ORIGINAL RESEARCH PAPER

Generalized diamond-type single DC-source switched-capacitor based multilevel inverter with step-up and natural voltage balancing capabilities

${ }^{1}$ Power Electronics Research Lab. (PERL), Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
${ }^{2}$ Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
${ }^{3}$ Faculty of Engineering and Science, Department of Energy Technology, Aalborg University, Aalborg, Denmark

Correspondence

Kazem Varesi, Power Electronics Research Lab. (PERL), Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran, PO. BOX 51335/1996.
Email: k.varesi@sut.ac.ir

Abstract

This paper proposes a diamond-shaped high step-up switched-capacitor based basic multilevel inverter topology. The basic switched-capacitor (SC) stage consists of 2 active switches, 2 diodes, and 2 capacitors. Using a single DC source with the unfolding circuit (10 switches, 5 capacitors, and 5 diodes) results in the production of 17 voltage-steps at the output with the gain of up to 8 times of the input voltage. By extending the diamond-shaped switched-capacitor stages, higher voltage levels and voltage gains can be possible. The suggested topology employs two half-bridges (instead of a full-bridge) to produce positive, zero, and negative steps, which reduces the Voltage Stress (VS) on two output switches and consequently reduces Total Voltage Stress (TVS). In addition, the natural voltage balancing of capacitors eliminates the need to an additional control circuitry and consequently reduces the total converter size, complexity, and cost. In addition, modularity, scalability, low voltage ripple on capacitors, low total voltage stress, high power quality, and capability of supplying low/medium power factor (R-L) loads are some of the merits of the proposed topology. The low Cost Function (CF) obtained in the comparison section as well as experimental results verifies the advantages of the proposed topology.

1 | INTRODUCTION

In recent years, multilevel inverters have gained tremendous attention among power electronic converters due to their outstanding features such as: simple structure, suitability for medium/high voltage/power applications, low electromagnetic interference, low total harmonic distortion (THD), and improved power quality [1-3]. The DC supplies as well as switches and diodes are included devices of multilevel inverters. But numerous devices are demanded for reaching increased steps. In literature, many structures have been presented profiting from the reduced number of devices [4-6]. The reduction in semiconductor device count leads to reduced gate-driver circuits and reduced overall size and cost [7]. Usually, the DC sources are bulkier, heavier, and more expensive than other parts in multilevel inverters. So, most of the papers have focused on presenting structures with less number of DC supplies [8]. The capacitors are good candidates for replacing DC sources,
which results in the introduction of capacitor-based multilevel inverters (or called "Switched-Capacitor Based Multi-Level Inverters (SCBMLIs)") [9-24]. In SCBMLIs, DC source(s) and pre-charged capacitor(s) are synthesized to produce staircase voltage waveform.

In [9-11], the application of capacitors has only decreased the number of sources (unity gain). But in [12-24], the enhanced gain has also been reported besides reduced source count. The charge balancing of capacitors is the main challenge of SCBMLIs [25]. The topology presented in [26] requires additional auxiliary control circuits for charge balancing of the capacitor, which increases the total cost and size of the converter. But, in [9-24], the charge balancing of capacitors is done naturally (without auxiliary circuits) leading to less complexity and simple control.

The topologies presented in $[9,11,13-19,21,23,24,27]$ are modular and can be extended by increment of switchedcapacitor stages, where the non-modular structures presented in

[^0]$[10,12,20,22]$ can only be extended by cascading the basic units. This increases the number of sources/devices, weight, cost, and volume of the converter. The extension of [14-19, 23, 24, 27] increases the number of steps and voltage gain, but in [9-13, 20, 22] the voltage gain remains constant.

The SCBMLIs presented in [9, 28-30] employ an H-bridge unit to provide negative steps, which imposes maximum voltage stress $\left(=V_{0, \max }\right)$ and consequently high losses on H -bridge switches. To overcome this shortcoming, two half-bridges [11-$15,22-24,27$] or a developed H-bridge [10, 16-19] can be applied (instead of H-bridge) to create negative steps, where only two switches (instead of 4 switches) are imposed to maximum voltage stress. The creation of AC voltage waveform can be free of H -bridge, developed H -bridge or half-bridges. For example, the bipolar output voltage waveform generation of [21] is accomplished inherently, which reduces the total voltage stress. The SCBMLIs presented in [19-24] have been investigated in detail, in the comparison section.

Another important feature in SCBMLIs is the quality of output voltage waveform. Higher number of steps leads to higher quality and lower THDs. However, this objective can be obtained in expense of increased devices, cost, weight, and volume. So, there should be a trade-off between number of devices (cost) and number of steps. While the cost factor is dominant, a linear relationship is preferred between number of levels and devices [20-24]. But if quality factor is the main objective, an exponential relation between number of steps and devices is aimed [19], where large number of steps and accordingly high quality and low THD can be achieved.

This paper suggests a modular developed diamondtype single-source SCBMLI configuration that benefits from increased levels per device. Application of 2 half-bridges (for creating negative steps) has reduced the total voltage stress. The suggested topology is extended by adding switched-capacitor stages to reach more steps and higher voltage gains. Also, the suggested structure can properly supply the R - L loads. In Sections 2 and 3, the proposed basic and generalized topologies have been introduced. Then, the modulation technique as well as losses analysis and design procedure of capacitors have been explained in Sections 4 and 5. The comparative analysis is also presented in Section 6. The experimental results and conclusions have been presented in Sections 7 and 8, respectively.

