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Abstract
Over the next decade, a massive number of plug‐in electric vehicles (PEVs) will need to
be integrated into current power grids. This is likely to give rise to unmanageable fluc-
tuations in power demand and unacceptable deviations in voltage. These negative impacts
are difficult to mitigate because PEVs connect and disconnect from the grid randomly
and each type of PEVs has different charging profiles. This paper presents a solution to
these problems that involves coordination of power grid control and PEV charging. The
proposed strategy minimises the overall costs of charging and power generation in
meeting future increases in PEV charging demand and the operational constraints of the
power grid. The solution is based on an on–off PEV charging strategy that is easy and
convenient to implement online. The joint coordination problem is formulated by a
mixed integer non‐linear programming (MINP) with binary charging and continuous
voltage variables and is solved by a highly novel computational algorithm. Its online
implementation is based on a new model predictive control method that is free from
prior assumptions about PEVs' arrival and charging information. Comprehensive simu-
lations are provided to demonstrate the efficiency and practicality of the proposed
methods.

1 | INTRODUCTION

Significant breakthrough and innovation in battery and vehicle
technology have driven an electric‐vehicle (EV) boom over the
past decade [1] to the extent that EVs are expected to account
for 15–30% of new vehicles by 2030 [2]. There is no doubt that
serving plug‐in EVs (PEVs) is and will continue to be a critical
function of tomorrow's smart grids to better leverage renew-
able energy, reduce power grid operation costs, and lower air
pollution emissions [3, 4]. However, the growing market
penetration of PEVs presents a potential threat to existing
power grid systems [5–8], in that unregulated PEV charging
may result in higher peak loads and voltage violations. PEV
charging coordination has already proven to be helpful in
reducing the cost of power generation and shifting peak loads
in the grid [9–12]. However, only a few of the existing solu-
tions are robust enough to cater to a massive number of PEVs.

Moreover, the anticipated increases in PEV charging are
enormous and must be balanced with the power grid's oper-
ational requirements.

Recently, PEV charging/discharging coordination has
attracted more attention from researchers [13–17]. For
example, the authors in Ref. [13] investigated a unidirectional
vehicle‐to‐grid (V2G) network with the aim of maximising
aggregator profit given different charging conditions. Refer-
ence [14] explored bidirectional power flows with a voltage
control on distribution grids for coordinating PEV charging
and discharging. Another approach was to flatten the total
demand curve with bidirectional energy flow by a decentralised
algorithm [15]. Reference [16] also proposed a decentralised
charging algorithm. This approach is based on a mean‐field
game framework and is designed to suit a large number of
PEVs, but it does not consider the operational requirements of
the power grid, such as the power equation balance, voltage
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bounds, or line capacity. A new convex optimisation strategy
considering battery voltage rise in PEV charging coordination
was proposed in Ref. [17].

An on–off charging strategy for PEVs has renewed recent
attention due to its simple control structure and efficient online
implementation. Under this strategy, PEVs either charge at a
fixed power in on‐charging mode or do not charge at all in off‐
charging mode at each time slot [18–20]. Generally, the
charging time slot varies from half an hour to one hour.
Therefore, when PEVs are in the off‐charging mode, they can
be available for engaging other services. The authors in Ref.
[18] studied the PEV on–off charging problem to minimise the
overall costs of charging and power generation. By linearising
the non‐convex constraints of power flow equation, a mixed
integer linear programing (MILP) was formulated for this
problem. However, the compensation of modelling errors
caused by the linearisation method was not analysed. Reference
[19] developed a mixed integer non‐linear programing (MINP)
to address the PEVs' coordination by on–off charging strategy.
The first‐order Taylor expansion was used to linearise the
MINP to a MILP. Such approximation may lead to infeasible
results of the original MINP. A similar MILP considering V2G
charging strategy was proposed in Ref. [13], where the negative
impacts of PEVs integrated to power grid could be potentially
suppressed by the bidirectional power source. All coordination
methods in Refs. [13–15, 18–20] are off‐line mode, where the
information of PEVs' arriving time, departing time and initial
state of charging (SoC) should be known as a prior. It is not
practical to use off‐line charging algorithm in these applica-
tions. Actually, PEVs are randomly connected to the grid as
such that information is hardly known beforehand.

Model predictive control (MPC) is regarded as an effective
tool for PEV charging in smart grid. Reference [21] proposed
an MPC‐based PEV charging model, where the requirements
of grid operation were ignored. In addition, PEVs were
assumed to be fully charged within a single time slot. However,
such an assumption is not possible due to the limit of current
battery technology. A MILP for energy storage optimisation
over a rolling time horizon was investigated in Ref. [22], which
ignored the grid operation constraints as well.

