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Abstract:  

Many unavoidable uncertainties in the engineering structure will affect its performance response. 

It is necessary to analyze the uncertain responses generated by uncertain factors in the vehicle design. 

Therefore, this study proposes a feasible identification method of uncertainty responses for vehicle 

structures. The proposed method consists of radial basis function neural network (RBFNN) and Taylor 

interval expansion (IE) model. The optimal network parameters of RBFNN are trained by the improved 

K-means clustering algorithm and singular value decomposition (SVD). Here, the first-order and 

second-order differential equations are derived from the RBFNN parameters since it is difficult to 

calculate the partial derivatives of complex systems without explicit expressions. A series of typical 

functions are tested and the results show that the trained RBFNN parameters can approximate the first-

order and second-order partial derivatives of different types of functions. Besides, the subinterval 

expansion method is further applied to improve the calculation accuracy of uncertain structural 

responses. Finally, the proposed method is applied to four engineering applications (vehicle hood, 

mechanical claw, anti-collision structures, and multi-link suspension). Compared with genetic 

algorithm (GA) and Monte Carlo simulation (MCS), the proposed method can improve computational 

efficiency while ensuring accuracy. The identification method of interval uncertainty responses can be 

used as an alternative for uncertainty analysis and subsequent reliability or robustness optimization. 
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1. Introduction 

Uncertainty of design parameters often arises in structural design, and even slight uncertainty 

may produce large fluctuations in the output response (Cao et al. 2021; Meng et al. 2020; Chen and 

Yang 2021; Long et al. 2019; Xu et al. 2021a). The influence of uncertain parameters is an essential 

topic in engineering design. Researchers considered uncertain parameters and system responses as 

probability values in the early days (Huang et al. 2016; Xu et al. 2021b; Gao et al. 2018). Inevitably, a 

probabilistic uncertain model needs a large number of statistical samples, which may be challenging 

due to the lack of test conditions. In this regard, the unknown-but-bounded model gradually attracts 

the attention of researchers (Xia et al. 2015; Wu et al. 2014; Wang et al. 2020). Because the interval 

model only needs to consider the interval boundary problem and no longer needs statistical data, it has 

higher practicability than the probability model (Tang et al. 2021; Viegas et al. 2017; Ma and Wang 

2021; Qiu and Li 2021). 

Over the past decade, strategies for solving the lower and upper bounds of interval models are 

gradually proposed (Chen et al. 2009; Impollonia and Muscolino 2011). When the interval model is 

regarded as a bounded uniform distribution model, Monte Carlo simulation (MCS) can solve the 

interval model. The lower and upper bounds of responses can be predicted by random sampling 

technique (Gao et al. 2011; Qiu and Wang 2005b; Guo, et al. 2008). By increasing the number of 

samples, MCS can gradually converge to an exact interval. However, MCS is unsuitable for practical 

engineering problems because of the expensive computational cost, so more efficient alternative 

methods should be studied. Besides, the auxiliary global optimization algorithm is introduced to solve 

the interval model. Li et al. proposed an adaptive Kriging method for structures with uncertain-but-

bounded parameters and used sequential quadratic programming (SQP) as the inner solver to obtain 

the lower and upper bounds (Li et al. 2013). The genetic algorithm (GA), which provides practical 

search ability in a complex space based on natural genetics, is feasible to calculate the interval bounds 

of the objective function and constraint function of internal optimization (Fernandez-Prieto et al. 2012). 

Jiang et al. used the intergeneration projection genetic algorithm (IP-GA) as an optimization operator 

to search for the lower and upper bounds (Jiang et al. 2008a; Jiang et al. 2008b). Cheng et al. proposed 

a direct interval optimization algorithm for the reliability model integrating GA and Kriging 

technology (Cheng et al. 2016). This method avoids the complex transformation of the indirect model 
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and gives an interval solution. The most significant advantage of the intelligent algorithm is the ability 

to find the global optimum, but its optimization often requires a large amount of calculation, especially 

for some complex engineering problems. Another alternative method is the interval vertex method 

(IVM), aiming at solving linear interval equations. It can obtain a more accurate value with higher 

efficiency than the intelligent algorithm. Qiu et al. (Qiu et al. 2006; Qiu et al. 2007) gave a 

mathematical proof of the vertex solution theorem and applied it to calculate structural design with 

unknown-but-bounded parameters. Unfortunately, the application of IVM is limited to monotone cases 

and is unsuitable for complex nonlinear problems. 

In addition, the approximate method of Taylor expansion has also interested researchers because 

it can produce approximate solutions close to the exact solutions. Qiu et al. (Qiu et al. 1996; Qiu and 

Wang 2005a) proposed an interval perturbation method by using the Taylor series to expand the 

interval matrix and interval vector. Generally, due to the complexity of the higher-order Taylor series, 

only the terms of first-order or second-order Taylor series were retained in the commonly used interval 

perturbation. Wu et al. (Wu et al. 2005) used the first-order Taylor expansion method to analyze the 

dynamic response of linear structural systems with interval parameters. Zhang et al. (Zhang et al. 2007) 

used the matrix perturbation theory and the interval algorithm to estimate the lower and upper bounds 

of the dynamic response of a closed-loop system with interval parameters. Qiu et al. (Qiu et al. 2009) 

studied the dynamic responses of uncertain nonlinear vibration systems and estimated the range of 

nonlinear dynamic responses based on the second-order Taylor series expansion method by using the 

mathematical interval method. However, the interval expansion method of Taylor approximation needs 

the partial derivative information of the model. In a nonlinear system without expression, the partial 

derivative information can be hardly obtained directly by using the conventional auxiliary calculation 

method, which hinders the application of Taylor approximation expression in the interval model. 

In recent years, the modeling methods of machine learning in system response approximation 

have gradually been developed (Rageh et al. 2020; Imani et al. 2021). The artificial neural network is 

a kind of machine learning, which has a good research prospect in the field of engineering (Sharifzadeh 

et al. 2019). It is found that the generalized radial basis function neural network (RBFNN) has an 

advantage in approximating system functions and solving partial derivatives (Almarashi 2012). Chen 

et al. (Chen et al. 2011) proposed a method combining a radial basis function network and an adaptive 
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residual sub-sampling training scheme to solve the partial differential equation. Brown et al. (Brown 

et al. 2005) employed the approximate cardinal function preprocessing technique to solve the partial 

differential equations of radial basis functions. The RBFNN with self-defined preset features is highly 

accurate in solving partial derivative problems and thus can be regarded as an alternative method to 

obtain partial derivatives. 

Therefore, considering the low computational cost of Taylor expansion, this study uses the 

RBFNN as an auxiliary to solve the differential equations, which can improve the applicability of the 

Taylor expansion in the interval models. Simultaneously, to improve the efficiency and accuracy of the 

interval expansion, this study set up the method of dimension reduction of multivariate uncertain 

parameters and subinterval model. Section 2 gives the basic interval model theory. Section 3 presents 

the derivation of partial differential equations and typical function testing. Section 4 analyzes the four 

engineering examples. The main conclusions are drawn in Section 5. 