2 | PROPOSED DEVELOPED 17-LEVEL TOPOLOGY

The proposed 17-level configuration (shown in Figure 1) is consisted of a single DC-source, 10 switches, 5 capacitors, and 5 diodes. All the switches are unidirectional. So, the count of switches ($N_{\text {Switcb }}$), MOSFETs ($N_{\text {MOSFET }}$), and gate-driver circuits $\left(N_{\text {Driver }}\right)$ are the same. Thus,

$$
\begin{align*}
& N_{\text {Sourree }}=1, N_{\text {Suitth }}=N_{\text {MOSFET }}=N_{\text {Driver }}=10 \tag{1}\\
& N_{\text {Capacitor }}=5, N_{\text {Diode }}=5, N_{\text {Device }}=31
\end{align*}
$$

FIGURE 1 Proposed 17-level inverter topology

TABLE 1 Switching pattern and charge/discharge process of capacitors in proposed 17-level topology

	$\mathbf{S}_{1} \mathbf{S}_{2} \mathbf{S}_{3} \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{P}_{3}$	$\mathbf{D}_{1} \mathbf{D}_{2} \mathbf{D}_{3}$	$C_{1} C_{2} C_{3}$
$\mathbf{V}_{\mathbf{o}}$	$\mathbf{H}_{1} \mathbf{H}_{2} \mathbf{H}_{3} \mathbf{H}_{4}$	$\mathbf{D}_{4} \mathbf{D}_{5}$	$C_{4} C_{5}$
$+8 \mathrm{~V}_{\text {IN }}$	1000110110	01010	$\downarrow \uparrow \downarrow \uparrow \downarrow$
$+7 \mathrm{~V}_{\text {IN }}$	0001110110	10010	$\uparrow \downarrow \downarrow \uparrow \downarrow$
$+6 \mathrm{~V}_{\text {IN }}$	1100010110	00110	$\downarrow \downarrow \uparrow \uparrow \downarrow$
$+5 \mathrm{~V}_{\text {IN }}$	0101010011	10010	$\uparrow \downarrow \downarrow \uparrow \downarrow$
$+4 \mathrm{~V}_{\text {IN }}$	1010100110	01001	$\downarrow \uparrow \downarrow \rightarrow \uparrow$
$+3 \mathrm{~V}_{\text {IN }}$	0011100110	10001	$\uparrow \downarrow \downarrow \rightarrow \uparrow$
$+2 \mathrm{~V}_{\text {IN }}$	1110000110	00101	$\downarrow \downarrow \uparrow \rightarrow \uparrow$
$+1 \mathrm{~V}_{\text {IN }}$	0111000011	10001	$\uparrow \downarrow \downarrow \rightarrow \uparrow$
$0\left(\mathrm{I}_{\mathrm{o}}>0\right)$	1110000011	00101	$\downarrow \downarrow \uparrow \rightarrow \uparrow$
$0\left(\mathrm{I}_{\mathrm{o}}<0\right)$	1000111100	01010	$\downarrow \uparrow \downarrow \uparrow \rightarrow$
$-1 \mathrm{~V}_{\text {IN }}$	0001111100	10010	$\uparrow \downarrow \downarrow \uparrow \rightarrow$
$-2 \mathrm{~V}_{\text {IN }}$	1000111001	01010	$\downarrow \uparrow \downarrow \uparrow \rightarrow$
$-3 \mathrm{~V}_{\text {IN }}$	0101011001	10010	$\uparrow \downarrow \downarrow \uparrow \rightarrow$
$-4 \mathrm{~V}_{\text {IN }}$	1100011001	00110	$\downarrow \downarrow \uparrow \uparrow \rightarrow$
$-5 \mathrm{~V}_{\text {IN }}$	0011101100	10001	$\uparrow \downarrow \downarrow \downarrow \uparrow$
$-6 \mathrm{~V}_{\text {IN }}$	1010101001	01001	$\downarrow \uparrow \downarrow \downarrow \uparrow$
$-7 \mathrm{~V}_{\text {IN }}$	0111001001	10001	$\uparrow \downarrow \downarrow \downarrow \uparrow$
$-8 \mathrm{~V}_{\text {IN }}$	1110001001	00101	$\downarrow \downarrow \uparrow \downarrow \uparrow$

Table 1 describes the switching states and charge/discharge process of capacitors in the proposed configuration. Due to the symmetric characteristic of the proposed structure, the H_{1}, H_{2}, and $S_{1}-S_{3}$ are switched in complementary manner with H_{3}, H_{4}, and $P_{1}-P_{3}$, respectively.

Figure 2 displays the charging path of $C_{1}-C_{5}$ capacitors of proposed topology. As seen in Figure 2, the C_{1} is charged by input voltage source, through P_{1} and D_{1}. This process happens in 8 modes of each cycle, during the generation of $\pm V_{I N}$, $\pm 3 V_{I N}, \pm 5 V_{I N}$ and $\pm 7 V_{I N}$ voltage levels. This guarantees the voltage balancing of C_{1} to $V_{I N}\left(V_{C 1}=V_{I N}\right)$. The C_{2} capacitor is paralleled with series connection of $V_{I N}$ and C_{1}, through S_{1}, P_{2} and D_{2}. So, the C_{2} is charged to $V_{C 2}=V_{I N}+V_{C 1}=2 V_{I N}$. The charging of C_{2} occurs during 5 intervals at each cycle, while generation of zero $\left(I_{0}<0\right),+4 V_{I N},+8 V_{I N},-2 V_{I N}$ and $-6 V_{I N}$ voltage levels (Table 1). Similarly, the C_{3} is paralleled with series

