

Elsevier required licence: © 2021

This manuscript version is made available under the
CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/

The definitive publisher version is available online at

https://doi.org/10.1016/j.ins.2021.07.084

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ins.2021.07.084

1 Leveraging Implicit Relations for Recommender Systems

2 Anchen Lia,b, Bo Yanga,b,*, Huan Huoc and Farookh Khadeer Hussainc

3
aCollege of Computer Science and Technology, Jilin University, China

4
bKey Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, China

5
cUniversity of Technology Sydney, Australia

6

87 A R T I C L E I N F O A B S T R A C T
9

10 Keywords:

11 Recommender systems

12 Collaborative filtering

13 Implicit relations

14 Deep learning

15

16

17

18

19

20

21

22

Collaborative filtering (CF) is one of the dominant techniques used in recommender systems.

Most CF-based methods treat every user (or item) as an isolated existence, without ex- plicitly

modeling potential mutual relations among users (or items), which are latent in user- item

interactions. In this paper, we design a novel strategy to mine user-user and item-item im- plicit

relations and propose a natural way of utilizing the implicit relations for recommendation.

Specifically, our method contains two major phases: neighbor construction and a recommendation

framework. The first phase constructs an implicit neighbor set for each user and item accord-

ing to historical user-item interaction. In the second phase, based on the constructed neighbor

sets, we propose a deep framework to generate recommendations. We conduct extensive exper-

iments with four datasets on movie, business, book, and restaurant recommendations and

compare our methods with seven baselines, e.g., feature-based, neighborhood-based, and graph-

based models. The experiment results demonstrate that our method achieves superior

performance in rating prediction and top-k recommendation.

23

24 1. Introduction

25 In the era of information explosion, recommender systems play an indispensable role in identifying user

26 preferences by recommending products or services. Collaborative filtering (CF) is one of the state-of-art techniques

27 in recommender systems [1, 2, 3, 4, 5, 6, 7]. In a typical CF scenario with user-item interaction history, matrix

28 factorization (MF), which embeds users and items in a shared latent

29 space and models the user preference to an item as the inner product between the corresponding user and item embed-

30 dings, has become one of the most popular approaches [8]. However, due to the complex interaction between users and

items, the shallow representations in the MF-based

31 methods lack the expressiveness to model features for users and items [9, 10].

32 Recent years have witnessed the great success of deep neural network techniques in many research areas such as

33 computer vision and natural language processing. Some recently proposed recommendation approaches utilize deep

34 neural networks to capture the complex relationships between user-item interactions, which enhance the performance

of

35 the previous shallow models [9, 11]. Though successful, most deep recommendation models treat every user (or

36 item) as an isolated existence and have tended not to focus on potential user-user or item-item relations. Such

potential re-

37 lations are latent in user-item interactions and could provide valuable information to infer user or item features

38 [10, 12]. Although some existing works [13, 14] utilize graph neural networks (GNNs) on the user-item bipartite

39 graph to capture high-order relations among users (or items), a more explicit and straightforward way is to directly

40 construct user-user and item-item relations. Empirical evidence is from the recent work MMCF [10], which ex-

41 plicitly utilizes the co-occurrence relation (i.e., users who have interacted with the same items or items with which the

same users have interacted42) to define the neighbors for users and items. For instance, Figure 1(a) shows a simple

43 user-item interaction in the movie domain, where each user rates movies on a 5-point integer scale to express their

44 preference for movies. Take the user co-occurrence relation for example: for user d, the co-occurrence relation

defines

45 user a, user b, and user c as her neighbors (as shown in Figure 1(b)) because user d and these users have interacted

46 with common items.

47 Although MMCF has shown promising results, we argue that such a co-occurrence relation is macro-level and coarse-

48 grained. For instance, for user d, the co-occurrence relation defines user e as one of her neighbors, but user d and user

49 e have different preferences for movie d. By observing the user-item interaction in Figure 1(a), although user d and

50 user a are not in a co-occurrence relation, they both share common preferences with user b and user c. Such a high-order

*Corresponding author, E-mail address: ybo@jlu.edu.cn

ORCID(s):

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 1 of 20

mailto:ybo@jlu.edu.cn

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 2 of 20

51 transitive relation is also a very significant signal for revealing user preferences and item properties, while it is ignored

52 by most existing works. Therefore, we believe that (i) the co-occurrence relation contains useful information,

53 but not all co-occurrence relations help; (ii) using the co-occurrence relation directly without filtering may introduce

54 some irrelevant information or even noise, which will mislead the learning of user and item feature representations;

55 (iii) the co-occurrence relation ignores high-order transitive relations for users and items.

co-occurrence neighbors

movie a movie b movie c movie d movie e

implicit neighbors

user a user b user c user d

(a) Xser-item interaction

user e

(b) neighbors of user d

Figure 1: Illustration of the problem. (a): A simple user-item interaction scenario in a 5-star system. (b): Comparison
between the co-occurrence neighbors and implicit neighbors.

56 To overcome the aforementioned limitation, we propose our method IRec which leverages user-user and item-item

57 Implicit relations for Recommendation. IRec contains two major phases: neighbor construction and a recommendation

58 framework. In the first phase, we construct an implicit neighbor set for each user and each item. More specifically,

59 we first utilize the user-item interaction information to construct a user relational graph and an item relational graph.

60 We then map each graph to a latent continuous space to find the implicit neighbors for users and items. In this way,

the

61 constructed neighborhoods not only filter out some irrelevant (or noisy) co-occurrence relations, they also may contain

62 high-order transitive relations. In the second phase, we design a deep framework based on graph neural networks

63 (GNNs) which utilizes the constructed user and item neighbor sets for recommendation. The key component of the frame-

64 work is that we devise an aggregator on the neighbor sets to update the feature representations of users and items.

65 Empirically, we apply IRec to four real-world scenarios of the movie, business, book, and restaurant recommenda-

66 tions. The experiment results show that IRec outperforms the state-of-the-art approaches in both rating prediction and

67 top-k recommendation. In summary, our main contributions in this paper are listed as follows:

68 • We provide a novel approach to find implicit neighbors for users and items.

69 • We propose an end-to-end framework that integrates implicit neighbors into recommendations.

70 • T h e experimental results on four real-world datasets show the effectiveness of IRec.

71 The remainder of this paper is organized as follows. Section 2 reviews the work related to our methods. In Section 3,

72 we present the problem formulation and introduce the proposed method IRec. In Section 4, we describe the

experiments conducted

73 on four real-world datasets and present the experiment results, followed by a conclusion and suggestions for future work

in Section 5.

74 2. Related Work

75 In this section, we provide a brief overview of four areas that are highly relevant to our work.

76 2.1. Collaborative Filtering
77 Collaborative filtering (CF) can generally be grouped into three categories: neighborhood-based model, latent factor

78 model, and hybrid model [15, 16]. Neighborhood-based methods identify neighborhoods of similar

79 users or items based on the user-item interaction history [12, 16]. For example, ItemKNN utilizes collaborative item-

80 item similarities (e.g. cosine similarity) to generate recommendations [17]. The latent factor model, such as matrix

81 factorization [8], projects users and items into low-dimensional feature vector spaces. The interactions between users

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 3 of 20

82 and items are modelled as the inner product of their latent vectors. With the development of deep learning, some latent

83 factor models utilize deep neural networks as representation learning tools to capture complex user-item interactions

84 [9, 11]. As for the hybrid model, it merges the latent factor model and the neighborhood-based model. SVD++ is a

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 4 of 20

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

well-known and commonly used hybrid model that leverages users’ explicit feedback and implicit feedback to predict

user preferences [16]. Recently, a line of work leverages co-occurrence relations to define the neighbors for users and

items and integrates deep components into the hybrid model [10, 18]. Since the co-occurrence relation is coarse-

grained and lacks high-order semantics, these methods are insufficient to generate better recommendations. Different

from the aforementioned work, our proposed method IRec is a unified hybrid model using implicit relations to define

user and item neighbors, which accounts for both co-occurrence relations and high-order transitive relations.

2.2. Graph Representation
Graph representation learning is a significant method to learn latent, low-dimensional representations of vertexes in the

graph, while preserving both graph structure and node content. In general, there are two types of graph representa- tion

learning methods: unsupervised methods and semi-supervised methods [19]. Unsupervised graph representation

approaches focus on preserving the graph topology structure [20, 21]. For instance, LINE designs the objective

function that preserves first-order and second-order proximity for learning node representations [20]. DeepWalk uti-

lizes local information obtained from random walks to learn node representations [21]. As for the semi-supervised

method, it utilizes some labeled vertexes for representation learning [19]. Graph convolutional networks (GCN) [22]

and graph attention networks (GAT) [23] are two powerful semi-supervised methods for solving the classification

problem in the graph. GCN learns node representation by aggregating the features of its neighbor nodes. GAT further

enhances the performance of GCN by using the attention mechanism. In this work, we first use unsupervised repre-

sentation approaches to construct the implicit neighbor sets. We then borrow the recent advances of GCN and design

a framework that utilizes constructed neighbor sets for recommendation.

