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Abstract 14 

Internal concentration polarization (ICP) is currently a major bottleneck in the forward 15 

osmosis process. Proper modelling of the internal concentration polarisation is therefore vital 16 

for improving the process performance and efficiency. This study assessed the feasibility of 17 

several machine learning methods for internal concentration polarisation prediction, 18 

including artificial neural networks, extreme gradient boosting (XGBoost), Categorical 19 

boosting (CatBoost), Random forest, and linear regression. Among the many algorithms 20 

evaluated, the CatBoost regression outperformed other methods in terms of coefficient of 21 

determination (R2) and the mean square error. The CatBoost algorithm's prediction power 22 

was then evaluated using non-training (user-provided) data and compared to solution 23 

diffusion models. The results indicated that the machine learning algorithms could predict ICP 24 

in the process with high accuracy for the provided dataset and excellent generalizability for 25 

future testing data. Furthermore, machine learning algorithms may offer insights into the 26 

input features that majorly affect ICP modelling in the forward osmosis process. 27 

Keywords:  Forward osmosis (FO), internal concentration polarization (ICP), machine learning 28 

modelling, artificial neural network, and wastewater treatment 29 

1. Introduction  30 

Forward osmosis (FO) membrane-based desalination has attracted tremendous attention due 31 

to its numerous advantages over pressure-driven membrane processes, particularly for 32 

treating complex wastewaters [1, 2]. The FO process advantages include low membrane 33 

fouling and a high-water recovery rate [3, 4]. However, the process being driven by osmosis 34 

or concentration differences between the feed and the draw solutions, is hindered by the 35 

problem of concentration polarization (CP) [5-7]. In the FO process, two types of CP co-occur, 36 
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viz. external concentration polarization (ECP) and internal concentration polarization (ICP) [5]. 37 

The ECP has been reported in all membrane processes, whereas the ICP is unique to the 38 

forward osmosis process. Both ICP and ECP lead to a decrease in the concentration at the 39 

boundary layer near the membrane surface compared to the actual concentration in the bulk 40 

solutions, leading to a decrease in the net osmotic driving force in the FO process [5]. 41 

However, ECP is not a severe issue compared to ICP in the FO process since ECP can be 42 

mitigated by varying hydrodynamic conditions.  43 

Earlier studies on the FO process revealed that ICP accounts for about 80% of flux reduction 44 

in the FO process [7-9]. Since CP is such a significant issue in the forward osmosis process, 45 

modelling water flux behaviour in the presence of the CP is of utmost importance to 46 

understand the process performance and possible optimisation. Several models for CP 47 

measurements and predictions have been reported in the literature [10-15].  The first FO 48 

water flux model incorporating concentration polarization was proposed by  Lee et al. [16]. 49 

The model has been revised and witnessed a lot of improvements by several researchers over 50 

time. This model was later updated by McCutcheon and Elimelech [10] by considering 51 

external and internal CPs on both sides of the FO membrane. This model was widely used in 52 

the FO literature; however, the impact of reverse salt flux ( RSF) from the draw solution to the 53 

feed solution, osmotic swelling of the FO membrane, as well as the mass transfer resistance 54 

provided by the support layer was neglected. Yip et al. [13] presented an updated model for 55 

FO transport in the presence of external and internal CPs along with the impact of the RSF. 56 

Details equation of these models is presented in the methodology section. Several other 57 

models are also presented in the literature, such as Bui et al. [15] model, resistance in the 58 

series model by Nagy [14], empirical model by [17] and several new models based on CFD 59 



4 
 

(computational fluid dynamics)[18], and two dimensional-FEM (finite element analysis) 60 

models [19-21]. 61 

Each model given in the literature has limitations and was developed based on certain 62 

assumptions or ideal circumstances. The measurement, prediction and estimation of 63 

concentration polarization, water flux and RSF are based on iterative procedures in these 64 

models. Furthermore, these models are based on exacting methodologies, are 65 

mathematically sophisticated and are time-consuming. Despite these drawbacks, these 66 

models are still widely employed in FO studies; however, there is a lack of universality since 67 

each model is limited to a certain range of parameters. For instance, if the draw solution is 68 

changed from NaCl (sodium chloride) to a mixture (e.g. NaCl + MgSO4 (magnesium sulphate) 69 

+ MgCl2 (magnesium chloride)), most FO flux models would be inaccurate because the 70 

diffusion coefficient for the mixture would have to be determined separately through a 71 

lengthy series of exhaustive experiments. Recently, there has been a surge in ML modelling 72 

due to their high precision and accuracy [22-24], and ML algorithms have recently been used 73 

for FO's performance in several studies [23, 25]. ML is the study and interpretation of patterns 74 

and structures in data to automate learning, reasoning, and prediction [23]. Further, ML 75 

enables users to feed massive amounts of data to a computer algorithm, then analyses and 76 

makes data-driven recommendations and predictions based entirely on the input data. 77 

Moreover, unlike solution diffusion models, ML models can model complex and non-linear 78 

systems with high accuracy [26, 27]. 79 

 Very few studies have investigated ML techniques to model forward osmosis performance. 80 

For instance,  Jawad et al. [23] employed artificial neural networks to predict forward osmosis 81 

permeate flux. K et al. [28] employed artificial neural networks and ANFIS (Adaptive-Neuro 82 
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Fuzzy Inference System) to model forward osmosis treatment of textile wastewater. 83 

Hosseinzadeh et al. [29] employed ANN and the ANFIS to model water flux in an osmotic 84 

membrane bioreactor. The prediction of all of these studies is limited to water flux prediction, 85 

which otherwise can also be predicted accurately using solution diffusion or empirical models. 86 

Fundamentally,  the problem is with the prediction of internal concentration polarisation, 87 

where solution diffusion models or empirical models have limitations.  As a result, the use of 88 