FIGURE 2 The charging path of $\mathrm{C}_{1}-\mathrm{C}_{5}$ capacitors
connection of $V_{I N}$ and C_{1}, through S_{1}, S_{2} and D_{3}. Accordingly, the C_{3} is charged to $V_{C 3}=V_{I N}+V_{C 1}=2 V_{I N}$. The charging of C_{3} occurs in 5 intervals at each cycle, while generation of zero $\left(I_{0} \geq 0\right),+2 V_{I N},+6 V_{I N},-4 V_{I N}$ and $-8 V_{I N}$ output voltage levels (Table 1). Based on Figure 2, the C_{4} is paralleled with series connection of $V_{I N}, C_{1}$ and C_{2}, through $S_{1}, S_{2}, P_{3}, D_{3}$ and D_{4}. So, the C_{4} is charged to $V_{C 4}=V_{I N}+V_{C 1}+V_{C 2}=4 V_{I N}$. The process takes place during 9 modes (at zero ($I_{o}<0$), $+5 V_{I N},+6 V_{I N},+7 V_{I N},+8 V_{I N},-1 V_{I N},-2 V_{I N},-3 V_{I N}$ and $-4 V_{I N}$ voltage levels) at each switching cycle. Similarly, the C_{5} is paralleled with series connection of $V_{I N}, C_{1}$ and C_{2}, through $S_{1}, S_{2}, S_{3}, D_{3}$ and D_{5}. So, it is charged to $V_{C 5}=V_{I N}+V_{C 1}+$ $V_{C 2}=4 V_{I N}$. The charging process of C_{5} happens in 9 operational modes (while generation of zero $\left(I_{0} \geq 0\right),+1 V_{I N},+2 V_{I N}$, $+3 V_{I N},+4 V_{I N},-5 V_{I N},-6 V_{I N},-7 V_{I N}$ and $-8 V_{I N}$ voltage levels). Due to numerous charging modes of $C_{1}-C_{5}$ capacitors, the voltage of capacitors is naturally balanced on desired values presented in Equation (2), during initial cycles. Then, the proposed topology reaches to its steady-state operation.

$$
\begin{equation*}
V_{C_{1}}=V_{I N}, V_{C_{2}}=V_{C_{3}}=2 V_{I N}, V_{C_{4}}=V_{C_{5}}=4 V_{I N} \tag{2}
\end{equation*}
$$

Figure 3 shows equivalent circuits of the proposed converter during the generation of different voltage steps. It is evident from Figure 3 that the proposed topology can simultaneously produce the output voltage level and balance the charge of capacitors at desired values, which is called "natural voltage balancing".

The voltage stress and Normalized Voltage Stress (NVJ) on semiconductors are shown in Table 2. Note that the NVS is defined as voltage stress on semiconductor divided by maximum output voltage: $N V S=\left(V S / V_{0, \max }\right)$. The suggested basic topology applies two half-bridges instead of a full-bridge, which keeps the switch count the same, but decreases the voltage stress on H_{2} and H_{4} switches to quarter. Accordingly, the losses and expense of $\mathrm{H}_{2}, \mathrm{H}_{4}$ as well as total voltage stress of the converter are reduced. Only H_{1}, and H_{3} withstand $V_{0, \text { max }}$. As seen

FIGURE 3 Operational modes of proposed 17-level converter

TABLE 2 Voltage stress (VS) on switches/diodes of proposed 17-level topology

Switch	$\boldsymbol{V} \boldsymbol{S}$	$\boldsymbol{N V S}$ $[\%]$	Switch	$\boldsymbol{V} \boldsymbol{S}$	$\boldsymbol{N V S}$ $[\%]$	Diode	$\boldsymbol{V S}$	$\boldsymbol{N V S}$ $[\%]$
S_{1}	$V_{I N}$	12.5	P_{1}	$V_{I N}$	12.5	D_{1}	$V_{I N}$	12.5
S_{2}	$2 V_{I N}$	25	P_{2}	$2 V_{I N}$	25	D_{2}	$2 V_{I N}$	25
S_{3}	$4 V_{I N}$	50	P_{3}	$4 V_{I N}$	50	D_{3}	$2 V_{I N}$	25
H_{1}	$8 V_{I N}$	100	H_{3}	$8 V_{I N}$	100	D_{4}	$4 V_{I N}$	50
H_{2}	$2 V_{I N}$	25	H_{4}	$2 V_{I N}$	25	D_{5}	$4 V_{I N}$	50

FIGURE 4 Proposed extended topology
from Equation (3), the Normalized Total Voltage Stress (NTVJ) of proposed topology is an acceptable amount of 5.875. The NTVS is equal to the sum of semiconductors' voltage stress divided by peak output voltage, as in Equation (3).
$N T V S=\frac{\sum_{i=1}^{3} V S_{S_{i}}+\sum_{i=1}^{3} V S_{P_{i}}+\sum_{i=1}^{5} V S_{D_{i}}+\sum_{i=1}^{4} V S_{H_{i}}}{V_{o, \max }}$

$$
\begin{equation*}
=\frac{47 V_{I N}}{8 V_{I N}}=5.875 \tag{3}
\end{equation*}
$$

3 | PROPOSED GENERALIZED TOPOLOGY

The proposed basic topology can be extended by increasing switched-capacitor stages to obtain more voltage gains and output steps, as shown in Figure 4. Each switched-capacitor stage contains 2 unidirectional switches (MOSFETs), 2 capacitors, and 2 diodes. The addition of each switched-capacitor stage doubles positive and negative steps, which improves the output voltage quality and reduces the THD of the suggested topology. Then, the filter can be eliminated or downsized. Also, the voltage gain is doubled by increment of each switched-capacitor stage.

The number of steps and devices, as well as gain of generalized configuration, have been summarized in Table 3, where ' n ' denotes the number of switched-capacitor stages.

