See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/311645788

The Time Course of Perceptual Recovery Markers Following Match Play in Division I-A Collegiate American Footballers

Article *in* International Journal of Sports Physiology and Performance · December 2016 DOI: 10.1123/jjspp.2016-0550

	IS	READS	
2		62	
4 auth	iors, including:		
69	Hugh Fullagar		Andrew Govus
X	University of Technology Sydney		La Trobe University
_	49 PUBLICATIONS 352 CITATIONS	_	27 PUBLICATIONS 115 CITATIONS
	SEE PROFILE		SEE PROFILE
	Andrew Murray		
	University of Oregon		
	30 PUBLICATIONS 186 CITATIONS		
	SEE PROFILE		

Some of the authors of this publication are also working on these related projects:

Ibuprofen administration and its influence on shivering thermogenesis and metabolic rate during acute cold exposure View project

College football training loads & injuries View project

The time course of perceptual recovery markers following match play in Division I-A collegiate American footballers

Journal:	International Journal of Sports Physiology and Performance
Manuscript ID	IJSPP.2016-0550.R1
Manuscript Type:	Brief Report
Keywords:	fatigue, athlete, monitoring, NCAA, gridiron
	•

1 2 3 4 5	Title:	The time course of perceptual recovery markers following match play in Division I-A collegiate American footballers
6 7	Submission Type:	Brief Report (case study)
8 9 10 11 12	Authors:	Hugh H.K. Fullagar ^{1,2,3} , Andrew Govus ⁴ James Hanisch5 Andrew Murray ¹
12 13 14 15 16	Institutions:	¹ Department of Athletics (Football), University of Oregon, Leo Harris Pwky Drive, Eugene, OR
17 18		² Institute of Sport and Preventive Medicine, Saarland University,
19 20		Saarbrucken, Germany ³ Sport & Exercise Discipline
21 22		Group, University of Technology Sydney, Lindfield, Australia
23 24		⁴ <u>Swedish Winter Sports</u> <u>Research Centre, Department of</u>
25		Health Sciences, Mid Sweden
26 27		<u>University, Östersund, Sweden</u> ⁵ Philadephia Eagles, NovaCare
28 29		Complex One NovaCare Way, Philadelphia, PA
30 31		
32	Corresponding author	Hugh Fullagar
33		Department of Athletics- Football
34		University of Oregon
35		Eugene, OR
36 37		United States of America Email: hughf@uoregon.edu
37 38	Running head:	Wellness recovery in American
39	Running neuro.	football
40	Abstract word count:	250
41 42	Text only word count: Number of Tables:	16 <u>22</u> 1
42	Number of Figures:	0
44 45 46		

47 ABSTRACT

48	Purpose: To investigate the recovery time course of
49	customized wellness markers (sleep, soreness, energy and
50	overall wellness) in response to match play in Division 1-A
51	American Collegiate Football players.

Methods: A retrospective research design was used in this 52 study. Wellness data was collected and analysed for two 53 54 collegiate American football seasons. Perceptions of soreness, sleep, energy and overall wellness were obtained daily for the 55 day preceding each game (GD-1) and the days following each 56 57 game (GD+2, GD+3 and GD+4). Standardised effect size (ES) analyses ±90% confidence intervals were used to interpret the 58 magnitude of the mean differences between all time-points for 59 the START, MIDDLE and FINISH of the season, using the 60 following qualitative descriptors: 0-0.19 trivial; 0.2-0.59 61 small; 0.6–1.19 moderate; 1.2–1.99 large; <2.0 very large. 62 63 Results: Overall wellness showed small ES reductions on 64 GD+2 $(d=0.22\pm0.09, likely [94.8\%]), GD+3 (d=0.37\pm0.15, d=0.37\pm0.15)$ 65 very likely) and GD+4 ($d=0.29\pm0.12$, very likely) compared to GD-1. There were small ES reductions for soreness between 66 GD-1, and GD+2, GD+3 and GD +4 ($d=0.21\pm0.09$, likely, 67 $d=0.29\pm0.12$, very likely, and 0.30 ± 0.12 , very likely, 68 respectively). Small ES reductions were also evident between 69 GD-1 and GD+3 (d=0.21±0.09, likely for sleep. Feelings of 70 energy showed small ES on GD+3 (d=0.27±0.11, very likely) 71 and GD+4 ($d=0.22\pm0.09$, likely) when compared to GD-1. 72 73 Conclusion: <u>All wellness markers were likely-very likely</u> worse on GD+3 and GD+4 compared to GD-1. These findings 74 show that perceptual wellness takes longer than 4 d to return to 75 pre-game levels and thus should be considered when 76

77 prescribing training and/or recovery.