ML techniques can be a viable tool to predict the ICP in the forward osmosis process.  89 

This research aims to assess and compare various ML models for ICP prediction and compare 90 

the prediction to solution diffusion (SD) models. ML predictions can be superior to SD models 91 

since ML algorithms can learn from the input data, find hidden patterns and predict the 92 

output with high precision and accuracy. On the other hand, using solution diffusion-based 93 

models, for example, if (NH4)HCO3 (ammonium bicarbonate) or Ca(NO3)2 (calcium nitrate) 94 

is used as a draw solution, the diffusion coefficient of these compounds is not accessible in 95 

the literature, and the solution diffusion model would fail to estimate the severity of the ICP. 96 

Furthermore, when draw solutions mixture is employed, calculating the diffusion coefficient 97 

becomes difficult. As a result, we propose and analyse several ML models for ICP prediction 98 

based on various inputs and FO process parameters for the first time. By applying different 99 

ML algorithms to the dataset, two critical questions will be addressed; which ML algorithm is 100 

the most effective for the prediction of ICP modulus, and what is the potential of ML models, 101 

in general, to give insights into the most important features that impact ICP on the FO process. 102 

For assessing the modulus of ICP, the findings are compared to the SD model. 103 

2. Theory and methods 104 
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2.1. Study design  105 

Initial data were collected from published papers that reported values for K (solute resistance 106 

to diffusion), "S," predicted water flux using SD models, and experimental water flux. The rest 107 

of the data for input parameters were gathered from the experimental design and results of 108 

each study after the published studies were chosen (Appendix Figure A.3 and A.4, heatmaps) 109 

[5, 8, 11-15, 17, 30-33]. ML modelling was done in Python using Google Collaboratory or 110 

Google Collab on the Google research platform, a free Jupyter notebook in the Google cloud. 111 

Modelling was done following each ML algorithm-specific methodology without major 112 

feature engineering.  113 

2.2. Data collection and pre-processing  114 

The data collected for the ML models included a total of 438 instances and 19 features, 115 

including output features for CICP (concentrative internal concentration polarization) and 116 

DICP (dilutive internal concentration polarization) [10, 17, 34-36]. The total number of data 117 

points for DICP were 351 instances and 19 features (Heatmap is shown in Figure A.3, Appendix 118 

A. On the other hand, the total number of data points of CICP was 84 instances and 19 119 

features (Heatmap shown in Figure A.4, Appendix A). To the best of our knowledge, no study 120 

recommends a minimum quantity of data for the ANN and other ML algorithms to perform 121 

well; however, some studies have reported good performance even with datasets ranging 122 

from 20-80 data points [37, 38].  The data from images were extracted using an online 123 

software known as “WebPlotDigitizer 4.5”. The data included all the input parameters that 124 

impact internal concentration polarization in the FO process, except reverse salt flux (RSF) 125 

since RSF data was scarce in the published studies. The forward osmosis system used 126 

throughout all the studies was operated in the FO mode, also termed the AL-FS mode, and 127 

the PRO mode, also known as the AL-DS mode (Table 1). The crossflow velocities ranged from 128 
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0.0192 m.sec-1 to a maximum of 1.22 m.sec-1.  Recent studies have revealed that flow 129 

arrangement impacts the ICP [15]; thus, it was also considered an input parameter. Most of 130 

the data were collected using commercial CTA, TFC and NaNoH2O membranes provided by 131 

different suppliers of FO membranes. All of the studies' pure water permeability A value, salt 132 

rejection R-value, and salt permeability B value were collected. Later, rejection rate data were 133 

not considered in the input since most studies reported a similar rejection for the FO 134 

membrane. The osmotic pressure data calculated by OLI software was taken directly from the 135 

studies or calculated by Van’t Hoff equation when it was not directly available. The data was 136 

normalized in Python by utilising the data's minimum and maximum values.  137 

𝑋𝑋𝑠𝑠𝑠𝑠 = 𝑥𝑥−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

                  (1) 138 

Table 1: Input and output parameters for the collected data 139 

Input/output 
Parameters 

Mean Maximum value Minimum value Standard deviation 

Flow arrangement  
(Cocurrent or 
counter current) 

N/A N/A N/A N/A 

Membrane 
orientation 
AL-FS  

N/A N/A N/A N/A 

Membrane 
orientation 
AL-DS 

N/A N/A N/A N/A 

FS cross-flow 
velocity (CFV) 

0.21  122.22  0.56 26.64 

DS CFV 0.21  122.22  1.92 26.26 

FS molarity 0.13    0.21  

FS Osmotic 
Pressure 

6.59  52.02 0 10.76 

DS molarity 1.36 M 9 0.04 1.03 
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*RSF data was not available for most studies in the literature and CP models, therefore was excluded.  140 

Data for solution diffusion and empirical model 141 

The ICP modulus calculation requires the value solute resistance to diffusion. The k value 142 

(mass transfer coefficient of the FO channel) and K (solute resistance to diffusion) must be 143 

calculated for the SD model. This was either taken directly from the studies where it was 144 

available or calculated accordingly to the two models of [10] and [13].  According to [10], 145 

water flux in the FO process operating in the PRO mode (active membrane layer faces the 146 

draw solution) is given by Equation (2). For the FO membrane operating in the FO mode 147 

(active membrane layer faces the feed solution), water flux is presented by Equation (3).                                         148 