TABLE 3 Description of proposed generalized topology

Parameter	Value	Parameter	Value
$N_{\text {Level }}$	$2^{(n+2)}+1$	$N_{\text {Capacitor }}$	$2 n+1$
$N_{\text {Switch }}=N_{\text {MOSFET }}$	$2 n+6$	$N_{\text {Diode }}$	$2 n+1$
$N_{\text {Driver }}$	$2 n+6$	$N_{\text {Device }}$	$8 n+15$
$N_{\text {Source }}$	1	Gain	$2^{(n+1)}$

4 | SWITCHING TECHNIQUE

In this study, the "Nearest Level" (or named as "fundamental frequency") technique has been employed as modulation strategy. In this technique, a sinusoidal waveform with fundamental frequency of 50 Hz is considered as the reference waveform ($V_{R e f}=V_{m} \sin (\omega t)$). The magnitude of reference waveform can be selected through $0 \leq V_{m} \leq N_{P}=\left(N_{\text {Level }}-1\right) / 2$, where N_{P} denotes the total number of positive levels. To guarantee maximum number of levels, the V_{m} should be selected as close as possible to N_{P}. In proposed 17-level topology, the N_{P} is equal to 8. Therefore, the reference waveform is defined as in Equation (4):

$$
\begin{equation*}
V_{R e f}=8 \sin (2 \pi \times 50 t)=8 \sin (100 \pi t) \tag{4}
\end{equation*}
$$

In nearest level modulation technique, the reference waveform is compared with producible voltage levels $\left(0, \pm V_{I N}\right.$, $\left.\pm 2 V_{I N}, \ldots, \pm 8 V_{I N}\right)$. At each instant (t), the difference between producible voltage levels and reference waveform (called "error") is monitored. The nearest level to the reference waveform is specified by checking relevant error values. The level that has an error less than 0.5 is the nearest one to the reference waveform. So, it is produced at the output port. While the difference between reference waveform and produced level is less than 0.5 , the switching pattern remains unchanged. But, when the error reaches its peak value (error $\max =0.5$), the switching pattern is changed to produce the next step, as shown in Figure 5 [20].

The step-changing instant of i th voltage level $\left(t_{i}\right)$ can be calculated from Equation (5). Note that Equation (5) presents the step-changing times of first quarter of switching cycle. The step-changing instants of 2 nd , 3 rd and 4 th quarters can also be calculated based on symmetric nature of output voltage waveform. As seen from Table 4, the employment of nearest level technique reduces the operating frequency of semiconductors, which leads to suppressed switching losses. The simplicity as well as ease of implementation of nearest level technique has increased its popularity.

$$
\begin{equation*}
t_{i}=\frac{1}{\omega} \arcsin \left(\frac{(i-0.5) \times V_{I N}}{V_{m}}\right) \quad i=1,2, \ldots, N_{P} \tag{5}
\end{equation*}
$$

To certify low-frequency operation of switches in nearest level technique, the total ON-OFF transitions of switches during each switching cycle have been presented in Table 4. It is

FIGURE 5 Nearest-level based switching pattern of suggested 17-level topology

TABLE 4 ON/OFF transitions of switches at each switching period and estimated operating frequency of switches

	Number of ON/ OFF	Frequency [Hz]	Switch	Number of ON/ OFF	Frequency [Hz]
S_{1}	16	800	P_{1}	16	800
S_{2}	7	350	P_{2}	7	350
S_{3}	3	150	P_{3}	3	150
H_{1}	1	50	H_{3}	1	50
H_{2}	7	350	H_{4}	7	350

noted that the H_{1} and H_{3} switches operate at fundamental frequency, while the other semiconductors operate at quite low switching frequencies. This leads to reduced switching losses.

5 | LOSSES ANALYSIS AND DESIGN OF CAPACITORS

5.1 | Losses analysis

The losses occurred in switched-capacitor multilevel inverters can be classified to three main types, which are elaborated in the following.

5.1.1 | Conduction losses

The conduction losses usually happen at on-state resistance of switches and diodes $\left(R_{o n}\right)$, forward voltage drop of diodes $\left(V_{F D}\right)$ and equivalent series resistance of capacitors $\left(R_{E S R}\right)$. Total conduction losses of the structure can be achieved from (6), where
the $I_{r m s}$ and $I_{\text {ave }}$ denotes the Root Mean Square (RMS) and average values of components' current, respectively [24].

$$
\begin{align*}
P_{\text {Loss, Cond }}= & P_{\text {Cond, Svithes }}+P_{\text {Cond, Diodes }}+P_{\text {Cond, Caparitors }}= \\
= & R_{\text {onitb }}^{\text {Suith }} I_{\text {rmss, Suithb }}^{2}+\left(R_{\text {ond }}^{\text {Diode }} I_{\text {rmus, Diode }}^{2}+V_{F D} I_{\text {ave, Diode }}\right) \\
& +R_{E S R} \times I_{\text {rmss, Caparitor }}^{2} \tag{6}
\end{align*}
$$

5.1.2 | Switching losses

The switching losses happen during ON-OFF transitions of semiconductors. The switching losses depends on voltage stress (V_{S}) and current stress ($I_{\text {Stress }}$), rising time $\left(t_{r}\right)$ and falling time $\left(t_{f}\right)$ and switching frequency $\left(f_{s}\right)$ of semiconductors, as (7). In this study, the employment of nearest level modulation technique has reduced the switching frequency of switches, which suppress the switching losses [24].

$$
\begin{equation*}
P_{\text {Loss, Svitching }}=\frac{1}{6} f_{s} V_{S} I_{\text {Stress }}\left(t_{r}+t_{f}\right) \tag{7}
\end{equation*}
$$

5.1.3 | Voltage ripple loss of capacitors

Besides the conduction losses that happen at ESR of capacitors, the voltage ripple of capacitors is another source of loss, which is called "voltage ripple loss" of capacitors. This kind of loss can be computed from (8), where f_{s} : switching frequency, C : capacitance of capacitor, $\Delta V_{\text {Ripple }}$: voltage ripple of capacitor [24].

$$
\begin{equation*}
P_{\text {Loss, Ripple }}=\frac{1}{2} f_{s} C\left(\Delta V_{\text {Ripple }}\right)^{2} \tag{8}
\end{equation*}
$$

5.2 | Capacitor design

The voltage ripple of capacitors is an important factor that affects the capacitor losses as well as output voltage quality (and THD). The long discharging intervals of capacitors lead to higher ripples, higher losses and lower output voltage quality. The voltage ripple on capacitors can be limited by suitable design of capacitances.

