
“© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all 
other uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works.”



IEEE Transaction on Reliability 

IEEE TRANSACTION ON RELIABILITY 

1 

  

Abstract—With the wide application of industrial robots in the 

field of precision machining, reliability analysis of positioning 

accuracy has been becoming increasingly more important for 

industrial robots. Since the industrial robot is a complex nonlinear 

system, the traditional approximate reliability methods often 

produce unreliable results in analyzing its positioning accuracy. In 

order to study the reliability of industrial robot positioning 

accuracy more efficiently and accurately, a radial basis function 

network is used to construct the mapping relationship between the 

uncertain parameters and the position coordinates of the end-

effector and analyze the positioning accuracy reliability combined 

with the Monte Carlo simulation method. A novel hybrid learning 

algorithm of training radial basis function network, which 

integrates the clustering learning algorithm with the orthogonal 

least squares learning algorithm, is proposed in this paper. 

Examples are presented to illustrate the high accuracy and high 

efficiency of the proposed method. 

 
Keywords—industrial robot, reliability analysis, radial basis 

function network, positioning accuracy, hybrid learning 

algorithm. 

 

I. INTRODUCTION 

NDUSTRIAL robots are widely used in automobiles, 

electronics, new energy batteries and high-end equipment 

manufacturing to improve the productivity and precision of 

repetitive machining [1]. However, due to the existence of 

uncertain parameters such as joint clearance, axial length 

machining error and installation error, the actual moving 

position of the end-effector of the industrial robot deviates from 

the target position, which is called positioning error. Therefore, 

it is necessary to analyze the reliability of industrial robots 

positioning accuracy considering the influence of uncertain 

parameters. 

The reliability analysis of industrial robot positioning 

accuracy belongs to mechanism reliability analysis. The 

mechanism reliability analysis method is developed from a 

planar and spatial mechanism to spatial multiple degree-of-

freedom robots. In the context of planar mechanism reliability 

analysis, Yan and Guo [2] proposed a kinematics accuracy 

analysis method of the flexible planar mechanism with random 
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variables and proved the influence of joint clearance and 

random link length on mechanism motion through simulation. 

Wang et al. [3] applied a hybrid dimension reduction method to 

compute the mean and variance of the mechanism output error 

which was assumed to be normally distributed. Zhang et al. [4] 

proposed a time-dependent reliability analysis method with 

response surface to estimate the time-dependent reliability for 

nondeterministic structures under stochastic. Yu et al. [5] 

proposed a novel time-variant reliability analysis method for 

multiple failure modes and temporal parameters based on the 

combination of the extreme value moment method and 

improved maximum entropy method. Jha et al. [6] used a 

combination of high-dimensional model representation and 

artificial neural network (ANN) to approximate the implicit 

limit state function to estimate the failure probability of 

structures affected by random parameters. In order to improve 

the accuracy of reliability analysis, Huang et al. [7] used the 

first-order asymptotic integration method for reliability 

analysis. Kim et al. [8] used the first-order reliability method to 

analyze the reliability problem of an open-loop manipulator and 

also assumed that all parameters are normally distributed. Sun 

et al. [9] established a surrogate model based on neural 

networks and proposed a kinematics accuracy analysis method 

for planar mechanisms with clearance involving random and 

cognitive uncertainties. In recent years, the reliability analysis 

of spatial mechanism including spatial multi-degree of freedom 

robots has gained more and more attention of researchers. 

Bhatti and Rao [10] defined the joint probability density 

function to analyze the kinematic reliability of the robot by 

assuming that the position and direction of the end-effector 

obey a joint normal distribution. Then, Rao and Bhatti [11] 

considered the relationship between the tolerance, the 

configuration and the reliability of the manipulator, and 

proposed a probabilistic method to study the kinematics and 

dynamics of the manipulator. Taking a three degree-of-freedom 

parallel robot as an example, Cui et al. [12] analyzed the 

influence of error sensitivity on position parameters and 

structural parameters and calculated the motion reliability of 

some positions and the dynamic accuracy reliability of 

trajectories. Chaker [13] proposed a random method to analyze 
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the influence of manufacturing error and clearance on the pose 

error of spherical parallel robot. Zhu and Ting [14] proposed a 

method based on probability density function to study the 

positional uncertainty of planar and spatial robots affected by 

joint clearance, where the joint clearance can be arbitrary. Wu 

and Rao [15] discussed the optimal allocation of joint angular 

tolerances by modelling tolerances as interval variables. Wu et 

al. [16] established a framework for reliability analysis of 

industrial robots and the positional accuracy reliability for 

single coordinate, the positional accuracy reliability for a single 

point, the positional accuracy reliability of multiple points and 

the trajectory accuracy reliability of industrial robots are 

comprehensively analyzed. Pandey et al. [17] used the method 

of fractional moments combined with the principle of 

maximum entropy to discretize the trajectory of industrial 

robots into a series of discrete points for reliability analysis of 

positioning accuracy. Wu et al. [18] used the Sobol’ method to 

analyze the sensitivity of the uncertain variables for the 

positioning accuracy of the industrial robots and applied the 

point estimation method to fit the probability density function. 