DS osmotic 
pressure 

71.98 1.96 483.14 54.71 

FS type N/A N/A N/A N/A 

DS type N/A N/A N/A N/A 

FS temperature 300.98 K 323 273 6.61 

DS temperature 300.98 K 323 273 6.23 

DS Molecular 
weight 

67.47 g 119.02 47.60 12.02 

Osmotic pressure 
difference 

71.98 atm 0 472 52.54 

Membrane pure 
water permeability 
(A) value 

3.01E-07 
m/sec.atm 

7.12E-07 1.1E-07 1.24E-07 

Membrane salt 
permeability (B) 
value 

6.24E-07 m/s 9.8E-08 5E-08 4.18E-07 

Water flux 3.92E-06 m/s 
 

2.1E-05 2.7E-10 3.41E-06 

DICP (output) 0.38 1 0 0.33 

CICP (output) 5.72 1 147.10 19.26 

Mass transfer 
coefficient (k) 

2.81E-05 6.3E-05 1.7E-05 1.93E-05 

Solute resistance 
to diffusion (K) 

2.6E05 3.5E05 2.5E05 3.1E05 
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𝐽𝐽𝑤𝑤  
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Where 𝐽𝐽𝑤𝑤 is the experimental flux, 𝜋𝜋𝐷𝐷𝐷𝐷and 𝜋𝜋𝐹𝐹𝐹𝐹 are the bulk feed concentration of draw and 151 

feed solution, respectively, k is the convective mass transfer coefficient, and K is the salt 152 

resistivity. Unfortunately, the proposed model neglects the effects of salt transport and the 153 

external mass transfer resistance on the support layer [14]. Yip et al. [13] presented a 154 

modified mathematical model in Equations (4) and (5) for the FO and the PRO orientation, 155 

respectively. 156 

     𝐽𝐽𝑤𝑤𝐹𝐹𝐹𝐹 =    𝐴𝐴 �
𝜋𝜋𝐷𝐷𝐷𝐷 𝑒𝑒𝑒𝑒𝑒𝑒(−𝐽𝐽𝑤𝑤𝐾𝐾)−𝜋𝜋𝐹𝐹𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 �𝐽𝐽𝑤𝑤𝑘𝑘 �

1+ 𝐵𝐵
𝐽𝐽𝑤𝑤
�𝑒𝑒𝑒𝑒𝑒𝑒�𝐽𝐽𝑤𝑤𝑘𝑘 �−𝑒𝑒𝑒𝑒𝑝𝑝 −(𝐽𝐽𝑤𝑤𝐾𝐾)�

�                  (4) 157 

     𝐽𝐽𝑤𝑤𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐴𝐴 �
𝜋𝜋𝐷𝐷,𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒�−

𝐽𝐽𝑤𝑤 
𝑘𝑘 �−𝜋𝜋𝐹𝐹,𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝑤𝑤𝐾𝐾)

1+ 𝐵𝐵
𝐽𝐽𝑤𝑤 

�𝑒𝑒𝑒𝑒𝑒𝑒(𝐽𝐽𝑤𝑤𝐾𝐾)−𝑒𝑒𝑒𝑒𝑒𝑒�−𝐽𝐽𝑤𝑤 
𝑘𝑘 ��

�                 (5) 158 

 The mass transfer resistance at the porous support layer, on the other hand, was not 159 

considered in equations (4) and (5), but it’s by far the most widely used model for the 160 

calculation of K value. The experimental flux was taken as reported directly from the studies. 161 

The modelling studies considered the initial water flux (30 minutes), and constant draw 162 

solution concentration is maintained, or the dilution of draw solution is ignored and not 163 

considered.  164 

2.3. Design settings and performance evaluation metrics   165 

Two different models were designed and evaluated for DICP and CICP, respectively (Table 2). 166 

The former CP occurs in the AL-FS mode and the latter CP in the AL-DS mode, and both do not 167 

occur simultaneously in the FO process, so one was made redundant when modelling for the 168 

other parameter. The efficacy of the constructed ML models can be determined using the 169 

correlation coefficient (𝑅𝑅2), which is defined as: 170 
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𝑅𝑅2 = ∑ (𝑃𝑃𝑖𝑖−𝑦𝑦𝚤𝚤� )2𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖−𝑦𝑦𝚤𝚤� )2𝑛𝑛
𝑖𝑖=1

                       (6) 171 

Where 𝑃𝑃𝑖𝑖   denotes the predicted output of the ML model,  𝑦𝑦𝚤𝚤�  denotes the mean of the sample 172 

data, and 𝑦𝑦𝑖𝑖  represent the actual output. In general, R-square values range from 0 to 1, with 173 

a higher R-squared value indicating a better model. The MSE (mean square error) for each 174 

model was calculated using equation (7). 175 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑(𝑦𝑦𝑖𝑖 − 𝑃𝑃𝑖𝑖)2              (7) 176 

The MSE indicates how close the regression model line (or fit) is to the data. The MSE of the 177 

training data in supervised ML shows how good is the model in detecting the anomaly in the 178 

dataset. However, it is the MSE of the test data, which indicates the performance of the ML 179 

model. In this study, the MSE for the test data was considered the performance indicator of 180 

the predictive power of the ML models. In general, the higher the R2 value and lower the MSE, 181 

the better the model's predictive power. The different models were built and run on the 182 

Google Colaboratory platform using Python (Python 3.9) using the built-in libraries. Python 183 

offers numerous advantages over MATLAB for ML as Python is free, open-source and has 184 

various inbuilt libraries for ML such as NumPy, Matplotlib, Keras and Pandas. Further, the 185 

back-end libraries in Python, such as TensorFlow, chose the best and efficient way to define 186 

and train an ML model with a few lines of code. The model's input data comprised the FO's 187 

independent variables, and the output layer consisted of either CICP or DICP based on the 188 

membrane orientation. 189 

  Table 2: Different ML approaches used in this study 190 

Model Name Output Validation method Python Library 

ANN CICP/DICP R square/MSE TensorFlow 
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Extreme Gradient 
boosting (XGBoost) 

