3
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb3
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb4
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb4
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb4
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb4
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb4
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb4
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb4


A. Dikshit and B. Pradhan Machine Learning with Applications 6 (2021) 100192

C

D

D

D

D

D

D

D

N

N

N

O

Ö

P

P

R

R

R

S

S

S

U

V

V

V

V

V

W

Y

Y

Cai, W., Purich, A., Cowan, T., van Rensch, P., & Weller, E. (2014). Did climate change-
induced rainfall trends contribute to the Australian millennium drought. Journal of
Climate, 27, 3145–3168.

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute
error (MAE)? Arguments against avoiding RMSE in the literature. Geoscientific Model
Development, 7, 1247–1250.

hristoph, M. (2019). Interpretable machine learning. A guide for making black box
models explainable. https://christophm.github.io/interpretable-ml-book/.

eo, R. C., & Şahin, M. (2015). Application of the artificial neural network model
for prediction of monthly standardized precipitation and evapotranspiration index
using hydrometeorological parameters and climate indices in eastern Australia.
Atmospheric Research, 161–162, 65–81.

eo, R. C., Kisi, K., & Singh, V. P. (2017). Drought forecasting in eastern Australia
using multivariate adaptive regression spline, least square support vector machine
and M5Tree model. Atmospheric Research, 184, 149–175.

ey, R., Lewis, S. C., Arblaster, J. M., & Abram, N. J. (2019). A review of past
and projected changes in australia’s rainfall. WIREs Climate Change, 10, e577.
http://dx.doi.org/10.1002/wcc.577.

ikshit, A., & Pradhan, B. (2021a). Agricultural drought variation under different
climatic datasets for New South Wales, Australia. In 43rd COSPAR scientific
assembly: Vol. 43, (p. 113).

ikshit, A., & Pradhan, B. (2021b). Interpretable and explainable AI (XAI) model for
spatial drought prediction. Science of the Total Environment, 801, Article 149797.

ikshit, A., Pradhan, B., & Alamri, A. M. (2020a). Pathways and challenges of the
application of artificial intelligence to geohazards modelling. Gondwana Research,
http://dx.doi.org/10.1016/j.gr.2020.08.007.

ikshit, A., Pradhan, B., & Alamri, A. M. (2020b). Short-term spatio-temporal drought
forecasting using random forests model at New South Wales, australia. Applied
Sciences, 10(4254).

Dikshit, A., Pradhan, B., & Alamri, A. M. (2020c). Temporal hydrological drought index
forecasting for New South Wales, Australia using machine learning approaches.
Atmosphere, 11, 585.

Dikshit, A., Pradhan, B., & Alamri, A. M. (2021). Long lead time drought forecasting
using lagged climate variables and a stacked long short-term memory model. Science
of the Total Environment, 755(2), Article 142638.

Dikshit, A., Pradhan, B., & Huete, A. (2021). An improved SPEI drought forecasting ap-
proach using the long short-term memory neural network. Journal of Environmental
Management, 283, Article 111979.

ESRL Earth System Research Laboratory (2020). National Oceanic and Atmospheric
Administration. Available at: https://www.esrl.noaa.gov/. (Accessed 28 January
2020).

Feng, P., Wang, W., Luo, J. J., et al. (2020). Using large-scale climate drivers to forecast
meteorological drought condition in growing season across the Australian wheat
belt. Science of the Total Environment, 724, Article 138162.

Francois, C. (2015). Keras. Github. https://github.com/keras-team/keras.
Ganguli, P., & Reddy, M. J. (2014). Ensemble prediction of regional droughts using

climate inputs and the SVM–copula approach. Hydrological Processes, 28(19),
4989–5009.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning. MIT Press.
Haile, G. G., Tang, Q., Li, W., et al. (2020). Drought: Progress in broadening its

understanding. WIREs Water, 7(2), Article e1407.
Ham, Y., Kim, J., & Luo, J. (2019). Deep learning for multi-year ENSO forecasts. Nature,

573, 568–572.
Han, P., Wang, P. X., Zhang, S. Y., & Zhu, D. H. (2010). Drought forecasting based on

the remote sensing data using ARIMA models. Mathematical and Computer Modelling,
51, 1398–1403.

Hanley, D. E., Bourassa, M. A., O’Brien, J. J., et al. (2003). A quantitative evaluation
of ENSO indices. Journal of Climate, 16, 1249–1258.

Hao, Z., Singh, V. P., & Xia, Y. (2018). Seasonal drought prediction: Advances,
challenges, and future prospects. Reviews of Geophysics, 56, 108–141.

Hao, Z., Yuan, X., Xia, Y., Hao, F., & Singh, V. P. (2017). An overview of drought
monitoring and prediction systems at regional and global scales. Bulletin of the
American Meteorological Society, 98, 1879–1896.

