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Collaborative filtering (CF) is one of the dominant techniques used in recommender systems. 

Most CF-based methods treat every user (or item) as an isolated existence, without ex- plicitly 

modeling potential mutual relations among users (or items), which are latent in user- item 

interactions. In this paper, we design a novel strategy to mine user-user and item-item im- plicit 

relations and propose a natural way of utilizing the implicit relations for recommendation. 

Specifically, our method contains two major phases: neighbor construction and a recommendation 

framework. The first phase constructs an implicit neighbor set for each user and item accord- 

ing to historical user-item interaction. In the second phase, based on the constructed neighbor 

sets, we propose a deep framework to generate recommendations. We conduct extensive exper- 

iments with four datasets on movie, business, book, and restaurant recommendations and 

compare our methods with seven baselines, e.g., feature-based, neighborhood-based, and graph- 

based models. The experiment results demonstrate that our method achieves superior 

performance in rating prediction and top-k recommendation. 
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24      1. Introduction 

25 In the era of information explosion, recommender systems play an indispensable role in identifying user 

26      preferences by recommending products or services. Collaborative filtering (CF) is one of the state-of-art techniques 

27      in recommender systems [1, 2, 3, 4, 5, 6, 7]. In a typical CF scenario with user-item interaction history, matrix 

28      factorization (MF), which embeds users and items in a shared latent 

29      space and models the user preference to an item as the inner product between the corresponding user and item embed- 

30      dings, has become one of the most popular approaches [8]. However, due to the complex interaction between users and 

items, the shallow representations in the MF-based 

31      methods lack the expressiveness to model features for users and items [9, 10]. 

32 Recent years have witnessed the great success of deep neural network techniques in many research areas such as 

33      computer vision and natural language processing. Some recently proposed recommendation approaches utilize deep 

34      neural networks to capture the complex relationships between user-item interactions, which enhance the performance 

of 

35      the previous shallow models [9, 11]. Though successful, most deep recommendation models treat every user (or 

36      item) as an isolated existence and have tended not to focus on potential user-user or item-item relations. Such 

potential re- 

37      lations are latent in user-item interactions and could provide valuable information to infer user or item features 

38      [10, 12]. Although some existing works [13, 14] utilize graph neural networks (GNNs) on the user-item bipartite 

39      graph to capture high-order relations among users (or items), a more explicit and straightforward way is to directly 

40      construct user-user and item-item relations. Empirical evidence is from the recent work MMCF [10], which ex- 

41      plicitly utilizes the co-occurrence relation (i.e., users who have interacted with the same items or items with which the 

same users have interacted42      ) to define the neighbors for users and items. For instance, Figure 1(a) shows a simple 

43      user-item interaction in the movie domain, where each user rates movies on a 5-point integer scale to express their  

44      preference for movies. Take the user co-occurrence relation for example: for user d, the co-occurrence relation 

defines 

45      user a, user b, and user c as her neighbors (as shown in Figure 1(b)) because user d and these users have interacted 

46      with common items. 

47 Although MMCF has shown promising results, we argue that such a co-occurrence relation is macro-level and coarse- 

48      grained. For instance, for user d, the co-occurrence relation defines user e as one of her neighbors, but user d and user 

49      e have different preferences for movie d. By observing the user-item interaction in Figure 1(a), although user d and 

50      user a are not in a co-occurrence relation, they both share common preferences with user b and user c. Such a high-order 
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51      transitive relation is also a very significant signal for revealing user preferences and item properties, while it is ignored 

52      by most existing works. Therefore, we believe that (i) the co-occurrence relation contains useful information, 

53      but not all co-occurrence relations help; (ii) using the co-occurrence relation directly without filtering may introduce 

54      some irrelevant information or even noise, which will mislead the learning of user and item feature representations; 

55      (iii) the co-occurrence relation ignores high-order transitive relations for users and items. 

co-occurrence neighbors 
 

movie a movie b movie c movie d movie e  
 

implicit neighbors 

 
 

user a user b user c user d 

(a) Xser-item interaction 

 
user e 

 

(b) neighbors of user d 

Figure 1: Illustration of the problem. (a): A simple user-item interaction scenario in a 5-star system. (b): Comparison 
between the co-occurrence neighbors and implicit neighbors. 

 
56 To overcome the aforementioned limitation, we propose our method IRec which leverages user-user and item-item 

57      Implicit relations for Recommendation. IRec contains two major phases: neighbor construction and a recommendation 

58      framework. In the first phase, we construct an implicit neighbor set for each user and each item. More specifically, 

59      we first utilize the user-item interaction information to construct a user relational graph and an item relational graph. 

60      We then map each graph to a latent continuous space to find the implicit neighbors for users and items. In this way, 

the 

61      constructed neighborhoods not only filter out some irrelevant (or noisy) co-occurrence relations, they also may contain 

62      high-order transitive relations. In the second phase, we design a deep framework based on graph neural networks 

63      (GNNs) which utilizes the constructed user and item neighbor sets for recommendation. The key component of the frame- 

64      work is that we devise an aggregator on the neighbor sets to update the feature representations of users and items. 

65      Empirically, we apply IRec to four real-world scenarios of the movie, business, book, and restaurant recommenda- 

66      tions. The experiment results show that IRec outperforms the state-of-the-art approaches in both rating prediction and 

67      top-k recommendation. In summary, our main contributions in this paper are listed as follows: 

68 • We provide a novel approach to find implicit neighbors for users and items. 

69 • We propose an end-to-end framework that integrates implicit neighbors into recommendations. 

70 • T h e  experimental results on four real-world datasets show the effectiveness of IRec. 

71 The remainder of this paper is organized as follows. Section 2 reviews the work related to our methods. In Section 3, 

72      we present the problem formulation and introduce the proposed method IRec. In Section 4, we describe the 

experiments conducted 

73      on four real-world datasets and present the experiment results, followed by a conclusion and suggestions for future work 

in Section 5. 

 
74      2. Related Work 

75 In this section, we provide a brief overview of four areas that are highly relevant to our work. 

76      2.1. Collaborative Filtering 
77 Collaborative filtering (CF) can generally be grouped into three categories: neighborhood-based model, latent factor 

78      model, and hybrid model [15, 16]. Neighborhood-based methods identify neighborhoods of similar 

79      users or items based on the user-item interaction history [12, 16]. For example, ItemKNN utilizes collaborative item- 

80      item similarities (e.g. cosine similarity) to generate recommendations [17]. The latent factor model, such as matrix 

81      factorization [8], projects users and items into low-dimensional feature vector spaces. The interactions between users 
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82      and items are modelled as the inner product of their latent vectors. With the development of deep learning, some latent 

83      factor models utilize deep neural networks as representation learning tools to capture complex user-item interactions 

84      [9, 11]. As for the hybrid model, it merges the latent factor model and the neighborhood-based model. SVD++ is a 
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well-known and commonly used hybrid model that leverages users’ explicit feedback and implicit feedback to predict 

user preferences [16]. Recently, a line of work leverages co-occurrence relations to define the neighbors for users and 

items and integrates deep components into the hybrid model [10, 18]. Since the co-occurrence relation is coarse-

grained and lacks high-order semantics, these methods are insufficient to generate better recommendations. Different 

from the aforementioned work, our proposed method IRec is a unified hybrid model using implicit relations to define 

user and item neighbors, which accounts for both co-occurrence relations and high-order transitive relations. 