In this paper, the capacitances have been selected based on (9-10) [24], where I_{0} : magnitude of the output current, $\cos (\varphi)$: load power factor, $\left[t_{\text {start }}-t_{\text {end }}\right]$: longest discharging interval of capacitors, $\Delta V_{\text {Ripple: }}$ maximum allowable voltage ripple of capacitors

$$
\begin{gather*}
\Delta Q_{C}=C \times \Delta V_{\text {Ripple }}=\int_{t_{\text {start }}}^{t_{\text {tend }}} I_{o} \sin (\omega t) \times \cos (\varphi) d t \tag{9}\\
C \geq \frac{\int_{t_{\text {start }}}^{t_{\text {end }}} I_{o} \sin (\omega t) \times \cos (\varphi) d t}{\Delta V_{\text {Ripple }}} \tag{10}
\end{gather*}
$$

TABLE 5 Comparison statistics

Topology	[19]	[20]	[21]	[22]	[23]	[24]	Proposed
$N_{\text {Level }}$	$2\left(3^{n}\right)+1$	$12 n+1$	$12 n+1$	$8 n+1$	$8 n+1$	$8 n+1$	$2^{(n+2)}+1$
$N_{\text {MOSFET/IGBT }}$	$5 n+4$	$14 n$	$18 n+5$	$12 n$	$8 n+2$	20n-1	$2 n+6$
$N_{\text {Switch }}=N_{\text {Driver }}$	$5 n+4$	$11 n$	$15 n+4$	$10 n$	$6 n+2$	20n-1	$2 n+6$
$N_{\text {Source }}$	1	$2 n$	1	n	n	1	1
$N_{\text {Capacitor }}$	$2 n$	$2 n$	$6 n$	$2 n$	$2 n$	$4 n-1$	$2 n+1$
$N_{\text {Diode }}$	n	$14 n$	$4 n$	0	n	$3 n$	$2 n+1$
$N_{\text {Device }}$	$13 n+9$	$43 n$	$43 n+10$	$25 n$	$18 n+4$	$47 n-2$	$8 n+15$
Gain	$3 n$	2	$6 n$	2	2	$4 n$	$2^{(n+1)}$
TVS	5.66 (3 ${ }^{\prime \prime}$)	$32 n$	42n-2	$11 n$	$16 n+8$	20n-1	$12\left(2^{\prime \prime}\right)-1$
Efficiency (\%) Output power	$\begin{gathered} 92.1244 \\ \text { W } \end{gathered}$	$\begin{gathered} 95.360 \\ \text { W } \end{gathered}$	$\begin{gathered} 97.2900 \\ \text { W } \end{gathered}$	W0.61	$\begin{gathered} 95400 \\ 15.5 \mathrm{~W} \end{gathered}$	$\begin{gathered} 88.974 \\ \text { W } \end{gathered}$	$\begin{gathered} 94.2235 \\ \text { W } \end{gathered}$
THD (\%)	$\begin{aligned} & 7.6 \\ & \text { 13- } \\ & \text { level } \end{aligned}$	2.325- level	6.313- level	N/A	N/A	4 9level	$3.9717-$ level

6 | COMPARISONS

To verify the claimed properties, the suggested topology is compared with novel configurations presented in [19-24] from aspects of voltage gain, number of output voltage levels ($\left.N_{\text {Level }}\right)$, sources $\left(N_{\text {Sourre }}\right)$, capacitors $\left(N_{\text {Capacitor }}\right)$, switches $\left(N_{\text {Switcb }}\right)$, MOSFETs ($N_{\text {MOSFET }}$), gate-driver circuits ($N_{\text {Driver }}$), total devices ($N_{\text {Device }}$), and total voltage stress. Also, some conventional topologies [19-24] and the proposed topology have been compared from economic viewpoint through a $C F$. Various definitions have been presented for $C F$ in literature, like [23, 24, 30]. This study considers the definition presented in [23], as (11), where the ' α ' denotes the weight coefficient of total voltage stress [23].

$$
\begin{equation*}
C F=\left(N_{\text {MOSFET }}+N_{\text {Diode }}+N_{\text {Driver }}+N_{\text {Cap }}+\alpha \text { TVS }\right) N_{\text {Source }} \tag{11}
\end{equation*}
$$

Table 5 and Figure 6 show the comparison results. Based on Figure 6a, despite using single DC source, the suggested and $[19,21,24]$ topologies produce more steps (or gains) than others. This leads to a compact, cheap, and light structure. Also, to achieve equal steps, the proposed configuration requires less switches, MOSFETs and gate driver circuits than others (see Figure $6 \mathrm{~b}, \mathrm{c}$). This property leads to reduced size and simple structure. As evident from Figure 7a,b, in wide range, the proposed configuration requires less number of capacitors and diodes than [20-24] to obtain equal number of steps. The reduction in diodes count will lead to reduced losses and improved efficiency.

