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Abstract:
In machine vision, deep learning frameworks are getting more

attractive to researchers owing to their accuracy and robustness
for feature extraction. However, the uncertainty in data or model
has an adversary impact on the prediction and limits the perfor-
mance of deep learning. To address the problem associated with
uncertainty, we propose a bidirectional self-rectifying network
with Bayesian modelling (BSNBM) for feature detection. First, a
set of branch networks is proposed, wherein the output of previous
convolutional blocks is unified and concatenated to the current
ones to reduce the visual impairment in the up/down-sampling
stage, taking into account the overall information loss. Further,
our framework is probabilistically based on Bayesian modelling
using prior knowledge. In the Bayesian model, the weight of
the learnable layers are converted into distribution functions.
Such conversion aims to improve robustness against outliers and
therefore alleviate the overfitting issue. The proposed technique is
then applied to identify surface cracks of infrastructure such as
roads, bridges or pavements. Extensive comparison with existing
techniques is conducted on various datasets, subject to a number
of evaluation criteria. Experiments on crack images, including
those captured by unmanned aerial vehicles inspecting a monorail
bridge, demonstrate the merits of the proposed BSNBM archi-
tecture over existing techniques for surface defect inspection.
Additional tests on extensive applications show the scalability
and robustness of this model for various image processing tasks.
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1. Introduction

In computer vision, the features of an image is a fundamen-
tal element of semantic representation. When a group of pixels
of an image forms a specific geometrical feature, the contrast

and geometrical correlation of those pixels provide abundant
information for reasoning in various pattern recognition. For
typical image processing tasks, e.g. image classification and
keypoint allocation, detection accuracy often rests with quality
of the extracted feature. For those tasks, the first and most im-
portant step is the detection of semantic features. Then, further
induction can be conducted by using the detected features as a
visual clue.

Due to the variety of homogeneous patterns and ambiguity
of semantic features, especially in dealing with abstract fea-
tures required for saliency detection, the task of feature detec-
tion could be challenging. Indeed, the shape of salient features
varies dramatically with the targets, making it difficult to find
the graphical similarity of the features. Therefore, it requires a
highly robust algorithm to extract the feature patterns. In this
regard, with advances in neural computing, deep convolutional
neural networks (DCNN) have emerged as a statistic frame-
work that can effectively address this requirement and ideally
cater for improvements in robustness and accuracy by learning
from data.

In DCNN, overfitting is a common problem that limits detec-
tion performance in terms of robustness. In practice, the relia-
bility of feature detection can be improved via a better exploita-
tion on the given data. Therefore, researchers have devoted re-
markable effort in improving fitness of the prediction. Despite
a number of frameworks available, there are still some issues
to be solved. First, the accuracy of detected features is affected
by the unknown information that could be effectively utilised
by DCNN. Secondly, the credibility of the training data actu-
ally changes with sampling; e.g., the benchmark features under
a low resolution should be less trustable to the data processor
but are treated equally as all the training samples in DCNN. Fi-
nally, mislabelled annotation of benchmark data could happen
due to system’s errors introduced from the data collection.

For a reliable extraction of features in DCNN, it is required



to address these issues, considering known as well as unknown
information. Only a few techniques have been proposed to
tackle what is unknown in DCNN. Nonetheless, such veiled
information is an important factor affecting the quality of fea-
ture detection and could be used to potentially improve DCNN
performance. For that, this paper aims to explore, using the
statistic approach, about uncertainty in DCNN. To this end, the
structure of DCNN for feature extraction is reconsidered from a
Bayesian modelling prospective in this paper. Here, a solution
to handle uncertainty exploiting the hidden prior knowledge is
proposed for robustness enhancement in feature detection.

2. Bidirectional self-rectifying networks for feature
detection

2.1 Network architecture

The proposed bidirectional self-rectifying network (BSN) is
shown in Fig. 1. Unlike standard hourglass-shape models [1]
with 5 convolutional blocks per side, the main network here
consists of only 3 dilated convolutional blocks (DCBs) instead
with one dilated convolutional layer [2] sandwiched by two
standard convolutional layers per block. Those blocks perverse
the hierarchical abstractions of features in three different scales
to be described in Section 2.3.

With the combination of several convolutional layers, the
feature map is refined after each block. The convolutional ab-
straction from each DCB are further processed by a forward
and a reverse enhancement branch (FEB/REB) bidirectionally
and finally fed into a feature merging net to produce the final
probability map of features by multi-scale fusion.