2.2. Graph Representation 
Graph representation learning is a significant method to learn latent, low-dimensional representations of vertexes in the 

graph, while preserving both graph structure and node content. In general, there are two types of graph representa- tion 

learning methods: unsupervised methods and semi-supervised methods [19]. Unsupervised graph representation 

approaches focus on preserving the graph topology structure [20, 21]. For instance, LINE designs the objective 

function that preserves first-order and second-order proximity for learning node representations [20]. DeepWalk uti- 

lizes local information obtained from random walks to learn node representations [21]. As for the semi-supervised 

method, it utilizes some labeled vertexes for representation learning [19]. Graph convolutional networks (GCN) [22] 

and graph attention networks (GAT) [23] are two powerful semi-supervised methods for solving the classification 

problem in the graph. GCN learns node representation by aggregating the features of its neighbor nodes. GAT further 

enhances the performance of GCN by using the attention mechanism. In this work, we first use unsupervised repre- 

sentation approaches to construct the implicit neighbor sets. We then borrow the recent advances of GCN and design 

a framework that utilizes constructed neighbor sets for recommendation. 

Some recent studies like GCMC [14], NGCF [13] also adopt GCN ideas for recommendation, and they are designed 

for the user-item bipartite graph. Different from the above literature, we provide a new perspective for recommendation 

with the assistance of constructed user-user and item-item implicit neighborhoods. 

2.3. Deep Learning 
Deep learning is an emerging field of machine learning and is receiving a huge amount of attention  at the moment 

[24]. Since deep learning technology can solve complex tasks while providing start-of-the-art results, it has achieved 

great success in many research areas [25], such as computer vision [26, 27], speech recognition [28, 29], and natural 

language pro- cessing [30, 31]. Due to the effectiveness of deep components, an increasing number of researchers are 

interested in integrating deep models into recommender systems [9, 10, 11, 32, 33, 34, 35, 36, 37, 38, 39, 40]. For 

instance, NeuCF is proposed to model the user-item interactions with a multi-layer perceptron [9]. DKEN is a deep 

end-to-end frame- work that uses deep neural networks and knowledge graph embedding for knowledge-enhanced 

recommendation [35]. RM-DRL utilizes convolutional neural networks and recurrent neural networks to produce user 

and item semantic feature vectors, respectively [36]. R-ConvMF integrates convolutional neural networks into 

probabilistic matrix fac- torization for document-based recommendations [39]. LUAR designs a neural attention 

mechanism to find important auxiliary reviews to address the sparsity problem in review-based recommendation [40]. 

In this work, we propose a deep recommendation framework in our method IRec. The framework is based on graph 

neural networks. The key component of the framework is that we devise an aggregator on the neighbor sets to update 

the feature representa- tions of users and items. With the help of deep learning, we can obtain sufficient representation 

power for building a successful recommender system. 

2.4. Feedback Information 
The recommender systems collect user feedback information through the feedback techniques, and then utilize 

the feedback information to generate recommendations [41]. User feedback information can be roughly divided into 

two categories: explicit feedback (e.g., ratings) and implicit feedback (e.g., clicking and browsing history). There are 

several differences between the two types of feedback information [42]: (i) explicit feedback can capture both positive 

and negative user preferences, while implicit feedback can only be positive; (ii) compared with implicit feedback, 

explicit feedback can more accurately and unequivocally reflect users’ interest in items; and (iii) explicit feedback is 

scarce and difficult to collect whereas implicit feedback is abundant and far outweighs the quantity of explicit data.  To cater 

for different types of user feedback, researchers have designed corresponding explicit feedback recommendation 

methods [43, 44, 45] and implicit feedback recommendation methods [41, 46]. Some studies also use both explicit and 

implicit data for personalized recommendations [11, 47]. In this paper, we focus on explicit feedback recommender 

systems with users’ rating information. We first utilize user explicit feedback to construct a neighbor set for each user 

and item. We then develop a deep framework that utilizes constructed neighbor sets for recommendation. 
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and item relational data .N = .N (1), ..., .N (N) . .N and .N contain implicit neighbors for users and items re- 

spectively. The details of building up relational data .N and .N are discussed in subsection 3.2. 
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3. Methodology 

In this section, we first introduce the notations and formulate the problems. We then describe two phases of IRec: 

neighbor construction and the recommendation framework. 

3.1. Notations and Problem Formulation 

140 In a typical recommendation scenario, we suppose there are M users V' = 
{

u1, u2, ..., uM 
} 

and N items V = 
 

141 

142 
143 

. We define Y E IRM×N as the user-item historical interaction matrix. If user has rated item 

a, i-th element yai in Y is the rating score from ua to vi, otherwise we employ yai = 0 to represent the 

unknown rating. 

144 

Given the above information (V' , V, Y), the first phase of IRec outputs user relational data .N = 
{
.N (1), ..., .N (M)

}
 

{ } u u u 

      
 

 
147 In the IRec’s second phase, given the user-item interaction matrix Y, user neighbor data .N and item neighbor 

 
148 data .N , the recommendation framework aims to learn a prediction function yA  = F (u , v 0, Y, .N , .N ), where yA 
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159 

is the predicted rating from user ua to item vi , an item with which they have never engaged before, and 0 is the 

framework parameters of function F . The details of this phase are discussed in subsection 3.3. 

3.2. Neighbor Construction 
In this subsection, we describe the neighbor construction strategy. This strategy contains three steps: (i) construct 

the user relational graph and item relational graph; (ii) map the user and item relational graphs to latent spaces 

respectively; and (iii) find implicit neighbors for users and items from their latent spaces. Next, we detail each step. 

