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Abstract

Inferring the intended actions of road-sharing users with autonomous ground ve-

hicles in particularly vulnerable ones like cyclists is considered one of the tough tasks

facing the wide-spread deployment of autonomous ground vehicles. One of the main

reasons for that is the scarcity of the available datasets for that task due to the diffi-

culty in obtaining those datasets in real environments. In this work, we first propose

a pipeline that can synthetically produce 3D LiDAR data of cyclists hand-signalling

a set of intended actions that are commonly done in real environments. Given the

synthetically-produced labelled 3D LiDAR data sequences, we trained a framework

that can simultaneously detect, track and give predictions about the intended actions of

multi-cyclists in the scene on time. The proposed framework was evaluated using both

synthetic and real data from a physical 3D LiDAR sensor. Our proposed framework

has scored competitive and robust results in both synthetic and real environments with

88% in F1 measure with higher frame per second rate (12.9 FPS) than the 3D LiDAR

sensor frame rate (10 Hz).
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1. Introduction

Recently, autonomous ground vehicles (AGVs) have made great strides in many

applications, ranging from self-driving taxis to last mile delivery vehicles [1]. Since

these vehicles will be interacting and/or dealing with humans on a daily-basis, it has

become a necessity for them to have the capability of understanding and predicting the5

humans’ behaviours and intentions specially the vulnerable ones such as pedestrians

and cyclists. One example of such behaviours that are commonly happening in traffic

environments is when pedestrians are walking on a curbside and want to cross the road,

usually they make eye-contact and/or head movement just to make sure the drivers in

oncoming vehicles acknowledge their intentions. Another example is when cyclists are10

intending to make a left/right turn in front of a vehicle, they often rely on hand signals

to notify the driver behind them of their intentions. Such simple hand and body ges-

tures are easily comprehended by most motorists but AGVs on the other hand are still

facing some challenges with them [2, 3, 4]. As a result, in the literature the problem

of understanding and predicting vulnerable road users (VRUs) (e.g pedestrians and cy-15

clists) intentions in the context of AGVs has got some momentum over the past few

years. Given the fact that the VRUs intention is a latent variable that can not be easily

observed, in the literature different VRUs attributes were explored as a proxy to their

intention. For example, the gait/postures of pedestrians as well as their past trajecto-

ries were utilised for pedestrians intent prediction [5, 6]. Whereas for cyclists, their20

hand signals were shown to have a strong correlation with their intentions [7]. That

being said, the majority of the work however that have been done on the VRUs intent

prediction problem was focused mainly on the pedestrians [8, 9, 10, 11]. One of the

main reasons for that is due to the relatively larger number of available public datasets

of pedestrians when compared to cyclists. One promising solution for this problem of25

scarce datasets is the utilisation of high-fidelity simulation frameworks [12, 13]. Using

such simulators in conjunction with deep representation learning-based approaches,

was shown to be effective and can be generalised to real scenarios in many tasks such

as: autonomous driving [14], scene parsing [15] and semantic segmentation [16].

Given that, in this work we will adopt a similar approach for the cyclist intent pre-30
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diction problem. More specifically, we will be relying on the hand-signalling that is

frequently carried out by cyclists on the road in order to predict their intended actions.

In order to overcome the scarcity of data for cyclists, we propose a novel pipeline

that generates synthetic 3D LiDAR scans of cyclists in different traffic environments

carrying out different realistic behaviours. Using the generated dataset, a novel frame-35

work is proposed to simultaneously detect, track and predict the intentions of cyclists

in both the generated simulated scenes and real physical scenes. As part of the pro-

posed framework, one of state-of-the-art deep learning-based models for point cloud

data processing will be adopted. The main benefit of using a deep-learning based ap-

proach over other traditional geometry-based approaches, is to overcome the challenge40

of hand-crafting features from the point cloud data which is both a time-consuming task

and do not scale well to different scenarios. The rationale behind generating synthetic

3D LiDAR scans rather than synthetic RGB is two folds:

• the robustness of the 3D LiDAR sensors that exists in most of the current AGVs

that can detect up to 200 meters with 360 degree field of view independently of45

light conditions and severe weather conditions unlike visual/IR cameras.

• the similarity between the generated point cloud scans from simulated 3D Li-

DARs and real 3D LiDAR sensors which is not greatly effected by the domain-

shift problem [17] that is quite prevalent between real and simulated RGB cam-

eras.50

This work extends and builds up on our preliminary results published in [18]. The

contribution of this work in comparison to our early work can be summarised as fol-

lows:

• Taking into consideration the case of multi-cyclists in the scene by proposing an

integrated fast 3D cyclist tracking model.55

• Extensive analysis of the performance of the proposed 3D cyclist tracking model

in comparison to other baseline approaches from the literature.