CICP/DICP R square/MSE XGBoost 

CatBoostRegressor CICP/DICP R square/MSE CatBoost 

RandomForestRegressor CICP/DICP R square/MSE Sklearn.ensemble 

Linear regression CICP/DICP R square/MSE Scikit-Learn 

 191 

2.4.   Artificial neural network  192 

This study designed a neural network in Python, using the Keras (A Python library for neural 193 

networks). After loading the dataset, the model was one-hot encoded to create dummies 194 

from all the categorical variables such as flow arrangement (countercurrent or co-current 195 

flow), membrane orientation (AL-FS or AL-DS), types of FS and DS. This method of encoding 196 

was chosen as there was no direct relationship between the categorical input variables.  197 

Customized models were trained for both datasets of DICP and CICP. In the datasets, various 198 

categories of input variables were processed into dense layers after the sequential model was 199 

implemented. 200 

2.5.  Gradient Boosting Models Theory  201 

Three gradient tree boosting models were employed in this study, known as extreme gradient 202 

boosting or XGBoost, Categorical boosting or CatBoost and RandomForest. The most common 203 

functions (predictive learners) used in the Gradient Boosting framework are Decision Trees 204 

[39]. Let’s say we have a set of input variables 𝑥𝑥 = �𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 … … … … 𝑥𝑥𝑝𝑝�. The Decision Trees 205 

are built in a greedy manner, with the best split points chosen based on purity scores such as 206 

Gini or to minimise the loss. In this model, we have all the parameters which have an impact 207 

on ICP as input variables. Our output variable 𝑦𝑦 is either CICP or DICP. In Gradient Boosting 208 
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models, a single terminal tree is used to create an initial basis function 𝐹𝐹0 (𝑥𝑥) given by 209 

equation (9) [40, 41]. 210 

𝐹𝐹0 (𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝛽𝛽 ∑ 𝐿𝐿(𝑦𝑦𝑖𝑖,𝛽𝛽)𝑛𝑛
𝑖𝑖=1                          (9) 211 

In equation (6)  𝐿𝐿(𝑦𝑦𝑖𝑖,𝛽𝛽) represents the loss function, 𝛽𝛽 represents the set of split points for 212 

the tree’s internal nodes, and n represents the number of input and output variables. Using 213 

some samples from a training dataset, the goal is to find the values of 𝛽𝛽 that minimize the 214 

loss function to the minimum. Detailed methodology and equation derivation can be found 215 

in  [40]. 216 

3. Results and Discussions 217 

In the FO mode or the AL-FS orientation, the DS is diluted inside the support layer leading to 218 

DICP output for the ML model. On the other hand, when the membrane orientation is the AL-219 

DS mode, the model's output is the CICP. The modulus of ICP is always less than 1, whereas 220 

the modulus of CICP is always greater than 1. The “K” value reported for SD models is usually 221 

higher in the AL-DS mode than the AL-FS mode.  222 

3.1.  Prediction of DICP and CICP using ANN 223 

A neural network using a deep learning approach was designed in Python to predict DICP and 224 

CICP, respectively. Since there is no linear relationship between the input and output 225 

parameters, to create an efficient neural network, we must carefully choose the appropriate 226 

or the optimum number of layers, the learning rate of the algorithm, and the number of 227 

training epochs. For instance, if the hidden layer contains insufficient neurons, the ANN will 228 

not reflect nonlinearity in the training data and lead to inaccurate predictions. Initially, setting 229 

the hidden layers to one, the optimal number of hidden layers was determined through trial 230 
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and error. An initial neural network was designed by considering all the input parameters 231 

listed in Table 1 without hyperparameter optimisation. The designed neural network had an 232 

input layer, three hidden layers, and an output layer (for CICP or DICP, depending on the 233 

membrane orientation).  The neural network exhibited good predictive power for the CICP; 234 

however, it was found that this neural network was prone to overfitting and didn’t exhibit 235 

good predictive power for the DICP dataset (Fig.A.1 for DICP and Fig.A.2 for CICP (Appendix 236 

A.1)). 237 

Further optimisation was performed by selecting appropriate inputs to the ANN model based 238 

on the correlation matrix indicated in Fig. A.3 and Fig.A.4 for the DICP (blue) and CICP (pink), 239 

respectively (Appendix A.1). It was found from the heatmap that several parameters have 240 

correlated to each other with a correlation factor of 1, such as the correlation of FS CFV with 241 

DS CFV and FS molarity with FS osmotic pressure. It meant one of those should not be 242 

considered as input and should be removed from the input dataset, which may increase the 243 

ANN model performance. As a result, FS CFV and FS molarity were removed from the main 244 

dataset. In general, DS CFV has more impact on the ICP than FS CFV, and FS osmotic pressure 245 

is generally considered in all ICP equations rather than molarity. The hyperparameters tuning 246 

of the ANN model was further performed through Grid search (GridSearchCV in Python), 247 

leading to selecting the best parameters for the model performance. Additionally, batch 248 

normalisation was added after the activation functions for the normalisation of the output of 249 

each layer. The resulting optimised neural network had an input layer, eight hidden layers, 250 

and an output layer (for CICP or DICP, depending on the membrane orientation). It should be 251 

noted that the optimal number of hidden layers was determined through trial and error.  252 

Using Python Scikit learn, 80 % of the input data was used as the training set for the neural 253 

network, 10% was used to validate the data, and the rest of the 10 % was utilized for testing 254 
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the ANN for the prediction of DICP and CICP. The ANN was implemented using the TensorFlow 255 