2. Interval model theory 

2.1 Interval uncertainty model 

The unknown-but-bounded uncertain parameters can be represented by the interval model. For 

the interval value 𝑥𝑥, 

𝑥𝑥 = [𝑥𝑥𝐼𝐼𝐼𝐼 , 𝑥𝑥𝐼𝐼𝐼𝐼] = {𝐼𝐼|𝑥𝑥𝐼𝐼𝐼𝐼 ≤ 𝐼𝐼 ≤ 𝑥𝑥𝐼𝐼𝐼𝐼 , 𝐼𝐼 ∈ 𝑅𝑅}                          (1) 

where 𝑥𝑥𝐼𝐼𝐼𝐼 and 𝑥𝑥𝐼𝐼𝐼𝐼 are the lower and upper bounds of 𝑥𝑥, respectively. 𝐼𝐼 is a possible value of 𝑥𝑥, 

and 𝑅𝑅 is a set of real numbers. Here, if the nominal value of 𝑥𝑥 is regarded as the median value, the 

interval radius of 𝑥𝑥 is the deviation range. Interval radius 𝑥𝑥𝐼𝐼𝐼𝐼 and median value 𝑥𝑥𝐼𝐼𝐼𝐼 are  

𝑥𝑥𝐼𝐼𝐼𝐼 =
𝑥𝑥𝐼𝐼𝐼𝐼 − 𝑥𝑥𝐼𝐼𝐼𝐼

2
, 𝑥𝑥𝐼𝐼𝐼𝐼 =

𝑥𝑥𝐼𝐼𝐼𝐼 + 𝑥𝑥𝐼𝐼𝐼𝐼

2
                            (2) 

If 𝑥𝑥𝐼𝐼𝐼𝐼 = 0, 𝑥𝑥 degenerates to a definite real number. The basic operation method between two interval 

values (𝑥𝑥1, 𝑥𝑥2) is defined as follows: 

𝑥𝑥1 + 𝑥𝑥2 = [𝑥𝑥1𝐼𝐼𝐼𝐼 + 𝑥𝑥2𝐼𝐼𝐼𝐼, 𝑥𝑥1𝐼𝐼𝐼𝐼 + 𝑥𝑥2𝐼𝐼𝐼𝐼]                                (3) 

𝑥𝑥1 − 𝑥𝑥2 = [𝑥𝑥1𝐼𝐼𝐼𝐼 − 𝑥𝑥2𝐼𝐼𝐼𝐼, 𝑥𝑥1𝐼𝐼𝐼𝐼 − 𝑥𝑥2𝐼𝐼𝐼𝐼]                                (4) 

𝑥𝑥1 × 𝑥𝑥2 = [min(𝑥𝑥1𝐼𝐼𝐼𝐼𝑥𝑥2𝐼𝐼𝐼𝐼, 𝑥𝑥1𝐼𝐼𝐼𝐼𝑥𝑥2𝐼𝐼𝐼𝐼, 𝑥𝑥1𝐼𝐼𝐼𝐼𝑥𝑥2𝐼𝐼𝐼𝐼, 𝑥𝑥1𝐼𝐼𝐼𝐼𝑥𝑥2𝐼𝐼𝐼𝐼) , max(𝑥𝑥1𝐼𝐼𝐼𝐼𝑥𝑥2𝐼𝐼𝐿𝐿 , 𝑥𝑥1𝐼𝐼𝐼𝐼𝑥𝑥2𝐼𝐼𝐼𝐼 , 𝑥𝑥1𝐼𝐼𝐼𝐼𝑥𝑥2𝐼𝐼𝐼𝐼, 𝑥𝑥1𝐼𝐼𝐼𝐼𝑥𝑥2𝐼𝐼𝐼𝐼)]        (5) 
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𝑥𝑥1
𝑥𝑥2

= 𝑥𝑥1 × �
1
𝑥𝑥2
� , �

1
𝑥𝑥2
� =

⎩
⎪
⎨

⎪
⎧
∅,  𝑥𝑥2 = [0,0]                

[1/𝑥𝑥2𝐼𝐼𝐼𝐼 , 1/𝑥𝑥2𝐼𝐼𝐼𝐼],   0 ∉ 𝑥𝑥2        
[1/𝑥𝑥2𝐼𝐼𝐼𝐼 ,∞],   𝑥𝑥2𝐼𝐼𝐼𝐼 = 0, 𝑥𝑥2𝐼𝐼𝐼𝐼 = 0   
[−∞, 1/𝑥𝑥2𝐼𝐼𝐼𝐼], 𝑥𝑥2𝐼𝐼𝐼𝐼 < 0, 𝑥𝑥2𝐼𝐼𝐼𝐼 = 0 
[−∞,∞],   𝑥𝑥2𝐼𝐼𝐼𝐼 < 0, 𝑥𝑥2𝐼𝐼𝐼𝐼 > 0     

               (6) 

It is efficient for some simple continuous functions to use the above operation method. 

2.2 Taylor interval expansion model 

Taylor expansion can approximately express some complex functions as simple polynomials. 

Taylor expansion at the point 𝐱𝐱𝐼𝐼𝐼𝐼 is 

𝑓𝑓(𝐱𝐱) = 𝑓𝑓(𝐱𝐱𝐼𝐼𝐼𝐼) + (∇𝐟𝐟)𝑇𝑇(𝐱𝐱 − 𝐱𝐱𝐼𝐼𝐼𝐼) +
1
2

(𝐱𝐱 − 𝐱𝐱𝐼𝐼𝐼𝐼)𝑇𝑇𝐇𝐇(𝐱𝐱 − 𝐱𝐱𝐼𝐼𝐼𝐼) + 𝑂𝑂𝑛𝑛𝑡𝑡    (7) 

where 𝑂𝑂𝑛𝑛 is the 𝑛𝑛𝑡𝑡 order Taylor remainder and 𝐇𝐇 is Hessian matrix. For m-dimensional 𝐱𝐱, 

𝐇𝐇 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜕𝜕

2𝑓𝑓(𝑥𝑥1𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥12

𝜕𝜕2𝑓𝑓(𝑥𝑥2𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥2

⋯
𝜕𝜕2𝑓𝑓(𝑥𝑥𝑚𝑚𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥1𝜕𝜕𝑥𝑥𝑚𝑚

𝜕𝜕2𝑓𝑓(𝑥𝑥2𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥2𝜕𝜕𝑥𝑥1

𝜕𝜕2𝑓𝑓(𝑥𝑥2𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥22

⋯
𝜕𝜕2𝑓𝑓(𝑥𝑥𝑚𝑚𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥2𝜕𝜕𝑥𝑥𝑚𝑚

⋮
𝜕𝜕2𝑓𝑓(𝑥𝑥𝑚𝑚𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥𝑚𝑚𝜕𝜕𝑥𝑥1

⋮
𝜕𝜕2𝑓𝑓(𝑥𝑥𝑚𝑚𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥𝑚𝑚𝜕𝜕𝑥𝑥2

⋱ ⋮

⋯
𝜕𝜕2𝑓𝑓(𝑥𝑥𝑚𝑚𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥𝑚𝑚2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

                      (8) 

To improve the computational efficiency, only the second-order expansion and the data on the diagonal 

of the Hessian matrix are retained in this study, as shown Eq. (9). 

𝐇𝐇� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝜕𝜕

2𝑓𝑓(𝑥𝑥1𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥12

0 ⋯ 0

0
𝜕𝜕2𝑓𝑓(𝑥𝑥2𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥22

⋯ 0

⋮
0

⋮
0

⋱ ⋮

⋯
𝜕𝜕2𝑓𝑓(𝑥𝑥𝑚𝑚𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥𝑚𝑚2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

                      (9) 

Besides, the dimension reduction of multivariate uncertain parameters can be carried out, the Taylor 

expansion can be divide into different Taylor expansions that only has one uncertain parameter, as 

shown Eq. (10) to Eq. (11). 