• Evaluating the proposed framework that was trained entirely using synthetic
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point cloud data only on real point cloud data collected from realistic traffic

environment using a physical 3D LiDAR sensor.60

The rest of the paper is organised as follows. An overview of the related work from

the literature will be briefly discussed in Section 2. In Section 3, the proposed approach

and methodology will be covered. The experimental results and the performance of the

proposed approach will be provided in Section 4. Section 5, concludes our paper.

2. Related Work65

In the literature, the intent prediction problem of VRUs is commonly formulated

as a trajectory prediction problem [9, 19, 20]. Since most of these works were mainly

focused on pedestrians, thus the few work that has been done on the cyclist intent pre-

diction problem was following the same paradigm. Most recently, Meijer et al. [21],

proposed an approach for the cyclist intent prediction problem based on the kinemat-70

ics of the bicycle itself. They fitted a bicycle with a number of inertial measurement

units (IMU) to calculate its kinematics when a cyclist was riding it during manoeu-

vring in a controlled traffic environment. The signals they were relying on for their

kinematics-based cyclist intent prediction model were as follows: steering angle, roll

angle, velocity, wheel speed, peddling frequency and acceleration. With the help of75

these signals, they feed it to a graphical hidden Markov model to predict the probabil-

ity of a cyclist will continue cycling in straight path or will take a left/right turn. Given

the invasive nature of their approach, their proposed model would be challenged when

tested in real traffic scenarios as it would be hard to acquire the aforementioned signals

of the bicycle dynamics. Similarly, another trajectory prediction approach for cyclists80

was introduced in [22]. In their model, they relied on non-invasive vehicle-based sen-

sors such as stereo camera unlike [21]. They observe the past trajectory of a cyclist

over a window of time, then using a motion-dynamics-based model, they predict the

intended trajectory direction of the cyclist. Two motion dynamics were proposed in

their approach based on Kalman filter (KF). The first model was a typical constant85

velocity linear KF model. Whereas, the other model was a mixture of switching KF
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models. They were switching between five different motion models based on a priori

regarding the trajectory direction of the cyclist.

In another related work, Benedek et al. [23], introduced an action recognition model

for pedestrians’ action prediction from a 3D LiDAR sensor for surveillance applica-90

tions. In their model, they relied on set of extracted features from the point cloud

scans coming from the 3D LiDAR sensor to classify two actions; bending and waving.

Then, they feed the extracted features to a simple shallow convolutional neural network

(ConvNet) model that consists of 4 layers. Over the past few years, deep learning has

been making huge strides in a number of perception tasks [24, 25]. More recently,95

deep-learning based approaches have been also achieving promising results in a num-

ber of 3D computer vision tasks in comparison to the pure traditional geometry-based

approaches [26, 27, 28]. One of the main backbone architectures for many deep learn-

ing models for 3D computer vision tasks is the PointNet architecture [26]. PointNet is

one of the earliest architectures that were dealing with raw point cloud data process-100

ing directly without any prior information from other sensor modalities or geometrical

requirements. It learns representations from point cloud data automatically in an end-

to-end fashion on a different levels of abstractions. PointNet has been upgraded to

PointNet++ [28], which has achieved quite resilient results in challenging tasks such

as 3D semantic scene segmentation. This upgrade was to overcome the inability of105

the original PointNet architecture to capture the local structure within the point cloud

data. As a result, this enabled PointNet++ to learn the structure and patterns of the

point cloud data of complex scenes. In the PointNet++ architecture, it relies on the

combined (sampling, grouping and pointnet) layers which is referred to as the ”set ab-

straction” (SA) module. In the sampling layer, it selects the subset of points from the110

input point cloud data which represents centroids of local neighbour regions. Then,

the grouping layer clusters the input point cloud data based on the K-nearest neigh-

bour points. Lastly, the pointnet layer encompasses a multi-layer perceptron (MLP)

network for embedding every single point from the input 3D scan data, followed by

a maximum-pooling layer to extract a universal vector of features from the input 3D115

scan data. Additionally, a set of consecutive SA modules are hierarchically repeated

5



inside PointNet++ on a number of levels that can effectively encode the input point

cloud data. At each SA level, larger local regions of the point cloud are abstracted to

produce lower number of points. The hierarchy of SA levels can be viewed as the fea-

ture pyramid networks that are commonly used with 2D computer vision tasks using120

ConvNets [29]. Finally, interpolation layers are added at the end of the SA modules in

order to decode the down-scaled input 3D scan data to its first input shape. For more

detailed description of the interpolation layers, it can be found in [28]

Another architecture that has been successfully applied in 3D perception tasks is the

VoxelNet architecture which is mainly targeted for the task of 3D object detection. It125

consists of two simultaneous stages; features extraction for object proposals and 3D

bounding box regression which are trained jointly. As the name implies, VoxelNet,

firstly segments the input point cloud into voxel chunks and for each chunk, a set of

discriminative voxel feature encoding (VFE) layers are trained in an end-to-end style.