Some recent studies like GCMC [14], NGCF [13] also adopt GCN ideas for recommendation, and they are designed

for the user-item bipartite graph. Different from the above literature, we provide a new perspective for recommendation

with the assistance of constructed user-user and item-item implicit neighborhoods.

2.3. Deep Learning
Deep learning is an emerging field of machine learning and is receiving a huge amount of attention at the moment

[24]. Since deep learning technology can solve complex tasks while providing start-of-the-art results, it has achieved

great success in many research areas [25], such as computer vision [26, 27], speech recognition [28, 29], and natural

language pro- cessing [30, 31]. Due to the effectiveness of deep components, an increasing number of researchers are

interested in integrating deep models into recommender systems [9, 10, 11, 32, 33, 34, 35, 36, 37, 38, 39, 40]. For

instance, NeuCF is proposed to model the user-item interactions with a multi-layer perceptron [9]. DKEN is a deep

end-to-end frame- work that uses deep neural networks and knowledge graph embedding for knowledge-enhanced

recommendation [35]. RM-DRL utilizes convolutional neural networks and recurrent neural networks to produce user

and item semantic feature vectors, respectively [36]. R-ConvMF integrates convolutional neural networks into

probabilistic matrix fac- torization for document-based recommendations [39]. LUAR designs a neural attention

mechanism to find important auxiliary reviews to address the sparsity problem in review-based recommendation [40].

In this work, we propose a deep recommendation framework in our method IRec. The framework is based on graph

neural networks. The key component of the framework is that we devise an aggregator on the neighbor sets to update

the feature representa- tions of users and items. With the help of deep learning, we can obtain sufficient representation

power for building a successful recommender system.

2.4. Feedback Information
The recommender systems collect user feedback information through the feedback techniques, and then utilize

the feedback information to generate recommendations [41]. User feedback information can be roughly divided into

two categories: explicit feedback (e.g., ratings) and implicit feedback (e.g., clicking and browsing history). There are

several differences between the two types of feedback information [42]: (i) explicit feedback can capture both positive

and negative user preferences, while implicit feedback can only be positive; (ii) compared with implicit feedback,

explicit feedback can more accurately and unequivocally reflect users’ interest in items; and (iii) explicit feedback is

scarce and difficult to collect whereas implicit feedback is abundant and far outweighs the quantity of explicit data. To cater

for different types of user feedback, researchers have designed corresponding explicit feedback recommendation

methods [43, 44, 45] and implicit feedback recommendation methods [41, 46]. Some studies also use both explicit and

implicit data for personalized recommendations [11, 47]. In this paper, we focus on explicit feedback recommender

systems with users’ rating information. We first utilize user explicit feedback to construct a neighbor set for each user

and item. We then develop a deep framework that utilizes constructed neighbor sets for recommendation.

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 5 of 20

{ }
v , v , ..., v u v1 2 N

 a
 i

before, the

u v

u

E

E

ab

and item relational data .N = .N (1), ..., .N (N) . .N and .N contain implicit neighbors for users and items re-

spectively. The details of building up relational data .N and .N are discussed in subsection 3.2.

v ai a i u v ai

u

v

136

137

138

139

3. Methodology

In this section, we first introduce the notations and formulate the problems. We then describe two phases of IRec:

neighbor construction and the recommendation framework.

3.1. Notations and Problem Formulation

140 In a typical recommendation scenario, we suppose there are M users V' =
{

u1, u2, ..., uM
}

and N items V =

141

142
143

. We define Y E IRM×N as the user-item historical interaction matrix. If user has rated item

a, i-th element yai in Y is the rating score from ua to vi, otherwise we employ yai = 0 to represent the

unknown rating.

144

Given the above information (V' , V, Y), the first phase of IRec outputs user relational data .N =
{
.N (1), ..., .N (M)

}

{ } u u u

147 In the IRec’s second phase, given the user-item interaction matrix Y, user neighbor data .N and item neighbor

148 data .N , the recommendation framework aims to learn a prediction function yA = F (u , v 0, Y, .N , .N), where yA

149

150

151

152

153

154

155

156

157

158

159

is the predicted rating from user ua to item vi , an item with which they have never engaged before, and 0 is the

framework parameters of function F . The details of this phase are discussed in subsection 3.3.

3.2. Neighbor Construction
In this subsection, we describe the neighbor construction strategy. This strategy contains three steps: (i) construct

the user relational graph and item relational graph; (ii) map the user and item relational graphs to latent spaces

respectively; and (iii) find implicit neighbors for users and items from their latent spaces. Next, we detail each step.

3.2.1. Step 1: Construction of relational graphs

The user-item interaction data can be represented as a bipartite graph structure. We first transform the bipartite

graph structure to construct a user relational graph and item relational graph to identify user-user relationships and

item-item relationships. In addition, to reflect the strength of the relationship in a fine-grained way, we construct the

relational graphs as weighted graphs. To this end, we utilize users’ opinions on items to construct two weighted

160 relational graphs {; = (V' , £) and {; = (V, £) for users and items respectively. In the user relational graph {; , the

u
u u v v

u
u

161 edge e £ connects two users if they have engaged with at least one common item before. In addition, e is
associated with
162 a weight wu > 0 to indicate the relational strength between two users. Similarly, for the item relational graph {; ,

v
163 the edge ev £ connects two items if they at least have been engaged by one common user and its weight wv >

164 indicates the relational strength between two items.

The opinions of users on items, such as ratings or reviews, play a crucial role in reflecting user preferences and

item attributes. Here, we employ users’ ratings to items as the user opinions. We utilize the difference in the user

opinions
to define the weight of the edges in the relational graphs. Specifically, for the edge eu between user ua and user ub in {; ,

the edge weight wu is defined as

follows:

ab u

wu = Ymax −
 1

 yai − ybi , (1)

ab
ab viECab

where Ymax is the max score in all ratings (e.g., 5 in a 5-star system) and Cab is the subset of V containing the items

that ua and ub both rated before. Similarly, the weight wv of the edge ev in {;v which connects item vi and item vj is

defined as

follows:

ij ij

145 v v v u v

C

146

0

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 6 of 20

D

ij

ij
v = Ymax −

1

 yai − yaj , (2)

ij uaED

165 where D is the subset of V' containing the users who has rated both vi and vj before.

166

167

168

169

170

Figure 2(a1) and (a2) are toy examples of building relational graphs for users and items in the simple user-item

interaction scenario (in Figure 1 (a)). The advantage is that such relational graphs not only reflect the co-occurrence

relations (one-hop neighbors) but also infer the high-order transitive relations (multi-hop neighbors).

For particular recommendation scenarios, one can employ other metrics to reflect users’ opinions and design user-

user and item-item opinion relations based on the metrics.

w

ij

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 7 of 20

u v

{ } { }

v v

Figure 2: An illustration of the neighbor construction. (a) ➔ (b): Mapping user and item relational graphs to latent
spaces respectively. (b) ➔ (c): Finding implicit neighbors for users and items, respectively.

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

3.2.2. Step 2: Relational graph mapping

After the relational graph construction, we utilize the node embedding method to map each relational graph to a

latent continuous space. Specifically, for the user relational graph, we use a function Ju u ➔ zu to map a user

node u E V' from {;u to a low-dimensional vector zu E IRlu in a latent continuous space, where lu is the dimension number

of the vector for users. Similarly, for the item relational graph, we utilize another function Jv v ➔ zv to map an item

node v E V from {;v to a low-dimensional vector zv E IRlv , where lv is the vector dimension for items. Note that zu and

zv can also be considered as positions for user u and item v in their latent spaces. After the mapping, both the structures

and properties of the relational graphs are preserved and presented as the geometry in the corresponding latent space.

Also, for a target node, nodes with important high-order transitive relations will appear near the target node, while

nodes with irrelevant co-occurrence relations will appear far away from the target node.

Recent research reveals that a common embedding method that only preserves the connection patterns of a graph

can be effective [48]. In this paper, we employ LINE [20], which can preserve both the local and global network

structures, as our embedding method to map the user and item relational graphs to their corresponding latent continuous

spaces. Note that one can employ or redesign other embedding methods to create suitable latent spaces, such as

struc2vec [49], DeepWalk [21], and Poincare [50].

Figure 2(b1) and (b2) are examples of the latent space after mapping when the space dimensions lu = lv = 2.

Although there is a co-occurrence relation between user d and user e, their distance in the latent space may be far away

due to the small weight of their edge in the user relational graph.

3.2.3. Step 3: Construction of relational data

190 Based on the latent spaces, users’ and items’ relational data .N and .N can be constructed. Specifically, user ua’s

191

192

relational data .Nu(a) is a user set which contains Ku (a pre-defined hyper-parameter) nearest neighbors in the user latent

space based on the particular distance metric in the space. The construction of item neighbors is similar to the user.