𝑓𝑓(𝐱𝐱) ≈ 𝑓𝑓(𝐱𝐱) = 𝑓𝑓1(𝑥𝑥1, 𝑥𝑥2𝐼𝐼𝐼𝐼, 𝑥𝑥3𝐼𝐼𝐼𝐼 … 𝑥𝑥𝑚𝑚𝐼𝐼𝐼𝐼) + ⋯+ 𝑓𝑓𝑚𝑚(𝑥𝑥1𝐼𝐼𝐼𝐼, 𝑥𝑥2𝐼𝐼𝐼𝐼 , 𝑥𝑥3𝐼𝐼𝐼𝐼 … 𝑥𝑥𝑚𝑚) − (𝑚𝑚− 1)𝑓𝑓(𝐱𝐱𝐼𝐼𝐼𝐼)    (10) 
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𝑓𝑓𝑘𝑘 ≈ 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼) +
𝜕𝜕𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥𝑘𝑘

(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼) +
1
2
𝜕𝜕2𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥𝑘𝑘2

(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼)2,𝑘𝑘 = 1,2, … ,𝑚𝑚      (11) 

Therefore, the lower and upper bounds of 𝑓𝑓𝑘𝑘 and 𝑓𝑓(𝐱𝐱) can be expressed as  

𝑓𝑓𝑘𝑘
𝐼𝐼𝐼𝐼 =  𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼) − �

𝜕𝜕𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥𝑘𝑘

� (𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼) − �
1
2
𝜕𝜕2𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥𝑘𝑘2

� (𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼)2              (12) 

𝑓𝑓𝑘𝑘
𝐼𝐼𝐼𝐼 =  𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼) + �

𝜕𝜕𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥𝑘𝑘

� (𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼) + �
1
2
𝜕𝜕2𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼)
𝜕𝜕𝑥𝑥𝑘𝑘2

� (𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼)2              (13) 

𝑓𝑓(𝐱𝐱) = ���𝑓𝑓𝑘𝑘
𝐼𝐼𝐼𝐼

𝑚𝑚

𝑘𝑘=1

− (𝑚𝑚− 1)𝑓𝑓(𝐱𝐱𝐼𝐼𝐼𝐼)� ,��𝑓𝑓𝑘𝑘
𝐼𝐼𝐼𝐼

𝑚𝑚

𝑘𝑘=1

− (𝑚𝑚− 1)𝑓𝑓(𝐱𝐱𝐼𝐼𝐼𝐼)��             (14) 

Then, the Taylor interval expansion (IE) model can be expressed by Eq. (14). Generally, the Taylor 

formula can achieve the best approximation in the case of very small interval radius (𝑥𝑥𝑘𝑘𝐼𝐼𝐼𝐼). Therefore, 

the calculation accuracy can be improved by establishing subintervals to compensate for the 

approximation error. For the uncertainty parameters 𝐱𝐱,  

𝐱𝐱𝑠𝑠_𝑖𝑖 = �𝐱𝐱𝐼𝐼𝐼𝐼 +
2(𝑠𝑠_𝑖𝑖 − 1)𝐱𝐱𝐼𝐼𝐼𝐼

𝑆𝑆_𝑛𝑛
, 𝐱𝐱𝐼𝐼𝐼𝐼 +

2𝑠𝑠_𝑖𝑖𝐱𝐱𝐼𝐼𝐼𝐼

𝑆𝑆_𝑛𝑛
� , 𝑠𝑠_𝑖𝑖 = 1,2, … , 𝑆𝑆_𝑛𝑛.                    (15) 

where 𝐱𝐱𝑠𝑠_𝑖𝑖  and 𝑆𝑆_𝑛𝑛  are the 𝑠𝑠_𝑖𝑖 th subinterval and the subinterval number, respectively. The 

subinterval number can be determined by referring to the number of uncertain parameters. 

3. Interval expansion method 

3.1 Radial basis function neural network 

RBFNN, which has the characteristics of self-learning, self-adaptive, and fast learning speed 

(Warnes et al. 1998; Leonard et al. 1992; Zhang et al. 2020), is chosen as the approximate model of 

the original system in this study. RBFNN is a simple three-layer neural network, including an input 

layer, a hidden layer, and an output layer, as shown in Fig. 1. Gaussian functions are often used as 

radial basis functions as follows: 

𝑟𝑟𝑗𝑗��𝐱𝐱 − 𝐜𝐜𝑗𝑗�� = exp�−
1

2𝛿𝛿𝑗𝑗2
�𝐱𝐱 − 𝐜𝐜𝑗𝑗�

2
� , 𝑗𝑗 = 1,2, … ,𝑛𝑛           (16) 

where x is the input, 𝐜𝐜𝑗𝑗  is the center of jth basis functions, and 𝛿𝛿𝑗𝑗2 is the variance of the radial basis 
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function. ‖. ‖ is the Euclidian distance and 𝑛𝑛 is the number of nerurons. For one output 𝑓𝑓(𝐱𝐱), the 

final output of the neural network can be expressed as: 

𝑓𝑓(𝐱𝐱) = �𝜔𝜔𝑗𝑗𝑟𝑟𝑗𝑗��𝐱𝐱 − 𝐜𝐜𝑗𝑗��
𝑛𝑛

𝑗𝑗=1
+𝜔𝜔0,   𝑗𝑗 = 1,2, … ,𝑛𝑛                   (17) 

where 𝜔𝜔𝑗𝑗 is the weight from the hidden layer to the output layer. 

 

Fig. 1 RBFNN with Gaussian function. 

To obtain a high-precision approximate model, the main network parameters of RBFNN (center point 

𝑐𝑐, variance 𝛿𝛿2 and weight 𝜔𝜔) need to be determined. Let the input dimension be 𝑚𝑚, and the number 

of training samples be 𝑃𝑃 (𝑃𝑃 > 𝑚𝑚). The hidden layer is aimed to map the input from low dimension 

𝑚𝑚 to high dimension 𝑃𝑃, which transforms a linear non-separable low-dimensional linear case into a 

linear separable high-dimensional case. When the number of neurons is equal to the number of samples, 

meanly 𝑃𝑃 = 𝑛𝑛, the center of each neuron is the value of each sample. Inevitably, the above methods 

are time-consuming. Therefore, the number of neurons is usually less than the number of samples (𝑃𝑃 >

𝑛𝑛). Here, 𝑃𝑃 samples are allocated into 𝑛𝑛 clusters, center of which in Euclidean space can be regarded 

as the center of the radial basis function. K-means clustering algorithm is often used to determine the 

center position in the input samples (Awad and Qasrawi 2018), but general K-means clustering 

algorithm is highly dependent on the initial center. Therefore, the improved K-means algorithm is used 

to design the clusters. The main steps are as follows: 

Step 1: Determine the number of cluster centers 𝑛𝑛, and select the first cluster center 𝐜𝐜𝑗𝑗(0) from the 

dataset randomly; 

Step 2: Calculate the distance 𝐷𝐷(𝐱𝐱𝑖𝑖) between each sample in the dataset and the nearest cluster center 

x1

x2

xm

r 1

r 2

r n

f (x)

Input layer Hidden layer Output layer

...

ω 1
ω 2

ω n
Activation 
function

Approximate 
response

Gaussian  
function

=1
ω 0

r 0



8 

 

Step 3: Select the next cluster center according to a roulette method, and select probability of each 

sample as the next cluster center 𝐷𝐷(𝐱𝐱𝑖𝑖)2 sum(𝐷𝐷(𝐱𝐱𝑖𝑖)2)⁄ ; 

Step 4: Repeat steps 2 and 3, and set the initial cluster centers as 𝐜𝐜𝑗𝑗(0), 𝑗𝑗 = 1,2, … ,𝑛𝑛; 

Step 5: Classify 𝐱𝐱𝑖𝑖 into the cluster 𝑗𝑗(𝐱𝐱𝑖𝑖) center by the nearest distance 

𝑗𝑗(𝐱𝐱𝑖𝑖) = arg min
𝑗𝑗

�𝐱𝐱𝑖𝑖 − 𝐜𝐜𝑗𝑗(𝑘𝑘)�                        (18) 

where the 𝑘𝑘 is the number of iterations. 