3. Proposed Method130

In this section we will discuss the details of the proposed method we pursued

to tackle the multi-cyclists intended action prediction task. The first subsection will

be covering the procedure we followed to overcome the scarcity of data available for

the cyclist intent prediction problem. Then, our novel framework for joint detection,

tracking and intent prediction of multi-cyclists from 3D LiDAR sensors’ point cloud135

data in urban traffic environment will be introduced.

3.1. Cyclist Hand Signals Data Generation

The number of available datasets for cyclists’ intent prediction is almost non-existent.

Thus, for overcoming the scarcity of data, we use a data generation pipeline similar

to the ones employed by previous works on posture analysis [30] and VRUs detec-140

tion [31, 32]. This data-generation pipeline was shown to be effective in tackling these

tasks specially when coupled with powerful end-to-end approaches based on deep rep-

resentation learning which provides good generalisation capabilities when tested on

real data in physical environments. The first part of the data generation pipeline starts
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Figure 1: The motion capture (MoCap) stage of our data-generation pipeline.

with the motion capture (MoCap) of real motion behaviours of cyclists hand signalling145

their intended actions. We collected the MoCap data using an XSENS MoCap system

from four volunteer cyclist subjects on a stationary cyclist inside a GYM (as shown in

Figure 1).

We instructed the volunteer subjects to perform a set of three distinctive hand sig-

nals while they are cycling, namely left turn (LTRN), right turn (RTRN) and stopping150

(STOP) while recording their MoCap data (roughly one minute per each signal). Ad-

ditionally, we sampled from the recorded MoCap data, sequences where the cyclist

were not doing any action and we labelled it as an extra signal and we refer to it as the

no-action signal (NACT). The four hand signal actions are shown in Figure 2 (start-

ing from left actions are: LTRN, NACT, STOP and RTRN respectively). As a result,155

we obtained a total of 16 MoCap sequences representing 4 signals for each volunteer

subject.

In the second part of the data generation pipeline, we map the resultant MoCap data

from the first part to animate simulated cyclists inside simulated traffic environments
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Figure 2: The four hand signals we generated using our pipeline. Starting from left actions are: LTRN,

NACT, STOP and RTRN respectively.

Table 1

Distribution (mean±std) of the anthropometric measures of the animated virtual cyclist models used in

generating the multi-cyclist synthetic point cloud data.

3D Cyclist Models Height Weight Body Mass Index (BMI) Body Surface Area (BSA)

Females 158.98±6.73 50.29±9.8 19.81±3.19 1.47±0.15

Males 173.06±7.16 70.9±13.09 23.58±3.59 1.81±0.18

designed using the sensor simulator toolbox, Blensor [12]. Blensor is an add-on to160

the open source 3D computer graphics software, Blender. Inside Blensor a number of

simulated 3D LiDAR sensors are modelled such as the Velodyne HDL-64E/32E mod-

els. For the virtual animated cyclist models, we made sure that we take into account

the different anthropometric measures of cyclists to emulate the real different body

shapes of cyclists in real traffic environments. In table 1, we show the diverse set of165

anthropometric measures we utilised in our data generation pipeline.

In order to generate point cloud data of the cyclists hand signals, we rendered the

photo-realistic simulated environment using a simulated 3D LiDAR sensor (Velodyne

with 64 laser channels). The cyclists were captured using the simulated Velodyne sen-
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Figure 3: Pipeline for synthetic point cloud data generation. Virtual cyclists are placed in simulated traf-

fic scenes and animated using MoCap data. The scene is then rendered using simulated 3D range sensor

(Velodyne HDL-64E)

sor on a variable distance ranging from 5 to 20 meters. Additionally, the scenes cov-170

ered four different blocks within a simulated urban traffic city with moderate traffic as

shown in Figure 3. The complexity of the scenarios in the generated dataset simulated

the ones involving cyclist instances in the KITTI dataset [33]. The following is some

statistics to reflect the complexity of the simulated four-blocks city. The total num-

ber of vehicles in each block were around 100 vehicles, the number of buildings were175

around 45 buildings and the number of cyclists were at least 8 cyclists per each scene.