78 Introduction

79 American Collegiate football (ACF) is a sport 80 characterised by unique physical and psychological demands, mainly due to the large variety in positions, anthropometry and 81 season length compared to other team sports¹. Players need to 82 83 have a combination of physical qualities to be able to cope with intense collisions and high-intensity bouts of exercise that are 84 85 short in duration but repeated over the period of 3-4 hours in a game²⁻⁴. For instance, Wellman and colleagues reported that 86 87 players can run total distances ranging from 3 to 5.5 km, with up to 650m of high intensity distance $(4.48-6.4 \text{ m.s}^{-1})$ and 88 89 between 15 and 38 high acceleration efforts $(2.6-3.5 \text{ m/s}^2)$ 90 during an average game¹. As such, given the demands imposed 91 on players by ACF match play, it is pertinent to monitor the recovery timeline of physiological and psychological 92 parameters to manage fatigue⁵. Failure to do so may impair 93 positive training adaptations, thus leaving players at risk of 94 95 non-functional overreaching and/or injury³.

Perceptual ratings of wellness are commonly used to 96 detect fatigue, monitor recovery, assist the individualized 97 response to training and prescribe potential training 98 modifications within athletic settings⁵. Indeed, many studies 99 100 suggest that perceptual responses may reveal early signs of 101 fatigue more readily than physiological markers of fatigue⁶. 102 The advantage of psychometric tools over physiological fatigue 103 markers is that they are non-invasive and cost effective; but 104 many are considered too lengthy and impractical for daily use. 105 As such, shorter customised questionnaires represent a viable alternative to monitor athletes response load⁷. In a survey of 106 those who use self-reported perceptual wellness measures in 107 high performance sport 80% of respondents stated they used a 108 customized questionnaire⁸. The majority of recent research has 109 focussed on the relationship between these perceptual wellness 110 111 scores in response to training and matches; however, to the 112 authors' knowledge, no researchers have yet examined the 113 recovery of perceptual wellness markers in ACF players in 114 response to match play.

The aim of the present case-study was to monitor the recovery time course of perceptual wellness markers (sleep, soreness, energy and overall wellness) in response to match play in ACF. <u>Specifically</u>, we studied the perceptual responses of ACF players from baseline (the day before game day; <u>GD-1</u>) to two, three and four <u>days</u>' post-game (GD+2, GD+3 and GD+4) over a <u>two-year</u> period.

122

123 Methods

124 Subjects

52 college level American footballers participated in
this study (mean±SD age: 20.6±1.4 y, mass: 104.78±20.1 kg,
height: 188.0±7.4 cm). All subjects were members of the same

Division I-A football team. All players gave informed consent by signing a form that states that de-identified injury, wellness or performance data (no release of individual information) may be used for research purposes. All players were fully familiarised with all procedures prior to the commencement of the study. All experimental procedures were approved by the University's Research Compliance Services.

136 Design

135

137 This study was a retrospective research design, where wellness data were collected for training sessions and 138 139 competitive events during the 2014 and 2015 collegiate NCAA 140 Division I-A American football regular seasons (two x twelve 141 week seasons). Each training week included five training sessions. Perceptions of wellness were obtained at the same 142 time daily (2 h prior to the commencement of training) for the 143 day preceding each game (baseline: GD-1) and the days 144 following each game (GD+2, GD+3 and GD+4). Data were 145 146 then divided into three conditions (First 1/3 of the season; START, middle 1/3 of the season; MIDDLE, final 1/3 of the 147 148 season; FINISH). Training for each day commenced at times 149 ranging from 08:30-10:00, with university classes attended 150 from approximately 12:00-16:00 in the MIDDLE and FINISH 151 (not at START). In general, players travelled every second week to play (average flight time 1.5 h). Wellness measures for 152 the day following the game (GD+1) were not obtainable as this 153 was designated as a players' recovery/day off. To be included 154 for final analysis, players were required to participate for at 155 156 least one season and retain 80% or greater completed data sets. Thus, a total of 3532 observations were analysed, with 68±21 157 158 measures per player.