Zhang and Han [19] transformed the three dependent 

coordinates of the end-effector of the industrial robot into three 

independent standard normal variables and applied the saddle 

point approximation to compute the kinematic reliability. The 

above research analyzed the reliability of the mechanism from 

multiple perspectives, but when performing reliability analysis 

for a complex system the computational time is too long and 

there is a limit to the distribution type of the uncertain 

parameters. Therefore, how to improve the efficiency without 

sacrificing the accuracy when the uncertain parameters are 

randomly distributed is still an urgent problem to be solved in 

the mechanism reliability analysis. 

Radial basis function network (RBFN) has been widely used 

in fault diagnosis [20], image recognition [21] and reliability 

analysis [22]. The RBFN is applied in this study to reliability 

analysis of industrial robot positioning accuracy. Moody and 

Darken [23] proposed a training method of radial basis function 

(RBF) that uses the k-means clustering method to obtain the 

RBF center and used the least squares algorithm [24] to 

evaluate the weight. Chen et al. [25] proposed an orthogonal 

least squares learning algorithm to train the RBFN, which 

improves the network convergence rate and reduces the 

network scale. Alexandridis et al. [26] proposed a fast 

noniterative categorical clustering algorithm to training RBFN 

and a novel learning scheme for categorical data based on 

RBFN. Wang et al. [27] proposed a fault tolerant algorithm to 

train an RBFN and select the RBF centers simultaneously. Han 

et al. [28] designed a self-organizing RBFN with the aid of 

adaptive particle swarming optimization that can optimize both 

the network size and the parameters of an RBFN 

simultaneously. Lai et al. [29] proposed a set of novel radial 

basis functions with adaptive input and composite trend 

representation for portfolio selection. Meng et al. [30] trained 

RBFN through hybrid learning algorithms and applied them in 

the field of face recognition. Deng et al. [31, 32] used ANN and 

RBFN technology to model and approximate the implicit 

function or partial derivative, and proposed a structural 

reliability analysis method suitable for the implicit function. 

Dai et al. [33] proposed an RBFN method based on support 

vector machine and the improved RBF model was used to 

approximate the limit state function and to estimate the failure 

probability by combining with the reliability method. 

Kavousifar et al. [34] proposed a reliability analysis method 

that combined the RBF and the fuzzy theory to accurately 

evaluate the reliability of the combined power system. Tan et 

al. [35] compared the similarities and differences between the 

RBFN and support vector machine and illustrated the 

applicability of the two methods by examples. Chau et al. [36] 

used the RBF to approximate the implicit limit state function 

and proposed a first-order reliability analysis method based on 

the response surface. Li et al. [37] maximized the probability 

density function by adding a new sample point in each iteration, 

which improved the accuracy of the RBF surrogate model in the 

important region of the failure boundary. Then, Li et al. [38] 

decomposed the original reliability optimization problem into a 

series of deterministic problems based on surrogate models and 

Monte Carlo simulation by the above method, which reduced 

the costly black box call in reliability optimization. The above 

RBFN research has improved training speed and network 

accuracy. However, there still exist problems such as slow 

convergence of the iterative process, excessive network size, 

and insufficient use of sample information. And there is also no 

illustration of which cluster centers and sample points are more 

suitable as the center of the RBF. 

The traditional approximate reliability analysis methods, 

such as first-order reliability method [39] and second-order 

reliability method [40, 41], are relatively efficient, but there are 

defects with poor precision when solving highly nonlinear 

problems. Since industrial robots are highly nonlinear systems, 

these types of methods are not suitable to solve reliability 

problems for industrial robots. It is not easy to balance the 

efficiency and accuracy of the reliability analysis for industrial 

robots, but the widely used RBFN provides an idea to solve 

such problems. In this paper, a hybrid learning algorithm which 

combines the clustering learning algorithm with the orthogonal 

least squares learning algorithm is proposed to train RBFN. The 

proposed method adds suitable hidden node centers iteratively 

until the network accuracy requirement is met. On the premise 

of ensuring the network accuracy, the learning efficiency of the 

RBFN is improved. The main contributions of this study can be 

included: 1) The disadvantages of the clustering center learning 

algorithm and orthogonal least square learning algorithm are 

avoided and the sample information is fully utilized. 2) A new 

convergence criterion is proposed for the training process. 3) 

The effectiveness and engineering practicability of the 

proposed method are verified by numerical examples. 4) A new 

idea to solve the problem of reliability of industrial robot 

positioning accuracy is proposed. The proposed method is first 

validated through mathematical benchmark problems and then 

applied to reliability analysis of the industrial robot positioning 

accuracy. The results show that the proposed method has a good 

balance between computational efficiency and accuracy and is 

able to deal with uncertain parameters of arbitrary distribution. 