193 For instance, item vi’s neighbors are defined as .N (i) which contains top-K nearest neighbors items in the latent space

194

195

196

197

198

to vi. In this way, constructed relational data not only contains nodes with important high-order transitive relations,

but also filters some nodes with irrelevant co-occurrence relations. Compared with only accounting for co-occurrence

relations, our method reveals an in-depth understanding of potential user-user and item-item relations.

Figure 2(c1) and (c2) show examples of constructed relational data for user ud and item va. The neighbor set for

user ud is .Nu(d) = ua, ub, uc when Ku = 3, and the neighbor set for item va is .Nv(a) = vb, vc when Kv = 2.

4.5

 K = 3

4.5

b

a
 b

a

Gv

4.5

 Kv = 2

2.5

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 8 of 20

u v

v

u

a

i

u v

To obtain the nearest neighbors, the time complexity for a user is O(M · lu). Similarly, for an item, the time

complexity is O(N · lv). In practice, we can utilize some acceleration computation methods proposed by previous

works [51, 52, 53] to speed

199

200

201

3.2.4. Complexity analysis

Since we utilize LINE as our embedding method, the overall time complexity of relational graph mapping is O(lu ·

Su · £ + lv · Sv · £), where Su and Sv is the number of negative samples for users and items [20].

204 up the process of obtaining implicit neighbors. Note that the relational data .N and .N can be computed offline in

205 advance, so we can prepare .Nu and .Nv before generating recommendations. In this work, the construction of the

206 relational data .Nu and .N is constrained to utilizing the user-item interaction records in the training split.

207

208

209

210

211

3.3. Recommendation Framework
In this subsection, we present the recommendation framework of the IRec, as illustrated in Figure 3. By taking a

user ua, an item vi and their neighbors .N (a) and .Nv(i) as inputs, the framework outputs the predicted rating yAai from

ua to vi. The recommendation framework consists of three parts: the embedding layer, the aggregation layer, and the
prediction layer. Details of each part are described in the following.

Figure 3: IRec’s recommendation framework’s architecture.

212

3.3.1. Embedding layer

The embedding layer transforms the primitive features of users and items (e.g., ID, user gender, item category

etc.) into low-dimensional dense vectors called embeddings. Similar to mainstream embedding based recommender

models [9, 10], we use one-hot vectors uid E IRM×1 and vid E IRN×1 to encode the ID features of user ua and item

vi,

respectively. We can obtain u ’s embeddinag u and v ’s embi edding v , as follows:
a a i i

213

214

215

ua = UT · uid, (3)

vi = VT · vid, (4)

where U E IRM×d and V E IRN×d are the embedding matrices for the user features and item features, respectively.

Here

d is the dimension size of the embeddings.

3.3.2. Aggregation layer

Aggregation is a key component in the framework because the user and item representations are bound up with

the implicit neighbors by aggregation. By taking related inputs ua, vi, .Nu(a) and .N (i), we design an aggregator to
update u ’s and v ’s feature representations as follows: v

a i

u* = Agg (ua, .N (a)) = agg(H)(u , agg(L)(.N (a))), (5)
a u u u a u u

NLT NLT

U
(L-1)

V

(L-1)

(L-1)

(L-1)

DE

DF

(L-1)

(L-1)

(L-1)

(L-1)

Description

202

203

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 9 of 20

a i ua vi
(

·

v* = Agg (vi, .N (i)) = agg(H)(v , agg(L)(.N (i))), (6)
i v v v i v v

216

217

where u and v are the representations for user and item from their embedding tables U and V. Agg is a

compound aggregation function used to update user and item representations. agg·
L) is the low-level aggregation

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 10 of 20

 0 u(L) u(L)

(

[]

u

v

.N (a) .N (i)

v =

u =

b

j

u u u

ubE.N (a)

218

219

220

function which maps the user (or item) neighbor set into a single embedding vector, and agg(H) is the high-level

aggregation function which integrates the target user (or item) representation and the neighbor repres· entation into a new

representation of the target user (or item).

Specifically, we present the implementation of the function Agg·. We illustrate the process for users and the same

process works for items. We first compute the score nab between user ua and one neighbor ub E .N (a) via

the attention mechanism as: u

221

222

223

224

225

226

nab = (ua 0 ub)T tanh(wu(L) · ub vi + bu(L)), (7)

where and mean concatenation operation and element-wise product between two vectors. w and b are parameters

of the attention mechanism in the user low-level aggregation function. We also employ tanh as the nonlinear activation

function. In general, nab characterizes the importance of one neighbor ub for the target user ua. The intuition is as follows:

the first term calculates the compatibility between user ua and her neighbor ub, and the second term computes the

opinions of neighbor ub on the target item vi. Here, we simply employ the inner product on the two terms, however

one can design a more sophisticated attention mechanism.
We then implement agg

L)
to characterize user u ’s implicit neighbors by the linear combination:

u

u.N (a) = agg(L)(.N (a)) =

a

n ab · ub, (8)

where n ab denotes the normalized attention coefficient:

n ab

exp(nab)
L

u f E.N (a) exp(nabf) . (9)

b u

For the high-level function agg
(H)

, it aggregates the user representation u and its neighbor representations u
u a .N (a)

as the new representation of user . We implement agg
(H)

by performing the summation operation between t
u

wo

representation vectors before emplo

u
yaing nonlinear transformu ation:

u* = agg(H)(ua, u.N (a)) = a(wu(H) · (ua + u.N (a)) + bu(H)), (10)
a u u u

227

228

229

where wu(H), bu(H) are parameters in the user high-level aggregation function and a is the nonlinear activation function.

We try various kinds of operations, such as concatenation, and find the summation operation always shows the best

performance.

Through a single aggregation layer, user (or item) representation is dependent on itself as well as the direct neigh-

bors. We can further stack more layers to obtain high-order information from the multi-hop neighbors of users (or

items). More formally, in the l-th layer, for user ua and item vi, their representations are defined as:

ul = agg(H)(u(l−1), u(l−1)), (11)
a u a .N (a)

vl = agg(H)(v(l−1), v(l−1)), (12)
i v i .N (i)

where u(l−1)
u

and v(l−1) are defined as:
v

(l−1)
.N (a)

ubE.Nu(a)

(l−1)
.N (i)

vj E.Nv(i)

n ab · u(l−1), (13)

n ij · v(l−1). (14)

230 3.3.3. Prediction layer
After the L aggregation layer, we feed user representation uL and item representation vL into a function p

=

u

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 11 of 20

IRd × IRd ➔ IR for rating prediction. a
 i

yAai = p(uL, vL). (15)
a i

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 12 of 20

(9

u

-1 Rec

p p a i p p

where w· and b· denote the weight matrix and bias parameters in the MLP. One can utilize various prediction functions,

p p u(L) u(H) v(L) v(H)

u v

p p u(L) u(H) v(L)

Here we implement the prediction function p as the MLP component [9], which can model complicated interactions

between users and items. Specifically, the MLP component is implemented with two hidden layers (tower structure:

2d − d − 1) as:

yAai = w2 · a

w1 · [uL vL] + b1

+ b2, (16)

· ·

232

233

such as inner product, to generate recommendations.

3.3.4. Learning algorithm

To estimate the parameters of the recommendation framework, we have the following objective function:

min £ = £Rec + -1 0 2, (17)

where £Rec measures the loss in the recommendation framework. Our paper is centered on the rating prediction for

recommendation which is a regression problem. For the regression, we formulate £Rec as the squared loss:

£Rec =
 1

(a

,i)E(9

yai − yAai

 2
, (18)

234
235

where (9 denotes the observed ratings in Y.

The second term in Equation (17) is the L2 regularization term to control model complexity and to avoid

236 over-fitting. 0 =
{

U, V, w1, w2, wl , wl , wl , wl , \/l E {1, · , L}
}

is the parameter set in the framework.

237 The training process of the recommendation framework is summarized in Algorithm 1.

Algorithm 1 Training algorithm for the recommendation framework

Input: Interaction matrix Y; user neighbor set .N ; item neighbor set .N ; balancing factors -1; learning rate Y
Output: Prediction function F (u, v 0, Y, .N , .N)

1: Initialize all parameters in 0
u v

2: repeat

3: Sample a minibatch of user-item interaction data from Y

4: Calculate £ +- £ + 0 2

5: for each parameter fJ E 0 do

6: Calculate a£/afJ on the minibatch by backpropagation

7: Update fJ by gradient descent with learning rate Y
8: end for

9: until £ converges or is sufficiently small

10: return F (u, v 0, Y, .N , .N)

238

239

240

241

242

243

244

245

246

247
248

3.3.5. Complexity analysis

In this subsection, we discuss the time complexity and space complexity for the recommendation framework.