Step 6: Update the cluster center by Eq. (20): 

𝐜𝐜𝑗𝑗(𝑘𝑘) =
∑ 𝐱𝐱𝑖𝑖
𝑛𝑛𝑗𝑗
1
𝑛𝑛𝑗𝑗

                             (19) 

where 𝑛𝑛𝑗𝑗  is the number of data points in 𝑗𝑗th cluster; 

Step 7: Recalculate the distance between each data point and the new clustering center. When the 

clustering center no longer changes, it means the clustering algorithm is convergent. Otherwise, repeat 

the above steps. 

After determining the standard deviation, 𝛿𝛿𝑗𝑗2 can be calculated directly. 

𝛿𝛿12 = 𝛿𝛿22 = 𝛿𝛿𝑗𝑗2 = ⋯ = 𝛿𝛿𝑛𝑛2 =
𝑑𝑑max

2

2𝑛𝑛
                     (20) 

where 𝑑𝑑max is the maximum distance between the cluster centers. Here, singular value decomposition 

(SVD) is applied to optimize the weights. For an 𝑀𝑀 × 𝑁𝑁 activation matrix 𝐀𝐀, the SVD for 𝐀𝐀 is 

[𝐔𝐔, 𝐒𝐒,𝐕𝐕] = svd(𝐀𝐀)                           (21) 

𝐒𝐒 = diag(𝑎𝑎1,𝑎𝑎2, … )                          (22) 

𝐔𝐔 is an 𝑀𝑀 × 𝑀𝑀 matrix, 𝐕𝐕 is an 𝑁𝑁 × 𝑁𝑁 matrix, and 𝐒𝐒 is an 𝑀𝑀 × 𝑁𝑁 diagonal matrix. The value on 

the main diagonal of 𝐒𝐒 is the singular value of 𝐀𝐀.  

𝐀𝐀 = 𝐔𝐔𝐔𝐔𝐕𝐕𝐓𝐓                               (23) 

𝐀𝐀+ = 𝐔𝐔diag �
1
𝑎𝑎1

,
1
𝑎𝑎2

, … �𝐕𝐕𝑻𝑻                        (24) 

For the input and output relations in RBFNN, the expected output of RBFNN, 𝐎𝐎, is: 

𝐎𝐎 = 𝐑𝐑𝐑𝐑                                (25) 

where 𝛚𝛚 is the weight vector and 𝐑𝐑 is the matrix to be singular decomposed, which is composed of 

a radial basis function matrix and an identity matrix. Then, 𝛚𝛚 is calculated by Eq. (26) 

𝛚𝛚 = 𝐑𝐑+𝐎𝐎 = [𝐔𝐔diag �
1
𝑎𝑎
�𝐕𝐕𝐓𝐓]𝐎𝐎                         (26) 
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The relative average absolute error (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) is presented as the condition to judge whether RBFNN 

converges or the number of neuron should be increased. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = (1/𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)
∑ �𝑂𝑂𝑣𝑣 − 𝑂𝑂𝑣𝑣��𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑣𝑣=1

|𝑂𝑂𝑣𝑣| ≤ 𝜀𝜀                   (27) 

where 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is the number of test samples and 𝜀𝜀  is the accuracy requirement, 𝑂𝑂𝑣𝑣  and 𝑂𝑂𝑣𝑣�  are 

expected output and actual output respectively. The detailed training flowchart is shown in Fig. 2. In 

each iteration, when 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  is larger than ε , one neuron will be added in turn until the accuracy 

satisfies the convergence condition. The total samples are obtained by using optimized Latin hypercube 

sampling (OLHS). If the accuracy 𝜀𝜀 = 0.001  still does not meet the requirements, the training 

samples need to be increased when the maximum number of cluster centers is equal to the number of 

training samples. Finally, the trained network parameters will be saved for further research. 

 
Fig. 2 Training framework of RBFNN. 

3.2 Differential equations 

The trained approximation model can be used to express the differential equation of the system 

model. For the input variable 𝑥𝑥𝑖𝑖, the derivatives of the function are calculated by 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

= �−
1
𝛿𝛿𝑗𝑗2
𝜔𝜔𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑟𝑟𝑗𝑗��𝐱𝐱 − 𝐜𝐜𝑗𝑗���𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑗𝑗𝑖𝑖�                      (28) 
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𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝑖𝑖2

= �−
1
𝛿𝛿𝑗𝑗2
𝜔𝜔𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑟𝑟𝑗𝑗��𝐱𝐱 − 𝐜𝐜𝑗𝑗�� �1 −
1
𝛿𝛿𝑗𝑗2
�𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑗𝑗𝑗𝑗�

2
�              (29) 

Without losing generality, the second partial derivatives of different variables (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1 ) can be 

expressed as 

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖+1

= �
1
𝛿𝛿𝑗𝑗4
𝜔𝜔𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑟𝑟𝑗𝑗��𝐱𝐱 − 𝐜𝐜𝑗𝑗���𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑗𝑗𝑗𝑗��𝑥𝑥𝑖𝑖+1 − 𝑐𝑐𝑗𝑗(𝑖𝑖+1)�         (30) 

To explore the feasibility of RBFNN in solving continuous partial derivatives, 6 simple functions 

are used for verification. These test functions include linear and nonlinear functions, multivariate 

polynomials, and trigonometric functions. 

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝑓𝑓1 = 2𝑥𝑥1 + 𝑥𝑥2 + 4𝑥𝑥3 + 3𝑥𝑥4                  
𝑓𝑓2 = 2𝑥𝑥1𝑥𝑥2 + 5𝑥𝑥2𝑥𝑥3 + 3𝑥𝑥1𝑥𝑥3 + 2𝑥𝑥3𝑥𝑥4         
𝑓𝑓3 = sin(𝑥𝑥1) + 2sin(𝑥𝑥2) + 3 cos(𝑥𝑥3) + sin(2𝑥𝑥4) 
𝑓𝑓4 = 2𝑥𝑥12 + 𝑥𝑥22 + 3𝑥𝑥32 + 𝑥𝑥42 + 𝑥𝑥1𝑥𝑥3 + 𝑥𝑥2𝑥𝑥3      
𝑓𝑓5 = 2𝑥𝑥13 + 𝑥𝑥23 + 3𝑥𝑥33 + 𝑥𝑥43 + 𝑥𝑥1𝑥𝑥3 + 𝑥𝑥2𝑥𝑥3      
𝑓𝑓6 = sin(𝑥𝑥1) + 2 cos(𝑥𝑥2) + 3sin (𝑥𝑥4) + 𝑥𝑥1𝑥𝑥2𝑥𝑥3𝑥𝑥4

𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 ∈ [1,3]                   

                 (31) 

Each test function uses 90 samples as training data, and the other 9 samples as testing. The first-

order and second-order derivatives of the output values with respect to the input values are calculated. 

As illustrated in Fig. 3 and Fig. 4, all the test samples are well attached to the partial derivative curve. 

The network parameters obtained by RBFNN can effectively reflect the derivative trend of the original 

function. 

 

 
Fig. 3 The first-order differential values of test function. 
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Fig. 4 The second-order differential values of test function. 

 

Here, the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅s of test samples are shown in Table 1. Although the accuracy of the original 

approximation model is high (maximum error is 0.0006), the relative error of RBFNN rises with the 

increase of derivative order (the maximum error of the second-order derivatives is 0.0181). Overall, 

the derivative information of RBFNN has a high fitting capacity for continuous linear and nonlinear 

functions. In this study, the neural network using Gaussian function as radial basis function is 

acceptable for solving derivatives of general functions. 

 

 

Table 1. Relative average errors of the differential functions. 