The remainder of the paper is organized as follows: Section 
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2 mainly introduces the basic principle of a radial basis neural 

network; Section 3 elaborates the specific implementation 

process of the proposed method; Section 4 uses the numerical 

example to illustrate the effectiveness of the proposed method; 

Section 5 gives the application of the radial basis network in the 

industrial robots positioning accuracy; Section 6 gives some 

conclusions.  

II. RADIAL BASIS FUNCTION NETWORK 

As a kind of neural network, the RBFN is characterized by 

its simple structure, fast convergence and short calculation 

time. The radial basis network structure is shown in Fig. 1. 
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Fig. 1  Radial basis neural network structure. 

The radial basis neural network is a three-layer structure: the 

first layer is an input layer marked as , 

where M is the number of input samples; the second layer is the 

hidden layer which contains I hidden nodes with output fi (i 

=1,2,…,I) and a bias f0, and each hidden node corresponds to a 

basis function center ci. The ith hidden node output is 

, where  is the Euclidian distance between 

two samples, and f denotes the RBF whose type is shown in 

Table 1; the third layer is the output layer denoted as a J-

dimensional vector Y. The transformation from the input layer 

to the hidden layer is non-linear, directly connected without the 

need for weights. But the transformation from the hidden layer 

to the output layer is linear, connected by weights. For an input 

sample XK, the output of the jth output neuron of the RBFN can 

be expressed as 

  (1) 

where ωij is the connection weight of the ith neuron of the 

hidden layer to the jth neuron of the output layer. 

Assuming that the number of input samples is n and the 

number of central points of the network hidden layer is m, the 

radial basis network can be formulated as 

  (2) 

where 

  (3) 

  (4) 

  (5) 

where  is the connection weight of the ith 

neuron of the hidden layer to the output layer, Xi is the ith input 

sample, yi is the response of the ith input sample. 

Since matrix F is non-singular, Eq. (2) has a unique solution 

  (6) 

where F+ is the generalized inverse matrix of F. Therefore, the 

output of the network can be predicted as, 

  (7) 

where the value of f(X) depends on the Euclidean distance 

between the predicted point and the center point. For a new 

sample point x, the predicted value  can be obtained by 

calculating Eq. (7) after the network training is completed. 
TABLE I 

DIFFERENT TYPES OF RBF 

Type Function form f(r) 

Gaussian  

Cubic  

Multiquadric  

Inverse Multiquadric  

Thin plate spline  

 is the shape parameter in Table 1,  is the Euclidian 

distance between two points. Different shape parameters can 

result in different influence fields for each basis function, and 

thus different constructions and accuracies of the RBFN. For a 

Gaussian function, the larger the shape parameter the smaller 

the influence domain of the function and the worse the 

smoothness of the RBF. Shape parameters are generally 

determined by empirical formulas or other optimization 

methods [42]. 

III. HYBRID LEARNING METHOD FOR RBF NETWORK 

(RBF-HLA) 

There are many learning algorithms for radial basis networks, 

such as self-organizing selection center learning algorithm [43] 

and orthogonal least squares (OLS) learning algorithm [25]. 

The learning algorithm generally achieves a better fitting effect 

by training the basis function center, the basis function 

parameter and the weight of the hidden layer to the output layer. 

But it is usually difficult for a single learning algorithm to meet 

the needs of high precision. A method choosing some data 

points as centers usually leads to an unnecessarily large network 

to achieve a satisfactory performance which often adds 

computational burden and causes numerical ill-conditioned 

issues. Self-organizing selection center learning algorithm can 

adjust RBF centers to achieve a better network performance and 

is more intelligent than selecting centers arbitrarily. However, 
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the adjusted center usually does not include the sample points, 

even if there is a suitable basis function center in the sample 

point. In addition, Orthogonal least squares learning algorithm 

can choose the appropriate center among the sample points 

according to the magnitude of the influence on the result but 

cannot select the appropriate centers outside the sample set. 

The self-organizing selection center learning algorithm 

usually uses the k-means clustering algorithm [44] to cluster the 

basis functions that can represent the input samples. The 

specific clustering process is as follows: 

Assuming the input sample is , select the 

initial center  and calculate the 

Euclidean distance dij between the ith input sample and the jth 

initial center, 

  (8) 

For an input sample, the corresponding cluster number should 

be 

  (9) 

where argmin indicates the value of the independent variable 

when the dependent variable takes the minimum value. 

According to the above method, all the input samples are 

classified into the corresponding cluster centers. The samples 

under the jth cluster can be expressed as , and the average of 

all sample points in the jth cluster is obtained as the new sample 

center, 

  (10) 

where  is the new cluster center, and nj is the number of 

sample points under the cluster center. Iterate as above until the 

old and new sample centers are identical, i.e. . Fig. 