160 *Methodology*

161 Players completed the customized wellness questionnaire each day ~ 2 h before their main field training 162 163 session. The information collected comprised of three 5-point 164 Likert scale questions: soreness: How SORE were you when 165 you woke up this morning? (1 = Terribly sore; 2 = Fairly Sore;3 = Feeling OK; 4 = Slightly Sore 5 = No Soreness at all); 166 sleep: How did you SLEEP last night? (1 = Slept Terrible; 2 = 167 Slept Bad; 3 = Slept OK; 4 = Good Sleep; 5 = Excellent Sleep); 168 169 and energy: How energized do you feel today? 1 = No energy 170 at all; 2 = Hardly any energy; 3 = some energy; 4 = Well energized; 5 = totally energized). In addition, wellness 171 172 responses were averaged to provide an overall wellness score for each player (1=poor wellness, 5=excellent wellness). 173

174

159

175 Statistical Analysis

176Data are presented as means±SD. All procedures were177performed using the statistical package Minitab 17.

178	Standardised effect size (ES) analyses±90% confidence
179	intervals (CI) were used to interpret the magnitude of the mean
180	differences between all time-points (GD-1, GD+2, GD+3,
181	GD+4) for each of the three season conditions (START,
182	MIDDLE, FINISH) for soreness, sleep, energy and overall
183	wellness using the following qualitative descriptors: 0–0.19
184	trivial; $0.2-0.59$ small; $0.6-1.19$ moderate; $1.2-1.99$ large; <2.0
185	very large) ⁹ . In addition, qualitative probabilistic terms were
186	assigned using the following scale: <0.5%, most unlikely,
187	almost certainly not; 0.5-5%, very unlikely; 5-25%, unlikely;
188	25-75%, possibly; 75-95%, likely; 95-99.5%, very likely;
	>99.5%, most likely, almost certainly ⁹ . The smallest
189	<u>299.570, most mkery, annost certainty</u> . The sindnest
190	worthwhile change (SWC) in each variable was calculated as
191	0.2 of the between-athlete standard deviation ¹⁰ .
192	
193	Results
194	All results are present in Table 1. Overall wellness showed
195	small ES reductions on GD+2 (d=0.22±0.09, likely [94.8%]).
196	<u>GD+3 ($d=0.37\pm0.15$, very likely [99.5%]</u>) and GD+4
197	(d=0.29±0.12, very likely [98.5%]) than GD-1. There were
198	small ES reductions for soreness between GD-1, and GD+2,
199	<u>GD+3 and GD +4 ($d=0.21\pm0.09$, likely [90.8%], $d=0.29\pm0.12$,</u>
200	very likely [97.2%], and 0.30±0.12, very likely [97.6%],
201	respectively). Small ES reductions were also evident between
202	<u>GD-1 and GD+3 (d=0.21±0.09, likely [93.5%]) for sleep.</u>
203	Feelings of energy showed small ES on GD+3 (d=0.27±0.11,
204	<u>very likely [97.2%]) and GD+4 (d=0.22±0.09, likely [92.6%])</u>
205	when compared to GD-1. There were no differences between
206	wellness markers at different stages of the season (START,
207	MIDDLE and END, range: d=0.05-0.13; trivial).
208	
209	Discussion
210	The present study analysed the recovery time course of
211	perceptual wellness markers in response to match play in ACF
212	at different stages of the season, over a two-year period. The
213	main finding was a smaller reduction in the majority of
214	wellness markers on GD+3 and GD+4 compared with GD+1.
215	Interestingly, these wellness markers did not differ between
216	stages of the season (START, MIDDLE and END). These
217	findings show that pre-game wellness markers may take longer
218	than 4 d to return to baseline levels and should thus be
219	considered when prescribing training and/or recovery. For
220	instance, this may be especially pertinent in situations which
221	disrupt the normal training week schedule (i.e. short turnaround
222	between games (< 7 d), the commencement of school ₇ and or
223	weeks involving extensive travel).
223	Significant reductions in exercise performance,
224	cognitive ability and perceptual recovery markers following
225	match-play have been commonly reported in other sports ¹¹ .
220	These reductions generally return to baseline levels within 72-
/	These requestions generally retain to outsettile levels within 72-