3.2.1. Step 1: Construction of relational graphs 

The user-item interaction data can be represented as a bipartite graph structure. We first transform the bipartite 

graph structure to construct a user relational graph and item relational graph to identify user-user relationships and 

item-item relationships. In addition, to reflect the strength of the relationship in a fine-grained way, we construct the 

relational graphs as weighted graphs. To this end, we utilize users’ opinions on items to construct two weighted 

160 relational graphs {; = (V' , £ ) and {; = (V, £ ) for users and items respectively. In the user relational graph {; , the 

u 
u u v v 

u 
u 

161      edge e £ connects two users if they have engaged with at least one common item before. In addition, e is 
associated with 
162      a weight wu > 0 to indicate the relational strength between two users. Similarly, for the item relational graph {; , 

v 
163      the edge ev £ connects two items if they at least have been engaged by one common user and its weight wv > 

 
164 indicates the relational strength between two items. 

The opinions of users on items, such as ratings or reviews, play a crucial role in reflecting user preferences and 

item attributes. Here, we employ users’ ratings to items as the user opinions. We utilize the difference in the user 

opinions 
to define the weight of the edges in the relational graphs. Specifically, for the edge eu between user ua and user ub in {; , 

the edge weight wu is defined as 

follows: 

ab u 

wu  = Ymax −
  1 

  yai − ybi , (1) 

ab 
ab viECab 

where Ymax is the max score in all ratings (e.g., 5 in a 5-star system) and Cab is the subset of V containing the items 

that ua and ub both rated before. Similarly, the weight wv of the edge ev in {;v which connects item vi and item vj is 

defined as 

follows: 

ij ij 

145 v v v u v 

C 

146 

0 
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 yai − yaj , (2) 

ij  uaED 
 
 

165 where D is the subset of V' containing the users who has rated both vi and vj before. 

 
166 

167 

168 

169 

170 

Figure 2(a1) and (a2) are toy examples of building relational graphs for users and items in the simple user-item 

interaction scenario (in Figure 1 (a)). The advantage is that such relational graphs not only reflect the co-occurrence 

relations (one-hop neighbors) but also infer the high-order transitive relations (multi-hop neighbors). 

For particular recommendation scenarios, one can employ other metrics to reflect users’ opinions and design user- 

user and item-item opinion relations based on the metrics. 

w 

ij 
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Figure 2: An illustration of the neighbor construction. (a) ➔ (b): Mapping user and item relational graphs to latent 
spaces respectively. (b) ➔ (c): Finding implicit neighbors for users and items, respectively. 
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3.2.2. Step 2: Relational graph mapping 

After the relational graph construction, we utilize the node embedding method to map each relational graph to a 

latent continuous space. Specifically, for the user relational graph, we use a function Ju      u ➔ zu to map a user 

node u E V' from {;u to a low-dimensional vector zu E IRlu in a latent continuous space, where lu is the dimension number 

of the vector for users. Similarly, for the item relational graph, we utilize another function Jv   v ➔ zv to map an item 

node v E V from {;v to a low-dimensional vector zv E IRlv , where lv is the vector dimension for items. Note that zu and 

zv can also be considered as positions for user u and item v in their latent spaces. After the mapping, both the structures 

and properties of the relational graphs are preserved and presented as the geometry in the corresponding latent space. 

Also, for a target node, nodes with important high-order transitive relations will appear near the target node, while 

nodes with irrelevant co-occurrence relations will appear far away from the target node. 

Recent research reveals that a common embedding method that only preserves the connection patterns of a graph 

can be effective [48]. In this paper, we employ LINE [20], which can preserve both the local and global network 

structures, as our embedding method to map the user and item relational graphs to their corresponding latent continuous 

spaces. Note that one can employ or redesign other embedding methods to create suitable latent spaces, such as 

struc2vec [49], DeepWalk [21], and Poincare [50]. 

Figure 2(b1) and (b2) are examples of the latent space after mapping when the space dimensions lu = lv = 2. 

Although there is a co-occurrence relation between user d and user e, their distance in the latent space may be far away 

due to the small weight of their edge in the user relational graph. 

3.2.3. Step 3: Construction of relational data 

 
190 Based on the latent spaces, users’ and items’ relational data .N and .N can be constructed. Specifically, user ua’s 

 
191 

192 

relational data .Nu(a) is a user set which contains Ku (a pre-defined hyper-parameter) nearest neighbors in the user latent 

space based on the particular distance metric in the space. The construction of item neighbors is similar to the user. 

 
193 For instance, item vi’s neighbors are defined as .N (i) which contains top-K nearest neighbors items in the latent space 

 
194 

195 

196 

197 

198 

to vi. In this way, constructed relational data not only contains nodes with important high-order transitive relations, 

but also filters some nodes with irrelevant co-occurrence relations. Compared with only accounting for co-occurrence 

relations, our method reveals an in-depth understanding of potential user-user and item-item relations. 

Figure 2(c1) and (c2) show examples of constructed relational data for user ud and item va. The neighbor set for 

user ud is .Nu(d) = ua, ub, uc when Ku = 3, and the neighbor set for item va is .Nv(a) = vb, vc when Kv = 2. 
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To obtain the nearest neighbors, the time complexity for a user is O(M · lu). Similarly, for an item, the time 

complexity is O(N · lv). In practice, we can utilize some acceleration computation methods proposed by previous 

works [51, 52, 53] to speed 
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3.2.4. Complexity analysis 

Since we utilize LINE as our embedding method, the overall time complexity of relational graph mapping is O(lu · 

Su · £ + lv · Sv · £ ), where Su and Sv is the number of negative samples for users and items [20].  

 

204      up the process of obtaining implicit neighbors. Note that the relational data .N and .N can be computed offline in 

205      advance, so we can prepare .Nu and .Nv before generating recommendations. In this work, the construction of the 

206      relational data .Nu and .N is constrained to utilizing the user-item interaction records in the training split. 
 
 

207 

208 

209 

210 

211 

3.3. Recommendation Framework 
In this subsection, we present the recommendation framework of the IRec, as illustrated in Figure 3. By taking a 

user ua, an item vi and their neighbors .N (a) and .Nv(i) as inputs, the framework outputs the predicted rating yAai from 

ua to vi. The recommendation framework consists of three parts: the embedding layer, the aggregation layer, and the 
prediction layer. Details of each part are described in the following. 

 

  
 

Figure 3: IRec’s recommendation framework’s architecture. 
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3.3.1. Embedding layer 

The embedding layer transforms the primitive features of users and items (e.g., ID, user gender, item category 

etc.) into low-dimensional dense vectors called embeddings. Similar to mainstream embedding based recommender 

models [9, 10], we use one-hot vectors uid E IRM×1 and vid E IRN×1 to encode the ID features of user ua and item 

vi, 

respectively. We can obtain u  ’s embeddinag u   and v ’s embi edding v , as follows: 
a a i i 
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215 

ua = UT · uid, (3) 

vi = VT · vid, (4) 

where U E IRM×d and V E IRN×d are the embedding matrices for the user features and item features, respectively. 