2 shows the clustering diagram. 

Sample 

point

Center of 

clustering

 
Fig. 2  Diagram of cluster sample centers. 

Although the k-means clustering algorithm (k-means) seems 

to give reasonable sample centers, the algorithm does not 

indicate the superiority of using the cluster sample centers as 

the basis function centers compared to the original sample 

points as the basis function centers. Therefore, it is still 

necessary to further study whether the cluster sample centers or 

the original sample points are more suitable as the basis 

function centers. In the orthogonal least square method, the 

center of the RBF can be selected according to the influence 

degree of the basis vector on the result vector, which can just 

solve the above problems. Assume that vector Y can be 

represented linearly by a set of vectors , 

  (11) 

Obviously, each base vector Ai has a different degree of 

influence on the result Y, and the degree of influence can be 

expressed by the projection size of Y on Ai. The size of the 

projection depends on the angle between the two vectors. The 

same change of Ai can produce a greater effect on Y when the 

angle is closer to 0 or  rad. The cosine of the angle between 

the two vectors can be expressed by 

  (12) 

Define an influence factor Ii,  

  (13) 

Then, a greater Ii indicates a greater influence of Ai on the result 

Y. 

Through the above method, the cluster center points and the 

sample points can be simultaneously used as the basis function 

centers. As the number of selectable center points increases, the 

number of basis vectors in the radial basis matrix increases. 

According to the size of the influence factor Ii, the most suitable 

basis function centers can be selected to construct the RBFN. In 

this way, the best approximation can be obtained with the 

smallest number of basis vectors. The decrease of the number 

of basis vectors means the decrease of the number of nodes in 

the hidden layer. In the case of a large amount of data, the 

number of fewer hidden nodes will undoubtedly improve the 

convergence speed of the network. The proposed method in this 

study is called hybrid learning algorithm for RBFN (RBF-

HLA). The proposed method avoids the disadvantage that the 

clustering center learning algorithm cannot select the data 

centers according to the degree of influence on the results, 

meanwhile, it also overcomes the shortcoming that the 

orthogonal least square learning algorithm can only select the 

data centers in the sample points according to the degree of 

influence on the results. The efficiency and accuracy of the 

proposed algorithm will be proven through the application of 

four numerical examples and an engineering example. In order 

to meet the requirements of different accuracy, a new 

convergence criterion that is easy to distinguish is introduced. 

This criterion indicates that when network training is stopped, 

the error between the predicted value and the actual value of the 

network should be selected relative to the actual value. 

The steps of the proposed hybrid learning algorithm are as 

follows: 

Step 1. Selecting initial samples  by the 

Latin hypercube sampling method (n is the number of samples) 

and calculating the response values  of the 

performance function at the sample points. The sampling 

interval is generally chosen as [-k , +k], where  is the 

mean value of the uncertain variable distribution,  is the 
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standard deviation of the sample distribution, and k generally 

takes 1~3. 

Step 2. Clustering m center points  from 

the initial samples by using the k-means clustering method. 

Step 3. Combining the cluster center points with the initial 

sample points to form the candidate base function center points 

. 

Step 4. Selecting the Gaussian type RBF. Then using all 

points in S as the center of the alternative basis function and 

calculating the hidden node output matrix 

, where Si represents the ith point in S. 

Step 5. Finding the base vector in the base vector matrix with 

the largest influence factor on the result Y, and using the 

corresponding data point Si as the center of basis function. 

Step 6. Using the generalized inverse method to calculate the 

weight i between the hidden layer and the output layer. 

Step 7. Constructing the RBFN according to the weight i 

and calculating the network error. Then the remaining 

unselected basis vectors are orthogonalized to facilitate the next 

selection. 

Step 8. Defining a new convergence criterion 

. In this paper, h generally takes 4~7. If 

the error between each network predictor and actual value at the 

sample point satisfies the given condition, the network training 

is completed; otherwise, return to Step 5, and select the base 

vector with the largest influence factor in the remaining base 

vector. 

Step 9. If the error requirements are not met after all the base 

vectors have been selected, increase the number of sample 

points and return to Step 2. 

Flow chart of the proposed BRF-HLA is shown in Fig.3. 
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Fig.3  Flow chart of RBF-HLA. 