Our previous work in Ref. [23] developed a novel MPC
to handle the PEV coordination problem, where the overall
costs of charging and power generation was minimised in
meeting the requirements of PEV charging and power grid
operation. Its distinct practicability is that there are no as-
sumptions on PEVs' charging profiles including arrival/de-
parture time, charging demand and battery SoC. The charging
strategy in Ref. [23] is analogue in the sense that at each time
slot, PEVs can be charged by any value of power within their
battery capacity range. As such, it needs a mechanism to
control this charge value, which is not always practical. The
present paper adopts the aforementioned on–off charging for
PEVs to exploit its easy and efficient online implementation,
which also facilitates easy coordination and planning for
other activities. However, in contrast to the analogue charging
strategy in Ref. [23], which requires online computation of a
large‐scale non‐convex problem on the continuous voltage

and PEV charging variables, the on–off strategy requires
online computation of a large‐scale MINP on the continuous
voltage variables and the binary PEV on–off charging deci-
sion variables. Thus, the bottleneck for implementing the on–
off strategy is the online computation for the large‐scale
MINP, which is much more computationally difficult than the
large‐scale NP in Ref. [23]. To the authors' best knowledge,
there are even no efficient off‐line computations for large‐
scale MINPs, which are the reason that all the previous
works (see e.g. [18–20, 22, 24] and references therein) in
different contexts must either linearise MINPs at the
computation stage or utilise MILPs from the modelling stage
to end up with MILPs with the aforementioned compro-
mises. To accomplish the mission of PEV charging coordi-
nation with on–off charging strategy, novel techniques are
developed to express computationally intractable binary
constraints by computationally tractable continuous con-
straints and to measure the degree of satisfaction of the bi-
nary constraints. They are the principal ingredients in
developing efficient algorithms for computational solution of
this large‐scale MINP. The main contributions of this paper
are as follows:

� A joint coordination solution to cater for massive PEV
charging demand and comprehensive power grid control to
stabilise fluctuating power demands that reduces total
overall system costs.

� An on–off strategy for PEV charging that is simple and
convenient to implement online, which is crucial from a
practical viewpoint. The strategy is based on a new MPC
method and modelled with a novel large‐scale MINP.
Notably, this method does not require any prior information
about the PEVs' arrival and charging information.

� A novel MINP solver to compute the joint coordination
problem. The MINP model is large‐scale, highly challenging
computationally, and has no known solution. Hence, the
solver is a significant advancement in computation.

� Comprehensive simulations and analyses involving realistic
charging scenarios with a range of PEV types that demon-
strate the computational efficiency and practicality of the
proposed methods.

Herein, the formulation of joint coordination of on–off
PEV charging and power grid operation based on MINP‐
MPC is presented in Section 2, where its computational
challenges are also analysed. The main technical contribution
of the paper is in Section 3, where an efficient MINP solver
is proposed. Section 4 considers the computation of a lower
bound of this MINP. Numerical results and discussion are
provided in Section 5, verifying the ability of the developed
solver for seeking an optimal solution. The conclusion is
presented in Section 6.

Notation. The imaginary unit is denoted by j, the Her-
mitian transpose of a vector/matrix A is denoted by AH.
A⪰0 denote that A is positive semi‐definite. The rank and
trace of a matrix A is given by rank(A) and Tr(A), respec-
tively. Rð⋅Þ and Ið⋅Þ, respectively represent the real and
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imaginary parts of a complex value. |N | denotes the car-
dinality of set N .

2 | JOINT COORDINATION OF ON–
OFF PEV CHARGING AND POWER GRID
OPERATION

A PEV coordination problem is studied, where the overall
costs of charging and power generation was minimised in
meeting the requirements of PEV charging and power grid
operation. This section proposes an MPC for on–off PEV
charging in a smart grid system and also analyses its principal
computational challenges. This model is designed from the
persecutive of the social organiser and distribution network
operator. A general structure of smart grid is shown in
Figure 1.

Consider a power network with N nodes with
N ≜ f1; 2;…;Ng denoted as the set of nodes, which are
connected by flow lines L ⊆N �N . Let NðkÞ denote the set
of incident nodes of node k. Suppose node k ∈ G as a
generator node and node m ∉ G ⊆N as a load node. If a node
is to serve PEVs, then it is referred to a charging station (CS).
The set of CSs is denoted by C.

A total of T time slots are assigned for the serving period
that is T ≜ f1;…;Tg. Each time slot is half an hour. Price‐
inelastic load varies according to the profile of residential
power demand during the serving period.

In the power network, ykm ∈ C is denoted as the admit-
tance of line (k, m), Vk(t0) represents the voltage of node k at
time slot t0 while

W ðt0Þ ≜Wk;mðt0Þ�ðk;mÞ∈N�N

¼ Vkðt0ÞV �mðt
0Þ�ðk;mÞ∈N�N ∈ CN�N

is a Hermitian symmetric matrix variable, whose entries are
to replace the voltage operation Vkðt0ÞV �mðt

0Þ. Denote
the active and reactive base demands as Plkðt

0Þ and
Qlkðt

0Þ, respectively; and Pgkðt
0Þ and Qgk

ðt0Þ respectively
as the real and reactive power generation by node k ∈ G.
For t0 ∈ T , the following constraints about power gen-
eration, voltage and phase balance, and line capacity are
standard:

P gk ≤ Pgkðt
0Þ ≤ �Pgk ; k ∈ G; ð1Þ

Q
gk

≤Qgk
ðt0Þ ≤ �Qgk ; k ∈ G; ð2Þ

V 2
k ≤Wkkðt0Þ ≤ �V

2
k; k ∈N ; ð3Þ

IðWkmðt0ÞÞ ≤ RðWkmðt0ÞÞtanðθmaxkm Þ; ðk;mÞ ∈ L;
ð4Þ

|ðWkkðt0Þ −Wkmðt0ÞÞy�km| ≤ Skm; ðk;mÞ ∈ L; ð5Þ

where P gk, Qgk
and �Pgk, �Qgk

are the limits of the real and

reactive power generation, respectively; V k and �Vk are the
limits of the voltage magnitude, and θmax

k;m is given for voltage
phase balance, while Skm is the upper bound of capacity for
line (k, m).