Test functions Approximate function First-order Second-order 

𝑓𝑓1 0.0000 0.0005 0.0008 

𝑓𝑓2 0.0000 0.0007 0.0008 

𝑓𝑓3 0.0006 0.0069 0.0121 

𝑓𝑓4 0.0004 0.0042 0.0087 

𝑓𝑓5 0.0004 0.0044 0.0107 

𝑓𝑓6 0.0006 0.0076 0.0181 
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3.3 Identification method of uncertainty responses 

Obtaining derivative information of complex expressionless structural responses in the Taylor 

expansion model is difficult. To solve the limitations of the existing interval analysis methods, the 

RBFNN, and their differentiations are designed into the Taylor expansion model. A novel feasible 

identification method (RBFNNIE) of uncertainty responses using RBFNN and Taylor IE is proposed. 

Here, RBFNN can replace the original model to obtain the first-order and second-order partial 

derivatives. The flowchart of the solving process is shown in Fig. 5, which can be described as follows. 

Firstly, the uncertain parameters are determined, and the training data are prepared for the neural 

network. Then, the optimal neural network parameters are obtained by a clustering algorithm and 

singular value decomposition. After that, the first and second partial derivatives of the response model 

are obtained from the neural network which meets the accuracy requirements. Finally, the lower and 

upper bounds of responses are constructed by using RBFNNIE. 

 

 

Fig. 5 Flow chat of interval bounds analysis. 
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4. Interval uncertainty analysis of vehicle structures 

4.1 Vehicle hood 

Vibration characteristic is an essential index in the design of a vehicle hood. In this section, the 

2010 Toyota Yaris (2016) finite element model  is adopted to establish the modal analysis model of 

the vehicle hood. In Fig. 6 (b), the vehicle hood mainly consists of an inner panel and an outer panel. 

The nominal thicknesses of the inner and outer panels are 0.5 mm and 0.7 mm respectively. When the 

uncertainty of thickness parameters is not considered, the first natural frequency of the vehicle hood 

is 27.13Hz (Fig. 6 (c)). The two thicknesses of the inner and outer panels are regarded as interval 

uncertainty parameters, and seven cases are analyzed in which the uncertainty level coefficient 𝜉𝜉 of 

interval parameters are ±0.05, ±0.075, ±0.1, ±0.125, ±0.15, ±0.175, and ±0.2, respectively. Here, the 

interval uncertainty level coefficient 𝜉𝜉  of the design parameter is given to represent different 

uncertainty ranges. 

𝜉𝜉 = �
𝑥𝑥𝑖𝑖𝐼𝐼𝐼𝐼

𝑥𝑥𝑖𝑖
𝐼𝐼𝐼𝐼 �                                    (32) 

 

Fig. 6 Vehicle hood from 2010 Toyota Yaris (2016). 

Due to the good global convergence of genetic algorithm (GA), the boundary extremum of 

structural response function can be accurately obtained by setting reasonable algorithm parameters. 

Therefore, this study uses a genetic algorithm to obtain the boundary values as the accurate values. In 

Outer panel

Inner panel

First order natural frequency 
is 27.13 Hz 

(a) 2010 Toyota Yaris  

(b) FEA model of hood (c) Modal analysis 
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addition, Monte Carlo simulation (MCS) is also used to solve the response bounds as an existing 

method. Four subintervals are implemented in the uncertainty space. The GA solver comes from 

MATLAB 2020b. The computer is configured with Inter(R) Core(TM) I5–8250 U CPU@1.6 GHz. 

 

Fig. 7 Uncertainty analysis of vehicle hood. 

 

Table 2 Relative absolute errors of vehicle hood with different analysis methods  

𝜉𝜉 
Lower bound Upper bound 

MCS RBFNNIE (1) RBFNNIE (4) MCS RBFNNIE (1) RBFNNIE (4) 

0.05 0.0004  0.0001  0.0000 0.0002  0.0011  0.0002 

0.075 0.0003  0.0003  0.0003 0.0007  0.0028  0.0007 

0.100 0.0004  0.0000  0.0001 0.0002  0.0044  0.0008 

0.125 0.0005  0.0011  0.0002 0.0007  0.0076  0.0019 

0.150 0.0003  0.0005  0.0003 0.0008  0.0098  0.0054 

0.175 0.0023  0.0029  0.0014 0.0010  0.0148  0.0065 

0.200 0.0020  0.0017  0.0016 0.0005  0.0174  0.0091 

 

As shown in Fig. 7, the results of different uncertainty interval bounds are presented. RBFNNIE 

(1) and RBFNNIE (4) represent the expansion methods of one interval and four subintervals 

respectively. Compared with GA, MCS and RBFNNIE can effectively approximate the lower and 

upper bounds of the natural frequency. However, GA and MCS need to consume a lot of calculation 
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time in the actual calculation process. As shown in Fig. 7 (b), the average calculation time of GA and 

MCS is 112.04s and 562.89s respectively, while RBFNNIE (1) and RBFNNIE (4) only need 8.47 and 

20.61s respectively. It indicates that RBFNNIE has higher efficiency. On the other hand, the relative 

absolute errors of MCS and RBFNNIE to GA are given in Table 2. The maximum error of MCS 

appears in the lower bound with 𝜉𝜉 = 0.175, and the maximum error of RBFNNIE occurs in the upper 

bound with 𝜉𝜉 = 0.2. Moreover, RBFNNIE (4) has higher accuracy than RBFNNIE (1). RBFNNIE (4) 

can achieve a similar accuracy of MCS and requires lower computational cost. It shows that RBFNNIE 

has a good approximation ability for the lower and upper bounds, and can improve the accuracy by 

adding subintervals. The proposed method can be used to analyze the vibration mode problem. 

4.2 Mechanical claw 

To promote the development of intelligent sanitation vehicles, automatic mechanical claws are 

designed in this work. As shown in Fig. 8 (a), the preliminary drawing is established in SolidWorks. 

In the work process, the left and right mechanical claws are used to grab trash cans. The mechanical 

claw mainly bears the horizontal extrusion reaction force and the vertical friction force. The horizontal 

force 𝐹𝐹2 and the vertical force 𝐹𝐹1 are 1466N and 910N, respectively. 

 

Fig. 8 Loading analysis of mechanical claw. 

The FEA model of the mechanical claw is established by OptiStruct (as presented in Fig. 8 (c)). 
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The mechanical claw mainly includes four thickness variables (𝑇𝑇1, 𝑇𝑇2 𝑇𝑇3 and 𝑇𝑇4 are 5mm), and the 

material is No.45 steel. To investigate the loading characteristics of the mechanical claw, the finite 

element analysis is conducted and the results are shown in Fig. 8 (d). 𝑇𝑇1, 𝑇𝑇2 𝑇𝑇3 and 𝑇𝑇4 are regarded 

as interval uncertainty values, and seven cases are analyzed in which the uncertainty level coefficient 

𝜉𝜉 of interval parameters are ±0.05, ±0.075, ±0.1, ±0.125, ±0.15, ±0.175, and ±0.2, respectively. Eight 

subintervals are implemented in the uncertainty space. 

 

Fig. 9 Uncertainty analysis of displacement for arm. 

 

Fig. 10 Uncertainty analysis of von Mises stress for arm. 