Here 

d is the dimension size of the embeddings. 

3.3.2. Aggregation layer 

Aggregation is a key component in the framework because the user and item representations are bound up with 

the implicit neighbors by aggregation. By taking related inputs ua, vi, .Nu(a) and .N (i), we design an aggregator to 
update u ’s and v ’s feature representations as follows: v 

a i 

u* = Agg (ua, .N (a)) = agg(H)(u , agg(L)(.N (a))), (5) 
a u u u a u u 
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v*   = Agg (vi, .N (i)) = agg(H)(v , agg(L)(.N (i))), (6) 
i v v v i v v 
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217 

where u   and v are the representations for user and item from their embedding tables U and V. Agg is a 

compound aggregation function used to update user and item representations. agg·
L) is the low-level aggregation 
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function which maps the user (or item) neighbor set into a single embedding vector, and agg(H) is the high-level 

aggregation function which integrates the target user (or item) representation and the neighbor repres· entation into a new 

representation of the target user (or item). 

Specifically, we present the implementation of the function Agg·. We illustrate the process for users and the same 

process works for items. We first compute the score nab between user ua and one neighbor ub E .N (a) via 

the attention mechanism as: u 
 
 
 
 
 

221 

222 

223 

224 

225 

226 

nab = (ua 0 ub)T tanh(wu(L) · ub  vi  + bu(L)), (7) 

where and   mean concatenation operation and element-wise product between two vectors. w   and b   are parameters 

of the attention mechanism in the user low-level aggregation function. We also employ tanh as the nonlinear activation 

function. In general, nab characterizes the importance of one neighbor ub for the target user ua. The intuition is as follows: 

the first term calculates the compatibility between user ua and her neighbor ub, and the second term computes the 

opinions of neighbor ub on the target item vi. Here, we simply employ the inner product on the two terms, however 

one can design a more sophisticated attention mechanism. 
We then implement agg 

L) 
to characterize user u ’s implicit neighbors by the linear combination: 

u 

u.N (a) = agg(L)(.N (a)) = 
 

 
 

a 
 

n ab · ub, (8) 

where n ab denotes the normalized attention coefficient: 

 
n ab 

exp(nab) 
L

u f E.N (a) exp(nabf ) . (9) 

b u 

For the high-level function agg
(H)

, it aggregates the user representation u and its neighbor representations u 
u a .N (a) 

as the new representation of user . We implement agg
(H) 

by performing the summation operation between t
u

wo 

representation vectors before emplo

u
yaing nonlinear transformu ation: 

u* = agg(H)(ua, u.N (a)) = a(wu(H) · (ua + u.N (a)) + bu(H)), (10) 
a u u u 
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229 

where wu(H), bu(H) are parameters in the user high-level aggregation function and a is the nonlinear activation function. 

We try various kinds of operations, such as concatenation, and find the summation operation always shows the best 

performance. 

Through a single aggregation layer, user (or item) representation is dependent on itself as well as the direct neigh- 

bors. We can further stack more layers to obtain high-order information from the multi-hop neighbors of users (or 

items).  More formally, in the l-th layer, for user ua and item vi, their representations are defined as: 

ul   = agg(H)(u(l−1), u(l−1) ), (11) 
a u a .N (a) 

vl   = agg(H)(v(l−1), v(l−1) ), (12) 
i v i .N (i) 

where u(l−1) 
u 

and v(l−1) are defined as: 
v 

(l−1) 
.N (a) 

ubE.Nu(a) 

(l−1) 
.N (i) 

vj E.Nv(i) 

n ab · u(l−1), (13) 

n ij · v(l−1). (14) 

 
 

230 3.3.3. Prediction layer 
After the L aggregation layer, we feed user representation uL and item representation vL into a function p    

= 

u 
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IRd × IRd  ➔ IR for rating prediction. a
 i

 

yAai = p(uL, vL). (15) 
a i 
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(9 

u 

-1     Rec 

p p a i p p 

where w· and b· denote the weight matrix and bias parameters in the MLP. One can utilize various prediction functions, 

p p u(L) u(H) v(L) v(H) 

u v 

p p u(L) u(H) v(L) 

Here we implement the prediction function p as the MLP component [9], which can model complicated interactions 

between users and items. Specifically, the MLP component is implemented with two hidden layers (tower structure: 

2d − d − 1) as: 

yAai = w2 · a 
 

w1 · [uL  vL] + b1
  

+ b2, (16) 

 
· · 

 
232 

 

233 

such as inner product, to generate recommendations. 

3.3.4. Learning algorithm 

To estimate the parameters of the recommendation framework, we have the following objective function: 

min £ = £Rec + -1 0 2, (17) 

where £Rec measures the loss in the recommendation framework. Our paper is centered on the rating prediction for 

recommendation which is a regression problem. For the regression, we formulate £Rec as the squared loss: 

£Rec = 
 1

 
  

(a

 

,i)E(9 

 
yai − yAai

 2 
, (18) 

 

234 
235 

where (9 denotes the observed ratings in Y. 

The second term in Equation (17) is the L2 regularization term to control model complexity and to avoid 

 

236 over-fitting. 0 = 
{

U, V, w1, w2, wl , wl , wl , wl , \/l E {1, · , L} 
} 

is the parameter set in the framework. 

 
237 The training process of the recommendation framework is summarized in Algorithm 1. 

 

Algorithm 1 Training algorithm for the recommendation framework 
 

 

Input: Interaction matrix Y; user neighbor set .N ; item neighbor set .N ; balancing factors -1; learning rate Y 
Output: Prediction function F (u, v 0, Y, .N , .N ) 

1: Initialize all parameters in 0 
u v

 

2: repeat 

3: Sample a minibatch of user-item interaction data from Y 

4: Calculate £ +- £ + 0  2 

5: for each parameter fJ E 0 do 

6: Calculate a£/afJ on the minibatch by backpropagation 

7: Update fJ by gradient descent with learning rate Y 
8: end for 

9: until £ converges or is sufficiently small 

10: return F (u, v 0, Y, .N , .N ) 
 

 

 

 
238 

239 

240 

241 

242 

243 

244 

245 

246 

247 
248 

3.3.5. Complexity analysis 

In this subsection, we discuss the time complexity and space complexity for the recommendation framework. 

Time complexity. The time cost of the recommendation framework mainly comes from the aggregation layer. For 

users, the matrix multiplication in the aggregation layer has computational complexity O(M ·Ku·L·d2), where M is the 
number of users, Ku is the number of neighbors for each user, L is the total layers in the aggregation layer and d denotes 

the embedding size. Similarly, the time consumption for items in the aggregation layer is O(N · Kv · L · d2), where N 
is the number of items and Kv is the number of neighbors for each item. In general, the overall training complexity is 

O(M · Ku · L · d2 + N · Kv · L · d2). In fact, as shown in our experiment section, the framework reaches the best 

performance when L = 1. Also, the number of neighbors for users and items are limited with Ku = Kv « min {M, N}. 
Therefore, the total time complexity of the recommendation framework in IRec is acceptable. 