2.2. Logistic regression and probabilistic maps

The proposed network infers the logistic regression on
an arbitrary training sample denoted as {(X,Y )} =
{xij , yij |i, j ∈ (I × J)}, where xij and yij respectively rep-
resent the pixel values of the original image and its correspond-
ing annotated mask both in a size of I × J . Accordingly, the
ground-truth mask yij takes a binary value determined as,

yij =

{
1, xij - abnormal pixel in the mask,
0 otherwise. (1)

The probability of an arbitrary pixel belonging to a feature
{F |fij} can be calculated by using the sigmoidal function,

P (fij) =
1

1 + e−fij
. (2)

Theoretically, the sigmoid layer in CNN can represent the
accurate probability map for arbitrary data when the feature fij
transformed from the input xij is unbiased. However, as dis-
cussed in [3], such prerequisite can be hardly met in CNN due
to nonlinearities in fij .

2.3 Bidirectional self-rectifying abstractions

To implement bidirectional abstractions of the feature by ob-
taining directional observations from different views, the net-
work can generate a more balanced feature map based on multi-
scale patterns. To take into account the difference in scales, the
concatenation here is conducted with a resized operation. As
shown in the forward branch of Fig. 1, the width of the larger
tensor shrinks to a half size using an additional downsampling
process. Two size-halved tensors are then merged and fed to
the next layers with superimposed channels, which is contrary
in the reverse branch.

With the merged feature maps, the associated information
loss for feature {F k|fk

ij} at the kth convolutional block can be
expressed via its entropy as,

l(fk
ij) = −yij ln(P (fk

ij))− (1− yij) ln(1− P (fk
ij)). (3)

Specifically in the proposed network, three feature maps
each at a different scale of abstractions and an additional fused
map are included in the loss function as,

Lf =

I∑
i=1

J∑
j=1

(
l(ffused

ij ) +

3∑
k=1

l(fk
ij)

)
. (4)

2.4. Bayesian inference

Let us consider the weights W of the convolutional kernels
as a distribution of likelihood rather than discrete values from
the discussion above. In the trainable layers of the Bayesian
model, such distribution W over evidence can be calculated as
per the Bayes’ theorem for a given training set D:

p (W | D) =
p (D | W ) p(W )∫
p (D | W ) p(W )dW

. (5)

For a new sample {x∗, y∗}, an unbiased estimation of the prob-
ability can be given by using Monte Carlo sampling [4] on the
output of the network with M samples:

Ep(W |D)p (y
∗ | x∗,W ) ≃ 1

M

M∑
m=1

p
(
y∗ | x∗,W (m)

)
, (6)
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FIGURE 1. Architecture of the proposed network

where W (m) is randomly picked from the conditional distribu-
tion of W . Therefore, the posterior probability p (W | X,Y )
remains the key to unbiased estimation of a target probability.
In practice, the conditional probability p(W | D) can be com-
monly estimated by a random Gaussian distribution qϕ(W ), i.e.
p(W | D) ≈ qϕ(W ). The obtained parameters can be obtained
using the same routine of the DCNN backpropagation.

2.5. Spatial indexing on feature/heat map

To take into account uncertainty in the allocation, the coor-
dinates of landmarks are represented as a heat map by using a
2D-Gaussian kernel with a variance σg ,

G(i, j) =
1√
2πσg

e
− (∆i)2+(∆j)2

2σ2
g , (7)

where ∆i and ∆j are the horizontal and vertical distance from
an arbitrary point to the target.

The landmark allocation can be achieved via the argmax
function in a 2D space. However, the non-differentiability of
this function is a severe problem to the deep learning frame-
works. Without a certain derivative, the parameters of func-
tional layers cannot be updated via the descent gradient. So
here we use an alternative, the spatial soft-argmax function
[5] to estimate the index of the landmark within an acceptable
range of accuracy. The core calculation of the spatial softmax
function can be expressed as follows,

hs(xij) =
e

xij
ct∑I

k=1

∑J
l=1 e

xkl
ct

, (8)

where xij indicates the pixel value specifically at the position
(i, j) on the heat map, I and J represent the width and height
of the image, and ct is a temperature constant to control the
density of the distribution.

The soft-argmax function projected on the two axes is the
expectations of the softmax function over xij . The center (i, j)
can be estimated respectively as,

ĩ = hsa,i(xij) =

I∑
i=1

J∑
j=1

hs(xij)i, (9)

j̃ = hsa,j(xij) =

I∑
i=1

J∑
j=1

hs(xij)j. (10)

Since the network is trained to output a similar distribution as of
the ground truth, the generated heat map should possess com-
mon properties with the benchmark one. As a result, the Gaus-
sian kernel with a large standard deviation σg can lead to the
flat pixel distribution of the generated heat map, which con-
tributes negatively to the coordinate estimation in terms of ac-
curacy. Therefore, direct training on sparse Gaussian kernels
often yields inadequate accuracy of the feature representation.