3.2. Multi-Cyclist Tracking

Since the hand signals of cyclists commonly take no less than a second, thus the ne-

cessity to observe and track the cyclists over this window of time to predict their inten-

tions is inevitable. Motivated by the ’tracking-by-detection’ paradigm that has achieved180

state-of-the-art results for many 2D multi-object tracking (MOT) benchmarks. This
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Cyclist 3D Instance Segmentation

DBSCAN Clustering
Tracked Cyclists

Sequences

Multi-Cyclist 3D Tracking Stage

Cyclist Intent Prediction Stage

Voxel Feature EncodingLSTM

Input Point Cloud 
Sequence

3D Kalman+Hungarian

LTRN 81%

NACT 10%

STOP 5% 

RTRN 4%

Prediction Scores

Figure 4: Our framework for the multi-cyclists intended action prediction task. The input to the framework

is a short sequence of 3D laser scan data. The framework in returns, track all 3D detected bounding boxes of

cyclists in the scene. Then, for each tracked cyclists a classification score probability is provided based on

four intended action classes (namely LTRN, NACT, STOP and RTRN).

paradigm has recently been also extended for 3D MOT [34] and it continued to provide

competitive results. Given that, we will utilise a modified version of the AB3DMOT

baseline [34] which was ranked the second place in the KITTI MOT benchmark leader-

board. The advantage of AB3DMOT baseline in our case is that it provides resilient185

performance with super fast real-time performance of more than 200 FPS on CPU.

Similar to the ’tracking-by-detection’ paradigm in 2D MOT, the AB3DMOT baseline

also relies on prior 3D bounding boxes of objects of interest in LiDAR point cloud data.

Then using a simple state estimation via 3D Kalman filter and data association via a

Hungarian algorithm [35], it can achieve resilient real-time results on tough 3D MOT190

benchmarks like KITTI. This will be the first stage (multi-cyclist 3D tracking stage as

shown in Figure 4) of our proposed framework for the multi-cyclists intent prediction

problem.
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3D Detection using PointNet++ and Clustering

In the original AB3DMOT baseline, they relied on the PointRCNN model [36] for195

the 3D bounding boxes detections of objects in 3D LiDAR point cloud data. The real

time performance of the PointRCNN model was reported to be a GPU-hungry specially

during the inference phase with 0.2 second. Because the whole multi-cyclist tracking

stage is just a subset of our approach for the multi-cyclists intent prediction problem,

thus we can not afford the expensive computational requirements for the PointRCNN200

model. As a result, we are proposing a different approach for obtaining the 3D bound-

ing boxes of the cyclists. Our approach is based on the PointNet architecture. Given an

input point cloud data of cyclist instances, we train an improved version of the PointNet

architecture called, PointNet++ [28] (which was described in Section 2) for per-point

cyclist instance segmentation. The output of our PointNet++ model is a binary class la-205

bels prediction (cyclist or background) per each single point in the input 3D scan data.

Subsequently, we extract all the points that corresponds to the cyclist class and we fur-

ther cluster them into unique groups using the DBSCAN clustering algorithm [37] in

order to discard any false-positive predicted cyclist instances. The rationale behind us-

ing DBSCAN over other classic clustering algorithms such as k-means, is the fact that210

DBSCAN does not require the assumed known number of clusters beforehand as it is

the case with K-means. In our use-case scenarios, there could be an unknown number

of cyclists in the traffic scene, so using K-means in our case would not be a viable so-

lution. Additionally, other classic clustering techniques such as K-means cannot solve

the clustering of irregular/arbitrary shapes such as point cloud of cyclists. So, density-215

based DBSCAN was developed to systematically solve this problem as it was shown

in prior LiDAR point cloud data processing works in the literature [38, 39, 40].

The minimum number of points for the DBSCAN was set to 10 points within a radius

value (ε) of 0.4. Based on the clustered cyclist points, we fit a 3D oriented bounding

box (bbox) for each clustered groups in order to get the 3D bboxes of all cyclists in the220

input 3D scan data. The fitting procedure for the oriented bbox was based on the tech-

nique introduced in [41], which computes a covariance matrix for each clustered point

set and then find the eigenvectors of their covariance matrices. Finally, each detected
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cyclist 3D bbox is defined using the tuple (x,y,z, l,w,h,θ ) to represent the location co-

ordinates for the 3D bbox, length, height and rotation angle of 3D box around y-axis225

respectively.