Space complexity.  As shown in Equation (17), the model parameters 0 comprise two parts: embedding 

231 

v 
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wl 

 

249 tables for users and items 01 = {U, V}, and weight parameters in neural components 02 = 
{

w1, w2, wl , wl , wl , 

 

250 
 

v(H) 
, \/l E {1, · , L} 

}
. Parameter set 01 is identical to that of the classical embedding-based models, such 
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251 

252 

253 

 

 
254 

 

255 

256 

257 

 

258 

259 

as MF [8], BPR [54]. Parameter set 02 is lighter than 01 and can be neglected because (i) the parameters in 02 are shared 

by all users and items; (ii) the dimension of each parameter in 02 is far less than the number of users and items. 
Therefore, the space complexity of the framework is the same as the classical embedding models. 

4. Experiments 

In this section, we evaluate our method IRec in four real-world scenarios: movie, business, book, and restaurant 

recommendations. We first introduce the experiment settings, then present the experiment results. We also analyze 

the choice of hyper-parameters, the training efficiency, and some case studies in this section. 

4.1. Experiment Setup 
In this subsection, we introduce the datasets, baselines, evaluation protocols, and the choice of hyper-parameters. 

 

 

260 

261 

4.1.1. Datasets. 
Four datasets DVD1 

 
movie dataset, Yelp2 

 
business dataset, Douban3

 

 
book dataset, and Dianping4

 

 
restaurant dataset 

262      are used in o
5 

ur experiments.  Each dataset contains users’ ratings (ranging from 1 to 5) on the items.  The statistics of 

263      the datasets are summarized in Table 1. 

Table 1 
Basic statistics for the four datasets: Movie (DVD), Business (Yelp), Book (Douban), and Restaurant (Dianping). 

 
 
 
 
 
 
 
 
 
 

265 

266 

 
267 

268 

 
269 

270 

271 

 
272 

273 

 
274 

275 

276 

277 

 
278 

279 

280 

To verify the performance of our proposed method IRec, we compared it with the following state-of-art recom- 

mendation methods. The characteristics of the comparison methods are listed as follows: 

• SVD++ is a well-known baseline, which is a hybrid model combining the latent factor model and the neighbor- 

hood model [16]. 

• NFM is a feature-based factorization model, which improves FM [55] by using the MLP component to capture 

the high-order feature interaction [37]. Here we concatenate user ID embeddings and item ID embeddings as 

input for NFM. 

• GCMC is a graph-based recommendation framework which adopts a graph auto-encoder in a user-item 

bipartite graph to learn user and item embeddings for rating prediction [14]. 

• NGCF is a state-of-the-art graph-based recommender system which utilizes multiple propagation layers to learn 

user and item representations by propagating embeddings on the user-item bipartite graph [13]. For the rating 

prediction task, we replace the inner product with a two-layer MLP component in the prediction layer to enhance 

its performance. 

• CUNE is a semantic social recommendation method which identifies semantic social friends from the col- 

laborative user network and models these semantic relations as regularization terms to constrain the matrix 

factorization model [58]. In particular, they do not consider the neighbor information of items. 
 

1DVD: https://www.librec.net/datasets.html 
2Yelp: http://www.yelp.com/ 
3Douban: https://www.douban.com/ 
4Dianping: https://www.dianping.com/ 
5Datasets are published at: https://www.dropbox.com/s/dzr0uk6zj155w0z/data.zip?dl=0 
6We have tried other deep factorization models DeepFM [56] and Wide&Deep [57], and find that NFM is slightly better than them. Therefore, 

dataset # users # items # interactions density 

Movie 2,433 12,838 32,893 0.105% 
Business 10,580 13,870 171,102 0.117% 
Book 11,777 20,697 190,590 0.078% 

Restaurant 10,549 17,707 188,813 0.101% 

 
264      4.1.2. Baselines. 

    

 

http://www.librec.net/datasets.html
http://www.librec.net/datasets.html
http://www.librec.net/datasets.html
http://www.yelp.com/
http://www.douban.com/
http://www.dianping.com/
http://www.dianping.com/
http://www.dropbox.com/s/dzr0uk6zj155w0z/data.zip?dl=0
http://www.dropbox.com/s/dzr0uk6zj155w0z/data.zip?dl=0
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F av i i   Rec  i 
{
j i    

}
b 

yAij 

F av i 
{
j i    

}
y  i

 iij 

F1-score , (23) 

M 
M 

Precision = 
1         Fav(i)   Rec(i) 

, (21)
 

Recall = 
1         Fav(i)   Rec(i) 

, (22)
 

 

 

281 

282 

283 

 
284 

285 

286 

 

287 

288 

• CMN is a state-of-the-art memory-based model which designs the memory slots of similar users to learn user 

embeddings [12]. Note that it only focuses on the user’s neighbors without accounting for the information about 

similar items. 

• MMCF is another state-of-the-art memory-based model which models user-user and item-item co-occurrence 

contexts by memory networks [10]. It is the work which is most related to us. Different from our methods, it only 

focuses on co-occurrence relations and ignores high-order transitive relations among users and items. 

4.1.3. Evaluation Protocols. 

Three classes of metrics are adopted to evaluate the recommendation quality: 

(i) For the rating prediction task, we utilize mean absolute error (MAE) and root mean square error (RMSE) as the 

performance metrics, which are widely adopted in many related works [14, 16, 37, 59]. Smaller values of MAE and 

RMSE indicate a better recommendation and are defined as follows: 

MAE = 
1
 

  yai − y ai  , (19) 

Dtest 

RMSE =

 
1
 

(a,i)EDtest 

   
yai − y ai

 2 
, (20) 

Dtest (a,i)EDtest 

 
289 where D denotes the test set of the rating records. 

(ii) Wteestfurther adopt three rank-based metrics precision, recall and F1-score to evaluate different methods.  Fol- 

lowing the approaches in [60], precision, recall and F1-score are defined as follows: 
 

 

M 
i=1 

M 

 

 

Rec(i) 

 

   
 

 

 

 
290 

291 

292 

293 

294 

= 
2 × Precision × Recall 

Precision + Recall 

where    ( ) =    E Q( )     2: 4   and Q( ) is the item set that user   has interacted with in the test set. Since the users’ 
ratings on the items range from 1 to 5, a rating of 4 or 5 usually indicate that the users like the items. Therefore, we 

define   ( ) is the favorite item set of user .   ( ) =    E Q( )    (    ) 2: 4   is the set of items which will be recommended 

to user i and b(·) is the rounding function, which rounds the predicted rating yAij  to an integer rating. The bigger the 
precision and recall values, the better the ranking. 