As shown in Fig. 9 (a) and Fig. 10 (a), the results of different uncertainty interval bounds are 

presented. Compared with GA, MCS and RBFNNIE (8) can effectively approximate the lower and 
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upper bounds of the displacement and stress. Because of the uncertainty deviation of design variables 

caused by machining problems, it will cause displacement and stress exceeding the expected value, 

and will bring the failure hazard of mechanical structures. As a random calculation method, MCS needs 

to consume more computing time. In Fig. 9 (b), the average calculation time of MCS for displacement 

is 978.44s, while RBFNNIE (8) only needs 27.83s. In Fig. 10 (b), the average calculation time of MCS 

for stress is 567.93s, while RBFNNIE (8) only needs 33.54s. It implies that RBFNNIE has higher 

efficiency. It is found that the error of RBFNNIE (1) increases obviously with the increase of 

uncertainty level, thus, RBFNNIE (1) is not suitable for interval analysis with the increase of 

uncertainty level. For the accuracy of lower and upper bounds of displacement and stress, the relative 

absolute errors of MCS and RBFNNIE relative to GA are given in Table 3 and Table 4. The maximum 

error of MCS is 0.0353 in the upper bound with 𝜉𝜉 = 0.1, and the maximum error of RBFNNIE (8) is 

0.0197 appearing in the lower bound with 𝜉𝜉 = 0.2 . It shows that RBFNNIE (8) has a good 

approximation ability for the lower and upper bounds of the mechanical claw. The proposed method 

can be used to analyze the static loading problem. 

Table 3 Relative absolute errors of displacement with different analysis methods  

𝜉𝜉 
Lower bound Upper bound 

MCS RBFNNIE (1) RBFNNIE (8) MCS RBFNNIE (1) RBFNNIE (8) 

0.05 0.0023  0.0035  0.0017 0.0020  0.0026  0.0019 

0.075 0.0018  0.0080  0.0019 0.0028  0.0058  0.0030 

0.100 0.0021  0.0142  0.0056 0.0031  0.0103  0.0031 

0.125 0.0038  0.0223  0.0057 0.0034  0.0162  0.0044 

0.150 0.0039  0.0327  0.0093 0.0061  0.0233  0.0091 

0.175 0.0028  0.0465  0.0169 0.0060  0.0308  0.0106 

0.200 0.0016  0.0656  0.0170 0.0064  0.0372  0.0164 
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Table 4 Relative absolute errors of von Mises stress with different analysis methods 

𝜉𝜉 
Lower bound Upper bound 

MCS RBFNNIE (1) RBFNNIE (8) MCS RBFNNIE (1) RBFNNIE (8) 

0.05 0.0013  0.0067  0.0018 0.0006  0.0030  0.0009 

0.075 0.0008  0.0148  0.0011 0.0037  0.0067  0.0017 

0.100 0.0034  0.0267  0.0018 0.0353  0.0157  0.0045 

0.125 0.0008  0.0469  0.0125 0.0058  0.0262  0.0086 

0.150 0.0046  0.0529  0.0149 0.0015  0.0327  0.0151 

0.175 0.0040  0.0955  0.0157 0.0058  0.0703  0.0155 

0.200 0.0050  0.1278  0.0197 0.0049  0.0847  0.0163 

4.3 Anti-collision structures 

Anti-collision structures can protect passengers by transforming external impact kinetic energy 

into plastic deformation energy. As shown in Fig. 11, the two crash models of the front-end anti-

collision structures are carried out by the nonlinear explicit FE code LS-DYNA, the automatic single 

surface contact is applied to avoid penetration during deformation. The front-end anti-collision 

structure mainly includes three thickness parameters (𝑇𝑇1, 𝑇𝑇2 and 𝑇𝑇3 are 1mm). The material is steel 

and the mechanical properties are as follows: density ρ = 7.83g/cm3 ; Young's modulus 𝐸𝐸 =

207GPa; Poison's ratio ν = 0.28, initial yield stress 𝜎𝜎𝑦𝑦 = 346MPa. A rigid wall is an impactor with 

an additional mass of 900 kg and an initial velocity of 50 km/h. The crushing deformations of the two 

models are presented in Fig. 12. Compared with frontal impact (crash angle is 0°), the anti-collision 

structure under oblique angle impact is prone to instability, the plastic deformation is irregular, and the 

energy absorption capacity will be reduced. Therefore, the anti-collision structure with superior 

crashworthiness performance should have a variety of oblique angle impact resistance. The main 

crashworthiness indicators include energy absorption and peak crushing force (PCF). 
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Fig. 11 Dynamic finite element model of anti-collision structures. 

 

Fig. 12 Deformation behaviors of anti-collision structures 

 
Fig. 13 Uncertainty analysis of energy absorption. 

(a) Crash angle is 0° (b) Crash angle is 30° 
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Fig. 14 Uncertainty analysis of peak crushing force. 

To investigate the dynamic crushing characteristics of the anti-collision structure, three thickness 

parameters are regarded as interval uncertainty values, and seven cases are analyzed. Six subintervals 

are implemented in the uncertainty space. As shown in Fig. 13 and Fig. 14, the results of different 

uncertainty interval bounds are presented. Compared with GA, MCS and RBFNNIE (4) can effectively 

approximate the lower and upper bounds of the displacement and stress responses. However, the errors 

of RBFNNIE (1) are still significant in all the indicators. For the accuracy of lower and upper bounds 

of the dynamic crushing models, the maximum relative errors of MCS and RBFNNIE relative to GA 

are given in Table 5. The maximum relative errors of MCS and RBFNNIE (6) are less than 0.03. It 

shows that MCS and RBFNNIE (6) have a good approximation ability for the lower and upper bounds 

of energy and PCF. As shown in Fig. 15, the maximum calculation time of MCS and RBFNNIE (6) is 

1105.06s and 13.03s, respectively. The average calculation time of MCS is more than RBFNNIE (6). 

It should not be ignored that although GA and MCS can effectively find the boundary values of energy 

and PCF, their computational cost is expensive. Therefore, RBFNNIE can be used as an efficient and 

feasible scheme to solve the uncertain responses of dynamic crushing models.  

Table 5 Maximum relative absolute errors of different analysis methods for the front anti-collision structure 

NO. Crash angle (°) Responses MCS RBFNNIE (1) RBFNNIE (6) 

1 0 Energy 0.0077 0.0273 0.0181 

2 0 PCF 0.0005 0.0778 0.0134 

3 30 Energy 0.0058 0.2106 0.0097 

4 30 PCF 0.0027 0.1117 0.0238 
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Fig. 15 Computing time for anti-collision structure. 

 

4.4 Multi-link suspension 

Multi-link suspension can not only ensure a certain degree of comfort but also make the wheels 

and the ground as vertical as possible and reduce the tilt of the body as much as possible. The kinematic 

model of multi-link suspension is established by ADMAS, and the travel of parallel wheel jump test is 

±50mm, as shown in Fig. 16. Here, the toe angle, camber angle, wheel-track, and wheelbase are taken 

as the performance responses, and the main coordinate values with a prominent contribution of the 

four coordinates are obtained by significance analysis, as shown in Table 6. Four coordinate points are 

regarded as interval uncertainty parameters, and five cases are analyzed in which the uncertainty 

deviation, that is ±1mm, ±2mm, ±3mm, ±4mm, and ±5mm. Eight subintervals are implemented in the 

uncertainty space. The suspension with superior kinematic characteristics should keep the minimum 

change of toe angle, camber angle, wheel-track, and wheelbase in the wheel jump stroke. Therefore, 

the lower and upper bounds of the maximum and minimum values of different performance responses 

are considered. As shown in Fig. 17, the results of different uncertainty interval bounds are presented. 

It is easy to find that the uncertainty of the hardpoint is the most sensitive to toe angle by comparing 

the fluctuation range of different responses. Compared with GA, MCS and RBFNNIE (8) can 

effectively approximate the lower and upper bounds of the toe angle, camber angle, wheel-track, and 

wheelbase. 
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Fig. 16 Kinematic model of multi-link suspension. 