Denote by Hk the set of PEVs arriving at charging station
k. Let ta;kn and tkn;d be the arriving and departing time of a
PEV kn, it should be fully charged before departing. Suppose
Ckn be the battery capacity and s0kn be the initial state of the
battery. The charging power during each time slot of each
battery is denoted by �Pkn. Unlike Ref. [23], which allows each
PEV to charge a power

0 ≤ Pknðt
0Þ ≤ �Pkn;

the on–off charging strategy is proposed as follows. At
each charging slot t0, PEV kn charges either with the fixed
power (Pknðt

0Þ ¼ �Pkn) or zero power (Pknðt
0Þ ¼ 0). Figure 2

plots the on–off control for PEV charging in a serving
period T ≜ f1; 2;…; 8g. Obviously, a PEV can be available
for engaging other services when it is in off‐charging‐
mode.

The following binary variables

τknðt
0Þ ∈ f0; 1g ð6Þ

are introduced for the on–off charging mode. At each time slot
t0, the charging power of PEV kn is Pknðt

0Þ ¼ τknðt
0Þ�Pkn. To

make PEV kn fully charged at its departure, the following
constraint on binary variables τknðt

0Þ must be satisfied:

∑
tkn ;d

t0¼tkn ;a
uh�Pknτknðt

0Þ ≥ Cknð1 − s0knÞ: ð7Þ

Smart 
grid

Smart 
grid

Power flowTransmission 
network

Solar power

Wind power EV charging 
demand

Industrial power 
demand

Residential 
power demand

F I GURE 1 General structure of smart grid
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Here uh denotes the efficiency of the charging. Given

�τkn ¼ ⌈Cknð1 − s0knÞ
.
uh�Pkn⌉;

(7) is equivalent to the linear equality constraint on the
binary variables τknðt

0Þ:

∑
tkn ;d

t0¼tkn ;a
τknðt

0Þ ¼ �τkn: ð8Þ

For any t0 ∉ tkn;a; tkn;b�, τknðt
0Þ ¼ 0, and for any k ∉ G,

Pgkðt
0Þ ≡ 0 and Qgk

ðt0Þ ≡ 0. The supply energy at node k is
defined as

EkðW ðt0ÞÞ ≜ ∑
m∈NðkÞ

y�kmðWkkðt0Þ −Wkmðt0ÞÞ;

which is obviously a linear function of Wk;mðt0Þ¼
Vkðt0ÞV �mðt

0Þ though it is seen as a non‐linear function of the
complex voltage variables Vk. For τkðt0Þ ¼ fτknðt

0Þgn∈Hk, the
demand energy at k ∈ C is defined as,

Dkðτkðt0ÞÞ ¼ Pgkðt
0Þ − Plkðt

0Þ−
�

∑
n∈Hk

�Pknτknðt
0Þ� þ j Qgk

ðt0Þ −Qlkðt
0Þ

h i
;

leading to the following constraint

EkðW ðt0ÞÞ ¼Dk τkð ðt0Þ; k ∈ C; ð9Þ

which is a mixed integer non‐linear constraint on the binary
variables τknðt

0Þ and continuous complex voltage variables

Vk(t0). On the other hand, the demand energy at k ∉ C is
obviously defined as

DkðtÞ ≜ Pgkðt
0Þ − Plkðt

0Þ� þ jQgk
ðt0Þ −Qlkðt

0Þ�;

leading to the following constraint

EkðW ðt0ÞÞ ¼DkðtÞ; k ∉ C; ð10Þ

which is a non‐linear constraint on the continuous complex
voltage variables Vk(t0).

By defining the continuous quantities

W ≜ fW ðt0Þg;

Pgðt0Þ ¼ fPgkðt
0Þgk∈G; Qgðt

0Þ ¼ fQgk
ðt0Þgk∈G;

R¼ fPgðt0Þ;Qgðt
0Þgt0∈T ;

and the binary quantities

τðt0Þ ¼ fτkðt0Þgk∈C; τ ¼ fτðt0Þgt0∈T ;

the multi‐objective function is defined as

FðR; τÞ ¼ ∑
ðt0;kÞ∈T �G

f ðPgkðt
0ÞÞ þ ∑

n∈Hk
βt0τknðt

0Þ�Pkn �

þ γ ∑
t∈T
ð∑
k∈N

Plkðt
0Þ þ ∑

k∈C
∑
n∈Hk

�Pknτknðt
0Þ − �PavgÞ2; ð11Þ

where f ðPgkðt
0ÞÞ represents power generation cost, βt0 is the

given PEVs' charging price, and �Pavg is the averaged power
demand over the serving period, which is estimated based on
historical data. The first term of (11) is the summation of power
generation cost and PEVs' charging cost, while the second term
is used to flatten out the total power demand curve in stabilising
the grid operations. γ > 0 is the weighting factor to trade‐off the
two conflicting objectives. The PEVs' charging price βt0 used
herein is the electricity price as PEVs are charged in residential
areas. The PEVs' charging cost is customers' cost while the
power generation cost is power stations' cost. The power gen-
eration cost f ðPgkðt

0ÞÞ is usually defined as a linear or quadratic
function on the generated reactive power Pgkðt

0Þ. The parame-
ters of the linear or quadratic do not rely on the electricity price.