Estimation using 3D Kalman Filter

Similar to the AB3DMOT baseline, we rely on a linear constant-velocity Kalman

filter that estimates the next-frame state of each detected 3D bbox of cyclists in the 3D

world. The state x of each cyclist object is parametrised using the following:230

x = [x,y,z,θ , l,w,h, ẋ, ẏ, ż]T (1)

where ẋ, ẏ, ż are the linear velocity of the cyclist in the 3D space. Given all the observed

3D bboxes from the previous frame at time Tt−1, the state of each i 3D bbox T i
pred is

predicted in the next frame. In order to associate the observed 3D bboxes to the pre-

dicted 3D bboxes, a data-association technique based on the Hungarian algorithm [35]

is utilised. For each pair from the observed and the predicted 3D bboxes, an 3D inter-235

section over union (IoU) is calculated to check if they are matched or not. As a result,

we get unique IDs for each cyclist in the input cloud data over time.

3.3. Cyclist Intent Prediction Model

Given a sequence of tracked cyclists in the scene over a period of time tobs from the

multi-cyclist tracking stage, we subsequently feed them to our cyclist intent prediction240

model (as shown in Figure 4). The spatio-temporal nature of the problem is a crucial

property that needs to be considered in the proposed model. The spatio-temporal in-

formation is represented by the set of tracked points for each cyclist over a period of

time. The spatial information (that is not uniform in terms of number of points across

the observed time tobs due to the change in the distance to object) needs to be encoded245

in a way that can preserve the unique geometrical shape of the different cyclists’ hand

signals so that it could be easily predicted. Additionally, the temporal dependency be-

tween consecutive frames of the performed hand signal need to be exploited so that

hand signals such as LTRN and STOP do not get confused with each others. To this

end, we are proposing the Voxel-LSTM model for the multi-cyclists intended action250
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prediction problem. The Voxel-LSTM model consists of two main components; the

voxel feature encoding (VFE) layers and the LSTM layers. VFE was firstly introduced

in the VoxelNet model for 3D object detection [27]. VFE can automatically differenti-

ate shape-like information from input point cloud data of cyclists. Moreover, the VFE

layer acts as an encoder of the shape area in the input voxels of cyclists. It performs255

a per-point aggregation operation over the extracted features via a fully connected net-

work (FCN). On the other hand, the LSTM layer is one variant of the recurrent neural

networks (RNN) which models the temporal dependency in the dynamics of the per-

formed hand signals by the cyclists. More formally, using V which is the input voxel,

our proposed model starts to sample an N fixed number of points from it. The reason260

for that is to eliminate probable problems such as imbalanced density of the voxels

as well as minimising the complexity. Afterwards, each voxel is augmented with an

offset distance from the centroid of its neighbour cyclist voxel. As a result, voxel V

is transformed into Vf = {pi = [xi, yi, zi, xi− x, yi− y, zi− z ]T ∈ R6}N
i=1. Where

x,y,z represents the 3D coordinates of i-th point within the voxel, and x,y,z are the265

local centroid coordinates. Then, for each pi pointwise features fi ∈ Rk are extracted

via FCN. Each FCN consists of three consecutive layers (namely a fully connected

layer (FC), a batch normalisation layer (BN) and a rectified linear unit (ReLU) acti-

vation layer. Then, using a 1D max-pooling operation, the set of features output from

the preceding FCN operation are aggregated locally throughout each fi. Each fi are270

then concatenated with their corresponding local aggregated features. Next, in order

to model the temporal dependency between consecutive voxel features of each cyclist

a set of stacked LSTM layers are utilised. Lastly, the Voxel-LSTM model is ended

with an FC layer with four hidden units that corresponds to the four predicted intended

actions.275

4. Experimental Results

We will firstly describe the process we adopted for training the two stages of our

unified framework. Afterwards, we will analyse and evaluate the performance of our

framework against both the synthetically generated point cloud data and real collected
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point cloud data.280

4.1. Training PointNet++ for the Multi-Cyclist Tracking Stage

In our multi-cyclists tracking stage, it is following the tracking by detection paradigm

as described in Section 3.2, where we will be relying mainly on 3D detections from a

combination of trained PointNet++ model and the DBSCAN clustering. In order to

train our PointNet++ model, we generated 10K labelled 360◦ point cloud scans of ur-285

ban traffic scenes with cyclists instances according to the procedure discussed in Sec-

tion 3.1. As a pre-processing step for the point cloud data before training, we crop the

generated point cloud data into fixed-size cropped boxes from the full generated point

cloud scan. The size of the crops is +/-30 meters (front/behind the 3D LiDAR) by +/-10

meters (right/left to the 3D LiDAR). The reason for this pre-processing step is because290

in typical real traffic scenarios, we would only be interested in the actions of the cy-

clists who are within this range as recommended by the designers of collision warn-

ing/avoidance systems [42]. Additionally, we augmented the generated synthetic point

cloud scan with random voxel down-sampling, Gaussian noise, rotation and translation.