Hayes, M., Svoboda, M., Le Comte, D., et al. (2005). Drought monitoring: new tools for
the 21st century. Routledge: Taylor and Francis.

Hayes, M., Svoboda, M., Wall, N., & Widhalm, M. (2011). The Lincoln declaration on
drought indices: universal meteorological drought index recommended. Bulletin of
American Meteorological Society, 92, 485–488.

Howden, M., Schroeter, S., Crimp, S., & Hanigan, I. (2014). The changing roles of
science in managing Australian droughts: An agricultural perspective. Weather and
Climate Extremes, 3, 80–89.

Huang, B., L’Heureux, M., Lawrimore, J., et al. (2013). Why did large differences
arise in the sea surface temperature datasets across the tropical Pacific during
2012? Journal of Atmospheric and Oceanic Technology, 30, 2944–2953.

Kirono, D. G., Chiew, F. H., & Kent, D. M. (2010). Identification of best predictors
for forecasting seasonal rainfall and runoff in Australia. Hydrological Processes, 24,
1237–1247.
11
Krause, P., Boyle, D., & Bäse, F. (2005). Comparison of different efficiency criteria for
hydrological model assessment. Advances in Geosciences, 5, 89–97.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.
Lloyd-Hughes, B. (2014). The impracticality of a universal drought definition.

Theoretical and Applied Climatology, 117, 607–611.
Lundberg, S. M., & Lee, S. (2017). A unified approach to interpreting model predictions.

In Proceedings of the 31st international conference on neural information processing
systems (pp.4768–4777).

McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency
and duration to time scales. In Proceedings of the 8th conference on applied climatology
(pp. 179–184). CA, USA: Anaheim.

Mishra, A. K., & Desai, V. R. (2006). Drought forecasting using feed-forward recursive
neural network. Ecological Modelling, 198, 127–138.

Mishra, A. K., & Singh, V. P. (2011). Drought modeling–A review. Journal of Hydrology,
403, 157–175.

Morid, S., Smakhtin, V., & Bagherzadeh, K. (2007). Drought forecasting using artificial
neural networks and time series of drought indices. International Journal of
Climatology, 27, 2103–2111.

Morid, S., Smakhtin, V., & Moghaddasi, M. (2006). Comparison of seven meteorological
indices for drought monitoring in Iran. International Journal of Climatology, 26,
971–985.

ash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models
part I—A discussion of principles. Journal of Hydrology, 10, 282–290.

aumann, G., Barbosa, P., Carrao, H., Singleton, A., & Vogt, J. (2012). Monitoring
drought conditions and their uncertainties in Africa using TRMM data. Journal of
Applied Meteorology and Climatology, 51, 1867–1874.

icholls, N., Lavery, B., & Frederiksen, C. (1996). Recent apparent changes in
relationships between the El Niño-Southern Oscillation and Australian rainfall and
temperature. Geophysical Research Letters, 23, 3357–3360.

lah, C. (2015). Understanding lstm networks. http://colah.github.io/posts/2015-08-
Understanding-LSTMs/.

zger, M., Mishra, A. K., & Singh, V. P. (2012). Long lead time drought forecasting
using a wavelet and fuzzy logic combination model: A case study in Texas. Journal
of Hydrometeorology, 13, 284–297.

ower, S., Delage, F. P., Chung, C. T., Ye, H., & Murphy, B. F. (2017). Humans
have already increased the risk of major disruptions to Pacific rainfall. Nature
Communications, 8, 14368.

ozzi, W., Sheffield, J., Stefanski, R., et al. (2013). Towards global drought early
warning capability: Expanding international cooperation for the development of a
framework for global drought monitoring and forecasting. Bulletin of the American
Meteorological Society, 94(6), 776–785.

eichstein, M., Camps-Valls, G., Stevens, B., et al. (2019). Deep learning and process
understanding for data-driven Earth system science. Nature, 566, 195–204.

ibeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you? In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 1135–1144). New York: ACM.

isbey, J. S., Pook, M. J., McIntosh, P. C., et al. (2009). On the remote drivers of
rainfall variability in Australia. Monthly Weather Review, 137(10), 3233–3253.

hapley, L. S. (1953). A value for N-person games. Contributions to the theory of games.
In Tucker A. W. Kuhn HW (Ed.), Annals of mathematical studies (pp. 307–317).
Princeton: Princeton University Press.

lette, I. J., et al. (2019). How ecologists define drought, and why we should do better.
Global Change Biology, 25, 3193–3200.

tahl, K., & Demuth, S. (1999). Methods for regional classification of streamflow drought
series: Cluster analysis: Technical Rep 1, ARIDE.