Over the time horizon [1, T], the joint coordination of
PEV charging problem to optimise the total costs of power
generation and PEV charging while considering power demand
stabilising can be formulated as follows:

min
W;R;τPEV

FðR; τPEV Þ ð12aÞ

s:t: ð1Þ − ð5Þ; ð6Þ; ð8Þ − ð10Þ; ð12bÞ

W ðt0Þ ⪰ 0; rankðW ðt0ÞÞ ¼ 1; ð12cÞ
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F I GURE 2 On–off control for PEV charging in a serving period
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where the constraint (12c) is needed for legalising the non‐
linear variable changes Wkm(t0) = Vk(t0)Vm(t0). Note that the
conventional MPC [25, 26] is not applicable as all equations in
(12) are not given beforehand. Following Ref. [27], optimisa-
tion problem (12) is addressed by proposing the online pre-
dictive model at each time slot t0 as follows.

Let C(t) denote the set of arrived PEVs, which are required
to be charged by t. Suppose dknðtÞ is the remaining charging
demand of PEV kn ∈ C(t) by its departure time tkn;d. Hence,
the following constraints must be imposed:

∑
tkn ;d

t0¼t
uh�Pknτknðt

0Þ ≥ dknðtÞ; kn ∈ CðtÞ; ð13Þ

where

τknðt
0Þ ∈ f0; 1g; t0 ∈ t; tkn;d�; kn ∈ CðtÞ: ð14Þ

Given

�τknðtÞ ≜ ⌈dknðtÞ
�
uh�Pkn⌉;

constraint (13) can be equivalent to

∑
tkn ;b

t0¼t
τknðt

0Þ ¼ �τknðtÞ; kn ∈ CðtÞ: ð15Þ

Define ΨðtÞ ¼maxkn∈CðtÞtkn;d, the prediction variable

WPðtÞ ≜ fW ðt0Þgt0∈t;ΨðtÞ�;

RPðtÞ ≜ fPgðt0Þ;Qgðt
0Þgt0∈t;ΨðtÞ�;

τPðtÞ ¼ fτknðt
0Þgkn∈CðtÞ;t0∈t;tkn ;d�

;

and the prediction objective

FPðRPðtÞ; τPðtÞÞ ≜

∑
ΨðtÞ

t0¼t
∑
k∈G

f ðPgkðt
0ÞÞ þ ∑

kn∈CðtÞ
βtτknðt

0Þ�Pkn

 !

þγ ∑
ΨðtÞ

t0¼t
∑
k∈N

Plkðt
0Þ∑
k∈C

∑
n∈Hk

�Pknτknðt
0Þ − �Pavg

 !2

:

The following MPC is solved over [t, Ψ(t)] at each time t.
Only R(t), V(t) and τ(t) are employed to update the solution
of (12):

min
WPðtÞ;RPðtÞ;τPðtÞ

FPðRPðtÞ; τPðtÞÞ

s:t: ð14Þ; ð15Þ;
ð16aÞ

ð1Þ − ð5Þ; ð9Þ − ð10Þ for t0 ∈ t;ΨðtÞ�; ð16bÞ

W ðt0Þ ⪰ 0; for t0 ∈ t;ΨðtÞ� ð16cÞ

rankðW ðt0ÞÞ ¼ 1; for t0 ∈ t;ΨðtÞ�: ð16dÞ

The difficulty of (16) is focused on the rank‐one con-
straints (16d) and binary constraints (14). To cope with these
difficulties, an efficient computational procedure exploiting
only the solution of (16) at time slot t for updating online
solution of (12) is proposed in the next section.

3 | TWO‐STAGE OPTIMISATION‐BASED
SOLVER FOR MINP

During the computational procedure, only the solution of
MINP (16) at time slot t is required for online updating. Thus,
it is not necessary to handle the multiple non‐convex matrix
rank‐one constraints (16d) for all t0 ∈ [t, Ψ(t)]. In the
following, we propose a two‐stage optimisation scheme to
tackle the computation of (16).

At the first stage, the rank‐one constraints in (16d) is
dropped and the optimisation (16) is relaxed to,

min
WPðtÞ;RPðtÞ;τPðtÞ

FPðRPðtÞ; τPðtÞÞ s:t: ð16aÞ − ð16cÞ: ð17Þ

If ∀t0 ∈ [t, Ψ(t)], rankðcW ðt0ÞÞ ≡ 1, then bV ðt0Þ, bRðt0Þ and
bτknðt

0Þ are the solution of optimisation (16). Otherwise, we go
to the second stage and consider the following optimisation by
substituting bτknðtÞ into (16b):

min
W ðtÞ;RðtÞ

FðPgðtÞÞ
�

≜ ∑
ΨðtÞ

t0¼t
∑
k∈G
f ðPgkðt

0ÞÞ ð18aÞ

s:t: ð1Þ − ð5Þ; ð9Þ − ð10Þ for t0 ¼ t & τknðtÞ ¼ bτknðtÞ; ð18bÞ

W ðtÞ ⪰ 0; rankðW ðtÞÞ ¼ 1: ð18cÞ

This non‐linear optimisation problem, which involves only
one rank‐one constraint at t0 = t in (18c), can be efficiently
computed by our previously developed non‐smooth optimi-
sation algorithm [27–29]. To make the paper self‐contained,
this optimisation algorithm will be recalled in Section 3.2. The
next subsection is devoted to the computation for MINP (17).