IV. NUMERICAL EXAMPLES 

A. Example 1 

Consider a highly non-liner limit state function (LSF) [45, 46]: 

  (14) 

where X1 and X2 are two random variables, and the distribution 

of variables is shown in Table 2. 
TABLE II 

STATISTICS OF THE RANDOM VARIABLES FOR EXAMPLE 1 

Variables Means Standard deviation Distribution 

X1 10.0 5.0 Normal 

X2 9.9 5.0 Normal 

In this example, the RBFN trained by the hybrid learning 

algorithm is compared with FORM, SORM. The calculation 

results of RBFN trained by clustering algorithms and 

orthogonal least squares learning algorithm are also used for 

comparison. The results obtained by Monte Carlo simulation 

(MCS) are used as benchmarks. Table 3 shows the results of the 

comparison. It can be seen that the RBFN trained by the hybrid 

learning algorithm training has higher accuracy and efficiency 

than the RBFN trained by the clustering algorithm and 

orthogonal least squares learning algorithm. and FORM and 

SORM are not applicable to highly nonlinear problems. In this 

paper, non-standard normal distribution variables are 

transformed into standard normal distributions for calculation 

and drawing by Rosenblatt transformation, and the formula is 

as follows, 

  (15) 

where  is the cumulative distribution function of Xi and  

is the inverse of the normal distribution function. 
TABLE III 

COMPARISON OF THE RESULT IN EXAMPLE 1 

Methods 
Failure 

probability 
Relative error 

(%) 
Number of LSF 

evaluations 

FORM 1.07710-2 83.602 48 

SORM 4.32610-3 26.284 53 

RBF(k-means) 5.60010-3 3.260 36 

RBF(OLS) 5.94810-3 2.747 27 
RBF-HLA 5.78210-3 0.121 25 

MCS 5.78910-3 0.000 1106 

To better illustrate the process of RBF-HLA fitting the limit 

state function in Example 1, Fig. 4 shows the RBF-HLA fitting 

effect in the iterative process. In this example, the initial sample 

points are selected as 10. It can be seen from Fig.4 that as the 

number of sample points increases, the RBF-HLA gradually 

approaches the limit state function. When the number of sample 

points reaches 25, the fitting accuracy requirement is satisfied. 

The core of the RBF-HLA method is to find the appropriate 

hidden layer center. Only by finding a suitable center can we 

achieve a better fitting effect with the least hidden layer nodes 

in the network, which helps to reduce the network structure and 

improve convergence speed. Fig. 5 shows the relationship 

between the number of hidden layer centers and the training 

error err in the iterative process. Here, the training error err 
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refers to , where n is the number of the 

samples,  represents the predicted value corresponding to the 

ith sample point, and yi represents the actual response of the ith 

sample point. The number of sample points used in Fig. 5 is in 

one-to-one correspondence with Fig. 4. It is not difficult to see 

that as the number of hidden layer nodes increases, the training 

error decreases. In the iterative process, the change in failure 

probability is shown in Fig. 6. When the number of sample 

points reaches 25, the failure probability results are relatively 

stable and converge to the MCS results. In Fig. 5(e), although 

the number of sample points is 22, since there are cluster centers 

as the basis function center, the number of hidden layer nodes 

reaches 25 when the training error requirement is satisfied; in 

Fig 5(f), since the number of sample points is increased to 25, 

there will be more suitable sample points or cluster centers as 

the basis function center. At the end of training, therefore, the 

number of hidden nodes is only 23. The reduction in the number 

of hidden nodes leads to a streamlined network structure. 
Sample size:10

 
(a) 

Sample size:13

 
(b) 

Sample size:16

 
(c) 

Sample size:19

 
(d) 

 
Sample size:22

 
(e) 
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Sample size:25

 
(f) 

Fig. 4  The fitting process of RBF-HLA in Example 1. 
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(d) 
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(f) 

Fig.5 Relationship between the number of hidden layer nodes and training error 

in Example 1. 

RBF-HLA

MCS

 
Fig.6  Iterative process of Pf in Example 1. 

B. Example 2 

To better illustrate the effectiveness of the proposed method, 

this example increases the variable dimension to three 

dimensions. The LSF is given by 

  (16) 

where X1, X2 and X3 are three random variables and the variable 

distribution is shown in Table 4. Table 5 gives the comparative 

results of different reliability methods to solve the problem of 

this example. It can be seen that the failure probability obtained 

by the RBF-HLA method is Pf = 8.6110-4, and the number of 

LSF evaluations is 19. Compared with other methods including 

RBF(k-means) and RBF(OLS), the efficiency and accuracy of 

RBF-HLA are greatly improved. The uncertainty variable 

distribution in this example is no longer a normal distribution 

and the results show that RBF-HLA is still applicable to 

problems with uncertain parameters of other distribution types. 

Table 6 directly lists the coordinates of the initial sample points, 

the added sample points in the iterative process and the 

corresponding failure probability. 