(iii) In addition, we also use the three top-k based ranking metrics in our experiment: Precision@k (Pre@k for 

short), Recall@k (Rec@k for short), F1@k (for short). Following the approaches in [60], three metrics are defined as 

follows: 
 

Pre@k =  
1     

Pre@k(i) =  
1

 
   Fav(i)       (i) 

, (24)
 

M 
i=1 
M 

M 
i=1 

k 
M 

Rec@k = 
1

 
  

Rec@k(i) =  
1

    Fav(i)       (i) 
, (25)

 

M 
i=1 

M 
i=1  Fav(i)  

 

 

 

 

M 
i=1 

Fav(i) 

, (26) 

M 
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295 

 

296 

297 

298 

299 

F1@k = 
2 × Pre@k × Rec@k 

Pre@k + Rec@k 

where (i) is the top k item set in the ranking list determined by the trained models for user i. 

4.1.4. Parameter Settings. 

For the neighbor construction phase, we define lu = lv = 8, Su = Sv = 5 and utilize Euclidean distance to calculate 

the distance in the latent spaces. We implemented the recommendation framework of IRec with Tensorflow which is a 

Python library for deep learning. For each dataset, we randomly split it into training, validation, and test sets following 

the  
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6 : 2 : 2 ratio. We repeated each experiment 5 times and reported the average performance. The framework parameters 

are first initialized by the Xavier initializer [61], and then updated them by conducting mini-batch Adam [62]. For the 

selection of the  activation function, we utilized LeakyReLU [63] by default. 

For our framework, there are six key hyper-parameters that need to be tuned, including the dimension of 

embeddings d, layer size L, number of neighbors K, batch size b, balancing factor -1 and learning rate Y. The hyper-

parameters were tuned on the validation set using a grid search which is widely used in many deep models [13, 19, 

36]. Specifically, we 

divide the hyper-parameters into two sets, model hyper-parameters {d, L, K} and training hyper-parameters {b, -1, Y}, 
and then apply the grid search to these sets separately. One can utilize other methods proposed by previous works 

[64, 65, 66] for hyper-parameter optimization. Table 2 shows our hyper-parameter settings. The key hyper-parameter 
settings for the baselines are defined as follows. For NFM, we utilize a one-layer MLP component according to the 

original paper [37]. Regarding NGCF, we tune the depth of layer L between {1, 2, 3, 4}, and find NGCF performs best 

with L = 2 for the movie and book datasets, and L = 3 for the business and restaurant datasets. For CMN and MMCF, 

the memory hop H is tuned between {1, 2, 3, 4}, and we find H=2 reaches the best performance. The settings for the 

other hyper-parameters for all the baselines are reached by either empirical study or following the original papers. 

Deep models have a strong representation ability but they usually suffer from the over-fitting problems. To prevent 

over-fitting, we adopt L2 regularization (as mentioned in subsection 3.3.4) and the early stopping strategy [67] (i.e., 

premature stopping if RMSE on the validation set does not increase for 3 successive epochs). Figure 4 shows the 

training and validation error of each epoch of IRec. From the figure, we can see that 20 epochs are sufficient for our 

method to train and converge. If the model continues learning, then a situation of over-fitting will occur (i.e., the 

validation loss has begun to increase). We also tried the dropout technique [68], and found that introducing dropout 

masks slightly decreases the performance. A possible reason for this is that we do not introduce too many weight 

parameters with large dimensions in neural components, thus the dropout technique may not be as helpful to our model 

as it is to other deep and large models. Therefore, we do not introduce dropout mechanisms. 

 

Table 2 
Hyper-parameter settings for the four datasets: Movie (DVD), Business (Yelp), Book (Douban), and Restaurant 

(Dianping). dataset hyper-parameter settings 
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Movie d = 8 L = 1 K = 6 b = 256 -1 = 10−4 Y = 10−2 

Business d = 16 L = 1 K = 6 b = 1024 -1 = 10−4 Y = 2 × 10−2 

Book d = 16 L = 1 K = 5 b = 1024 -1 = 2 × 10−4 Y = 10−2 

Restaurant d = 16 L = 1 K = 8 b = 1024 -1 = 10−4 Y = 2 × 10−2 
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Figure 4: Training and validation error of each epoch of IRec on t h e  four datasets. 
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4.2. Empirical Study 
We conduct an empirical study to investigate the correlation between users (or items) and their co-occurrence 

neighbors. To formulate this issue, we utilize the difference  in the explicit feedback (i.e. ratings) as the index. Taking 

users for example, if a co-occurrence user pair had engaged a common item before and the difference in their ratings 

on the item is greater than or equal to 2 (in a 5-star system), we believe this co-occurrence user pair encodes irrelevant 

(or noisy) information. To this end, we make statistics ???DO YOU MEAN we calculate the statistics??? on the four 

datasets used in this paper. The results are presented in Figure 5. We observed that both the user co-occurrence relation 

and item co-occurrence relation encode irrelevant (or noisy) information in the four datasets. In particular, more than 1/5 

of the user co-occurrence relations and ¼ of the  item co-occurrence relations in the business dataset exist in such cases. 

The above findings empirically demonstrate that not all co-occurrence relations contain useful information, so it is 

important to filter out irrelevant information to construct meaningful implicit neighbors for users and items. 

 

30% 30% 

 

 
20% 20% 

 

 
10% 10% 

 

 
0% 

(a) User 

0% 

(b) Item 

 

Figure 5: Empirical study on the four datasets. (a) Percentage of co-occurrence user pairs encoding irrelevant (or noisy) 
information. (b) Percentage of co-occurrence item pairs encoding irrelevant (or noisy) information. 
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4.3. Performance Comparison 
Table 3 and Figures 6, 7, 8 show the performance of all the compared methods on the four datasets. From the 

results, we make the following main observations: 

(i) SVD++ achieves poor performance on the four datasets, which indicates that shallow representation is insufficient 

to capture complex user-item interactions. NFM consistently outperforms SVD++, which suggests the significance of 

non-linear feature interactions between user and item embeddings in recommender systems. However, both SVD++ 

and NFM ignore user-user and item-item relations. 

(ii) Both SVD++ and CUNE are shallow models based on matrix factorization, while CUNE achieves better 

performance than SVD++; meanwhile, for the deep recommendation models, CMN and MMCF generally achieve 

better performance than NFM in most cases. These results suggest that considering potential user-user and item-item 

neighbors can enhance the recommendation performance. In addition, MMCF consistently outperforms CUNE and 

CMN. This makes sense since CUNE and CMN only account for user neighbor information, while MMCF considers 

co-occurrence information for both users and items. 