 

For the accuracy of lower and upper bounds of the kinematic responses, the maximum errors of 

MCS and RBFNNIE relative to GA are given in Table 7. The maximum errors of MCS and RBFNNIE 

(8) are less than 0.02. It shows that RBFNNIE (8) has a good approximation ability for the lower and 

upper bounds of kinematic responses. The proposed method can obtain the feasible boundary solutions 

of multi-link suspension. In addition, the maximum calculation time of MCS and RBFNNIE (8) is 

12550s and 132.03s, respectively. The average calculation time of RBFNNIE (8) is less than MCS. 

Similar to the conclusion of the above case, although both GA and MCS can approach the lower and 

upper bounds of uncertainty, the computational cost is expensive. Therefore, the proposed method can 

be used to analyze the uncertain bounds of the kinematic problem. Compared with the above three 

cases, the number of uncertain variables in this model has increased to 6, and the calculation cost has 

also increased. It shows that the total calculation cost is positively related to the number of uncertain 

variables. 

 

Table 6 Coordinate points. 

Coordinate points A B C D 

Y (mm) -265 -714 -698 -280 

Z (mm) 969 1019 988 955 
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Fig. 17 Uncertainty analysis of multi-link suspension. 

Table 7 Maximum relative absolute errors of different analysis methods. 

NO. Responses MCS RBFNNIE (1) RBFNNIE (8) 

1 Toe angle (Maximum) 0.0029 0.3195 0.0191 

2 Toe angle (Minimum) 0.0075 0.1386 0.0105 

3 Camber angle (Maximum) 0.0036 0.0070 0.0044 

4 Camber angle (Minimum) 0.0021 0.0047 0.0029 

5 Wheel-travel (Maximum) 0.0014 0.0030 0.0021 

6 Wheel-travel (Minimum) 0.0028 0.0145 0.0058 

7 Wheelbase (Maximum) 0.0003 0.0005 0.0002 

8 Wheelbase (Minimum) 0.0002 0.0006 0.0002 
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5. Conclusion 

To analyze the lower and upper bounds of interval uncertainty responses, a feasible identification 

method of uncertainty responses is proposed for vehicle structures with interval design parameters. 

The trained RBFNN parameters from the improved K-means clustering algorithm and singular value 

decomposition can approximate the first-order and second-order partial derivatives of different test 

functions. RBFNN provides a feasible way to calculate partial derivatives for Taylor expansion. During 

the analysis of engineering design models, GA, MCS, and RBFNNIE all can effectively and accurately 

approximate the lower and upper bounds of the uncertain structural responses. However, GA and MCS 

need more calculation time than RBFNNIE. RBFNNIE demonstrates higher feasibility and efficiency 

over the existing methods for uncertainty analysis. RBFNNIE with subintervals has higher accuracy 

than RBFNNIE (1) for all engineering design models. It is a feasible measure to increase the 

calculation accuracy by adding subintervals, while not increasing the computational cost. 

The uncertainty of different engineering applications (vehicle hood, mechanical claw, anti-

collision structures, and multi-link suspension) is analyzed, including vibration modal, static loading, 

nonlinear dynamic crushing, and kinematics problems. All the above results show that this proposed 

method has high applicability for vehicle design, and can carry out the optimization work of uncertain 

variables in the future. 

Funding 

This work was supported by the Prospective Technology Project of Nanchang Intelligent New Energy 

Vehicle Research Institute (17092380013), the Project of Shanghai Science and Technology 

Committee (20511104602), and the National Natural Science Foundation of China (52075188). 

Ethics declarations 

Conflict of interest 

The authors declare that they have no conflict of interest. 

Replication of results 

The main program in this study can be found at https://github.com/xiangxu888/FOR_SHARING.git. More related 
data and codes that support the findings of this study are available from the first author or corresponding author upon 
reasonable request. 
 

https://github.com/xiangxu888/FOR_SHARING.git


25 

 

References 
Almarashi AAS (2012) Approximation Solution of Fractional Partial Differential Equations by Neural Networks. Advances 

in Numerical Analysis 2012: 912810. https://doi.org/10.1155/2012/912810 
Awad M, Qasrawi I (2018) Enhanced RBF neural network model for time series prediction of solar cells panel depending 

on climate conditions (temperature and irradiance). Neural Computing and Applications 30: 1757-1768. 
https://doi.org/10.1007/s00521-016-2779-5 

Brown D, Ling L, Kansa E, Levesley J (2005) On approximate cardinal preconditioning methods for solving PDEs with 
radial basis functions. Engineering Analysis with Boundary Elements 29: 343-353. 
https://doi.org/10.1016/j.enganabound.2004.05.006 

Cao L, Liu J, Xie L, Jiang C, Bi R (2021) Non-probabilistic polygonal convex set model for structural uncertainty 
quantification. Applied Mathematical Modelling 89: 504-518. https://doi.org/10.1016/j.apm.2020.07.025 

Chen G, Yang D (2021) A unified analysis framework of static and dynamic structural reliabilities based on direct 
probability integral method. Mechanical Systems and Signal Processing 158: 107783. 
https://doi.org/10.1016/j.ymssp.2021.107783 

Chen H, Kong L, Leng WJ (2011) Numerical solution of PDEs via integrated radial basis function networks with adaptive 
training algorithm. Applied Soft Computing 11: 855-860. https://doi.org/10.1016/j.asoc.2010.01.005 

Chen SH, Ma L, Meng GW, Guo R (2009) An efficient method for evaluating the natural frequencies of structures with 
uncertain-but-bounded parameters. Computers & Structures 87: 582-590. 
https://doi.org/10.1016/j.compstruc.2009.02.009 

Cheng J, Tang MY, Liu ZY, Tan JR (2016) Direct reliability-based design optimization of uncertain structures with interval 
parameters. Journal of Zhejiang University-SCIENCE A 17: 841-854. https://doi.org/10.1631/jzus.A1600143 

Fernandez-Prieto JA, Canada-Bago J, Gadeo-Martos MA, Velasco JR (2012) Optimisation of control parameters for 
genetic algorithms to test computer networks under realistic traffic loads. Applied Soft Computing 12: 1875-1883. 
https://doi.org/10.1016/j.asoc.2011.02.004 

Gao W, Wu D, Gao K, Chen X, Tin-Loi F (2018) Structural reliability analysis with imprecise random and interval fields. 
Applied Mathematical Modelling 55: 49-67. https://doi.org/10.1016/j.apm.2017.10.029 

Gao W, Wu D, Song C, Tin-Loi F, Li X (2011) Hybrid probabilistic interval analysis of bar structures with uncertainty 
using a mixed perturbation Monte-Carlo method. Finite Elements in Analysis and Design, 47: 643-652. 
https://doi.org/10.1016/j.finel.2011.01.007 

Guo X, Bai W, Zhang W (2008) Extreme structural response analysis of truss structures under material uncertainty via 
linear mixed 0–1 programming. International Journal for Numerical Methods in Engineering 76: 253-277. 
https://doi.org/10.1002/nme.2298 

Huang ZL, Jiang C, Zhou YS, Luo Z, Zhang Z (2016) An incremental shifting vector approach for reliability-based design 
optimization. Structural and Multidisciplinary Optimization 53: 523-543. https://doi.org/10.1007/s00158-015-
1352-7 

Impollonia N, Muscolino G (2011) Interval analysis of structures with uncertain-but-bounded axial stiffness. Computer 
Methods in Applied Mechanics and Engineering 200: 1945-1962. https://doi.org/10.1016/j.cma.2010.07.019 

Imani M, Ghoreishi SF (2021) Two-Stage Bayesian Optimization for Scalable Inference in State-Space Models. IEEE 
Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3069172 