96 h¹². However, all wellness markers in our study were at their 228 229 worst ~72 h or 96 h post-game, showing little sign of returning to pre-game values. The prolonging of this recovery timeline in 230 231 our study may be due to the differing demands of ACF to other sports, with a high amount of g-forces and collisions for the 232 233 majority of positions⁴. It is also possible that given this sample of athletes are college student-athletes, the additional 234 235 requirements of university may inhibit the recovery process 236 (i.e. additional mental fatigue imposed from class). However, 237 this remains speculative and further research pertaining to the analysis of the additional requirements of student-athletes is 238 239 required. In addition, interventions aimed at reversing this trend 240 of reduced perceptual wellness for up to 96 h post-game would seem advisable for game preparation. Future research which 241 242 assesses the objective recovery of exercise performance 243 following football match play is also warranted. There were no differences evident between stages of the 244 season for all wellness markers. This is surprising since there 245 246 are numerous instances which could have contributed to an altered recovery status between time points during the season. 247 248 For instance, the commencement of university classes¹³-in the first week of the MIDDLE section could pose a risk to sleep 249 250 quality with earlier training starts. Since American collegiate 251 students are possibly the most at risk (healthy) population for sleep disruption¹⁴, players may have altered their own sleep 252 schedule (i.e. bed time) to accommodate the expected reduction 253 in sleep quantity/quality. In addition, the accumulation of 254 elevated fatigue levels towards the end of the season could 255 reduce the ability to recover³. However, it is likely that altered 256 training loads at the end of the season may have reduced 257 training stress and stabilised wellness recovery¹². Alternatively, 258 259 the lack of differences in post-game recovery wellness between 260 stages of the season may be explained by variance (or lack 261 thereof) in game loading/demands. Although outside the scope of this investigation, further investigations into the effect of 262 individual and position-specific physiological demands of 263 264 collegiate football on the recovery of exercise performance 265 timeline would complement these findings. The present study showed that ACF footballers incur 266 267 poorer ratings and small effects of wellness markers up to 96 h post-game play. Collectively, these findings should be 268 269 considered from a practical perspective when prescribing 270 training and/or recovery during a typical ACF season. For 271 instance, attenuating training loads or schedules in response to 272 changes in school requirements (i.e. cognitive fatigue induced from classes), scheduling (i.e. shorter/extended training weeks) 273 274 or wellness/recovery markers (i.e. during travel) may be 275 beneficial. 276 **ACKNOWLEDGEMENTS** 277

International Journal of Sports Physiology and Performance

Wellness recovery in American football

- 278 The authors would like to thank all players, staff and interns
- whom partook or helped in the study.