(iii) For GNN-based models, NGCF achieves better performance than GCMC in most cases. The reason might be 

because GCMC only incorporates first-order neighbors for users and items in the bipartite graph, while NGCF models 

the high-order information. 

(iv) Our method IRec consistently yields the best performance on the four datasets, which demonstrates the 
effective- ness of IRec on rating prediction and top-k recommendation. We also conduct one-sample t-tests and p < 

0.05 indicates that the improvements of IRec over the best baseline are statistically significant. 

4.4. Data Sparsity and Cold Start Issues 
As mentioned in many studies in the literature [43, 60, 69], data sparsity and cold start are two challenges faced 

by most rec- ommenders. In this subsection, we in 
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vestigate the ability of our model to handle these two issues. 
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Table 3 
Recommendation performance of seven competing methods and our method IRec on the four datasets. The proposed 
method IRec achieves the best performance on all metrics, as shown in boldface. * denotes the statistical significance for p < 

0.05 compared to the best baseline. 

Movie SVD++  NFM GCMC NGCF CUNE  CMN MMCF  IRec 

MAE  0.8183 0.8178 0.7790 0.7893 0.8181 0.8097 0.7804 0.7594* 

RMSE 1.0503 1.0391 1.0177 1.0120 1.0406 1.0192 1.0068 0.9876* 
Precision 0.8715 0.8908 0.8940 0.9027 0.8918 0.8733 0.8971 0.9166* 
Recall 0.7386 0.8285 0.8197 0.7990 0.7985 0.8270 0.8640 0.8757* 
F1-score  0.7996 0.8585 0.8552 0.8477 0.8426 0.8495 0.8802 0.8957* 

Business SVD++  NFM GCMC NGCF CUNE  CMN MMCF  IRec 
 

MAE 0.8318 0.8045 0.8167 0.7995 0.8035 0.8122 0.8032 0.7889* 
RMSE 1.0469 1.0357 1.0437 1.0266 1.0351 1.0348 1.0344 1.0164* 
Precision 0.8187 0.8196 0.8507 0.8509 0.8514 0.8302 0.8349 0.8569* 
Recall 0.6330 0.6538 0.6697 0.6769 0.6490 0.7022 0.7264 0.7361* 
F1-score  0.7140 0.7274 0.7494 0.7540 0.7365 0.7609 0.7769 0.7919* 

Book SVD++  NFM GCMC NGCF CUNE  CMN MMCF  IRec 
 

MAE 0.6079 0.5909 0.6040 0.5958 0.5960 0.5947 0.5926 0.5881* 
RMSE 0.7648 0.7436 0.7549 0.7523 0.7442 0.7419 0.7387 0.7331* 
Precision 0.8674 0.8820 0.8760 0.8835 0.8812 0.8571 0.8799 0.8856* 
Recall 0.7122 0.7902 0.8168 0.7853 0.7639 0.7911 0.8137 0.8494* 
F1-score  0.7822 0.8336 0.8454 0.8315 0.8184 0.8228 0.8455 0.8671* 

Restaurant SVD++  NFM GCMC NGCF CUNE  CMN MMCF  IRec 
 

MAE 0.6640 0.6459 0.6480 0.6263 0.6365 0.6414 0.6238 0.6207* 
RMSE 0.8682 0.8488 0.8385 0.8239 0.8356 0.8473 0.8198 0.8077* 
Precision 0.8491 0.8460 0.8669 0.8746 0.8495 0.8524 0.8654 0.8750* 
Recall 0.6907 0.7058 0.7156 0.7460 0.7404 0.7084 0.7252 0.7845* 
F1-score 0.7618 0.7696 0.7840 0.8052 0.7912 0.7738 0.7891 0.8273* 
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Figure 6: The results of Precision@K on the four datasets. 
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The data sparsity problem is a great challenge for most recommender systems. To investigate the effect of data 

sparsity, we bin???divide?? the test users into four groups with different sparsity levels based on the number of observed 

ratings in the training data, and keep each group??? including a similar number of interactions. For example, [10,29) 

in the Movie dataset means each user in this group has at least 10 rating records and less than 29 rating records. Figure 

9 shows the RMSE results for the different user groups with different models on the four datasets. From the results, we 

observe that our IRec outperforms the other methods in most cases. It is worth mentioning that IRec consistently 

outperforms all baselines in the first group on the four datasets, which verifies that our method IRec can maintain a 

good performance when data are extremely sparse. 
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Figure 7: The results of Recall@K on the four datasets. 
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Figure 8: The results of F1@K on the four datasets. 
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Figure 9: Performance comparison over the sparsity distribution of user groups on t h e  four datasets. 
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4.4.2. Results in cold-start scenarios 

We consider two cold-start scenarios, namely the cold-start user problem and cold-start item problem. We treat 
those who have rated x or fewer ratings as cold-start users and those that have been rated less than x as cold-start 

items. Following other work [60, 70], we set x = 5. Tables 4 and 5 illustrate the RMSE results of our method IRec 

and the other baselines in two cold-start scenarios on four datasets. In the tables, * denotes the statistical significance 

for p < 0.05, compared to the best baseline. We can see that our method IRec is beneficial to relatively inactive users 

and items in four recommendation scenarios. 

4.5. Parameter Sensitivity 
We explore the impact of three hyper-parameters: embedding size d, neighbor size k, and number of layers L in 

the aggregation layer. The results on the Movie and Business datasets are plotted in Figure 10. We make the following 

observations: (i) a proper embedding size d is needed. If d is too small, the model lacks expressiveness, while a too 

large d increases the complexity of the recommendation framework and may overfit the datasets. (ii) The performance 
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RMSE results on testing cold start users on four datasets. The proposed method IRec achieves best performances on all 
metrics which are in boldface. * denotes the statistical significance for p < 0.05, compared to the best baseline. 

 

Method SVD++ NFM GCMC NGCF CUNE CMN MMCF IRec 

Movie 1.0617 1.0525 1.0465 1.0336 1.0516 1.0424 1.0272 0.9980* 
Business 1.0880 1.0987 1.0851 1.0743 1.0696 1.0778 1.0643 1.0399* 
Book 0.7794 0.7713 0.7690 0.7621 0.7752 0.7700 0.7591 0.7409* 

Restaurant 0.9824 0.9798 0.9792 0.9533 0.9605 0.9572 0.9443 0.9325* 

 
Table 5 
RMSE results on testing cold start items on four datasets. The proposed method IRec achieves best performances on all 
metrics which are in boldface. * denotes the statistical significance for p < 0.05, compared to the best baseline. 