The effective size of the kernel is determined by deviation
σg , whereby a smaller σg would lead to a denser kernel, gen-
erally beneficial to an accurate allocation. However, an over-
dense kernel would mean all the responses on the map are near
to 0 and may cause an extremely imbalanced prediction affect-
ing the representation in the trained model. In this case, the
size of the kernel should be properly designed to achieve the
required accuracy upon a bearable data balance.

2.6. Loss function for allocation

Landmark detection aims to predict the positions of M func-
tional key points defined on the object of concern. Given an
image I , the 2D-landmark locations from the annotation and
the deduction of the soft-argmax function are defined as vec-
tors L = {Lm : (L

(1)
m , L

(2)
m )} and L̂ = {L̂m : (L̂

(1)
m , L̂

(2)
m )},



respectively for m = 1, . . . ,M . For balancing all compo-
nents in the information loss, the coordinates are normalised
to the range (-1,1) by the normalisation function R(·). Accord-
ingly, the loss function with respect to the coordinates can be
expressed in terms of mean square error as,

Lco =
1

M

M∑
m=1

∥∥∥R(L̂m

)
−R (Lm)

∥∥∥
F
. (11)

where ∥·∥F is the Frobenius norm. Therefore, the average loss
over the heat map now becomes,

Lhms =
1

M

M∑
m=1

Lf,m, (12)

where the total loss of the model obtained as the superposition
of the coordinate loss and the heat map loss as,

Ltotal = WcoLco + Lhms, (13)

in which Wco is the weight of Ltotal to balance the model’s
dependency on the fitness of the heat map and coordinates.

2.7. Dissipated training

For an alternative way to train the model with limited posi-
tive samples, dissipation training is proposed for Gaussian re-
gression. To understand the concept, let us take an example of
a bonfire. When it starts to burn in the wild, we can easily no-
tice the shining flame and therefore know roughly the bonfire
location. As the heat energy continue dissipating with time, the
visible light around the heat point became less diffused. As a
result, the flame becomes darker but more concentrated. Fi-
nally, the centre of the ignition can be detected. However, if
a match is flaming, it is impossible to observe the flame from
a distance at the beginning due to the limited energy of heat
diffusion. Similarly, starting with a dense kernel may lead to
an all-negative representation due to few positive samples in
the benchmark as shown in Figure 2 (a). Inspired by the dissi-
pation described in the example, we design a variable training
scenario where the effective size of the Gaussian kernel is de-
creasing with the training epochs like the heat diffusing with
time. In the beginning, the ground-truth heat map with a large
kernel is applied to a rough regression. After each epoch, the
width of the kernel is reset by adjusting the deviation σg to the
half size of the previous one. As demonstrated in Figure 2 (b),
the predicted heat map is gradually centralised in the landmark
position, and also avoids ending up with an empty map at the
local minima. This is because the logistical distance between
the two heat maps generated in adjacent epochs is smaller than
their distance to the all-zero map. From adjusting the kernel
size, the model can effectively bypass the local-minima trap.

epoch 1

epoch 2

epoch 3

...


epoch 1

(a) Regular training


GT Prediction

(b) Dissipated training


GT Prediction

The prediction will end up with
an empty map if the training

process is directly guided by a
dense kernel.  

FIGURE 2. Heatmap training

3. Experimental results and discussion

To verify the effectiveness of the proposed approach, three
experiments are conducted respectively on surface crack,
salient object and landmark detection.

3.1. Datasets and algorithms in comparison

The public datasets for comparison are listed as follows:

• Crack detection: DCD [6], GAPs [7]. The experiment de-
tail on those datasets can be referred in [3].

• Saliency detection: MSRA10K [8] and MSRA-B [8].

• Facial landmark detection: 300W [9].

The frameworks for the comparison of surface crack seg-
mentation are listed in the following: DeepCrack [1], FPHBN
[10], PGA-Net [11], HDCB-Net [12] and HCNNFP [3].

3.2. Evaluation metrics

3.2.1 Metrics for feature detection

In this paper, the following criteria from well recognised
sources are used for evaluation.

• Average F-measure (AFβ) [3], Jaccard Index (JI) [13]: A
larger value indicates a better segmentation result;

• The mean absolute percentage error (MAPE) [14]: A
smaller MAE indicates a more accurate prediction.

3.2.2 Metrics for landmark detection

NMEio/NMEip: The inter-ocular normalised mean error
(NMEio) and the inter-pupil normalised mean error (NMEip)



[9] are specific metrics designed for the evaluation of facial
landmark detection. A smaller value of the errors NMEio and
NMEip indicates a better match to the ground truth.