Sequential API, and the Relu (rectified linear activation function) and LeakyRelu activated 256 

function was chosen for the DICP and the CICP models. The categorical data include 257 

membrane orientation (AL-FS or AL-DS), flow arrangement (countercurrent or cocurrent), FS 258 

types such as NaCl, DI water, KCl, DS types and membranes in the dataset was transformed 259 

into numerical values using Python “LabelEncoder”.  To reduce the learning rate and avoid 260 

overfitting of the model, “early stopping” was implemented.  After some trial and error with 261 

the number of epochs based on the validation R square and mean square error, the neural 262 

network with the best possible results was chosen and presented here in this study (Fig.1).  263 

 264 

Figure 1: ANN network for prediction of DICP and CICP 265 

For each phase of the simulation, the R2 value was calculated for the training, validation, 266 

testing, and all data. For the DICP model, The R2 values for training and test data are 0.90 and 267 

0.88, respectively (Fig 2a and 2c). The testing data R2  (0.82) shows a good performance of the 268 

optimised ANN compared to the initial one (reported in Appendix A.1). 269 
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 270 

Figure 2:  Predictive power of the ANN using R2 square metric for the prediction of DICP, a) 271 

For training data, b) For validating the data, c) for testing the data, d) for all data. 272 

  Since the R2 value for the testing set is rational, the neural network shows good 273 

generalization overall for the prediction of DICP using the given dataset (Fig 2c).    The MSE 274 

for the testing data was calculated to be 0.075, which shows the model good performance for 275 

the DICP prediction for the testing data. The MSE of the training data for the DICP model was 276 

0.0029. Thus, the test MSE reveals that the model has good generalisation ability and can 277 

predict output variables of the test data with good accuracy.  278 

Compared to the DICP, the neural network for CICP gave a high R2 value for the training, 279 

validation and testing data (Fig. 3a, 3b, 3c).  Overall, the R2 value for all the data was quite 280 

high (0.99), as presented in Fig. 3d. The R2 value for the training data was almost closer to 1; 281 
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on the other hand, the R2 value of the testing data (0.9730) was higher than that of the DICP 282 

prediction for the neural network.  The MSE for the CICP test data was evaluated to be 5.07. 283 

 284 

Figure 3: Predictive power of the ANN using R2 square metric for the prediction of CICP, a) For 285 

training data, b) For validating the data, c) for testing the data, d) for all data. 286 

On the other hand, the MSE of the training data for the CICP model was 2.74. The higher MSE 287 

for the CICP may be due to the smaller data points for the CICP dataset than the DICP. Since 288 

CICP is more prevalent in the PRO mode [42], ANN can be a viable tool to predict the CICP in 289 

the FO process with great accuracy In the PRO mode.  Further optimisation can improve the 290 

accuracy of the ANN by minimising the number of inputs further to the neural network. 291 

However, further optimisation was not performed in this study.      Although ANN can be a 292 

powerful tool and can predict CICP with high accuracy, it should be noted that the ANN 293 
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network consists of ten thousand neurons with hidden relationships between the input and 294 

output functions. With such modelling, users can get no insights into which feature of the 295 

data has a high or low impact on shaping the neural network's output. Further, a major issue 296 

in the ANN is the overfitting of the model [43]. Overfitting occurs when the model's training 297 

data shows good performance but has poor predictive power for the test data, especially for 298 

larger datasets. It should also be emphasised that the modulus of the ICP in the FO process 299 

does not give much information alone unless we know what input parameters to the FO 300 

process affect its severity.  Therefore, it is important to evaluate other advanced models to 301 

better predict the ICP in the FO mode and the CICP in the PRO mode. 302 

3.2.  Prediction of DICP and CICP using Gradient tree Boosting models 303 

Different tree-based models were also evaluated in this study for the prediction of DICP and 304 

CICP data. In tree-based machine learning models, the residuals are utilised to correct the 305 

previous prediction at each iteration of gradient boosting, allowing the stated loss function 306 

to be optimised [44]. Three different tree-based models, XGBoost, CatBoost and Random 307 

Forest, were evaluated to predict DICP and CICP modulus, respectively. The initial model was 308 

implemented using Extreme Gradient boosting, also known as XGBoost, to predict DICP and 309 

CICP and compared to the optimised ANN.  The same dataset was used for the tree models 310 

like the one used for optimised ANN (removing FS CFV and FS molarity).  XGBoost is an 311 

ensemble learning algorithm that uses boosted trees, and by weighting, the learning rate aids 312 

in shrinking the boosting process, making fitting more conservative [45]. The main advantage 313 

of using this algorithm is that XGBoost can provide insights into the importance of various 314 

inputs that impact the ICP in the FO process. The XGBoost algorithm also offers several other 315 

advantages in ML, such as cross-validation, high flexibility and speed of operation compared 316 

to the neural network approach. For XGBoost, 80 % of the data was used for training, and the 317 
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remaining 10 % was used for validation and testing (10% for validation, 10 % for testing).  The 318 

models were trained on the training set and the parameters were adjusted based on their 319 

performance on the validation set. The predictive power was evaluated based on the metrics 320 

of validation and test data R2 and MSE. The results from the XGBoost simulation 321 

demonstrated that the model using this dataset is rational for predicting DICP with an R2 value 322 

of 0.94 for the training data, 0.92 for the validation data and 0.81 for the test data (Fig.4a). 323 

The MSE for DICP prediction on the test data was 0.076, confirming the model's efficient 324 

predictive power for the DICP data. On the other hand, the R2 value for the prediction of CICP 325 

was 0.92 for the validation data and 0.88 for the test data (Fig.4b). For the prediction of the 326 

DICP data, the XGBoost shows almost similar predictive power as the ANN in terms of R2 and 327 

MSE; however, the test data R2 for this model for the CICP model was lower than the neural 328 

network modelling for the CICP, and hence it was not optimised any further. It should be 329 

noted that XGBoost performs better than ANN generally in terms of computational time. 330 

Furthermore, XGBoost requires less coding and hyperparameter tuning compared to the ANN 331 

program implemented in this study.  332 

A slightly different approach to XGBoost is the categorical boosting, also known as the 333 