3.1 | Stage I: computational solution for
MINP problem (17)

The key issue for solving MINP problem (17) is to cope with
the binary constraint (14) in the optimisation problem (17).
Our previous works [30–32] have shown that the exactly
penalised optimisation, which simultaneously minimises the
objective function and maximises the degree of satisfaction of
the binary constraints, is appropriate for addressing the MINP
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(17). The computational efficiency and tractability of the
exactly penalised optimisation are critically dependent on the
function used to measure the degree of satisfaction of the
binary constraints. Therefore, we develop a novel function to
measure the degree of satisfaction of the binary constraints.
Based on this function, a new path‐following computational
procedure which iteratively improves solution for the corre-
sponding exactly penalised optimisation problem, is proposed
as follows.

First, the equivalence of the binary constraint (14) is
established with continuous constraints by the following
lemma:

Lemma 1 The binary constraint (14) can be fulfiled
with the following continuous constraints with linear
constraint (15),

0 ≤ τknðt
0Þ ≤ 1; t0 ∈ t; tkn;d�; kn ∈ CðtÞ; ð19Þ

gðτPðtÞÞ ≥ �τðtÞ

≜ ∑
kn∈CðtÞ

�τkn
ðtÞ; ð20Þ

for L > 1 and gðτPðtÞÞ ≜ ∑kn∈CðtÞ∑
tkn ;d
t0¼t τLknðt

0Þ.
Proof. Note that

τLknðt
0Þ ≤ τknðt

0Þ; ∀ τknðt
0Þ ∈ 0; 1�;

so

gðτPðtÞÞ ≤ ∑
kn∈CðtÞ

∑
tkn ;d

t0¼t
τknðt

0Þ ¼ �τðtÞ:

Hence, gðτPðtÞÞ ¼ �τðtÞ is fulfiled by constraint (20) given
τLknðt

0Þ ¼ τknðt
0Þ, that is τknðt

0Þ ∈ f0; 1g, implying (14).
Constraint (20) is called reverse convex as g(τP(t)) is convex

in τP(t) [33]. With the decrease of L, g(τP(t)) approaches the
linear function

∑
kn∈CðtÞ

∑
tkn ;b

t0¼t
τknðt

0Þ;

and the constraint (20) approaches the linear constraint

∑
kn∈CðtÞ

∑
tkn ;b

t0¼t
τknðt

0Þ ≥ �τðtÞ:

Nevertheless, choosing L close to 1 may not work as
gðτPðtÞÞ − �τðtÞ will approach zero very fast with such setting.
To the authors' best knowledge, Lemma 1 is new. A particular
result for L = 2 was obtained in our previous works [30, 31].

Thanks to Lemma 1, L = 1.5 is set for Algorithm 1 to accel-
erate its convergence speed.

With Lemma 1 one can easily have the following direct
consequence:

Proposition 1 Under the linear constraint (15), the
function

g1ðτPðtÞÞ ≜
1

gðτPðtÞÞ
−

1
�τðtÞ

ð21Þ

is a measure to evaluate the satisfaction of binary
constraint (14) with g1ðτPðtÞÞ ≥ 0 ∀ τknðt

0Þ ∈ 0; 1� and
g1(τP(t)) = 0 if and only if τknðt

0Þ are binary (i.e. satisfying
(14)).

With the incorporation of the degree of satisfaction
function g1 into the objective of (17), the following penalised
optimisation problem is obtained:

min
WPðtÞ;RPðtÞ;τPðtÞ

ΦðRPðtÞ; τPðtÞÞ ≜ FPðRPðtÞ; τPðtÞÞ

þμg1ðτPðtÞÞ
s:t: ð15Þ; ð16bÞ; ð16cÞ; ð19Þ;

ð22Þ

where μ > 0 is a penalty parameter. With a sufficiently large μ,
this penalised optimisation problem is exact for (17). The so-
lution of (22) is also an solution for (17) and thus satisfies
g1(τP(t)) = 0 [34]. To our best knowledge, using the function g1
defined by (21) as a measurement to evaluate the satisfaction of
bilinear constraint (14) instead of the conventional class
�τðtÞ − gðτPðtÞÞ is quite new as well.

A path‐following algorithm is developed to efficiently solve
optimisation (22). First, a lower bound approximation for g
(τP(t)) is derived. Since g(τP(t)) is a convex function, it is clear
that at τðκÞP ðtÞ [33],

gðτPðtÞÞ ≥ gðκÞðτPðtÞÞ

≜ gðτðκÞP ðtÞÞ þ 〈 ∇ gðτðκÞP ðtÞÞ; τPðtÞ − τðκÞP ðtÞ〉

¼ −ðL − 1Þ ∑
kn∈CðtÞ

∑
tkn ;d

t0¼t
ðτðκÞkn ðt

0ÞÞ
L

þL ∑
kn∈CðtÞ

∑
tkn ;d

t0¼t
ðτðκÞkn ðt

0ÞÞ
L−1

τknðt
0Þ:

ð23Þ

Hence, an approximation of the upper bounding for g1(τP(t)) at
the variable τðκÞP ðtÞ can be easily obtained as

g1ðτPðtÞÞ ≤ gðκÞ1 ðτPðtÞÞ

≜
1

gðκÞðτPðtÞÞ
−

1
�τðtÞ

ð24Þ

126 - SHI ET AL.



over the trust region

gðκÞðτPðtÞÞ > 0: ð25Þ

Then, the following convex problem is solved at the κ‐th
iteration to obtain the next iterative point ðWðκþ1ÞP ðtÞ;
R
ðκþ1Þ
P ðtÞ; τðκþ1ÞP ðtÞÞ:

min
WPðtÞ;RPðtÞ;τPðtÞ

ΦðκÞðRPðtÞ; τPðtÞÞ≜

FPðRPðtÞ; τPðtÞÞ þ μg
ðκÞ
1 ðτPðtÞÞ

s:t: ð1Þ − ð5Þ for t0 ∈ t;ΨðtÞ�;
ð15Þ; ð16bÞ; ð16cÞ; ð19Þ; ð25Þ:

ð26Þ

Note that

ΦðRPðtÞ; τPðtÞÞ ≤ ΦðκÞðRPðtÞ; τPðtÞÞ

and

ΦðRðκÞP ðtÞ; τ
ðκÞ
P ðtÞÞ ¼ΦðκÞðRðκÞP ðtÞ; τ

ðκÞ
P ðtÞÞ:

Moreover,

ΦðRðκþ1ÞP ðtÞ; τðκþ1ÞP ðtÞÞ < ΦðκÞðRðκÞP ðtÞ; τ
ðκÞ
P ðtÞÞ

whenever τðκþ1ÞP ðtÞ ≠ τðκÞP ðtÞ because τðκþ1ÞP ðtÞ and τðκÞP ðtÞ are
the optimal solution and a feasible point for (26), respectively.
Thus,

ΦðRðκþ1ÞP ðtÞ; τðκþ1ÞP ðtÞÞ ≤ ΦðκÞðRðκþ1ÞP ðtÞ; τðκþ1ÞP ðtÞÞ

< ΦðκÞðRðκÞP ðtÞ; τ
ðκÞ
P Þ

¼ FðRðκÞP ðtÞ; τ
ðκÞ
P ðtÞÞ:

This iterative procedure is summarised by a pseudo‐code in
Algorithm 1.

3.2 | Stage II: computational procedure for
(18)

The main difficulty of optimisation problem (18) concentrates
on the non‐convex matrix rank‐one constraint rank(W(t)) = 1,
which can be handled by a non‐smooth optimisation method
proposed in our previous work [27–29]. To make the paper
self‐contained, this method is recalled here.

Under the semi‐definite condition W(t)⪰0.

TrðW ðtÞÞ − λmaxðW ðtÞÞ ≥ 0;

can be obtained directly, where λmax(W(t)) is the maximal
eigenvalue of the matrix W(t). Thus, Tr(W(t)) − λmax(W(t))
can be used to measure the satisfaction of the matrix rank‐one
constraint

rankðW ðtÞÞ ¼ 1:

We incorporate this term into the objective function and
obtain the following exactly penalised optimisation for ν > 0.

min
W ðtÞ;RðtÞ

FðPgðtÞÞ þ νðTrðW ðtÞÞ − λmaxðW ðtÞÞÞ; ð28aÞ

s:t: ð18bÞ;W ðtÞ ⪰ 0: ð28bÞ

It is clear that.

λmaxðW ðκþ1ÞðtÞÞ ≥ wðκþ1Þmax tÞð ÞHW ðtÞwðκþ1Þmax ðtÞ;

where wðκþ1Þmax ðtÞ is the normalized eigenvector of the largest
eigenvalue λmax(W(κ+1) (t)) at time slot t. The optimisation (28)
can be solved iteratively by the following convex problem:
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min
W ðtÞ;RðtÞ

FðPgðtÞÞ þ λ TrðW ðtÞÞð

−ðwðκþ1Þmax ðtÞÞ
H
W ðtÞwðκþ1Þmax ðtÞ

�
s:t: ð28bÞ;

ð30Þ

Note that the maximal eigenvalue λmax(W(κ+1) (t)) is lower
bounded by.

wðκþ1Þmax ðtÞ
�HW ðtÞwðκþ1Þmax ðtÞ. Therefore, W

(κ+1) (t) is a bet-
ter feasible point of (18) than W(κ) (t). Algorithm 2 provides
the pseudo‐code for solving the problem (18).

4 | LOWER BOUNDING BY OFF‐LINE
COMPUTATION

To investigate the optimal performance of the MPC‐based
online computation in the previous section, we examine its
off‐line counterpart in this section, which requires the in-
formation of all PEVs including the arriving and departing
time, initial SoC of the battery and future charging demand
to be known beforehand. Of course, such off‐line compu-
tation cannot be implemented in practice but it gives a
lower bound for the practically implemented online
computation.

Similarly, the off‐line computation for (12) is of two
following optimisation stages.

Stage I. The rank‐one constraints in (12c) are dropped as
thus (12) is relaxed to the following problem:

min
W;R;τ
FðR; τÞ s:t: ð1Þ − ð5Þ; ð6Þ; ð8Þ − ð10Þ;

W ðt0Þ ⪰ 0; for t0 ∈ T :
ð31Þ

To solve the problem (31), the problem (26) in Algorithm 1
is replaced by the following problem:

min
W;R;τ

FðR; τÞ þ μð
1

gðκÞðτÞ
−
1
�τ Þ ð32aÞ

s:t: ð1Þ − ð5Þ; ð32bÞ

ð8Þ − ð10Þ;W ðt0Þ ⪰ 0; τknðt
0Þ ∈ 0; 1�; for t0 ∈ T ; ð32cÞ

Lτknðt
0Þ ≥ ðL − 1ÞτðκÞkn ðt

0Þ; for k ∈ C; ð32dÞ

where

gðκÞðτÞ ≜ ∑
k∈G

∑
kn∈Hk

∑
tkn ;d

t0¼tkn ;a
ðLτðκÞkn ðt

0ÞÞ
L−1

τknðt
0Þ

−ðL − 1ÞτðκÞkn ðt
0Þ
�
;

and

�τ ≜ ∑
k∈G

∑
kn∈Hk

�τkn:

Stage II. Let cW , bR and bτ denote the obtained solution of
MINP (31). If rankðcW ðtÞÞ ≡ 1 is fulfiled, t ∈ T then bR and bV
is accepted as the solution of (12). Otherwise, for those t ∈ T
with rankðcW ðtÞÞ > 1 one can substitute bτðtÞ to have (18) and
use Algorithm 2 for its computation.