The augmentation is required to help in both introducing some of the artefacts exists295

in real point cloud scans and increasing the dataset size which in returns improves the

generalisation capabilities of the trained model. In our cyclist instance segmentation

PointNet++ model, we used 4 layers of SA modules with 4 corresponding interpola-

tion layers to up-sample the down-sampled points after the SA modules. Our model

was trained on a Nvidia Titan X GPU for 500 epochs with the Adam algorithm as our300

optimiser. We used a learning rate of 0.001 and a batch size of 16 samples.

4.2. Training the Cyclist Intent Prediction Stage

This Voxel-LSTM stage predicts the most probable action that a segmented and

tracked cyclist instance will perform. It consists of two main modules: a feature learn-

ing module and a temporal dynamics module. The feature learning model encompasses305

2 VFE layers; VFE-1(6, 32) and VFE-2(32, 128). This model encodes randomly sam-

pled N = 150 points from the cyclist voxel in a dense representation of 128 features.

The reason for this specific number of points was because we found that 150 points
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is the minimum possible number of points for cyclists within the range of (5-20) me-

ters (as it was outlined in Section 3.1). The temporal analysis module consists of two310

stacked LSTM layers with 100 hidden units each. It takes as input a sequence of T = 20

cyclist voxel features and passes the activations to the final FC layer of 4 classes to pre-

dict the intended action.

We trained our Voxel-LSTM model on synthetic point clouds generated using the

pipeline presented in Section 3.1. This pipeline generates point-wise labelled point315

clouds. The dataset contains a total of 3416 actions balanced between the four intended

actions classes. The duration for each intended action was capped to 25 consecutive

synthetic 3D laser scans. The intended actions were captured in four different sim-

ulated environments from 16 virtual cyclist models animated using MoCap data cap-

tured from four real volunteer subjects. We used the data of three subjects during the320

training phase and one subject for validation. We further augmented the training data

with translation, rotation and scale transformations to mitigate the effect of overfitting.

Then, we randomly sampled 10 sequences of length T = 20 consecutive scans from

the total 25 scans per each generated intended action sequence to construct the training

dataset. Another pre-processing step was done on the generated dataset to make sure325

that each cyclist voxel is no less than 75 points because otherwise it will not capture

any meaningful intended action. As a result, we obtained a total training split data of

80K sequences and a validation split of 1600 sequences. The Voxel-LSTM model was

trained for 100 epochs using the Adam optimiser. The hyper-parameters were: an ini-

tial learning rate of 0.001, batch size of 16 sequences and weight decay of 0.0005. The330

training was done on a Nvidia Titan X GPU. The loss function was the cross entropy

loss as the objective function for our training.

4.3. Performance of Intent Action Prediction Framework

In order to quantify the performance of our proposed framework for the cyclists

intent prediction problem, we will be using three of the evaluation metrics that are

commonly utilised for classification problems. These metrics are precision, recall and

F1 measures [44] which are calculated as follow:

Precision =
T P

T P+FP
(2)
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Table 2: Performance evaluation of our proposed framework for multi-cyclists intended action prediction in

comparison to two baseline approaches. The Synthetic column represents the testing split of our generated

dataset. Whereas the Real column represents the collected point cloud data using a physical Velodyne VLP-

32C sensor. Higher is better.

Approach Synthetic Real

Precision Recall F1-Measure Precision Recall F1-Measure

FPFH-RF 0.37 0.35 0.32 0.18 0.25 0.15

3D-CNN [43] 0.87 0.84 0.84 0.78 0.74 0.73

Voxel-MLP (ours) 0.94 0.93 0.93 0.80 0.78 0.79

Voxel-LSTM (ours) 0.99 0.99 0.99 0.89 0.88 0.88

Recall =
T P

T P+FN
(3)