Time complexity. The time cost of the recommendation framework mainly comes from the aggregation layer. For

users, the matrix multiplication in the aggregation layer has computational complexity O(M ·Ku·L·d2), where M is the
number of users, Ku is the number of neighbors for each user, L is the total layers in the aggregation layer and d denotes

the embedding size. Similarly, the time consumption for items in the aggregation layer is O(N · Kv · L · d2), where N
is the number of items and Kv is the number of neighbors for each item. In general, the overall training complexity is

O(M · Ku · L · d2 + N · Kv · L · d2). In fact, as shown in our experiment section, the framework reaches the best

performance when L = 1. Also, the number of neighbors for users and items are limited with Ku = Kv « min {M, N}.
Therefore, the total time complexity of the recommendation framework in IRec is acceptable.

Space complexity. As shown in Equation (17), the model parameters 0 comprise two parts: embedding

231

v

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 13 of 20

wl

249 tables for users and items 01 = {U, V}, and weight parameters in neural components 02 =
{

w1, w2, wl , wl , wl ,

250

v(H)
, \/l E {1, · , L}

}
. Parameter set 01 is identical to that of the classical embedding-based models, such

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 14 of 20

6

251

252

253

254

255

256

257

258

259

as MF [8], BPR [54]. Parameter set 02 is lighter than 01 and can be neglected because (i) the parameters in 02 are shared

by all users and items; (ii) the dimension of each parameter in 02 is far less than the number of users and items.
Therefore, the space complexity of the framework is the same as the classical embedding models.

4. Experiments

In this section, we evaluate our method IRec in four real-world scenarios: movie, business, book, and restaurant

recommendations. We first introduce the experiment settings, then present the experiment results. We also analyze

the choice of hyper-parameters, the training efficiency, and some case studies in this section.

4.1. Experiment Setup
In this subsection, we introduce the datasets, baselines, evaluation protocols, and the choice of hyper-parameters.

260

261

4.1.1. Datasets.
Four datasets DVD1

movie dataset, Yelp2

business dataset, Douban3

book dataset, and Dianping4

restaurant dataset

262 are used in o
5

ur experiments. Each dataset contains users’ ratings (ranging from 1 to 5) on the items. The statistics of

263 the datasets are summarized in Table 1.

Table 1
Basic statistics for the four datasets: Movie (DVD), Business (Yelp), Book (Douban), and Restaurant (Dianping).

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

To verify the performance of our proposed method IRec, we compared it with the following state-of-art recom-

mendation methods. The characteristics of the comparison methods are listed as follows:

• SVD++ is a well-known baseline, which is a hybrid model combining the latent factor model and the neighbor-

hood model [16].

• NFM is a feature-based factorization model, which improves FM [55] by using the MLP component to capture

the high-order feature interaction [37]. Here we concatenate user ID embeddings and item ID embeddings as

input for NFM.

• GCMC is a graph-based recommendation framework which adopts a graph auto-encoder in a user-item

bipartite graph to learn user and item embeddings for rating prediction [14].

• NGCF is a state-of-the-art graph-based recommender system which utilizes multiple propagation layers to learn

user and item representations by propagating embeddings on the user-item bipartite graph [13]. For the rating

prediction task, we replace the inner product with a two-layer MLP component in the prediction layer to enhance

its performance.

• CUNE is a semantic social recommendation method which identifies semantic social friends from the col-

laborative user network and models these semantic relations as regularization terms to constrain the matrix

factorization model [58]. In particular, they do not consider the neighbor information of items.

1DVD: https://www.librec.net/datasets.html
2Yelp: http://www.yelp.com/
3Douban: https://www.douban.com/
4Dianping: https://www.dianping.com/
5Datasets are published at: https://www.dropbox.com/s/dzr0uk6zj155w0z/data.zip?dl=0
6We have tried other deep factorization models DeepFM [56] and Wide&Deep [57], and find that NFM is slightly better than them. Therefore,

dataset # users # items # interactions density

Movie 2,433 12,838 32,893 0.105%
Business 10,580 13,870 171,102 0.117%
Book 11,777 20,697 190,590 0.078%

Restaurant 10,549 17,707 188,813 0.101%

264 4.1.2. Baselines.

http://www.librec.net/datasets.html
http://www.librec.net/datasets.html
http://www.librec.net/datasets.html
http://www.yelp.com/
http://www.douban.com/
http://www.dianping.com/
http://www.dianping.com/
http://www.dropbox.com/s/dzr0uk6zj155w0z/data.zip?dl=0
http://www.dropbox.com/s/dzr0uk6zj155w0z/data.zip?dl=0

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 15 of 20

w

e

p

r

e

s

e

n

t

t

h

e

b

e

t

t

e

r

o

n

e

h

e

r

e

.

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 16 of 20

F av i i Rec i
{
j i

}
b

yAij

F av i
{
j i

}
y i

 iij

F1-score , (23)

M
M

Precision =
1 Fav(i) Rec(i)

, (21)

Recall =
1 Fav(i) Rec(i)

, (22)

281

282

283

284

285

286

287

288

• CMN is a state-of-the-art memory-based model which designs the memory slots of similar users to learn user

embeddings [12]. Note that it only focuses on the user’s neighbors without accounting for the information about

similar items.

• MMCF is another state-of-the-art memory-based model which models user-user and item-item co-occurrence

contexts by memory networks [10]. It is the work which is most related to us. Different from our methods, it only

focuses on co-occurrence relations and ignores high-order transitive relations among users and items.

4.1.3. Evaluation Protocols.

Three classes of metrics are adopted to evaluate the recommendation quality:

(i) For the rating prediction task, we utilize mean absolute error (MAE) and root mean square error (RMSE) as the

performance metrics, which are widely adopted in many related works [14, 16, 37, 59]. Smaller values of MAE and

RMSE indicate a better recommendation and are defined as follows:

MAE =
1

 yai − y ai , (19)

Dtest

RMSE =

1

(a,i)EDtest

yai − y ai

 2
, (20)

Dtest (a,i)EDtest

289 where D denotes the test set of the rating records.

(ii) Wteestfurther adopt three rank-based metrics precision, recall and F1-score to evaluate different methods. Fol-

lowing the approaches in [60], precision, recall and F1-score are defined as follows:

M
i=1

M

Rec(i)

290

291

292

293

294

=
2 × Precision × Recall

Precision + Recall

where () = E Q() 2: 4 and Q() is the item set that user has interacted with in the test set. Since the users’
ratings on the items range from 1 to 5, a rating of 4 or 5 usually indicate that the users like the items. Therefore, we

define () is the favorite item set of user . () = E Q() () 2: 4 is the set of items which will be recommended

to user i and b(·) is the rounding function, which rounds the predicted rating yAij to an integer rating. The bigger the
precision and recall values, the better the ranking.

(iii) In addition, we also use the three top-k based ranking metrics in our experiment: Precision@k (Pre@k for

short), Recall@k (Rec@k for short), F1@k (for short). Following the approaches in [60], three metrics are defined as

follows:

Pre@k =
1

Pre@k(i) =
1

 Fav(i) (i)

, (24)

M
i=1
M

M
i=1

k
M

Rec@k =
1

Rec@k(i) =
1

 Fav(i) (i)
, (25)

M
i=1

M
i=1 Fav(i)

M
i=1

Fav(i)

, (26)

M

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 17 of 20

295

296

297

298

299

F1@k =
2 × Pre@k × Rec@k

Pre@k + Rec@k

where (i) is the top k item set in the ranking list determined by the trained models for user i.

4.1.4. Parameter Settings.

For the neighbor construction phase, we define lu = lv = 8, Su = Sv = 5 and utilize Euclidean distance to calculate

the distance in the latent spaces. We implemented the recommendation framework of IRec with Tensorflow which is a

Python library for deep learning. For each dataset, we randomly split it into training, validation, and test sets following

the

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 18 of 20

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

6 : 2 : 2 ratio. We repeated each experiment 5 times and reported the average performance. The framework parameters

are first initialized by the Xavier initializer [61], and then updated them by conducting mini-batch Adam [62]. For the

selection of the activation function, we utilized LeakyReLU [63] by default.

For our framework, there are six key hyper-parameters that need to be tuned, including the dimension of

embeddings d, layer size L, number of neighbors K, batch size b, balancing factor -1 and learning rate Y. The hyper-

parameters were tuned on the validation set using a grid search which is widely used in many deep models [13, 19,

36]. Specifically, we

divide the hyper-parameters into two sets, model hyper-parameters {d, L, K} and training hyper-parameters {b, -1, Y},
and then apply the grid search to these sets separately. One can utilize other methods proposed by previous works

[64, 65, 66] for hyper-parameter optimization. Table 2 shows our hyper-parameter settings. The key hyper-parameter
settings for the baselines are defined as follows. For NFM, we utilize a one-layer MLP component according to the

original paper [37]. Regarding NGCF, we tune the depth of layer L between {1, 2, 3, 4}, and find NGCF performs best

with L = 2 for the movie and book datasets, and L = 3 for the business and restaurant datasets. For CMN and MMCF,

the memory hop H is tuned between {1, 2, 3, 4}, and we find H=2 reaches the best performance. The settings for the

other hyper-parameters for all the baselines are reached by either empirical study or following the original papers.