CatBoost algorithm, which was evaluated to predict DICP and CICP in this study. The main 334 

advantage of Categorical boosting or CatBoost over other models is that it can learn from its 335 

mistakes during the learning phase of the simulation. Furthermore,  it is easy to implement, 336 

has good stability, has less computational requirements and workload [46], and can 337 

sometimes outperform XGBoost in terms of accuracy. Furthermore, we do not have to pre-338 

process any categorical variables such as membrane orientation, types of draw and feed 339 

solutions, flow arrangement and membrane types. The basic idea behind boosting is to 340 

combine numerous weak models sequentially and create a strong competitive predictive 341 
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model via greedy search. Unlike other models, this ML method does not require large data to 342 

learn from and perform efficiently, even with a smaller dataset. Similar to the XGBoost 343 

simulation, the data was split into 80 % training data, and the remaining 10 % was used to 344 

validate and test the model on a dataset not seen by the model. It should be noted that the 345 

model simulated here was done using minimal feature engineering. Fig. 4c and Fig.4d show 346 

the model performance for DICP and CICP, respectively. For both the CICP and DICP, the 347 

learning rates of the models were set to default. For CICP, the learning rate obtained from the 348 

program was 0.17065, whereas for the DICP model, the learning rate was 0.2142. The best 349 

performance was obtained for DICP predictions with an R2 value of 0.99 for the training data, 350 

0.95 for validation data, and 0.92 for the test data. The MSE for the DICP model was 0.049, 351 

which shows the model superiority over the Xgboost algorithm and the ANN. The R2 value of 352 

CICP was also superior to both ANN and XGBoost (R2=0.99 for training data and 0.99 for the 353 

test data). It should be noted that the R2  can be boosted further by doing some feature 354 

engineering, later discussed in the next section.  For both the DICP prediction and CICP, the 355 

CatBoost provides the highest R2 and lower MSE compared to the ANN and Xgboost.  356 

To overcome the limitations of boosting ML algorithms for the prediction of ICP, the study 357 

checked the validity of the Random Forest regressor, which uses multiple decision trees (that 358 

is why called forest) and can perform both regression and classification tasks using a 359 

technique known as bagging. Instead of relying on individual decision trees, the basic idea of 360 

Random Forest ML is to combine multiple decision trees to determine the final output, in this 361 

case, CICP or DICP. Random Forests, in general, produce better results, perform well on large 362 

amounts of data, and work with missing data by generating estimates for it. Further, it avoids 363 

the overfitting of the model since overfitting is one of the most serious problems in machine 364 

learning. Still, it is rarely a problem with the random forest method. If the forest contains a 365 
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sufficient number of trees, the classifier will avoid overfitting the model. The RandomForest 366 

regressor was used in Python for fitting the Random Forest regression to the forward osmosis 367 

data. The “. fit ()” function fits the training input and output data to the RandomForest 368 

regressor. The hyperparameter of the model (n_estimators) was set to 100. This is simply the 369 

number of trees the algorithm constructs prior to performing maximum voting or calculating 370 

prediction averages. In general, increasing the number of trees improves performance and 371 

increases the stability of the predictions. Fig. 4e and 4f show the R2 value for the DICP and 372 

CICP for the Random Forest Regressor with 0.81 R2 for the DICP test data and 0.93 for the 373 

CICP test data. The MSE for the DICP and CICP calculated on the test data for this model was 374 

0.076 and 12.16, respectively. Overall, the Random Forest regression provides an acceptable 375 

R2 and MSE score for CICP and DICP; however, the DICP R2  score obtained is less than the 376 

CatBoost model. On the other hand, the MSE for the DICP of this model is also slightly higher 377 

than the CatBoost. While the model simulation performance was almost comparable with the 378 

Xgboost and ANN, it should be noted that if there are many trees in a random forest model, 379 

the model's predictive power can become very slow and inefficient, hindering the model 380 

application in the real world. For this reason, the model was not further optimised. Table 3 381 

lists the tree-based algorithm training data R2, testing data R2 and MSE of the testing data. 382 

 383 

 384 
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 385 

Figure 4:   Predictive power of the different gradient tree models using R2 square metric for 386 

validation data a) XGBoost for validating the data of DICP, b) XGBoost for validating the data 387 

of CICP, c) CatBoost for validating the data of DICP, d) CatBoost for validating the data of CICP, 388 

e) Random Forest for validating the data of DICP, f) Random Forest for validating the data of 389 

CICP.  390 
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Table 3:  Tree-based algorithms R2 for training, validation and testing data and MSE for testing 391 
data 392 

 Training Data R2 Testing Data R2 MSE  
(Test Data) 

XGBoost DICP 0.94 0.81 0.0771 

XGBoost CICP 0.99 0.88 13.32 

CatBoost DICP 0.99 0.92 0.049 

CatBoost CICP 0.99 0.99 3.61 

Random Forest DICP 0.96 0.81 0.076 

Random Forest CICP 0.98 0.90 12.16 

 393 

3.3. Feature importance Scores for the Catboost model 394 

Tree-based algorithms such as Xgboost, CatBoost and Random Forest can provide further 395 

insights about the importance of the input parameters or the input features using a metric 396 

called “Feature Importance” or FI score. Since there are many complex relationships between 397 

the input parameters to the FO process and the ICP, the importance of various input 398 

parameters should be considered when building a model for ICP.  This will allow us to improve 399 

the model further for accurate predictions and only consider important input parameters. 400 

Feature importance was evaluated for the best performing model, CatBoost. Fig. 5a and Fig. 401 

5b present the FI for the training data of CatBoost for DICP and CICP, respectively. For DICP, 402 

it can be observed that the highest score is for the osmotic pressure difference (FI score of 403 