When the number of sample points reaches 19, the failure 

probability error obtained by the RBF-HLA fitting limit state 

function is less than 1%, which meets the requirements. The 

final number of hidden nodes in the network is 21, and the 

number of hidden nodes exceeds the number of samples. It can 

be seen that if only the sample points are used as the hidden 

layer center, the requirements might not be met, and additional 

sample points or center points need to be selected as the hidden 

layer center to meet the fitting requirements. For engineering 

problems, it often takes a lot of time to add additional sample 

points. By using the clustering method to obtain the centers, the 

sample information can be more fully utilized. At the end of the 

iteration, the relationship between the number of hidden nodes 

and the training data error is shown in Fig. 7. It is shown that 

the change in the probability of failure during the process of 

increasing the sample size in Fig. 8. 
TABLE IV 

STATISTICS OF THE RANDOM VARIABLES FOR EXAMPLE 2 

Variables Means 
Standard 

deviation 
Distribution 

X1 1.0 0.16 Lognormal 
X2 20 2 Gumbel 

X3 48 3 Weibull 

TABLE V 

COMPARISON OF THE RESULTS IN EXAMPLE 2 

Methods 
Failure 

probability 

Relative error 

(%) 

Number of LSF 

evaluations 

FORM 7.976510-4 7.645 88 

SORM 1.889510-3 121.253 92 

RBF(k-means) 9.020010-4 5.621 34 

RBF(OLS) 8.320010-4 2.580 25 
RBF-HLA 8.610010-4 0.820 19 

MCS 8.540010-4 0.000 1106 

TABLE VI 

ITERATIVE PROCESS OF Pf IN EXAMPLE 2 

Number of 
iterations 

X1 X2 X3 Pf (%) 

0 

1.1538 19.8952 46.8344 

2.7810-2 

0.9466 19.1220 49.5422 

0.9050 20.1079 48.8695 

0.9724 21.0643 43.0932 

0.7928 21.7930 47.5178 

0.8795 19.4071 47.3978 

1.3327 22.1732 51.3824 

1 0.6186 19.8633 46.8657 5.3510-2 

2 1.1539 18.4451 49.9721 3.6610-2 

3 0.8170 20.8878 50.8402 6.1110-2 

4 0.9210 20.0441 49.3987 6.0110-2 

5 1.2271 22.6487 50.1893 8.1610-2 

6 0.8595 22.1437 50.8236 6.3410-2 

7 1.0016 20.8567 49.4548 5.8810-2 

8 1.0271 22.0514 48.95795 6.3010-2 

9 1.0534 17.1836 48.6937 6.3610-2 

10 1.0916 23.0148 51.8008 8.4110-2 

11 0.9620 19.1588 47.7098 8.6510-2 

12 1.1234 18.1454 44.8245 8.6110-2 
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Fig.7  Relationship between the number of hidden layer nodes and training 

error in Example 2. 

RBF-HLA

MCS

 
Fig.8  Iterative process of Pf in Example 2. 

C. Example 3 

This example consists of a nonlinear undamped single degree 

of freedom system with six random variables (Fig. 9) [37, 47, 

48]. The LSF is given by 

  (17) 

where . The random variables are given in 

Table 7. 

In this example, the initial sample points are selected as 13 

and the number of the sample points at the end of the iteration 

is 21. The corresponding failure probability is Pf = 2.85110-2, 

and the relative error compared with MCS results is only 

0.243%. Table 8 gives the comparison results of different 

reliability methods to solve the problem of this example. The 

relationship between the number of hidden nodes and the 

training error is shown in Fig. 10. The number of hidden nodes 

is 14 at the end of the iteration, and the trend of failure 

probability in the iterative process is shown in Fig. 11. This 

example also shows that the RBF-HLA algorithm has strong 

applicability to high-dimensional problems. The accuracy and 

efficiency of neural network training based on hybrid learning 

algorithm is higher than that of single algorithm. 

z(t)

F(t)
m

c1

c2

F(t)

t1 t  
Fig. 9  Nonlinear oscillator. 

TABLE VII 

DISTRIBUTION OF RANDOM VARIABLES FOR THE NONLINEAR OSCILLATOR 

Variables Means Standard deviation Distribution type 

m 1 0.05 Normal 

𝑐1 1 0.1 Normal 

𝑐2 0.1 0.01 Normal 

r 0.5 0.05 Normal 

𝐹1 1 0.2 Normal 

𝑡1 1 0.2 Normal 

TABLE VIII 

COMPARISON OF THE RESULT OF A NONLINEAR OSCILLATOR 

Methods 
Failure 

probability 

Relative error 

(%) 

Number of LSF 

evaluations 

FORM 3.10810-2 9.283 35 

SORM 2.84010-2 0.141 48 

RBF(k-means) 2.78210-2 2.180 35 

RBF(OLS) 2.82110-2 0.798 21 

RBF-HLA 2.85110-2 0.246 21 

MCS 2.84410-2 0.000 1106 

 
Fig.10  Relationship between the number of hidden layer nodes and training 

error for nonlinear oscillator. 

RBF-HLA

MCS

 
Fig.11  Iterative process of Pf for nonlinear oscillator. 