Deep models have a strong representation ability but they usually suffer from the over-fitting problems. To prevent

over-fitting, we adopt L2 regularization (as mentioned in subsection 3.3.4) and the early stopping strategy [67] (i.e.,

premature stopping if RMSE on the validation set does not increase for 3 successive epochs). Figure 4 shows the

training and validation error of each epoch of IRec. From the figure, we can see that 20 epochs are sufficient for our

method to train and converge. If the model continues learning, then a situation of over-fitting will occur (i.e., the

validation loss has begun to increase). We also tried the dropout technique [68], and found that introducing dropout

masks slightly decreases the performance. A possible reason for this is that we do not introduce too many weight

parameters with large dimensions in neural components, thus the dropout technique may not be as helpful to our model

as it is to other deep and large models. Therefore, we do not introduce dropout mechanisms.

Table 2
Hyper-parameter settings for the four datasets: Movie (DVD), Business (Yelp), Book (Douban), and Restaurant

(Dianping). dataset hyper-parameter settings

0.9 0.95 0.69 0.76

0.8

0.91
0.67

0.72

0.7 0.65

0.6
0.87

0.63
0.68

0.5

1.05

4 8 12 16 20

Epoch

(a) Movie

0.83

1.06

4 8 12 16 20

Epoch

(b) Business

0.61

0.78

4 8 12 16 20

Epoch

(c) Book

0.64

0.88

4 8 12 16 20

Epoch

(d) Restaurant

1.04 0.76

1.00 0.83

1.02 0.74

0.95

4 8 12 16 20

Epoch

(a) Movie

1.00

4 8 12 16 20

Epoch

(b) Business

0.72

4 8 12 16 20

Epoch

(c) Book

0.78

4 8 12 16 20

Epoch

(d) Restaurant

R
M

S
E

R

M
S

E

Movie d = 8 L = 1 K = 6 b = 256 -1 = 10−4 Y = 10−2

Business d = 16 L = 1 K = 6 b = 1024 -1 = 10−4 Y = 2 × 10−2

Book d = 16 L = 1 K = 5 b = 1024 -1 = 2 × 10−4 Y = 10−2

Restaurant d = 16 L = 1 K = 8 b = 1024 -1 = 10−4 Y = 2 × 10−2

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 19 of 20

Figure 4: Training and validation error of each epoch of IRec on t h e four datasets.

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 20 of 20

323

324

325

326

327

328

329

330

331

332

333

4.2. Empirical Study
We conduct an empirical study to investigate the correlation between users (or items) and their co-occurrence

neighbors. To formulate this issue, we utilize the difference in the explicit feedback (i.e. ratings) as the index. Taking

users for example, if a co-occurrence user pair had engaged a common item before and the difference in their ratings

on the item is greater than or equal to 2 (in a 5-star system), we believe this co-occurrence user pair encodes irrelevant

(or noisy) information. To this end, we make statistics ???DO YOU MEAN we calculate the statistics??? on the four

datasets used in this paper. The results are presented in Figure 5. We observed that both the user co-occurrence relation

and item co-occurrence relation encode irrelevant (or noisy) information in the four datasets. In particular, more than 1/5

of the user co-occurrence relations and ¼ of the item co-occurrence relations in the business dataset exist in such cases.

The above findings empirically demonstrate that not all co-occurrence relations contain useful information, so it is

important to filter out irrelevant information to construct meaningful implicit neighbors for users and items.

30% 30%

20% 20%

10% 10%

0%

(a) User

0%

(b) Item

Figure 5: Empirical study on the four datasets. (a) Percentage of co-occurrence user pairs encoding irrelevant (or noisy)
information. (b) Percentage of co-occurrence item pairs encoding irrelevant (or noisy) information.

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

4.3. Performance Comparison
Table 3 and Figures 6, 7, 8 show the performance of all the compared methods on the four datasets. From the

results, we make the following main observations:

(i) SVD++ achieves poor performance on the four datasets, which indicates that shallow representation is insufficient

to capture complex user-item interactions. NFM consistently outperforms SVD++, which suggests the significance of

non-linear feature interactions between user and item embeddings in recommender systems. However, both SVD++

and NFM ignore user-user and item-item relations.

(ii) Both SVD++ and CUNE are shallow models based on matrix factorization, while CUNE achieves better

performance than SVD++; meanwhile, for the deep recommendation models, CMN and MMCF generally achieve

better performance than NFM in most cases. These results suggest that considering potential user-user and item-item

neighbors can enhance the recommendation performance. In addition, MMCF consistently outperforms CUNE and

CMN. This makes sense since CUNE and CMN only account for user neighbor information, while MMCF considers

co-occurrence information for both users and items.

(iii) For GNN-based models, NGCF achieves better performance than GCMC in most cases. The reason might be

because GCMC only incorporates first-order neighbors for users and items in the bipartite graph, while NGCF models

the high-order information.

(iv) Our method IRec consistently yields the best performance on the four datasets, which demonstrates the
effective- ness of IRec on rating prediction and top-k recommendation. We also conduct one-sample t-tests and p <

0.05 indicates that the improvements of IRec over the best baseline are statistically significant.

4.4. Data Sparsity and Cold Start Issues
As mentioned in many studies in the literature [43, 60, 69], data sparsity and cold start are two challenges faced

by most rec- ommenders. In this subsection, we in

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 21 of 20

c

h

a

l

l

e

n

g

e

s

f

a

c

e

d

b

y

m

o

s

t

r

e

c

o

m

m

e

n

d

e

r

s

.

I

n

t

h

i

s

s

u

b

s

e

c

t

i

o

n

,

w

e

i

n

vestigate the ability of our model to handle these two issues.

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 22 of 20

Table 3
Recommendation performance of seven competing methods and our method IRec on the four datasets. The proposed
method IRec achieves the best performance on all metrics, as shown in boldface. * denotes the statistical significance for p <

0.05 compared to the best baseline.

Movie SVD++ NFM GCMC NGCF CUNE CMN MMCF IRec

MAE 0.8183 0.8178 0.7790 0.7893 0.8181 0.8097 0.7804 0.7594*

RMSE 1.0503 1.0391 1.0177 1.0120 1.0406 1.0192 1.0068 0.9876*
Precision 0.8715 0.8908 0.8940 0.9027 0.8918 0.8733 0.8971 0.9166*
Recall 0.7386 0.8285 0.8197 0.7990 0.7985 0.8270 0.8640 0.8757*
F1-score 0.7996 0.8585 0.8552 0.8477 0.8426 0.8495 0.8802 0.8957*

Business SVD++ NFM GCMC NGCF CUNE CMN MMCF IRec

MAE 0.8318 0.8045 0.8167 0.7995 0.8035 0.8122 0.8032 0.7889*
RMSE 1.0469 1.0357 1.0437 1.0266 1.0351 1.0348 1.0344 1.0164*
Precision 0.8187 0.8196 0.8507 0.8509 0.8514 0.8302 0.8349 0.8569*
Recall 0.6330 0.6538 0.6697 0.6769 0.6490 0.7022 0.7264 0.7361*
F1-score 0.7140 0.7274 0.7494 0.7540 0.7365 0.7609 0.7769 0.7919*

Book SVD++ NFM GCMC NGCF CUNE CMN MMCF IRec

MAE 0.6079 0.5909 0.6040 0.5958 0.5960 0.5947 0.5926 0.5881*
RMSE 0.7648 0.7436 0.7549 0.7523 0.7442 0.7419 0.7387 0.7331*
Precision 0.8674 0.8820 0.8760 0.8835 0.8812 0.8571 0.8799 0.8856*
Recall 0.7122 0.7902 0.8168 0.7853 0.7639 0.7911 0.8137 0.8494*
F1-score 0.7822 0.8336 0.8454 0.8315 0.8184 0.8228 0.8455 0.8671*

Restaurant SVD++ NFM GCMC NGCF CUNE CMN MMCF IRec

MAE 0.6640 0.6459 0.6480 0.6263 0.6365 0.6414 0.6238 0.6207*
RMSE 0.8682 0.8488 0.8385 0.8239 0.8356 0.8473 0.8198 0.8077*
Precision 0.8491 0.8460 0.8669 0.8746 0.8495 0.8524 0.8654 0.8750*
Recall 0.6907 0.7058 0.7156 0.7460 0.7404 0.7084 0.7252 0.7845*
F1-score 0.7618 0.7696 0.7840 0.8052 0.7912 0.7738 0.7891 0.8273*

0.85

0.80

0.75

0.80 0.80

0.75

0.75

0.70

0.75

0.70

5 10 15

K

(a) Movie

0.70

5 10 15

K

(b) Business

5 10 15

K

(c) Book

0.65

5 10 15

K

(d) Restaurant

Figure 6: The results of Precision@K on the four datasets.