5 | SIMULATION RESULTS

5.1 | Setup

Sedumi [35] solver in the framework of CVX [36] is applied
to solve the convex optimisation problems (26), (30) and
(32) with a Core i7‐7600U CPU. The tested grid is a
balanced network modified from IEEE 123 test feeder with
the nominal voltage of 4.16 kV. Its details and data of
system structure, physical limits and cost functions can be
found in Ref. [37]. There are three distributed generators,
which are respectively connected with node 16, 36, 56. Ten
charging stations have been randomly placed on node 4, 7,
11, 17, 21, 28, 33, 40, 44 and 51. The charging period is set
from 6 PM to 6 AM, divided into 24 30‐min time slots. A
truncated normal distribution (8, 1.52) is adopted to input
the PEVs' arrival times independently. There are three types
of PEVs: normal PEVs, which are required to be fully
charged by 6 AM, median PEVs, which should be fully
charged within six hours after their arrivals, and urgent
PEVs, which must be charged immediately when connected
to the grid. The number of normal PEVs, median PEVs
and urgent PEVs for each CS are randomly generated using
the following uniform distributions: U [10, 15], U [3, 6] and
U [1, 3], respectively. The randomly generated numbers of
PEVs served at each CS are given in Table 1. The total
number of three types of PEVs are 137, 39 and 23,
respectively. According to the charging urgency, the energy
price for normal PEVs, median PEVs and urgent PEVs are,
respectively, defined as βt, 1.5βt and 2βt, where the energy
price βt of on 17–20 May 2017 from 6 PM to 6 AM are given
in Figure 3.

The power capacity of the PEV battery is Ckn ¼ 50 kWh.
The initial SoC is set as 20%. The fixed charging power uh�Pkn
is set as 5 kWh to make that each PEV required eight time slots
to be fully charged. Since there are more than 12!/8!4! = 990
feasible on–off charging selection for every PEV, the MINP
(12) is not possible to be solved by any exhaustive search
strategies.

The price‐inelastic demand PlkðtÞ is defined according to
Ref. [38] as

PlkðtÞ ¼
lðtÞ

∑24
t¼1lðtÞ

� �PlkT ; t ∈ T ;

where �PlkT with the load demand �Plk indicates the total
price‐inelastic demand during the serving time period, while
lðtÞ

∑24
t¼1lðtÞ

with the residential load demand l(t) at t indicates the
proportion of price‐inelastic demand at each time t. In our
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simulation, the data for �Plk is taken from [37], while the data
for l(t) is taken from Ref. [39]. The residential load demand l
(t) on 17–20 May 2017 from 6 PM to 6 AM are plotted in
Figure 4.

The weighting factor γ = 103 is set. ϵ = 10−3 is used as the
criteria to stop the proposed algorithm.

5.2 | Performance of the algorithms

The numerical results are summarised in Table 2. The effec-
tiveness of online computation based on (18) is confirmed by
observing that the cost of the power generation and PEV
charging is almost the same to its counterpart computed by the
off‐line computation based on (12). The average CPU time of
Algorithm 1 is provided in the sixth column of Table 2.
Furthermore, Figure 5 indicates that Algorithm 1 for all pro-
files converge rapidly within several iterations. The average
CPU time of Algorithm 2 for the four profiles is all within
1 min. It is worth noting that Algorithm 1 is developed to
handle the challenging MINP problem (17) with large‐scale
binary charging variables and continuous voltage variables. To
the best of our knowledge, no benchmarking methods can be
used to efficiently handle this problem.

The total power demand, the real price‐inelastic demand,
and the charging demand under Profile one are plotted in
Figure 6, while the three types of PEV charging demand under
Profile 1 are shown in Figure 7. It can be seen the price‐in-
elastic demand reaches a peak value at 6 PM but then decreases
continuously till midnight and remains low values from 0 to
6 AM. The total power demand Ptot(t) in real‐time, which
constitutes of the real price‐inelastic demand and total charging
demand in real time, is stable during the serving time period.
The fluctuation rate of total power demand defined by

maxf
maxt∈T PtotðtÞ − �Pavg

�Pavg
;
�Pavg − mint∈T PtotðtÞ

�Pavg
g

is within 7%. One can see that, the magnitude of the total
demand are all around 2100 kW, while the charging demand are
within 0‐700 kW. This means the PEV charging optimality has
a substantial impact to the overall optimality. For other profiles,
the results are similar.

The voltage magnitude during the serving time period
under Profile 1 is shown in Figure 8. The voltage magnitude
starts to drop after 9 PM since most PEVs charge after that time
but their values are always within the range of (1.165, 1.2] pu.
Therefore, the negative impact of PEVs' integration to the grid
has been successfully suppressed.

Figure 9 plots the SoC of two normal PEVs and two
median PEVs that arrives at different times randomly selected
in Profile 1. The SoC of PEV keeps unchanged for several time
slots as they don't charge at those time slots.