D. Example 4 

This example discusses the ultra-high-dimensional problem 
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[49]. The LSF is given by 

  (18) 

where n can be any value and n=40 in this example. xi is a log-

normally distributed variable with a mean of 1 and a standard 

deviation  of 0.2. When dealing with the ultra-high 

dimensional problem, the failure probability of the RBF-HLA 

method analysis is the same as that obtained by the MCS, and 

the LSF is only called 12 times. The results of SS, AK-MCS 

and AK-SS are taken from reference [49]. It can be seen that 

RBF-HLA has certain advantages when dealing with high-

dimensional problems. The results are shown in Table 9. 
TABLE IX 

COMPARISON OF THE RESULTS IN EXAMPLE 4 

Methods n 
Failure 

probability 

Relative 

error (%) 

Number of LSF 

evaluations 

SSa 40 1.81310-3 7.121 2800 

AKb-MCS 40 1.85210-3 5.122 42 

AK-SS 40 1.81810-3 6.864 42 

RBF-HLA 40 1.95210-3 0.000 12 

MCS 40 1.95210-3 0.000 1106 
a Subset Simulation; b Active Learning 

E. Example 5 

1) Introduction to robot kinematics 

Industrial robots can replace humans with repetitive tasks 

efficiently, accurately, such as industrial processing, palletizing 

and welding. Industrial robots contain multiple links and 

rotating pairs, and the existence of uncertain parameters such as 

joint clearance and rod length machining error will make the 

actual position of the end-effector of the industrial robot deviate 

from the target position. When this offset exceeds a certain 

range, the positioning accuracy of the industrial robot is 

considered to be a failure. The kinematics reliability of an 

industrial robot refers to the probability that the end-effector 

reaches the specified moving path or trajectory within the error 

tolerance. Likewise, the positioning accuracy reliability 

discussed herein refers to the probability that an industrial robot 

end-effector reaches a specified position within the error 

tolerance. The reliability of positioning accuracy of industrial 

robots will seriously affect the quality of their work. Therefore, 

it is crucial to analyze the reliability of industrial robots 

positioning accuracy. This paper takes a six-axis industrial 

robot as an example to analyze the reliability of industrial robot 

positioning accuracy. Fig. 12 shows the three-dimensional 

model of a six-axis industrial robot. Fig. 13 shows the 

schematic diagram of the six-axis industrial robot mechanism. 

 
Fig. 12  Three-dimensional model of a six-axis industrial robot. 

 
Fig. 13  The mechanism diagram of the six-axis industrial robot. 

To carry out the reliability analysis of industrial robot 

positioning accuracy, a kinematics model of industrial robots 

must be established first. The Denavit-Hartenberg (D-H) matrix 

[50] describes the kinematic equations of the industrial robot 

including position and orientation. The specific form of the D-

H matrix is as follows, 

  (19) 

where ai, di, i and i are used to define the coordinates of the 

ith link, as shown in Fig. 14. The position of the end-effector 

can be calculated according to Eq. (19), 

  (20) 

where n, s and a represent the direction cosines of the fixed 

coordinate system established on the end-effector relative to the 

fixed coordinate system at the base, and p represents the 

positional coordinates of the end-effector in the fixed 

coordinate system. 
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Fig. 14 Denavit-Hartenberg kinematic parameter. 

2) Positioning accuracy reliability analysis 

Assume that the ith target position of the industrial robot end-

effector is (xoi, yoi, zoi), and the actual position of the end-

effector is (xri, yri, zri). Due to the existence of uncertain 

parameters such as joint clearance and joint torsion angle, the 

industrial robot positioning error can be defined as follows. 

①single coordinate direction positioning error: 

  (21) 

  (22) 

  (23) 

where Exi, Eyi, and Ezi represent the positioning errors in the x, 

y and z coordinate directions, respectively. 

② single point positioning error: 

  (24) 

where  denotes the single point positioning error which 

indicates the distance between the actual position and the 

nominal position. The positioning accuracy of the industrial 

robots is reliable when the positioning error meets the 

requirements. The performance function of the end-effector 

positioning is defined as 

  (25) 

where Ei is a single coordinate or single point positioning error 

and e is the failure threshold. When , the 

positioning accuracy of industrial robots is failed. When 

, the positioning accuracy of industrial robots is 

reliable. 

According to the above performance function, the reliability 

analysis of industrial robot positioning accuracy is carried out. 

In this paper, the actual position of the end-effector affected by 

the uncertain variable is obtained by Matlab robot toolbox [51]. 

According to the three-dimensional model of the industrial 

robot shown in Fig. 12, the D-H parameters of the industrial 

robot are set as shown in Table 10, and the distribution of each 

uncertain variable is shown in Table 11. 
TABLE X 

PARAMETERS OF D-H MATRIX FOR AN ELBOW MANIPULATOR 

Joint No. 𝑎𝑖(mm) 𝑑𝑖(mm) i () 𝜃𝑖(°) 