F1−Measure = 2∗ Precision ·Recall
Precision+Recall

(4)

where T P is the true positive counts, FP is the false positive counts and FN is the

false negative counts. Since our model was trained entirely on synthetic point cloud335

data, we will firstly evaluate its performance on the testing split of our synthetic point

cloud data generated in Section 3.1. In Table 2, we report the results of the afore-

mentioned three evaluation metrics on the testing split (synthetic part). Moreover, we

compare our approach against three different baseline approaches. The first approach

is an adapted implementation of the approach proposed in [45, 46]. This approach re-340

lies on hand-crafting set of features based on the fast point feature histograms (FPFH)

descriptor [47] from the input sequence point cloud data. Given the extracted features,

we pass them to a random forest (RF) classifier ensemble [48] and we refer to this

approach as ”FPFH-RF”. The hyper-parameters we used in our experiments for the

FPFH are 0.25 for the radius and 50 for the number of the nearest-neighbours points345

of its KDTree search algorithm. In the RF classifier, the number of trees in the forest

was set to 200. The second baseline we are comparing against is another deep-learning

based approach that was firstly introduced in [43] for hand gestures recognition from
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(a) 3D-CNN (Synthetic) (b) 3D-CNN (Real)

(c) Voxel-MLP (Synthetic) (d) Voxel-MLP (Real)

(e) Voxel-LSTM (Synthetic) (f) Voxel-LSTM (Real)

Figure 5: Normalised confusion matrix of proposed Voxel-LSTM model both 3D-CNN and Voxel-MLP

models over both the generated synthetic dataset and real point cloud data captured using a physical Velodyne

VLP-32C sensor. The first column figures (a, c, e) corresponds to the synthetic data, while the second column

figures (b, d, f) corresponds to the real point cloud data.
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point cloud data. This approach was relying on 3D convolutional neural network that

takes a sequence of point cloud data of hand-gestures as a sequence of 3D occupancy350

grids of size (24×24×24). We refer to this approach as ”3D-CNN” and we used the

same architecture of the model as in [43], which consists of four 3D convolutional lay-

ers interleaved with two 3D max pooling layers, two fully connected layers and one

output dense layer. The third baseline approach we compared it against our proposed

framework is quite similar to our proposed Voxel-LSTM model but we replaced the355

last two LSTM layers with a multi-layer perceptron model (MLP). We refer to this ap-

proach as ”Voxel-MLP”. In the Voxel-MLP model, we used the same hyper-parameters

for the VFE layers as our Voxel-LSTM model while for the MLP we used two hidden

layers with 256 neurons for each one. Additionally, we used the ReLU as the activation

function for the MLP network. It is worth noting that all the three baseline approaches360

were fed with the same sequence length of of 20 consecutive point cloud scans of

tracked cyclists similar to our Voxel-LSTM model.

As it can be noticed from Table 2, our Voxel-LSTM model achieved the highest

scores over the generated point cloud testing split in precision, recall and F1. The

second best model was the Voxel-MLP model and this shows how effective was the365

choice of LSTM layers which are more capable of capturing the underlying tempo-

ral dependency between the tracked cyclists voxels over time unlike the MLP and the

3D-CNN models. From the table, we can also notice how the effectiveness and expres-

siveness of the automatically extracted features using VFE layers in the Voxel-LSTM

and the Voxel-MLP models helped in boosting their performance over both the tradi-370

tional hand-crafted features such as FPFH and the other automatic ones captured using

3D-CNN. Furthermore, we test and evaluate the generalisation capability of our frame-

work on real point cloud data from a physical Velodyne VLP-32C 3D LiDAR sensor

mounted on a vehicle. We collected a total of 100 sequences of point cloud scans from

4 subjects on a bicycle doing the four different hand signals (roughly 1 minute for each375

signal) described in Section 3.1 while in a low to moderate real urban traffic environ-

ment. The sequences were recorded using the 3D LiDAR sensor while the vehicle was

both stationary and moving with 50 sequences each. For each sequence, at least two

cyclists exist in the scene with intermittent occlusion with other traffic objects (i.e, ve-
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hicles, pedestrians). For each hand signal we manually annotated its starting and end

Figure 6: Sample predictions of our proposed multi-cyclist intent prediction framework on real point cloud

scan from a physical Velodyne VLP-32C 3D LiDAR.

380

time in order to quantitatively assess the performance of our proposed framework. As it

can be noticed from Table 2 (Real part), our proposed framework has continued to pro-

vide a robust prediction on real data (as it can be shown from Figure 6) despite the fact

that it was trained using synthetic point cloud data only. In Figure 5, we further analyse

the performance of the two proposed models (Voxel-MLP and Voxel-LSTM) against385

the other deep-learning based model ”3D-CNN” using confusion matrices over both

the generated synthetic and real point cloud data from the Velodyne VLP-32C 3D Li-

DAR sensor. As it can be noticed from the confusion matrices, the Voxel-LSTM model

continued to show robust results across the four intended actions. The only challenging

intended action was the STOP since it is quite similar to the LTRN since they are both390

involve using the left hand (as it shown in Figure 2). One of the main reason for that,

is because of the powerful learned representations and captured using the underlying