Figure 8a,b confirms that with the same count of devices $\left(N_{\text {Source }}+N_{\text {MOSFET }}+N_{\text {Driver }}+N_{\text {Capacitor }}+N_{\text {Diode }}\right)$, the suggested structure can provide more steps and gains than the others. In the other words, to obtain the same gain or steps, the proposed topology requires fewer devices, which causes to have a compact, light, and cheap structure.

FIGURE 6 Comparison results for number of sources, switches, gate-driver circuits and MOSFETs: (a) $N_{\text {Level }}$ vs. $N_{\text {Sourre }}$; (b) $N_{\text {Level }}$ vs. $N_{\text {Switch }}$ and $N_{\text {Driver }} ;$ (c) $N_{\text {Level }}$ vs. $N_{\text {MOSFET }}$

Based on Figure 9, while producing the same gains, less total voltage stress is imposed on semiconductors of proposed topology than other structures. This leads to reduced losses and improved efficiencies. Figure 10 displays the $C F / N_{\text {Level }}$ of the proposed topology and [19-24] for different weighting coefficient of total voltage stress (α). It is seen that the $C F / N_{\text {Level }}$ in the proposed topology is always less than that of other structures, which is a sign of reduced devices, low total voltage stress on semiconductors, and increased number of levels.

Table 5 presents the reported efficiency of topologies presented in [19-24] at their operation point (at a specific output power). It is seen that the proposed topology has better efficiency than other counter parts at equal output power levels. Also, the proposed topology has the second least THD among selected topologies. The low-THD of proposed topology is because of its high number of levels.

FIGURE 7 Comparative analysis on number of levels, capacitors and diodes: (a) $N_{\text {Level }}$ vs. $N_{\text {Capacitoro; (b) }} N_{\text {Level }}$ vs. $N_{\text {Diode }}$

FIGURE 8 Comparisons on number of levels, number of devices and step-up capability: (a) Gain vs. $N_{\text {Device; }}$; (b) Gain vs. TVS

FIGURE 9 Gain comparison vs. TVS

FIGURE $10 \quad C F / N_{\text {Level }}$ of structures in different values of α

7 | EXPERIMENTAL RESULTS

To certify the feasibility of the proposed topology, the laboratory-scale prototype of the basic (17-level) structure has been implemented (Figure 11a). The nearest level technique (Figure 5) and the Atmega32 microcontroller have been employed for producing switching pulses. The setup parameters and device specifications have been presented in Table 6. Figure 11b shows the output voltage/current of the proposed basic topology for R - L load of $R=48 \Omega$ and $L=120 \mathrm{mH}$. It

TABLE 6 Description of the experimental setup

Parameter	Value
Input DC source	$V_{I N}=20[\mathrm{~V}]$
Frequency of reference \quad waveform in nearest level	$f_{o}=50[\mathrm{H}]$
MOSFETs	IRFP260NPbF
Diodes	DSEP29-06A
Optocoupler-driver	TLP-250
Capacitances	$C_{1}=C_{2}=C_{3}=C_{4}=C_{5}=4700[\mu \mathrm{~F}]$
Microcontroller	ATmega32
Load	$R=48[\Omega], L=120[\mathrm{mH}]$
Oscilloscope	GPS-1072B +

FIGURE 11 Experimental setup and results: (a) laboratory prototype of proposed 17-level topology; (b) output voltage and current waveforms; (c) harmonic spectrum
is evident that the proposed basic topology has efficiently produced 8 positive, 8 negative, and zero (totally 17) steps. The peak load voltage and current are respectively about $V_{0, \text { max }} \approx$ 150 V , and $I_{0, \max } \approx 2.5 \mathrm{~A}$. So, the experimental gain of basic topology is about $\left(V_{o . \max } / V_{I N}\right) \approx 7.5$. The difference between theoretical and experimental results originate from voltage drop on components (on-state resistance of semiconductors, forward voltage drops of diodes, ESR of capacitors). The phase difference of $\Delta \varphi \approx 38^{\circ}$ seen between load voltage and current waveforms (validated by $\Delta \varphi=\arctan (L \omega / R))$ proves the capability of the proposed configuration on supplying R - L loads. According to Figure 11c, the THD (obtained from simulations done in PSCAD/EMTDC) of the output voltage is about 3.97%, which follows the IEEE519 standard ($T H D \leq 8 \%, H_{\mathrm{i}} \leq 5 \%$).

Figure 12 shows the dynamic performance of the proposed topology. It is observed that during load step-change from $R=100 \Omega$ to $R=200 \Omega$, the load current is decreased to about half, and the output voltage increases just 2% to 2.5%. This certifies the appropriate dynamic performance of the proposed topology.

The voltage/current waveforms of $C_{1}-C_{5}$ have been presented in Figure 13. The results show that the voltage of $C_{1}-C_{5}$ has been naturally regulated on $V_{C 1} \approx 20 \mathrm{~V}, V_{C 2}=V_{C 3} \approx 40$ $\mathrm{V}, V_{C 4}=V_{C 5} \approx 80 \mathrm{~V}$.

FIGURE 12 Dynamic performance of proposed topology during load step change from 113 to 60 W

FIGURE 13 Voltage and current waveforms of capacitors

FIGURE 14 Voltage waveforms of (a) diodes and (b) switches

The obtained results for voltage ripple of capacitors are $\Delta v_{C 1} \approx 1 \mathrm{~V}, \Delta v_{C 2}=\Delta v_{C 3} \approx 1.2 \mathrm{~V}$, and $\Delta v_{C 4}=\Delta v_{C 5} \approx$ 1.6 V. These small values obtained for voltage ripple confirm proper natural voltage balancing of capacitors. Also, the voltage/current waveform of capacitors (Figure 13) indicates that the charge/discharge process of capacitors has been uniformly distributed in the switching period. Based on Table 1, the charge/discharge process of C_{2} (or C_{4}) is exactly the same as C_{3} (or C_{5}). The only difference is that the C_{2} (or C_{4}) is employed in positive voltage levels, but the C_{3} (or C_{5}) is applied at the same negative voltage levels. So, the C_{2} (or C_{4}) can be selected iden-
tical to C_{3} (or C_{5}). That is why the voltage waveform, voltage ripple, and charge/discharge current waveform of C_{2} (or C_{4}) is similar to that of C_{3} (or C_{5}).