mmenhofer, C. C., England, M. H., McIntosh, P. C., et al. (2009). What causes
southeast australia’s worst droughts?. Geophysical Research Letters, 46(4), 1–5.

an Dijk, A. I. J. M., Beck, H. E., Crosbie, R. S., et al. (2013). The millennium drought
in Southeast Australia (2001–2009): Natural and human causes and implications
for water resources, ecosystems, economy, and society. Water Resources Research,
49(2), 1040–1057.

an Loon, A. F., Glesson, T., Clark, J., et al. (2016). Drought in the anthropocene.
Nature Geoscience, 9, 89–91.

asiliades, L., Loukas, A., & Liberis, N. (2011). A water balance derived drought index
for Pinios River Basin, Greece. Water Resources Management, 25, 1087–1101.

erdon-Kidd, D. C., & Kiem, A. S. (2009). Nature and causes of protracted droughts
in southeast Australia: Comparison between the Federation, WWII, and Big Dry
droughts. Geophysical Research Letters, 36(22).

icente-Serrano, S. M., Quiring, S. M., Peña Gallardo, M., et al. (2020). A review
of environmental droughts: Increased risk under global warming? Earth Science
Reviews, 201, Article 102953.

oli, P., Jones, J., Ingram, K., & Paz, J. (2013). Forecasting drought using the
agricultural reference index for drought (ARID): A case study. Weather Forecast,
28, 427–443.

evjevich, V. M. (1967). Objective approach to definitions and investigations of
continental hydrologic droughts. Hydrology Papers, (23).

ihdego, Y., Vaheddoost, B., & Al-Weshah, R. A. (2019). Drought indices and indicators
revisited. Arabian Journal of Geosciences, 12, 69. http://dx.doi.org/10.1007/s12517-
019-4237-z.

http://refhub.elsevier.com/S2666-8270(21)00096-7/sb5
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb5
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb5
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb5
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb5
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb6
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb6
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb6
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb6
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb6
https://christophm.github.io/interpretable-ml-book/
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb8
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb8
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb8
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb8
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb8
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb8
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb8
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb9
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb9
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb9
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb9
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb9
http://dx.doi.org/10.1002/wcc.577
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb11
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb11
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb11
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb11
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb11
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb12
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb12
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb12
http://dx.doi.org/10.1016/j.gr.2020.08.007
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb14
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb14
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb14
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb14
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb14
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb15
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb15
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb15
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb15
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb15
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb16
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb16
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb16
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb16
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb16
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb17
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb17
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb17
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb17
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb17
https://www.esrl.noaa.gov/
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb19
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb19
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb19
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb19
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb19
https://github.com/keras-team/keras
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb21
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb21
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb21
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb21
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb21
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb22
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb23
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb23
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb23
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb24
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb24
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb24
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb25
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb25
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb25
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb25
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb25
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb26
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb26
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb26
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb27
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb27
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb27
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb28
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb28
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb28
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb28
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb28
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb29
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb29
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb29
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb30
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb30
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb30
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb30
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb30
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb31
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb31
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb31
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb31
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb31
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb32
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb32
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb32
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb32
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb32
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb33
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb33
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb33
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb33
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb33
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb34
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb34
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb34
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb35
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb36
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb36
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb36
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb38
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb38
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb38
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb38
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb38
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb39
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb39
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb39
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb40
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb40
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb40
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb41
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb41
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb41
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb41
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb41
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb42
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb42
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb42
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb42
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb42
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb43
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb43
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb43
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb44
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb44
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb44
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb44
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb44
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb45
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb45
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb45
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb45
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb45
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb47
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb47
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb47
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb47
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb47
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb48
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb48
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb48
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb48
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb48
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb49
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb49
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb49
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb49
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb49
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb49
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb49
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb50
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb50
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb50
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb51
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb51
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb51
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb51
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb51
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb52
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb52
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb52
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb53
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb53
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb53
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb53
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb53
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb54
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb54
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb54
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb55
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb55
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb55
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb56
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb56
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb56
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb57
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb57
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb57
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb57
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb57
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb57
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb57
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb58
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb58
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb58
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb59
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb59
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb59
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb60
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb60
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb60
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb60
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb60
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb61
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb61
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb61
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb61
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb61
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb62
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb62
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb62
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb62
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb62
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb63
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb63
http://refhub.elsevier.com/S2666-8270(21)00096-7/sb63
http://dx.doi.org/10.1007/s12517-019-4237-z
http://dx.doi.org/10.1007/s12517-019-4237-z
http://dx.doi.org/10.1007/s12517-019-4237-z

	Explainable AI in drought forecasting
	Introduction
	Study area
	Standard precipitation index

	Models
	Basics of LSTM architecture
	SHAP methodology

	Results
	Summary plot
	Dependence plot
	Temporal based dependent plots


	Discussions
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