356

357

358

359

360

361

362

363

364

P
r
e
c
is

io
n

@
K

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 23 of 20

4.4.1. R

e

s

u

l

t

s

i

n

d

a

t

a

s

p

a

r

s

e

s

c

e

n

a

r

i

o

s

T

h

e

d

a

t

a

s

p

a

r

s

i

t

y

p

r

o

b

l

e

m

i

s

a

g

r

The data sparsity problem is a great challenge for most recommender systems. To investigate the effect of data

sparsity, we bin???divide?? the test users into four groups with different sparsity levels based on the number of observed

ratings in the training data, and keep each group??? including a similar number of interactions. For example, [10,29)

in the Movie dataset means each user in this group has at least 10 rating records and less than 29 rating records. Figure

9 shows the RMSE results for the different user groups with different models on the four datasets. From the results, we

observe that our IRec outperforms the other methods in most cases. It is worth mentioning that IRec consistently

outperforms all baselines in the first group on the four datasets, which verifies that our method IRec can maintain a

good performance when data are extremely sparse.

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 24 of 20

0.70

0.85

0.75

0.60

0.55

0.65

0.60

0.80

0.75

0.70

0.70

0.65

0.50

5 10 15

K

(a) Movie

0.55

5 10 15

K

(b) Business

0.65

0.60

5 10 15

K

(c) Book

0.60

5 10 15

K

(d) Restaurant

Figure 7: The results of Recall@K on the four datasets.

0.70 0.80

0.70 0.70

0.65 0.75

0.65

0.60

5 10 15

K

(a) Movie

5 10 15

K

(b) Business

0.70

5 10 15

K

(c) Book

0.65

5 10 15

K

(d) Restaurant

Figure 8: The results of F1@K on the four datasets.

1.10

1.12

0.78

0.96

1.05

1.06

0.76

0.88

1.00

1.00

0.74

0.80

0.95

0.94

0.72

0.72

[0-10) [10-29) [29-145) [145-) [0-13) [13-32) [32-68) [68-) [0-10) [10-19) [19-32) [32-) [0-8) [8-17) [17-36) [36-)

User Group

(a) Movie

User Group

(b) Business

User Group

(c) Book

User Group

(d) Restaurant

Figure 9: Performance comparison over the sparsity distribution of user groups on t h e four datasets.

365

366

367

368

369

370

371

372

373

374

 R
M

S
E

F

1
@

K

R
e
c
a
ll

@
K

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 25 of 20

375

376

4.4.2. Results in cold-start scenarios

We consider two cold-start scenarios, namely the cold-start user problem and cold-start item problem. We treat
those who have rated x or fewer ratings as cold-start users and those that have been rated less than x as cold-start

items. Following other work [60, 70], we set x = 5. Tables 4 and 5 illustrate the RMSE results of our method IRec

and the other baselines in two cold-start scenarios on four datasets. In the tables, * denotes the statistical significance

for p < 0.05, compared to the best baseline. We can see that our method IRec is beneficial to relatively inactive users

and items in four recommendation scenarios.

4.5. Parameter Sensitivity
We explore the impact of three hyper-parameters: embedding size d, neighbor size k, and number of layers L in

the aggregation layer. The results on the Movie and Business datasets are plotted in Figure 10. We make the following

observations: (i) a proper embedding size d is needed. If d is too small, the model lacks expressiveness, while a too

large d increases the complexity of the recommendation framework and may overfit the datasets. (ii) The performance

Leveraging Implicit Relations for Recommender Systems

Table 4

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 26 of 20

RMSE results on testing cold start users on four datasets. The proposed method IRec achieves best performances on all
metrics which are in boldface. * denotes the statistical significance for p < 0.05, compared to the best baseline.

Method SVD++ NFM GCMC NGCF CUNE CMN MMCF IRec

Movie 1.0617 1.0525 1.0465 1.0336 1.0516 1.0424 1.0272 0.9980*
Business 1.0880 1.0987 1.0851 1.0743 1.0696 1.0778 1.0643 1.0399*
Book 0.7794 0.7713 0.7690 0.7621 0.7752 0.7700 0.7591 0.7409*

Restaurant 0.9824 0.9798 0.9792 0.9533 0.9605 0.9572 0.9443 0.9325*

Table 5
RMSE results on testing cold start items on four datasets. The proposed method IRec achieves best performances on all
metrics which are in boldface. * denotes the statistical significance for p < 0.05, compared to the best baseline.

Method SVD++ NFM GCMC NGCF CUNE CMN MMCF IRec

Movie 1.0861 1.0705 1.0446 1.0308 1.0574 1.0333 1.0205 0.9959*
Business 1.1676 1.1826 1.1539 1.1344 1.1612 1.1563 1.1440 1.1213*
Book 0.7981 0.7873 0.7880 0.7942 0.7910 0.7943 0.7708 0.7610*

Restaurant 0.8880 0.8958 0.9084 0.8876 0.8997 0.8929 0.8858 0.8671*

377

378

379

380

381

is improved with an increase in neighbor size K at the beginning because more neighbors provide more information.

However, the performance takes a downward trend when K is larger than 6, since too many neighbors may introduce

noise which reduces the accuracy of the prediction. (iii) In relation to the number of layers L in the aggregation layer,

we find that when L=1, it is good enough because a larger L will bring massive noise when generating high-quality

user and item representations and may lead to over-fitting. Similar results can be found in many other studies [19, 71,

72].

1.06 1.06 1.06

1.04 1.04
1.04

1.02

1.00

1.02

1.00

1.02

0.98

0.98

1.00

0.96
4 8 16 32 64

(a) Embedding Size d

0.96
2 4 6 8 10

(b) Neighbor Size K

0.98
1 2 3 4

(c) Layer Size L

Figure 10: Parameter sensitivity of IRec’s recommendation framework on the Movie and Business datasets w.r.t. (a)
embedding size d, (b) neighbor size K, and (c) number of layers L in the aggregation layer.

382

383

384

385

386

387

388

389

390

391

392

Business

Business

Business

R
M

S
E

R
M

S
E

R
M

S
E

Leveraging Implicit Relations for Recommender Systems

Table 4

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 27 of 20

4.

6.

E

ff

ic

ie

n

c

y

A

n

al

ys

is
I

n

t

h

i

s

s

e

c

t

i

o

n

,

w

e

c

o

n

d

u

c

t

e

d

e

x

p

e

r

i

m

e

n

t

s

t

o

e

x

p

In this section we discuss the experiments to explore the training efficiency of our IRec and two related methods

CMN and MMCF, which explicitly account for the user-user and item-item neighbor information for

recommendation. We first evaluate the training time of one iteration in the same environment (1.8 GHz Intel Core

i5 and 8GB of RAM memory). Three methods are executed with 20 iterations and we report the average

runtime. Table 6 shows the computation time for the four datasets. We observe that IRec is 1.5-2 times faster than

CMN and 4-5 times faster

than MMCF in one iteration, which confirms that our IRec has better training efficiency.

We then compare the number of trainable parameters for CMN, MMCF, and IRec. Table 7 summarizes the number

of parameters of each method on embedding size 16 on the four datasets. We observe that IRec needs the least trainable

parameters compared with CMN and MMCF. Specifically, MMCF requires more than double the number of parameters

compared with our method IRec. This demonstrates IRec is a light yet effective model for recommendation.

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 28 of 20

Table 6
Training time of one iteration of CMN, MMCF, and IRec on t h e four datasets. ‘s’ denotes ‘second’.

Method Movie Business Book Restaurant

CMN 0.87s 7.59s 8.83s 7.59s
MMCF 2.58s 17.09s 19.98s 19.29s

IRec 0.59s 3.62s 5.06s 4.48s

Table 7

Number of parameters of CMN, MMCF, and IRec on embedding size 16 on t h e four datasets. ‘k’ denotes ‘103’.

Method Movie Business Book Restaurant

CMN 300.7k 577.9k 725.4k 638.3k
MMCF 492.3k 786.0k 1042.8k 907.8k

IRec 245.9k 392.7k 521.1k 453.6k

393

394

395

396

397

398

399

400

401

402

4.7. Co-occurrence Relation vs Implicit Relation
In this subsection, we compare the co-occurrence relation and the implicit relation. To this end, we compare IRec

with its variant CRec. CRec utilizes the recommendation framework of IRec and leverages the co-occurrence relation

instead of the implicit relation for recommendation. Table 8 shows the performance of IRec and CRec on the four

datasets. From the results, we find that the implicit relation can further improve the recommendation performance

compared with the co-occurrence relation.