The voltage waveform and voltage stress on semiconductors are shown in Figure 14 and Table 7. Figure 14 confirms that only H_{1} and H_{3} switches withstand $V_{0, \max }$ and the voltage stress on other semiconductors (especially the H_{1} and H_{3} as output switches) are much less than $V_{0, \max }$.

Figure 15 displays the THD of the proposed structure at different modulation indexes. According to Figure 15, as the modulation index increases, the THD of converter decreases, which

TABLE 7 Experimental results obtained for voltage stress (VS) on switches/diodes

Switch	$\boldsymbol{V} \boldsymbol{S}[\boldsymbol{V}]$	Switch	$\boldsymbol{V} \boldsymbol{S}[\boldsymbol{V}]$	Diode	$\boldsymbol{V} \boldsymbol{S}[\boldsymbol{V}]$
S_{1}	20	P_{1}	20	D_{1}	20
S_{2}	40	P_{2}	40	D_{2}	40
S_{3}	80	P_{3}	80	D_{3}	40
H_{1}	160	H_{3}	160	D_{4}	80
H_{2}	40	H_{4}	40	D_{5}	80

FIGURE 15 THD of the output voltage vs. modulation index
leads to higher qualities. Note that at low modulation indexes, the number of levels of proposed topology decreases, but it still operates as a multilevel inverter.

Figure 16a shows the measured efficiency of suggested 17level structure for different pure resistive loads of $R=210[\Omega]$

FIGURE 16 Efficiency analysis: (a) efficiency of proposed basic topology at pure resistive loads; (b) power losses at operating point ($R=48 \Omega$ and $L=120 \mathrm{mH}$)

FIGURE 17 Detailed losses and the share of switches, diodes, and capacitors of total power loss at different output powers
($P_{o}=59[W]$) to $R=48[\Omega]$ ($P_{o}=217[W]$) (as worst condition). Figure 16a indicates that the efficiency of the converter is reduced by increment of the output power. Please note that much better efficiencies can be obtained by employing gallium nitride (GaN) or silicon carbide (SiC) semiconductors, which benefit from small on-state resistances. The efficiency of the proposed basic topology at operating point $(R=48[\Omega]$ and $L=120[\mathrm{~m} H]$) is about 94.2% (Figure 16b). The switching loss of diodes and MOSFETs are respectively $P_{\text {Siv,Diodes }} \approx$ $3.3\left[\mathrm{~mW}\right.$] and $P_{S w, M O S F E T s} \approx 13.7[\mathrm{~mW}$]. The conduction loss of diodes and MOSFETs are respectively $P_{\text {Cond,Diodes }} \approx 8.5[W]$ and $P_{\text {Cond, MOSFETs }} \approx 4.7[W]$. Also, the total power loss of capacitors is about $P_{\text {Loss, Capacitors }} \approx 1.5[\mathrm{~W}]$. It is seen that the employment of nearest level technique has limited the switching loss of semiconductors.

Figure 17 shows the loss distribution (in watt and per cent) between switches, diodes, and capacitors at different output powers.

At low powers, the diodes and switches have almost the same losses. But as the output power increases, the loss of diodes becomes larger than that of switches. It is also seen from Figure 17 that the power dissipated in capacitors (due to their voltage ripple) smoothly increases by increment of output power.

8 | CONCLUSIONS

This paper proposes and developed a basic SCBMLI topology that can produce 17 steps and the voltage gain of 8 by means of only 1 DC source, 10 unidirectional switches, 5 capacitors, and 5 diodes. The proposed basic structure can be extended by extending the switched-capacitor stages to achieve higher voltage gains and levels. Due to the single-source nature of the proposed extended topology, it is expected to have less size, weight, and cost than other multi-source counterparts. The proposed generalized topology applies two half-bridges instead of a full-bridge (H-bridge) to create negative steps. Thus, only 2 switches (rather than 4 switches) are imposed to maximum voltage stress. This leads to less total voltage stress. Also, modularity, self-voltage balancing of capacitors, low voltage ripple on capacitors, and suitability for R-L loads are other main advantages of the proposed topology. Due to high quality and low THD
of output voltage, the output filter can be eliminated or downsized. It is also noticed from comparison results that the proposed topology has higher steps per device count, higher gain per device count, lower total voltage stress, and lower cost function than other similar SCBMLIs, which are impressive profits. The laboratory-scale prototype of the proposed 17-level topology has been implemented. The comparative analysis as well as experimental results certify the effective and correct performance of the suggested topology.