17.64) followed by the DS osmotic pressure ( FI score of 14.55).  The result implies that the 404 

osmotic pressure difference and DS osmotic pressure values have a significant impact on the 405 

model, whereas the features with the lowest FI score values have a small impact on the 406 

modelling performance, such as DS molecular weight and membrane type. Generally, the 407 

highest the osmotic pressure difference between the FS and the DS, the higher the dilution 408 
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and thus the higher the DICP value. On the other hand, the higher the DS osmotic pressure, 409 

the higher the permeation drag of the DS enabling more water transport across the FO 410 

membrane, and therefore, more dilution of the DS, leading to higher values of the DICP. DS 411 

CFV and experimental flux have also a significant impact on the DICP. For instance, higher DS 412 

CFV will result in increased flux in the forward osmosis process, and thus reducing the impacts 413 

of DICP. Recent studies have also confirmed that increasing CFV will result in minimizing the 414 

impacts of DICP as well as CICP [15].   For CICP (Fig.5b), the highest score is for the osmotic 415 

pressure of the FS and is significantly higher than all the other features.  Generally, when the 416 

FS is DI water (FS osmotic pressure=0), a higher water flux is obtained in the PRO mode, as 417 

there is no CICP on the FS of the membrane. On the other hand, when the FS in the PRO mode 418 

is FS with high osmotic pressure, such as wastewater, the flux in the PRO mode is less than 419 

the FO mode due to the severity of the CICP.  The lowest FI score for the CICP CatBoost was 420 

obtained for the DS type and the DS molecular weight. The lowest FI score for the CICP 421 

CatBoost model were obtained for the DS type and the DS molecular weight.  As CICP occurs 422 

on the FS of the FO membrane, the DS type and the DS molecular weight may have a negligible 423 

effect on the CICP.  DS weight and the type of DS shows to have no significant impact on the 424 

modelling of the CICP process, and hence, these can be ignored when modelling for the CICP 425 

process in the PRO mode. This will allow for more accurate predictions of CICP in the FO 426 

process in the PRO mode. 427 

 428 
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 429 

  430 

Figure 5: a) Feature importance score of the CatBoost model for DICP, b) Feature importance 431 

score of the CatBoost model for CICP. 432 

(a) 

 (b) 
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These can be made redundant when modelling the effects of CICP on the FO process. As CICP 433 

occurs on the FS of the FO membrane, the DS type and the DS molecular weight may have a 434 

negligible effect on the CICP.  435 

The CatBoost FI score optimises the model by including the highest scores and neglecting 436 

those with the lowest scores. This enables the ML algorithm to predict the output more 437 

accurately. Features that are unimportant or relevant to the mode introduce noise in the 438 

modelling process, decreasing accuracy [47]. Since ML-based predictive models do not 439 

perform well when exposed to noisy data, particularly in the training phase. Furthermore, the 440 

model built on noisy data tends not to generalise well to data outside the training set, possibly 441 

leading to over-fitting the model. It is interesting to see that the feature importance of the 442 

CatBoost model for the test data is similar to the one obtained for the training data.  Fig. A.4 443 

and Fig.A.5 (Appendix A.1) present the feature importance for DICP and CICP, respectively, 444 

for the CatBoost model, respectively.  The feature importance is an important metric in the 445 

CatBoost model, and it tells us how much the prediction in CICP or DICP would change if any 446 

of the feature’s change. Even though we use all of the features of the given dataset based on 447 

self-collected user data, not all of them contribute equally to the prediction of the CICP and 448 

the DICP. Modelling the most important features of the predictive model can lead us to a high 449 

R2 value and lower MSE for the CatBoost algorithm. The model for the DICP or CICP can be 450 

further optimised by cleaning the data and removing the features with a very low score, such 451 

as type of membrane and DS molecular weight.  452 

3.4. Prediction of additional test samples for CatBoost 453 

Fig.6a and Fig.6b present additional test samples tested on the CatBoost model for DICP and 454 

optimised CatBoost model for CICP. The model shows very good agreement with the actual 455 
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values. It should be noted here that the test data here was outside of the training dataset (not 456 

used for training data or unseen data), so overall; the model exhibits very good generalisation.  457 

 458 

Figure 6: The predictive power of the CatBoost model using R2 square metric a) For validating 459 

the data of DICP, b) For validating the data of CICP. 460 

3.5. Linear Regression 461 

Linear regression was also evaluated in Python to test the prediction of the ICP.  The R2 value 462 

for the DICP model for linear regression was 0.48, and the lowest R2 value amongst all the 463 

models of 0.27 was for the CICP prediction (Fig.7a and Fig.7b). This implies that the predictive 464 

power of linear regression is very bad for the CICP prediction and is lower than CatBoost for 465 

ICP predictions. This could be due to the linear regression model's inability to predict the ICP 466 

with different inputs with no linear relationships. As a result, the R2 is low, resulting in 467 

inaccurate results. 468 
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 469 

Figure 7:  Predictive power of the linear regression model using R2 square metric, a) For 470 

validating the data of DICP, b) For validating the data of CICP 471 

3.6.  Summary of Comparison for ML models 472 

Amongst all the models, the best performance was obtained by CatBoost, followed by ANN. 473 

Fig.8a and 8b show the comparison of the MSE and R2 value for each model except linear 474 

regression, which was excluded since the performance was very poor. It should be 475 

emphasised that ANN requires data normalisation compared to CatBoost, which can handle 476 

categorical values such as membrane orientation, DS type, FS type, flow direction and type of 477 

membrane used in the FO study.  CatBoost also has the additional ability to handle missing 478 

values or information in the data by using estimates. Finally, in terms of execution and design, 479 

CatBoost is much efficient and requires less computational and processing time.  480 
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481 