3.3. Results on Image Segmentation

3.3.1 Surface crack detection

The sample results are presented in Fig. 3 for the com-
pared approaches. Relatively, hierarchical models like FPHBN,
HDCB-Net and the proposed BSNBM performs more stably in
dealing with those confusing scenes such as paints. The multi-
level comparison between the feature maps and the ground
truth contributes positively in terms of the accuracy of the pre-
diction. Apart from that, the BSNBM presents a rather com-
pleted contour of the crack with less false negative labels. The

FIGURE 3. Comparison on Surface Defect Detection. From left to right:
original image, ground truth, results respectively of FPHBN, PGA-Net,
HDCB-Net, HCNNFP, and BSNBM.

DCD GAPsMethods
AFβ JI MAPE AFβ JI MAPE

DeepCrack 86.32% 56.87% 76.49% 75.38% 25.06% 96.17%
FPHBN 86.15% 55.26% 76.04% 76.62% 24.43% 87.23%
PGA-Net 86.58% 61.74% 78.02% 74.60% 21.98% 91.80%
HDCB-Net 87.75% 61.61% 72.07% 80.17% 28.55% 78.14%
HCNNFP 86.62% 57.08% 75.20% 78.07% 29.68% 85.03%
BSNBM 88.02% 64.15% 67.99% 81.25% 41.29% 75.73%

TABLE 1. Comparison for crack detection results on DCD and GAPs.

quantitative results obtained from the compared approaches
upon two datasets are shown in Table 1. Here AFβ is calculated
with β2 from 0 to 1. Our BSNBM outperforms over other ap-
proaches in all the datasets. HDCB-Net performs as the second
best followed by another current frequentist model, HCNNFP.

3.3.2 Saliency Detection

The visual results of saliency detection are depicted in Fig. 4.
Despite slight mislabelling in the boundary areas, the proposed
approach is able to extract a highly matched saliency map, close
to the instinctive attention. Compared with the ground truth,
the silhouette of the predicted saliency map consists of sim-
pler shapes as the proposed approach tends to use rather simple

curves to link the detected endpoints on the image. The phi-
losophy behind that is the BSNRM’s robustness obtained from
bidirectional abstractions and Bayesian inference. Such adjust-
ment leads to a slight degradation in extracting marginal pat-
terns due to mislabelled background pixels near the boundary
of the salient object, and hence, is beneficial to robustness in
deteting various salient objects.

FIGURE 4. Results on salient object detection. From left to right: origi-
nal image, ground truth, and detection results respectively.

The quantitative results of the saliency detection are listed in
Table. 2. On average, the AFβ and JI on MSRA10K and
MSRA-B are respectively around 92% and 80%, which are
quite high for saliency detection tests. These statistic metrics
are also in accordance with the good performance of the visu-
alised results as presented in Fig 4. The outperformance of the
proposed approach applied to those primary tasks verifies its
great potential for extensive low-level applications in crack or
salient object detection.

Datasets Metrics
AFβ JI MAPE

MSRA10K 92.88% 81.21% 24.94%
MSRA-B 91.86% 78.90% 41.62%

TABLE 2. Quantitative results for salient objective detection.

3.4. Results on Facial Keypoint Detection

The visual results of the proposed framework are depicted
in Fig. 5, demonstrating the accuracy of the proposed bidi-
rectional self-rectifying network with Bayesian modelling in
landmark allocation as described above. The rationale behind
it is the stochastic modelling in uncertainty can help the net-
work overcome the influence of outlier samples. This con-
tributes to robustness of the network against fluctuations in
the data. Hence, under uncertainty conditions the allocation
is more likely to yield correct samples from adopting the em-
pirical knowledge.

Kernel Range σg = 1 σg = 2 σg = 4
NMEip 4.94% 5.98% 9.55%
NMEio 3.59% 4.35% 6.95%

TABLE 3. average error of facial landmark detection.



FIGURE 5. Visualized results of landmark detection using the proposed
model. Red: predicted landmarks; Green: annotated landmarks

The quantitative results of facial landmark detection are pre-
sented in Table 3. As shown in this table, the proposed network
achieves the most accurate prediction of landmarks when σg is
set to be 1. The corresponding NMEip and NMEio are 4.94%
and 3.59% respectively, which are quite plausible in industrial
applications. In practice, a simple alignment of designed mod-
ules can enable the proposed network to handle high-level tasks
effectively, which is quite useful for industrial practitioners.

4. Conclusion

In this paper, we have presented a novel bidirectional DCNN
framework with Bayesian modelling for detection of features
and landmarks, where the recurrent representation of an image
is delivered through both forward and reverse branches to ex-
tract robust information of concrete features or salient objects.
With the incorporation of the Gaussian spatial indexing module
in the proposed network, the detected salient features can be
further converted into coordinates for accurate landmark detec-
tion. Extensive experiments and thorough comparisons verify
the high performance of the approach compared to the state-of-
the-art models in crack detection and facial landmark detection.
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