ORCID

Kazem Varesi © https:/ /orcid.org/0000-0002-9802-1058
Frede Blaabjerg (D) https://orcid.org/0000-0001-8311-7412

REFERENCES

1. Vijeh, M., et al.: A general review of multilevel inverters based on main submodules: Structural point of view. IEEE Trans. Power Electron. (2019).
2. Perez, M.A., et al.: Circuit topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE Trans. Power Electron. 30(1), 4-17 (2014).
3. Khan, M.N., et al.: Switched capacitor integrated ($2 \mathrm{n}+1$)-level step-up single-phase inverter. IEEE Trans. Power Electron. (2019)
4. Sandeep, N., et al.: A self-balancing five-level boosting inverter with reduced components. IEEE Trans. Power Electron. 34(7), 6020-6024 (2018).
5. Babaei, E., Alilu, S., Laali, S.: A new general topology for cascaded multilevel inverters with reduced number of components based on developed H-bridge. IEEE Trans. Ind. Electron. 61(8), 3932-3939 (2014).
6. Lee, S.S., et al.: Hybrid 7-level boost active-neutral-point-clamped (H-7LBANPC) inverter. IEEE Trans. Circuits Syst. II Express Briefs (2019)
7. Gupta, K.K., et al.: Multilevel inverter topologies with reduced device count: A review. IEEE Trans. Power Electron. 31(1), 135-151 (2015).
8. Lee, S.S., et al.: New family of boost switched-capacitor 7-level inverters (BSC7LI). IEEE Trans. Power Electron. (2019).
9. Raman, S.R., Cheng, K.W.E., Ye, Y.: Multi-input switched-capacitor multilevel inverter for high-frequency AC power distribution. IEEE Trans. Power Electron. 33(7), 5937-5948 (2018).
10. Taheri, A., Rasulkhani, A., Ren, H.P.: An asymmetric switched capacitor multilevel inverter with component reduction. IEEE Access 7, 127166127176 (2019).
11. Majumdar, S., Mahato, B., Jana, K.C.: Implementation of an optimum reduced components multi-cell multilevel (MC-MLI) inverter for lower standing voltage. IEEE Trans. Ind. Electron. (2019)
12. Saeedian, M., Hosseini, S.M., Adabi, J.: A five-level step-up module for multilevel inverters: Topology, modulation strategy, and implementation. IEEE J. Emerging Sel.Top. Power Electron. 6(4), 2215-2226 (2018).
13. Sandeep, N., et al.: Switched-capacitor-based quadruple-boost nine-level inverter. IEEE Trans. Power Electron. 34(8), 7147-7150 (2019).
14. Liu, J., et al.: A novel nine-level quadruple boost inverter with inductiveload ability. IEEE Trans. Power Electron. (2018)
15. Saeedian, M., et al.: A novel step-up single source multilevel inverter: Topology, operating principle, and modulation. IEEE Trans. Power Electron. 34(4), 3269-3282 (2019).
16. Varesi, K., Karimi, M., Kargar, P.: A new basic step-up cascaded 35-level topology extendable to higher number of levels. In: 2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC). IEEE, pp. 291-296 (2019)
17. Alishah, R.S., et al.: New high step-up multilevel converter topology with self-voltage balancing ability and its optimization analysis. IEEE Trans. Ind. Electron. 64(9), 7060-7070 (2017).
18. Ghodsi, M., Barakati, S.M.: A generalized cascade switched-capacitor multilevel converter structure and its optimization analysis. IEEE J. Emerging Sel. Top. Power Electron. (2019)
19. Roy, T., Sadhu, P.K., Dasgupta, A.: Cross-switched multilevel inverter using novel switched capacitor converters. IEEE Trans. Ind. Electron. 66(11), 8521-8532 (2019).
20. Samadaei, E., Kaviani, M., Bertilsson, K.: A 13-levels module (K-type) with two DC sources for multilevel inverters. IEEE Trans. Ind. Electron. 66(7), 5186-5196 (2018).
21. Khenar, M., et al.: Multi-level inverter with combined T-type and crossconnected modules. IET Power Electron. 11(8), 1407-1415 (2018).
22. Lee, S.S.: Single-stage switched-capacitor module (S 3 CM) topology for cascaded multilevel inverter. IEEE Trans. Power Electron. 33(10), 8204 8207 (2018).
23. Barzegarkhoo, R., et al.: A new boost switched-capacitor multilevel converter with reduced circuit devices. IEEE Trans. Power Electron. 33(8), 6738-6754 (2018).
24. Taghvaie, A., Adabi, J., Rezanejad, M.: A self-balanced step-up multilevel inverter based on switched-capacitor structure. IEEE Trans. Power Electron. 33(1), 199-209 (2018).
25. Gandomi, A.A., Varesi, K., Hosseini, S.H.: Control strategy applied on double flying capacitor multi-cell inverter for increasing number of generated voltage levels. IET Power Electron. 8(6), 887-897 (2015).
26. Shu, Z., et al.: Voltage balancing approaches for diode-clamped multilevel converters using auxiliary capacitor-based circuits. IEEE Trans. Power Electron. 28(5), 2111-2124 (2012).
27. Deliri Khatoonabad, S., Varesi, K.: An extended high step-up switchedcapacitor based multi-level inverter topology. In: 2019 International Power System Conference (PSC), Tehran, Iran. IEEE, pp. 459-464 (2019)
28. Babaei, E., Gowgani, S.S.: Hybrid multilevel inverter using switched capacitor units. IEEE Trans. Ind. Electron. 61(9), 4614-4621 (2014).
29. Ye, Y., et al.: A step-up switched-capacitor multilevel inverter with selfvoltage balancing. IEEE Trans. Ind. Electron. 61(12), 6672-6680 (2014).
30. Raman, S.R., et al.: Family of multiport switched-capacitor multilevel inverters for high-frequency AC power distribution. IEEE Trans. Power Electron. 34(5), 4407-4422 (2018).

How to cite this article: Khatoonabad SD, Varesi K, Siwakoti YP, Blaabjerg F. Generalized diamond-type single DC-source switched-capacitor based multilevel inverter with step-up and natural voltage balancing capabilities. IET Power Electron. 2021;14:1208-1218. https://doi.org/10.1049/pel2.12111

[^0]: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
 (C) 2021 The Authors. IET Power Electronics published by John Wiley \& Sons Ltd on behalf of The Institution of Engineering and Technology