The computational performance of the off‐line algorithm,
which provides a lower bound for the online algorithm. The
comparison of the solution between online charging and off‐
line charging process are presented in the last three columns of
Table 2. The gap between online charging and off‐line charging
cost is very light. Figure 10 plots SoC of a normal PEV and a
median PEV randomly selected in Profile 1. The charging
behaviour is obviously different between online and off‐line
charging even though their optimal costs are similar.

The performance of charging demand with various num-
ber of PEVs during the serving time period is also investigated.

TABLE 1 PEV number in each charging station during the charging
period

CS # 4 7 11 17 21 28 33 40 44 51

Normal 14 12 14 14 15 12 13 15 13 15

Median 3 4 3 3 3 6 4 6 4 3

Urgent 3 2 2 3 3 2 3 1 1 3
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F I GURE 3 Energy price for four profiles
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F I GURE 4 Residential load demand for four profiles
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Figure 11 shows the curves of charging demand corresponding
to four different sets of PEVs under Profile 1. The number of
PEVs connected to each CS is generated using the following
uniform distributions: U [13, 28], U [3, 12] and U [2, 6] for the
three types of PEVs, respectively. The proposed algorithms
still work well and converge rapidly. Notably, the charging

demand climbs rapidly from 6 PM to 0 AM since PEVs are
injected to the grid continuously during this period and then it
maintains high values during 0 to 6 AM due to low residential
demand and energy price during this period. It can also be seen
that the total charging demand increases with the integration of
more PEVs.

TABLE 2 Online and Offline
computational results

Profile # Of binary Var. μ ν Online cost Avg. time (s) Offline cost Diff. Time (s)

1 3330 1 1 5712.06 104.7 5660.24 0.9% 172.5

2 3330 1 1 5717.29 108.2 5671.55 0.8% 162.3

3 3330 1 1 5591.97 97.6 5558.42 0.6% 151.1

4 3330 1 1 5651.39 110.5 5600.53 0.9% 160.4
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F I GURE 5 Iteration number of each time slot under four residential
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6 | CONCLUSIONS

The joint coordination solution for on–off PEV charging and
controlling grid operations presented here is designed to meet
the full charging demands of the massive influx of PEVs ex-
pected to enter the market between now and 2030 while
maintaining grid operations within safety thresholds. This
problem addressed is highly challenging because PEVs connect
and disconnect from the grid at random and the binary on–off
charging decisions are computationally intractable decision.
The benefits of the proposed on–off PEV charging strategy
include its efficient online implementation, the lack of a need
for a mechanism to ensure analogue PEV charging values
remain within battery capacity, and a solution that minimises
the total overall costs of PEV charging and power generation.

This paper proposes a new MPC to address this task. At each
time slot, the proposed MPC invokes computational solution
of a large‐scale MINP, which is solved by a novel and easily
implemented online algorithm. Three types of PEVs: normal
PEVs, median PEVs, and urgent PEVs have been included
to stimulate the real charging scenarios. The efficiency and
practicality of the system has been verified through compre-
hensive simulations, which show that the charging behaviour
of PEVs and voltage behaviour of the power grid can be
controlled very well even with a massive number of PEVs.
Further, fluctuations in power demand are stabilised, and the
overall cost of generating power and meeting charging demand
is reduced. Although the proposed model is designed from the
perspective of the social organiser and distribution network
operator, it can also be utilised by an EV aggregator by
modifying the objective function and keeping the constraints
of the current model. Another extension of the proposed
method to the problem of optimising demand response in
smart grids is under study.
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NOMENCLATURE
CS charging station
MILP mixed integer linear programming
MINP mixed integer nonlinear programming
MPC model predictive control
NP non‐linear programming
PEV plug‐in electric vehicle
SoC State of charge
V2G vehicle‐to‐grid
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CONSTANTS
�Pavg Averaged power demand over the serving period.
�Pkn Fixed charging power of PEV n at charging

station k ∈ C.
βt0 PEV charging price at time t0.
Ckn Battery capacity of PEV n at charging station k ∈ C.
Plkðt

0Þ Active price‐inelastic demands of node k at time
slot t0.

Qlkðt
0Þ Reactive price‐inelastic demands of node k at time

slot t0.
Skm Power capacity of line (k, m).
uh Charging efficiency of PEV battery.
ykm Admittance of line (k, m).
�Pgk Upper bound of active power generated by node

k ∈ G.
�Qgk

Upper bound of reactive power generated by node
k ∈ G.

�Vk Upper bound of the amplitude of voltage injection
at node k ∈N .

P gk Lower bound of active power generated by node
k ∈ G.

Q
gk

Lower bound of reactive power generated by node
k ∈ G.

V k Lower bound of the amplitude of voltage injection
at node k ∈N .

θmax
k;m Voltage phase balance limitation of power line

(k, m).

SETS
C Set of charging stations.
G Set of generator nodes.
L Set of power flow lines.
N Set of nodes.
T Set of charging periods.
Hk Set of PEVs arriving at charging station k ∈ C.

VARIABLES
τkn Binary variable used to represent the on‐off

charging state of PEV n at charging station k ∈ C.
Pgkðt

0Þ Active power generation by generator node k ∈ G
at time t0.

Qgk
ðt0Þ Reactive power generation by generator node k ∈ G

at time t0.
Vk(t0) Complex voltage variable of node k ∈N at time t0.
W(t0) Semidefinite matrix variable introduced to transfer

the nonconvex power flow constraints with voltage
product.
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