Jiang C, Han X, Liu GP (2008a) A sequential nonlinear interval number programming method for uncertain structures. 
Computer Methods in Applied Mechanics and Engineering 197: 4250-4265. 
https://doi.org/10.1016/j.cma.2008.04.027 

Jiang C, Han X, Liu GR, Liu GP (2008b) A nonlinear interval number programming method for uncertain optimization 
problems. European Journal of Operational Research 188: 1-13. https://doi.org/10.1016/j.ejor.2007.03.031 



26 

 

Leonard JA, Kramer MA, Ungar LH (1992) Using radial basis functions to approximate a function and its error bounds. 
IEEE Transactions on Neural Networks 3: 624-627. https://doi.org/10.1109/72.143377 

Li F, Luo Z, Rong J, Zhang N (2013) Interval multi-objective optimisation of structures using adaptive Kriging 
approximations. Computers & Structures 119: 68-84. https://doi.org/10.1016/j.compstruc.2012.12.028 

Long XY, Mao DL, Jiang C, Wei FY, Li GJ (2019) Unified uncertainty analysis under probabilistic, evidence, fuzzy and 
interval uncertainties. Computer Methods in Applied Mechanics and Engineering 355: 1-26. 
https://doi.org/10.1016/j.cma.2019.05.041 

Ma M, Wang L (2021) Reliability-based topology optimization framework of two-dimensional phononic crystal band-gap 
structures based on interval series expansion and mapping conversion method. International Journal of Mechanical 
Sciences 196: 106265. https://doi.org/10.1016/j.ijmecsci.2020.106265 

Meng X, Liu J, Cao L, Yu Z, Yang D (2020) A general frame for uncertainty propagation under multimodally distributed 
random variables. Computer Methods in Applied Mechanics and Engineering 367: 113109. 
https://doi.org/10.1016/j.cma.2020.113109 

Qiu Z, Chen S, Elishakoff I (1996) Bounds of eigenvalues for structures with an interval description of uncertain-but-non-
random parameters. Chaos, Solitons & Fractals 7: 425-434. https://doi.org/10.1016/0960-0779(95)00065-8 

Qiu Z, Li X (2021) A new model for the eigenvalue buckling analysis with unknown-but-bounded parameters. Aerospace 
Science and Technology 113: 106634. https://doi.org/10.1016/j.ast.2021.106634 

Qiu Z, Ma L, Wang X (2009) Non-probabilistic interval analysis method for dynamic response analysis of nonlinear 
systems with uncertainty. Journal of Sound and Vibration 319: 531-540. https://doi.org/10.1016/j.jsv.2008.06.006 

Qiu Z, Wang X (2005a) Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded 
parameters based on interval analysis. International Journal of Solids and Structures 42: 4958-4970. 
https://doi.org/10.1016/j.ijsolstr.2005.02.023 

Qiu Z, Wang X (2005b) Solution theorems for the standard eigenvalue problem of structures with uncertain-but-bounded 
parameters. Journal of Sound and Vibration 282: 381-399. https://doi.org/10.1016/j.jsv.2004.02.024 

Qiu Z, Wang X, Chen J (2006) Exact bounds for the static response set of structures with uncertain-but-bounded parameters. 
International Journal of Solids and Structures 43: 6574-6593. https://doi.org/10.1016/j.ijsolstr.2006.01.012 

Qiu Z, Xia Y, Yang J (2007) The static displacement and the stress analysis of structures with bounded uncertainties using 
the vertex solution theorem. Computer Methods in Applied Mechanics and Engineering 196: 4965-4984. 
https://doi.org/10.1016/j.cma.2007.06.022 

Rageh A, Eftekhar AS, Linzell DG (2020) Steel railway bridge fatigue damage detection using numerical models and 
machine learning: Mitigating influence of modeling uncertainty. International Journal of Fatigue 134:105458. 
https://doi.org/10.1016/j.ijfatigue.2019.105458 

Sharifzadeh M, Sikinioti-Lock A, Shah N (2019) Machine-learning methods for integrated renewable power generation: A 
comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression. 
Renewable and Sustainable Energy Reviews 108: 513-538. https://doi.org/10.1016/j.rser.2019.03.040 

Toyota Yaris (2016) finite element model. https://www.ccsa.gmu.edu/models/2010-toyota-yaris/. Released December 2016. 
Tang T, Luo H, Song Y, Fang H, Zhang J (2021) Chebyshev inclusion function based interval kinetostatic modeling and 

parameter sensitivity analysis for Exechon-like parallel kinematic machines with parameter uncertainties. 
Mechanism and Machine Theory 157: 104209. https://doi.org/10.1016/j.mechmachtheory.2020.104209 

Viegas C, Daney D, Tavakoli M, De Almeida AT (2017) Performance analysis and design of parallel kinematic machines 
using interval analysis. Mechanism and Machine Theory 115: 218-236. 
https://doi.org/10.1016/j.mechmachtheory.2017.05.003 

Wang L, Chen Z, Yang G, Sun Q, Ge J (2020). An interval uncertain optimization method using back-propagation neural 
network differentiation. Computer Methods in Applied Mechanics and Engineering 366: 113065. 

https://www.ccsa.gmu.edu/models/2010-toyota-yaris/


27 

 

https://doi.org/10.1016/j.cma.2020.113065 
Warnes MR, Glassey J, Montague GA, Kara B (1998) Application of radial basis function and feedforward artificial neural 

networks to the Escherichia coli fermentation process. Neurocomputing 20: 67-82. https://doi.org/10.1016/S0925-
2312(98)00025-3 

Wu J, Zhao You Q, Chen Su H (2005) An improved interval analysis method for uncertain structures. Structural 
Engineering and Mechanics 20: 713-726. https://doi.org/10.12989/sem.2005.20.6.713 

Wu J, Luo Z, Zhang Y, Zhang N (2014) An interval uncertain optimization method for vehicle suspensions using Chebyshev 
metamodels. Applied Mathematical Modelling 38: 3706-3723. https://doi.org/10.1016/j.apm.2014.02.012 

Xia B, Lü H, Yu D, Jiang C (2015) Reliability-based design optimization of structural systems under hybrid probabilistic 
and interval model. Computers & Structures 160: 126-134. https://doi.org/10.1016/j.compstruc.2015.08.009 

Xu X, Chen X, Liu Z, Xu Y, Zhang Y (2021a) Reliability-based design for lightweight vehicle structures with uncertain 
manufacturing accuracy. Applied Mathematical Modelling 95: 22-37. https://doi.org/10.1016/j.apm.2021.01.047 

Xu X, Chen X, Liu Z, Yang J, Xu Y, Zhang Y, Gao Y (2021b) Multi-objective reliability-based design optimization for the 
reducer housing of electric vehicles. Engineering Optimization . https://doi.org/10.1080/0305215X.2021.1923704 

Zhang D, Zhang N, Ye N, Fang J, Han X (2020) Hybrid Learning Algorithm of Radial Basis Function Networks for 
Reliability Analysis. IEEE Transactions on Reliability. https://doi.org/10.1109/TR.2020.3001232 

Zhang XM, Ding H, Chen SH (2007) Interval finite element method for dynamic response of closed-loop system with 
uncertain parameters. International Journal for Numerical Methods in Engineering 70: 543-562. 
https://doi.org/10.1002/nme.1891 

 


	1. Introduction
	2. Interval model theory
	2.1 Interval uncertainty model
	2.2 Taylor interval expansion model

	3. Interval expansion method
	3.1 Radial basis function neural network
	3.2 Differential equations
	3.3 Identification method of uncertainty responses

	4. Interval uncertainty analysis of vehicle structures
	4.1 Vehicle hood
	4.2 Mechanical claw
	4.3 Anti-collision structures
	4.4 Multi-link suspension

	5. Conclusion
	Funding
	Ethics declarations