1 200 345 90 -20 
2 400 0 0 90 

3 175 0 90 30 

4 0 750 -90 0 
5 0 0 90 -45 

6 0 200 0 0 

TABLE XI 

PROBABILITY DISTRIBUTIONS OF RANDOM VARIABLES 

Variables Means Standard deviation Distribution type 

𝑎1(mm) 200 0.200 Normal 

𝑎2(mm) 400 0.400 Normal 

𝑎3(mm) 175 0.175 Normal 

𝑑1(mm) 345 0.345 Normal 

𝑑4(mm) 750 0.750 Normal 

𝑑6(mm) 200 0.200 Normal 

1 (°) 0 0.1 Normal 

5 (°) 0 0.1 Normal 

1 (°) 0 0.1 Normal 

In Table 11, 1 and 5 are random variables representing the 

uncertainty of joint angles 1 and 5. This uncertainty is derived 

from the effects of joint space. The detailed derivation process 

can be found in the literature [17]. 1 is a random variable 

representing the uncertainty of the joint torsion angle of the 

joint 1. The uncertainty comes from the influence of joint 

installation error or gravity.  

Figure 15 shows the simulation model obtained after input of 

uncertain variables. According to different uncertain variable 

inputs, a series of actual positions of the industrial robot end-

effector can be obtained from simulation. In this paper, the 

number of simulations is set as 2105, and the total simulation 

time is 31,255 seconds, and 2105 sets of uncertain parameters 

and their corresponding end-effector coordinate positions are 

obtained as shown in Fig. 16. The sphere represents the 

positioning failure threshold of the industrial robot.  

Under different failure thresholds, the reliability of the 

positioning accuracy of the industrial robot is different, and the 

failure threshold is determined according to the actual working 

conditions of the industrial robot. Due to the low efficiency of 

the simulation, the radial basis network is used to solve the 

problem of reliability analysis of positioning accuracy. By 

selecting a small number of uncertain parameters generated in 

the simulation and their corresponding end-effector coordinate 

positions, the network fitting is carried out, and the sample 

points are added until the network accuracy meets the 

requirements. Finally, when the number of sample points 

reaches 14, the convergence condition for the RBFN is 

satisfied, and the iteration stops. The predicted coordinate 

position of the end-effector of the industrial robot is as shown 

in Fig. 17. 
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Six-axis industrial robot

 
Fig. 15  Simulation model of industrial robot. 
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Fig. 16 End position coordinates obtained by Matlab simulation. 

z 
(m

m
)

 
(a) 

x (mm)

y 
(m

m
)

 
(b) 

Fig.17 End position coordinates predicted by the RBF-HLA. 

Fig. 16(a) and Fig. 17(a) are three-dimensional views of the 

end position points respectively and Fig. 16(b) and Fig.17(b) 

are projection views on the x-y plane respectively. It can be seen 

that the predicted end position points are consistent with the 

overall shape of the simulated end position points, which is 

roughly an ellipsoid. In order to verify the accuracy of the RBF 

prediction results, the failure probability of the end points 

obtained by the two methods under different failure thresholds 

is calculated, and the single-coordinate and single-point failure 

probability are compared. The results are shown in Fig. 18. 

RBF-HLA

 
(a) Failure probability in the x-direction. 

RBF-HLA

 
(b) Failure probability in the y-direction. 
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RBF-HLA

 
(c) Failure probability in the z-direction. 

RBF-HLA

 
(d) Failure probability of single points. 

Fig. 18 Failure probability under different failure thresholds. 

Fig. 18(a), (b) and (c) show the failure probability in the x, y 

and z coordinate directions at different failure thresholds, 

respectively, and Fig. 18(d) shows the failure probability of a 

single point with different failure thresholds. It can be seen that 

under the same failure threshold, the failure probability of 

single point and single coordinate obtained by RBF prediction 

is very close to the result obtained by MCS simulation. It takes 

a long time to analyze the positioning reliability of industrial 

robots through simulation, but the proposed method only needs 

running the simulation for 14 times. The RBFN can be built 

based on simulation results to predict the position of the 

remaining points, which greatly improves the computational 

efficiency without losing accuracy. 

V. CONCLUSION 

In this paper, a hybrid learning algorithm for training radial 

basis neural network is proposed by integrating two learning 

algorithms. The proposed method is able to not only select the 

centers of the basis function according to its importance but also 

cluster more reasonable centers. Through four mathematical 

examples, the method is proven effective to deal with the high-

dimension problems with uncertain parameters of different 

distribution types. Then the proposed method is applied to 

reliability analysis of positioning accuracy for industrial robots. 

The results show that under the same failure threshold, the 

failure probability obtained from the proposed method is very 

close to that from the Monte Carlo simulation. More 

importantly, the proposed method only needs 14 sample points, 

indicating the computational efficiency is considerably 

improved while the accuracy is maintained. In future research, 

the accuracy of the RBFN near the most probable point will be 

improved to reduce the evaluations of LSF. When the cluster 

centers and the sample points are selected as the center of the 

RBF, the vector in radial basis matrix may have a linear 

correlation which will affect the performance of the network. 

Thus, the linear correlation in basis vectors should be excluded 

in the future research. 
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