Figure 8: Comparison of mean square error (MSE) and R2 value for different models for CICP 482 

and DICP, a) MSE for CICP and DICP, b) R2 value comparison for different models for CICP and 483 

DICP. 484 

3.7. Comparison of CatBoost vs prediction by literature models 485 

The prediction of the CatBoost was also compared with the solution diffusion model to show 486 

the applicability of the ML models for CP prediction. As discussed before, the CatBoost model 487 

for CICP was optimised further to improve the accuracy. The initial CatBoost model had a 488 

good score for the prediction of DICP and the CICP in terms of R2 and MSE. Although the 489 

evaluation metrics can be further optimised with hyperparameter tuning and data cleaning, 490 

the initial CatBoost model was not optimised further as the performance was efficient 491 

compared to other models. Furthermore, major feature engineering is avoided here so that 492 

environmental engineers do not have to apply complex codes, which otherwise would require 493 

advanced programming skills in Python. The results are presented in Table  4 with the 494 

absolute error between the values obtained for the solution diffusion model and the CatBoost 495 

algorithm.  496 

 497 

 498 
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Table 4: Additional test data for comparison against SD models.  499 

AL-DS Mode, Temperature of FS and DS =25, CFV of FS and DS = 0.36 
Concentrative ICP Modulus 

DS Osmotic 
Pressure 

atm 

FS Osmotic 
pressure 

atm 

Water flux 
m/s 

K (experimental) 
s/m 

K (average) 
s/m 

CICP 
SD 

CICP CatBoost  

70.04 2.33 8.82E-06 2.02E+05 2.2 E05 5.93 7.2 

70.04 4.67 7.35E-06 2.12 E+05 2.2 E05 4.75 5.18 

70.04 23.35 3.11E-06 2.36 E+05  2.2 E05 2.08 2.00 

70.04 46.70 1.14E-06 2.47 E+05 2.2 E05 1.32 1.29 

AL-FS Mode, Temperature of FS and DS = 25, CFV of FS and DS = 45.3 cm/s DICP 
SD  

DICP 
CatBoost 

70.04 0.00 5.05E-06 2.83E05 2.7E05 0.25 0.25 

70.04 3.06 4.70E-06 2.80E05 2.7E05 0.28 0.28 

70.04 6.00 4.36E-06 2.81E05 2.7E05 0.30 0.30 

70.04 27.11 2.59E-06 2.56E05 2.7E05 0.49 0.47 

70.04 49.63 1.06E-06 2.52E05 2.7E05 0.75 0.71 

 500 

It is evident that the ML method used here can predict the internal concentration polarization 501 

based on the process input parameters. A user can simulate and predict the ICP in the FO 502 

process, as long as the membrane's operating parameters and the A and B are known. 503 

Changes in the operating parameters would also reflect the corresponding changes in ICP and 504 

the process performance. This will allow for improvement in membrane design without long 505 
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experimentation. On the other hand, with the solution diffusion model, modelling and 506 

prediction are done using a constant value of solute resistance to diffusion “K”.  507 

4. Conclusion  508 

 Accurate measurement and mitigation of internal concentration polarization are vital for the 509 

FO process to compete against the existing state of the art RO and other technologies.  ML 510 

models can accurately predict ICP in the FO process based on the input variables or process 511 

conditions. The following are the main findings from this study. 512 

a) ML models can predict both dilutive and concentrative ICP in the FO process without the 513 

need for structural or solute resistance to diffusion inputs. 514 

b) The models can also be applicable where the diffusivity of the draw solution is unknown. 515 

c) Data captured from ML models can be used to optimize the FO process at the pilot scale.  516 

d) The CatBoost algorithm best predicts dilutive and concentrative internal polarization in 517 

the FO process among the different ML models used in this study. 518 

e) The feature importance score in the ML models can help select the best input variables 519 

for modelling and redesign the model based on the score. 520 

f) The CatBoost model can predict ICP with an R2 value of 0.92 and has more predictive 521 

power than the ANN.  522 

The model designed here is solely reliant on the input or trained data collected from the 523 

literature.  The accuracy of the data is directly proportional to the accuracy of the model. Any 524 

discrepancies in the methodologies of the user data from the literature studies might lead to 525 

inaccurate predictions in the DICP or CICP occurring in the FO process. ML models also 526 

perform well when there is a large amount of data available.  527 
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Appendix A 664 

Evaluation of Machine Learning Algorithms to Predict Internal Concentration Polarization 665 

(ICP) in Forward Osmosis (FO) 666 
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A.1. Prediction of DICP and CICP with ANN without optimisation 676 

Initially, all inputs were considered without any consideration, and the ANN performance for 677 

the training, validation data, testing data and all the data is presented here in Fig.A.1 and 678 

Fig.A.2.  For the DICP data, the neural network was prone to overfitting. However, the 679 

performance was acceptable for the CICP data.  680 
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 681 

Figure A.1.:  Predictive power of the ANN (no optimisation) using R2 square metric for the 682 
prediction of DICP, a) For training data, b) For validating the data, c) for testing the data, d) 683 
for all data. 684 

 685 

Figure A.2.:  Predictive power of the ANN (no optimisation) using R2 square metric for the 686 
prediction of CICP, a) For training data, b) For validating the data, c) for testing the data, d) 687 
for all data. 688 

 689 
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 690 

Figure A.3: Heat map of the input parameters to the FO process for DICP model. 691 

 692 

Figure A.4: Heat map of the input parameters to the FO process for CICP model. 693 
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 694 

Figure. A.5. Catboost Feature Importance based on the test dataset for the DICP 695 
predictions, (Figure directly exported from the program) 696 

 697 

Figure. A.6. Catboost Feature importance score based on the test data for the CICP 698 
predictions (Figure directly exported from the program). 699 
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