In the above experiments, we have validated the effectiveness of IRec which leverages the implicit relation for

recommendation. Next, we investigate whether the co-occurrence relation and constructed implicit relation overlap

with each other. For this purpose, we make statistics??we calculate the statistics on the Movie dataset from the

perspective of users and show an overlapping relationship between the co-occurrence user pairs and the implicit user

pairs.

Table 8
The results of MAE between IRec and its variant CRec on the four datasets.

Method Movie Business Book Restaurant

IRec 0.7594 0.7889 0.5881 0.6207

CRec 0.7784 0.7925 0.5971 0.6310

69.3%

403

404

Figure 11: Overlapping relationship between t h e co-occurrence user pairs and implicit user pairs.

From Figure 11, we make the following findings: (i) only around 30% of implicit user pairs are co- occurrence

relations. That is to say, if we only consider co-occurrence user pairs, a large portion of potentially relevant

(A — B) # A

(B — A) # B

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 29 of 20

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

potentially relevant users is missed; (ii) most co-occurrence user pairs have less relevance, which demonstrates the

necessity of filtering the co-occurrence relation. Based on the above observations, we conclude that only accounting

for the co-occurrence relations may result in a loss of useful information and it introduces some irrelevant information,

while our method IRec leverages embedding methods to generate meaningful implicit relations for users and items.

4.8. Attention Analysis
Benefiting from the attention mechanism, we can visualize the attention weights placed on the neighbors for users

and items, which reflects how the model learns. In this subsection, we analyze the attention mechanism from the
perspective of users to show the learning process of IRec’s recommendation framework and we obtain similar

observations for items. We randomly selected one user u72 from the Restaurant dataset, and three relevant items v513, v186,

v1917 (from the test set). Figure 12 shows the attention weights of the user u72’s neighbors for the three user-item pairs.

For convenience, we label the neighbor IDs starting from 1, which may not necessarily reflect the true ID from the
dataset. From the heatmap, we make the following findings: (i) Not all neighbors make the same contribution when

generating recommendations. For instance, for the user-item pair (u72, v513), the attention weights of user u72’s

neighbor # 2 and # 5 are relatively high. The reason for this may be that neighbor # 2 and # 5 have rated item v513 in

the training set. Therefore, neighbor # 2 and # 5 will provide more useful information when making
recommendations.
(ii) For different items, the attention distributions of the neighbors are different, which reflects the attention mechanism that

can adaptively measure the influence strength of the neighbors.

attention value

0.05 0.10 0.15 0.20 0.25 0.30

(u72 , v513)

(u72 , v186)

(u72 , v1917)

1 # 2 # 3 # 4 # 5 # 6 # 7 # 8

0.05

Figure 12: Attention heatmap for the neighbors of three user-item pairs from the restaurant dataset.

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

5. Conclusion and Future Work

In this work, we propose a method ca

In this work, we proposed a method called IRec to leverage implicit neighbors for better recommendations. IRec

includes (i) a neighbor construction method that utilizes the user-item interaction information to construct implicit

neighbor sets for each user and item; and (ii) a novel framework that integrates constructed neighbor sets into the

recommendation task. We conducted extensive experiments on four real-world datasets. The experiment results

demon- strate the superiority of IRec over several state-of-the-art methods in rating prediction and top-k
recommendation. The results also show that our method is beneficial for relatively inactive and cold-start users.

For future work, we will (i) integrate side information into IRec such as knowledge graphs and social networks to

further enhance the recommendation; (ii) employ more embedding methods in the neighbor construction phase to dig

out user-user and item-item relationships; and (iii) try to generate recommendation explanations to comprehend user

behaviors and item attributes.

Acknowledgements

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 30 of 20

T

h

i

s

w

o

r

k

w

a

s

s

u

p

p

o

r

t

e

d

b

y

t

h

e

N

a

t

i

o

n

a

l

N

a

t

u

r

a

l

S

c

i

e

n

c

e

F

o

u

n

d

a

t

i

o

n of China under Grant No. 61876069; Jilin Province Key Scientific and Technological Research and Development

Project under Grant Nos. 20180201067GX and 20180201044GX; and Jilin Province Natural Science Foundation under

Grant No. 20200201036JC.

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 31 of 20

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

CRediT authorship contribution statement

Anchen Li: Conceptualization, Methodology, Data curation, Formal analysis, Writing - original draft. Bo Yang:

Methodology, Writing - review & editing, Funding acquisition, Supervision. Huan Huo: Writing - review & editing,

Supervision. Farookh Khadeer Hussain: Writing - review & editing, Supervision.

References

[1] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation algorithms, in: Proceedings of the 10th inter-

national conference on World Wide Web, 2001, pp. 285–295.

[2] X. He, H. Zhang, M.-Y. Kan, T.-S. Chua, Fast matrix factorization for online recommendation with implicit feedback, in: Proceedings of the

39th international ACM SIGIR conference on Research and Development in Information Retrieval, 2016, pp. 549–558.

[3] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation algorithms, in: Proceedings of the 10th inter-

national conference on World Wide Web, 2001, pp. 285–295.

[4] Y.-C. Lee, T. Kim, J. Choi, X. He, S.-W. Kim, M-bpr: A novel approach to improving bpr for recommendation with multi-type pair-wise

preferences, Information Sciences 547 (2021) 255–270.

[5] F. S. de Aguiar Neto, A. F. da Costa, M. G. Manzato, R. J. Campello, Pre-processing approaches for collaborative filtering based on hierarchical

clustering, Information Sciences 534 (2020) 172–191.

[6] G. R. Lima, C. E. Mello, A. Lyra, G. Zimbrao, Applying landmarks to enhance memory-based collaborative filtering, Information Sciences

513 (2020) 412–428.

[7] X.-Y. Huang, B. Liang, W. Li, Online collaborative filtering with local and global consistency, Information Sciences 506 (2020) 366–382.

[8] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems, Computer 42 (8) (2009) 30–37.

[9] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.-S. Chua, Neural collaborative filtering, in: Proceedings of the 26th international conference on

World Wide Web, 2017, pp. 173–182.

[10] X. Jiang, B. Hu, Y. Fang, C. Shi, Multiplex memory network for collaborative filtering, in: Proceedings of the 20th SIAM International

Conference on Data Mining, SIAM, 2020, pp. 91–99.

[11] H.-J. Xue, X. Dai, J. Zhang, S. Huang, J. Chen, Deep matrix factorization models for recommender systems., in: Proceedings of the 26th

International Joint Conference on Artificial Intelligence, Vol. 17, Melbourne, Australia, 2017, pp. 3203–3209.

[12] T. Ebesu, B. Shen, Y. Fang, Collaborative memory network for recommendation systems, in: Proceedings of the 41st international ACM

SIGIR conference on Research and development in Information Retrieval, 2018, pp. 515–524.

[13] X. Wang, X. He, M. Wang, F. Feng, T.-S. Chua, Neural graph collaborative filtering, in: Proceedings of the 42nd international ACM SIGIR

conference on Research and Development in Information Retrieval, 2019, pp. 165–174.

[14] R. v. d. Berg, T. N. Kipf, M. Welling, Graph convolutional matrix completion, arXiv preprint arXiv:1706.02263.

[15] F. Ricci, L. Rokach, B. Shapira, Introduction to recommender systems handbook, in: Recommender systems handbook, Springer, 2011, pp.

1–35.

[16] Y. Koren, Factorization meets the neighborhood: a multifaceted collaborative filtering model, in: Proceedings of the 14th ACM SIGKDD

international conference on knowledge discovery and data mining, 2008, pp. 426–434.

[17] J. Wang, A. P. De Vries, M. J. Reinders, Unifying user-based and item-based collaborative filtering approaches by similarity fusion, in:

Proceedings of the 29th international ACM SIGIR conference on Research and Development in Information Retrieval, 2006, pp. 501–508.

[18] J. Sun, Y. Zhang, C. Ma, M. Coates, H. Guo, R. Tang, X. He, Multi-graph convolution collaborative filtering, in: Proceedings of the 19th

IEEE International Conference on Data Mining, IEEE, 2019, pp. 1306–1311.

[19] Y. Qu, T. Bai, W. Zhang, J. Nie, J. Tang, An end-to-end neighborhood-based interaction model for knowledge-enhanced recommendation, in:

Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data, 2019, pp. 1–9.

[20] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line: Large-scale information network embedding, in: Proceedings of the 24th interna-

tional conference on World Wide Web, 2015, pp. 1067–1077.

[21] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social representations, in: Proceedings of the 20th ACM SIGKDD interna-

tional conference on knowledge discovery and data mining, 2014, pp. 701–710.

[22] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint arXiv:1609.02907.

[23] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks, arXiv preprint arXiv:1710.10903.

[24] S. Zhang, L. Yao, A. Sun, Y. Tay, Deep learning based recommender system: A survey and new perspectives, ACM Computing Surveys 52 (1)

(2019) 1–38.