280	REF	ERENCES:
281	1.	Wellman A, Coad S, Goulet G, McLellan C.
282		Quantification of Competitive Game Demands of
283		NCAA Division I College Football Players Using
284		Global Positioning Systems. J Strength Cond Res.
285		2016;30(1):11-19.
286	2.	Iosia M, Bishop P. Analysis of exercise-to-rest ratios
287		during division IA televised football competition. J
288		Strength Cond Res. 2008;22:332–340.
289	3.	Robbins D, Young W. Positional relationships between
290		various sprint and jump abilities in elite American
291		football players. J Strength Cond Res. 2012;26:388-
292		397.
293	4.	Wellman A, Coad S, Goulet G, Coffey V, McLellan C.
294		Quantification of Accelerometer Derived Impacts
295		Associated With Competitive Games in NCAA
296		Division I College Football Players. J Strength Cond
297		Res. 2016;[Epub ahead of print].
298	5.	Kellmann M. Preventing overtraining in athletes in
299		high-intensity sports and stress/recovery monitoring.
300		Scandinavian journal of medicine & science in sports.
301		2010;20 Suppl 2:95-102.
302	6.	Kenttä G, Hassmén P. Overtraining and recovery. A
303	7	conceptual model. Sports Med. 1998;26(1):1-16.
304	7.	Gallo T, Cormack S, Gabbett T, Lorenzen C. Pre-
305		training perceived wellness impacts training output in
306		Australian football players. J Sports Sci. 2015;[Epub
307	0	ahead of print].
308 309	8.	Taylor K, Chapman D, Cronin J, Newton M, Gill N. Fatigue monitoring in high performance sport: A survey
309 310		of current trends. Journal of Australian Strength &
311		Conditioning. 2012;20(1):12-23.
312	9.	Batterham A, Hopkins W. Making meaningful
313).	inferences about magnitudes. Int J Sports Physiol
314		Perform. 2006;1(1250-7).
315	10.	Hopkins W, Marshall S, Batterham A, Hanin J.
316		Progressive statistics for studies in sports medicine and
317		exercise science. Med Sci Sports Exerc. 2009;41(1):3-
318		12.
319	11.	Fullagar H, Duffield R, Skorski S, Coutts A, Julian R,
320		Meyer T. Sleep and Recovery in Team Sport: Current
321		Sleep-related Issues Facing Professional Team-sport
322		Athletes. Int J Sports Physiol Perform. 2015; [Epub
323		ahead of print].
324	12.	Nédélec M, McCall A, Carling C, Legall F, Berthoin S,
325		Dupont G. Recovery in Soccer: Part I. Sports Med.
326		2012;42(12):997-1015.
327	13.	Hershner S, Chervin R. Causes and consequences of
328		sleepiness among college students. Nat Sci Sleep.
329		2014;23(6):73-84.

- 330 14. Carney C, Edinger J, Meyer B, Lindman L, Istre T.
- 331 Daily activities and sleep quality in college students.
- 332 *Chronobiol Int.* 2006;23(3):623-637.
- **Table 1: Perceptual customized wellness recovery markers**
- 334 in response to NCAA Division I-A American football game
- 335 play

	GD-1	GD+2	GD+3	GD+4	Overall
Soreness	3.48±0.65	3.11±0.73 ^{^#}	2.99±0.74 ^{^**}	2.93±0.71 ^{^**}	
START	3.60±0.65	3.07±0.68	3.02±0.63	2.89±0.63	3.15±0.69
MIDDLE	3.42±0.61	3.17±0.76	3.03±0.72	2.97±0.73	3.15±0.72
END	3.41±0.68	3.10±0.77	2.92±0.85	2.93±0.77	3.09±0.73
Sleep	3.56±0.63	3.25±0.63	3.18±0.66 ^{^#}	3.23±0.62	
START	3.78±0.64	3.35±0.61	3.32±0.57	3.25±0.56	3.42±0.61
MIDDLE	3.42±9.66	3.17±0.63	3.08±0.71	3.16±0.65	3.20±0.67
END	3.49±0.56	3.23±0.64	3.16±0.67	3.29±0.64	3.29±0.66
Energy	3.63±0.66	3.26±0.66	3.14±0.69 ^{^*}	3.20±0.66 ^{^#}	
START	3.81±0.70	3.25±0.64	3.18±0.64	3.21±0.58	3.37±0.67
MIDDLE	3.50±0.62	3.25±0.64	3.10±0.71	3.11±0.71	3.24±0.69
END	3.57±0.63	3.29±0.71	3.16±0.73	3.28±0.70	3.33±0.66
OW	3.45±0.65	3.10±0.63 ^{^#}	2.97±0.65**	2.91±0.60 ^{**}	
START	3.53±0.64	3.03±0.64	2.91±0.58	2.99±0.54	3.11±0.67
MIDDLE	3.42±0.59	3.08±0.60	2.83±0.67	2.87±0.61	3.05±0.66
END	3.40±0.71	3.19±0.65	3.01±0.69	3.05±0.62	3.16±0.67

336 Abbreviations: OW; Overall wellness

337 $^{\text{Small effect size present}} (d=0.20-0.59)^{9,10}$

338 [#]Likely, probably lower than GD-1 ^{9,10}

339 *Very likely lower than GD-1 ^{9,10}

View publication stats