PointNet, VFE and LSTM layers. The other reason is the data-augmentation procedure

we followed which helped in introducing some of the properties exists in real point

cloud data which in returns made our trained model able to generalise to unseen real395

point cloud data. The same also goes for the Voxel-MLP model which was able as well

to provide a quite good generalisation capabilities. On the other hand, the FPFH-RF

model due to its relying on hand-crafted features which can not be generalised to other

unseen real point cloud data, it only achieved an accuracy of 0.25 which is almost a

random guessing.400
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Table 3: Quantitative comparison of the multi-cyclist tracking stage on real collected point cloud data using

a Velodyne VLP-32C sensor.

Method MOTA (%) ↑ MOTP (%) ↑ FPS ↑

AB3DMOT (PointRCNN) [36] 93.33 24.89 4.5

AB3DMOT (ours) 89.90 65.40 13.2

4.4. Effect of Noisy Observations on Multi-Cyclist Tracking

Since our multi-cyclist tracking stage highly relies on the quality of the observa-

tions (which are commonly noisy in real data) from the 3D cyclist detection model.

Thus, from the collected real data, we manually annotated 32 sequences (each is roughly

1 minute long with frame rate of 10 Hz) with 3D bounding boxes of cyclists in order405

to assess the impact of the noisy observations from our 3D cyclist detection model.

Furthermore, we labelled each cyclist in each sequence with unique ID throughout

the sequence. In Table 3, we report a quantitative comparison between our proposed

multi-cyclist tracking stage based on AB3DMOT and the baseline AB3DMOT where

the only difference between them is the underlying 3D cyclists detection model.410

In the baseline AB3DMOT, the 3D detections are based on the PointRCNN model [36],

while ours is based on the approach described in Section 3.2. Similar to [34], we

utilised the 3D multi-object tracking accuracy (MOTA) and 3D multi-object tracking

precision (MOTP) evaluation metrics from the KITTI-3DMOT evaluation tool [34]

for quantifying the performance of the multi-cyclist tracking stage. Additionally, we415

evaluate the run time for our tracking against the baseline AB3DMOT based on the

frame per second (FPS) needed for their computations. As it can be noticed from Ta-

ble 3, our proposed multi-cyclist tracking provided resilient scores in the MOTP metric

without compromising the accuracy score of the MOTA metric. Although the baseline

AB3DMOT achieved a slightly higher MOTA score than our proposed approach, but420

we achieved higher scores in both MOTP and FPS which are considered more crucial

metrics for the type of the problem we are tackling. The reason for that, is because

MOTP is directly correlated to the false positive rate which needs to be kept to the

minimum in safety-critical applications such as AGVs where the decisions need to be
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Table 4: Evaluation of the run-time requirements of our proposed framework with its two stages (track-

ing+prediction) for the multi-cyclists intent prediction in terms of ms/FPS. Lower ms is better while higher

FPS is better.

Method Tracking (ms) Prediction (ms) Total (ms/FPS)

FPFH-RF 75.5 110 185.5/5.3

3D-CNN [43] 75.5 260 335.5/2.9

Voxel-MLP (ours) 75.5 7 82.5/12.12

Voxel-LSTM (ours) 75.5 2 77.5/12.9

inferred in a timely manner (i.e. higher FPS).425

4.5. Runtime Analysis

Given the multi-task nature of our proposed framework for cyclist intent prediction,

we need to evaluate the total run-time requirements which is one of the main factors that

determine the feasibility of deploying it to real AGVs. In Table 4, we report the average

run-time in milliseconds (ms) and FPS for our proposed framework in comparison to430

the aforementioned three baseline models. Our proposed Voxel-LSTM has achieved

the highest score in terms of FPS with an average score of 12.9 FPS while the Voxel-

LSTM comes in the second place while 3D-CNN is the lowest with only 2.9 FPS.

It worth noting that the FPFH-RF was only utilising the CPU while the other three

models, namely Voxel-LSTM, Voxel-MLP and 3D-CNN were utilising the GPU.435

5. Conclusion

In this work, we have introduced a novel framework for fast intent prediction of

multi-cyclists in urban traffic environment from point cloud data. Our framework

jointly detects, tracks and predicts four distinctive intended actions commonly per-

formed by cyclists in urban traffic scenarios. The framework has achieved exceptional440

results in terms of precision, recall and F1 measure and it showed robust results when

tested on real point cloud data from Velodyne VLP-32C 3D LiDAR sensor.
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