[25] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep learning, Vol. 1, MIT press Cambridge, 2016.

[26] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the 2016 IEEE Conference on Computer

Vision and Pattern Recognition, 2016, pp. 770–778.

[27] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, in: Proceedings of the 26th Annual

Conference on Neural Information Processing Systems, 2012, pp. 1097–1105.

[28] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen, et al., Deep speech

2: End-to-end speech recognition in english and mandarin, in: Proceedings of the 33nd International Conference on Machine Learning, PMLR,

2016, pp. 173–182.

[29] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., Deep neural

networks for acoustic modeling in speech recognition: The shared views of four research groups, IEEE Signal processing magazine 29 (6)

(2012) 82–97.

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 32 of 20

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

[30] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using rnn

encoder-decoder for statistical machine translation, arXiv preprint arXiv:1406.1078.

[31] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, S. Khudanpur, Recurrent neural network based language model, in: Proceedings of the 11th

conference of the international speech communication association, 2010, pp. 1045–1048.

[32] J. Bobadilla, R. Lara-Cabrera, Á. González-Prieto, F. Ortega, Deepfair: deep learning for improving fairness in recommender systems, arXiv

preprint arXiv:2006.05255.

[33] J. Bobadilla, F. Ortega, A. Gutiérrez, S. Alonso, Classification-based deep neural network architecture for collaborative filtering recommender

systems, International Journal of Interactive Multimedia & Artificial Intelligence 6 (1) (2020) 68–77.

[34] M. Gao, J. Zhang, J. Yu, J. Li, J. Wen, Q. Xiong, Recommender systems based on generative adversarial networks: A problem-driven per-

spective, Information Sciences 546 (2020) 1166–1185.

[35] X. Guo, W. Lin, Y. Li, Z. Liu, L. Yang, S. Zhao, Z. Zhu, Dken: Deep knowledge-enhanced network for recommender systems, Information

Sciences 540 (2020) 263–277.

[36] J. Ni, Z. Huang, J. Cheng, S. Gao, An effective recommendation model based on deep representation learning, Information Sciences 542

(2021) 324–342.

[37] X. He, T.-S. Chua, Neural factorization machines for sparse predictive analytics, in: Proceedings of the 40th international ACM SIGIR

conference on Research and Development in Information Retrieval, 2017, pp. 355–364.

[38] J. Han, L. Zheng, H. Huang, Y. Xu, S. Y. Philip, W. Zuo, Deep latent factor model with hierarchical similarity measure for recommender

systems, Information Sciences 503 (2019) 521–532.

[39] D. Kim, C. Park, J. Oh, H. Yu, Deep hybrid recommender systems via exploiting document context and statistics of items, Information Sciences

417 (2017) 72–87.

[40] D. Hyun, C. Park, J. Cho, H. Yu, Learning to utilize auxiliary reviews for recommendation, Information Sciences 545 (2020) 595–607.

[41] E. R. Núñez-Valdéz, J. M. C. Lovelle, O. S. Martínez, V. García-Díaz, P. O. De Pablos, C. E. M. Marín, Implicit feedback techniques on

recommender systems applied to electronic books, Computers in Human Behavior 28 (4) (2012) 1186–1193.

[42] G. Jawaheer, M. Szomszor, P. Kostkova, Comparison of implicit and explicit feedback from an online music recommendation service, in:

Proceedings of the 1st international workshop on information heterogeneity and fusion in recommender systems, 2010, pp. 47–51.

[43] H.-C. Wang, H.-T. Jhou, Y.-S. Tsai, Adapting topic map and social influence to the personalized hybrid recommender system, Information

Sciences.

[44] L. Sheugh, S. H. Alizadeh, A novel 2d-graph clustering method based on trust and similarity measures to enhance accuracy and coverage in

recommender systems, Information Sciences 432 (2018) 210–230.

[45] Z. Zhang, H. Lin, K. Liu, D. Wu, G. Zhang, J. Lu, A hybrid fuzzy-based personalized recommender system for telecom products/services,

Information Sciences 235 (2013) 117–129.

[46] E. R. Núñez-Valdez, D. Quintana, R. G. Crespo, P. Isasi, E. Herrera-Viedma, A recommender system based on implicit feedback for selective

dissemination of ebooks, Information Sciences 467 (2018) 87–98.

[47] G. Li, Q. Chen, Exploiting explicit and implicit feedback for personalized ranking, Mathematical Problems in Engineering 2016.

[48] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, B. Yang, Geom-gcn: Geometric graph convolutional networks, arXiv preprint arXiv:2002.05287.

[49] M. Nickel, D. Kiela, Poincare embeddings for learning hierarchical representations, arXiv preprint arXiv:1705.08039.

[50] L. F. Ribeiro, P. H. Saverese, D. R. Figueiredo, struc2vec: Learning node representations from structural identity, in: Proceedings of the 23rd

ACM SIGKDD international conference on knowledge discovery and data mining, 2017, pp. 385–394.

[51] J. L. Bentley, Multidimensional binary search trees used for associative searching, Communications of the ACM 18 (9) (1975) 509–517.

[52] S. M. Omohundro, Five balltree construction algorithms, International Computer Science Institute Berkeley, 1989.

[53] T. Liu, A. W. Moore, A. Gray, C. Cardie, New algorithms for efficient high-dimensional nonparametric classification, Journal of Machine

Learning Research 7 (6) (2006) 1135–1158.

[54] S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, Bpr: Bayesian personalized ranking from implicit feedback, arXiv preprint

arXiv:1205.2618.

[55] S. Rendle, Factorization machines, in: Proceedings of the 10th IEEE International Conference on Data Mining, IEEE, 2010, pp. 995–1000.

[56] H. Guo, R. Tang, Y. Ye, Z. Li, X. He, Deepfm: a factorization-machine based neural network for ctr prediction, arXiv preprint

arXiv:1703.04247.

[57] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir, et al., Wide & deep

learning for recommender systems, in: Proceedings of the 1st workshop on deep learning for recommender systems, 2016, pp. 7–10.

[58] C. Zhang, L. Yu, Y. Wang, C. Shah, X. Zhang, Collaborative user network embedding for social recommender systems, in: Proceedings of

the 17th SIAM international conference on data mining, SIAM, 2017, pp. 381–389.

[59] C. Feng, J. Liang, P. Song, Z. Wang, A fusion collaborative filtering method for sparse data in recommender systems, Information Sciences

521 (2020) 365–379.

[60] B. Yang, Y. Lei, J. Liu, W. Li, Social collaborative filtering by trust, IEEE transactions on pattern analysis and machine intelligence 39 (8)

(2016) 1633–1647.

[61] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the 13th international

conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249–256.

[62] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980.

[63] A. L. Maas, A. Y. Hannun, A. Y. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proceedings of the 30th International

Conference on Machine Learning, Citeseer, 2013, p. 3.

[64] J. Snoek, H. Larochelle, R. P. Adams, Practical bayesian optimization of machine learning algorithms, arXiv preprint arXiv:1206.2944.

[65] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, Algorithms for hyper-parameter optimization, in: Proceedings of the 25th Annual Conference

on Neural Information Processing Systems, Neural Information Processing Systems Foundation, 2011, pp. 2546–2554.

Leveraging Implicit Relations for Recommender Systems

Anchen Li, Bo Yang, Huan Huo, and Farookh Khadeer Hussain: Preprint submitted to Elsevier Page 33 of 20

559

560

561

562

563

564

565

566

567

568

569

570

[66] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, Journal of machine learning research 13 (2) (2012) 281–305.

[67] L. Prechelt, Early stopping-but when?, in: Neural Networks: Tricks of the trade, Springer, 1998, pp. 55–69.

[68] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting,

The journal of machine learning research 15 (1) (2014) 1929–1958.

[69] J. Herce-Zelaya, C. Porcel, J. Bernabé-Moreno, A. Tejeda-Lorente, E. Herrera-Viedma, New technique to alleviate the cold start problem in

recommender systems using information from social media and random decision forests, Information Sciences 536 (2020) 156–170.

[70] M. Jamali, M. Ester, A matrix factorization technique with trust propagation for recommendation in social networks, in: Proceedings of the

4th ACM conference on Recommender systems, 2010, pp. 135–142.

[71] H. Wang, F. Zhang, J. Wang, M. Zhao, W. Li, X. Xie, M. Guo, Exploring high-order user preference on the knowledge graph for recommender

systems, ACM Transactions on Information Systems 37 (3) (2019) 1–26.

[72] H. Wang, M. Zhao, X. Xie, W. Li, M. Guo, Knowledge graph convolutional networks for recommender systems, in: Proceedings of the 28th

international conference on World Wide Web, 2019, pp. 3307–3313.

	ELSEVIER Copyright Statement YEAR & DIO TEMPLATE - 2021
	8DB6E37E-FA3E-41C3-9340-426EFA4455BF am.pdf