 

Method SVD++ NFM GCMC NGCF CUNE CMN MMCF IRec 

Movie 1.0861 1.0705 1.0446 1.0308 1.0574 1.0333 1.0205 0.9959* 
Business 1.1676 1.1826 1.1539 1.1344 1.1612 1.1563 1.1440 1.1213* 
Book 0.7981 0.7873 0.7880 0.7942 0.7910 0.7943 0.7708 0.7610* 

Restaurant 0.8880 0.8958 0.9084 0.8876 0.8997 0.8929 0.8858 0.8671* 
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is improved with an increase in neighbor size K at the beginning because more neighbors provide more information. 

However, the performance takes a downward trend when K is larger than 6, since too many neighbors may introduce 

noise which reduces the accuracy of the prediction. (iii) In relation to the number of layers L in the aggregation layer, 

we find that when L=1, it is good enough because a larger L will bring massive noise when generating high-quality 

user and item representations and may lead to over-fitting. Similar results can be found in many other studies [19, 71, 

72]. 
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Figure 10: Parameter sensitivity of IRec’s recommendation framework on the Movie and Business datasets w.r.t. (a) 
embedding size d, (b) neighbor size K, and (c) number of layers L in the aggregation layer. 
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In this section we discuss the experiments to explore the training efficiency of our IRec and two related methods 

CMN and MMCF, which explicitly account for the user-user and item-item neighbor information for 

recommendation. We first evaluate the training time of one iteration in the same environment (1.8 GHz Intel Core 

i5 and 8GB of RAM memory). Three methods are executed with 20 iterations and we report the average 

runtime. Table 6 shows the computation time for the four datasets. We observe that IRec is 1.5-2 times faster than 

CMN and 4-5 times faster 

than MMCF in one iteration, which confirms that our IRec has better training efficiency. 

We then compare the number of trainable parameters for CMN, MMCF, and IRec. Table 7 summarizes the number 

of parameters of each method on embedding size 16 on the four datasets. We observe that IRec needs the least trainable 

parameters compared with CMN and MMCF. Specifically, MMCF requires more than double the number of parameters 

compared with our method IRec. This demonstrates IRec is a light yet effective model for recommendation. 
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Table 6 
Training time of one iteration of CMN, MMCF, and IRec on t h e  four datasets. ‘s’ denotes ‘second’. 

 

Method Movie Business Book Restaurant 

CMN 0.87s 7.59s 8.83s 7.59s 
MMCF 2.58s 17.09s 19.98s 19.29s 

IRec 0.59s 3.62s 5.06s 4.48s 

 
Table 7 

Number of parameters of CMN, MMCF, and IRec on embedding size 16 on t h e  four datasets. ‘k’ denotes ‘103’. 
 

Method Movie Business Book Restaurant 

CMN 300.7k 577.9k 725.4k 638.3k 
MMCF 492.3k 786.0k 1042.8k 907.8k 

IRec 245.9k 392.7k 521.1k 453.6k 
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4.7. Co-occurrence Relation vs Implicit Relation 
In this subsection, we compare the co-occurrence relation and the implicit relation. To this end, we compare IRec 

with its variant CRec. CRec utilizes the recommendation framework of IRec and leverages the co-occurrence relation 

instead of the implicit relation for recommendation. Table 8 shows the performance of IRec and CRec on the four 

datasets. From the results, we find that the implicit relation can further improve the recommendation performance 

compared with the co-occurrence relation. 

In the above experiments, we have validated the effectiveness of IRec which leverages the implicit relation for 

recommendation. Next, we investigate whether the co-occurrence relation and constructed implicit relation overlap 

with each other. For this purpose, we make statistics??we calculate the statistics on the Movie dataset from the 

perspective of users and show an overlapping relationship between the co-occurrence user pairs and the implicit user 

pairs. 

 

Table 8 
The results of MAE between IRec and its variant CRec on the four datasets. 

Method Movie Business Book Restaurant 

IRec 0.7594 0.7889 0.5881 0.6207 

CRec 0.7784 0.7925 0.5971 0.6310 
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Figure 11: Overlapping relationship between t h e  co-occurrence user pairs and implicit user pairs. 
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potentially relevant users is missed; (ii) most co-occurrence user pairs have less relevance, which demonstrates the 

necessity of filtering the co-occurrence relation. Based on the above observations, we conclude that only accounting 

for the co-occurrence relations may result in a loss of useful information and it introduces some irrelevant information, 

while our method IRec leverages embedding methods to generate meaningful implicit relations for users and items. 

4.8. Attention Analysis 
Benefiting from the attention mechanism, we can visualize the attention weights placed on the neighbors for users 

and items, which reflects how the model learns. In this subsection, we analyze the attention mechanism from the 
perspective of users to show the learning process of IRec’s recommendation framework and we obtain  similar 

observations for items. We randomly selected one user u72 from the Restaurant dataset, and three relevant items v513, v186, 

v1917 (from the test set). Figure 12 shows the attention weights of the user u72’s neighbors for the three user-item pairs. 

For convenience, we label the neighbor IDs starting from 1, which may not necessarily reflect the true ID from the 
dataset. From the heatmap, we make the following findings: (i) Not all neighbors make the same contribution when 

generating recommendations. For instance, for the user-item pair (u72, v513), the attention weights of user u72’s 

neighbor # 2 and # 5 are relatively high. The reason for this may be that neighbor # 2 and # 5 have rated item v513 in 

the training set. Therefore, neighbor # 2 and # 5 will provide more useful information when making 
recommendations. 
(ii) For different items, the attention distributions of the neighbors are different, which reflects the attention mechanism that 

can adaptively measure the influence strength of the neighbors. 
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Figure 12: Attention heatmap for the neighbors of three user-item pairs from the restaurant dataset. 
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5. Conclusion and Future Work 

In this work, we propose a method ca 

 

In this work, we proposed a method called IRec to leverage implicit neighbors for better recommendations. IRec 

includes (i) a neighbor construction method that utilizes the user-item interaction information to construct implicit 

neighbor sets for each user and item; and (ii) a novel framework that integrates constructed neighbor sets into the 

recommendation task. We conducted extensive experiments on four real-world datasets. The experiment results 

demon- strate the superiority of IRec over several state-of-the-art methods in rating prediction and top-k 
recommendation. The results also show that our method is beneficial for relatively inactive and cold-start users. 

For future work, we will (i) integrate side information into IRec such as knowledge graphs and social networks to 

further enhance the recommendation; (ii) employ more embedding methods in the neighbor construction phase to dig 

out user-user and item-item relationships; and (iii) try to generate recommendation explanations to comprehend user 

behaviors and item attributes. 
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