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BACKWARD NONLINEAR SMOOTHING DIFFUSIONS∗

B. D. O. ANDERSON† , A. N. BISHOP‡ , P. DEL MORAL§ , AND C. PALMIER¶

Abstract. We present a backward diffusion flow (i.e., a backward-in-time stochastic differential
equation) whose marginal distribution at any (earlier) time is equal to the smoothing distribution
when the terminal state (at a later time) is distributed according to the filtering distribution. This
is a novel interpretation of the smoothing solution in terms of a nonlinear diffusion (stochastic) flow.
This solution contrasts with, and complements, the (backward) deterministic flow of probability dis-
tributions (viz. a type of Kushner smoothing equation) studied in a number of prior works. A number
of corollaries of our main result are given, including a derivation of the time-reversal of a stochastic
differential equation, and an immediate derivation of the classical Rauch–Tung–Striebel smoothing
equations in the linear setting.

Key words. nonlinear filtering and smoothing, Kalman–Bucy filter, Rauch–Tung–Striebel
smoother, particle filtering and smoothing, diffusion equations, stochastic semigroups, backward sto-
chastic integration, backward Itô–Ventzell formula, time-reversed stochastic differential equations,
Zakai and Kushner–Stratonovich equations
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1. Introduction. Let (Wt, Vt) ∈ (Rp ×Rq) be a (p+ q)-dimensional Brownian
motion for finite p, q ⩾ 1. Consider a signal-observation model (Xt, Yt) ∈ (Rm ×Rn)
given by the Itô stochastic differential equation,

(1.1)

{
dXt = at(Xt) dt+ σt(Xt) dWt,

dYt = bt(Xt) dt+ ςt dVt,

for some measurable functions ςt, at(x), σt(x), bt(x) with appropriate dimensions. We
set Y0 = 0 and let X0 be an initial random variable (r.v.) with absolute moments of
any order. We let αt(x) := σt(x)σ

′
t(x) and βt := ςtς

′
t, where A′ denotes the transpose

of some matrix A.
To avoid unnecessary technical details, we assume βt ⩾ εI, for some ε > 0, where

I denotes the identity matrix. We also assume that the drift and sensor functions
(au(x), bu(x)), as well as the diffusion matrix σu(x), are smooth with respect to (u, x)
and have uniformly bounded derivatives with respect to x of all order on (u, x) ∈
[s, t]×Rm for any s ⩽ t.

These technical conditions ensure that the above stochastic differential equa-
tion (1.1) has a global solution (Xt, Yt) in the sense of Itô. In addition, (Xt, Yt) as
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well as the sensor function bt(Xt) have absolute moments of any order. The stochastic
flow associated with the signal is also smooth with respect to its initial condition, and
its derivatives have absolute moments of any order.

The filtering problem then consists of computing the conditional distribution πt

of the random signal states Xt of the signal given the sigma-field Yt = σ(Ys, s ⩽ t)
generated by the observations. The smoothing problem is to compute the conditional
distribution πt,s of the random signal states Xs given Yt, with t ⩾ s. With this
notation, we have πt,t = πt.

The filtering and smoothing problems have been studied extensively, and the
literature on this topic is too broad to survey in detail here; a survey of this type
is beyond the rather narrow scope of our contribution. We point the reader to the
general texts [29], [5] for broad coverage of these problems.

We do note some rather seminal early literature in the linear setting [7], [38],
[17], [40] and the nonlinear setting [7], [28], [1], [34], [3]. The first work on the
smoothing topic is the maximum likelihood solution in [7] in both the linear and
nonlinear settings. The study of [38] more formally confirms the linear result in [7]
and also provides a simpler formulation for the mean and covariance of the smoothing
distribution. In the nonlinear setting, the work of [1], [28] introduces an analogue
of a type of Kushner–Stratonovich equation (see [5] for this equation in the filtering
context) for the smoothing problem. More specifically, [1], [28] propose a deterministic
partial differential equation that describes the flow of the smoothing distribution
in terms of a backward flow and the standard filtering distribution, which acts as
the boundary condition (the latter follows from the classical Kushner–Stratonovich
equation).

In section 2 we state the main contribution of this work. Our main result asserts
a backward diffusion flow (i.e., a backward stochastic differential equation), whose
marginal distribution at any time 0 ⩽ s ⩽ t is equal to the smoothing distribution πt,s

when the terminal state is distributed according to the filtering distribution πt.

This is a novel interpretation of the smoothing solution in terms of a nonlinear
diffusion (stochastic) flow (in the spirit of McKean–Vlasov-type processes). This
solution contrasts with, and complements, say, the (backward) deterministic flow of
probability distributions (viz. a type of Kushner smoothing equation) in [1], [28].
We also provide a number of corollaries of our main result in subsection 2.1, including
an immediate derivation of the Rauch–Tung–Striebel smoothing equations [38] in the
linear setting.

A number of auxiliary contributions are set forth in order to prove our main
contribution to the smoothing problem. As is typical (e.g., see [7], [38], [17], [40], [28],
[1], [3], [34], [35]), our smoothing solution requires the formulation of a related filtering
problem. In section 3 we present a brief review of the Kallianpur–Striebel formula.
We then provide a novel and more direct approach to deriving weak versions of the
Zakai and Kushner–Stratonovich equations in subsections 3.1 and 3.2, respectively.
We also consider the backward versions of these equations in subsection 3.3.

Our approach to the filtering equations in this article combines forward and back-
ward Itô formulas for stochastic transport semigroups with a recent backward ver-
sion of the Itô–Ventzell formula presented in [14]. This semigroup methodology can
be seen as an extension to the Zakai and Kushner–Stratonovich equations, via the
forward-backward stochastic analysis of diffusion flows developed in [11], [12], [14],
[24], [25].
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BACKWARD NONLINEAR SMOOTHING DIFFUSIONS 247

Our direct semigroup approach to the forward/backward filtering equations in this
work contrasts with the classical stochastic partial differential methods and functional
analysis in Sobolev spaces; see, e.g., the seminal works of Pardoux [32], [33], [35] as well
as Krylov and Rozovskii [20], [21]. Related reverse time diffusions and filtered and
smoothed densities are also developed in [2], [3] using discrete time approximation
techniques, without a detailed discussion on the existence of these densities. We
present a number of auxiliary results in this direction throughout section 3 which are
utilized in the proof of our main smoothing result in section 4.

1.1. Some preliminary notation. This subsection presents some notation
needed from the onset.

The signal and the observation defined in (1.1) are column vectors. Unless oth-
erwise stated, we use the letters f and g to denote bounded scalar measurable test
functions on some measurable space.

We denote by ∇f the column gradient whenever f is a differentiable function
on some Euclidian space and denote by ∇2f the Hessian matrix whenever it is twice
differentiable.

With f : Rm → R, we let divαt(f) be the αt-divergencem-column vector operator
with jth entry given by the formula

divαt(f)(x)
j :=

∑
1⩽i⩽m

∂xi

(
αi,j
t (x)f(x)

)
.

The generator Lt of the signal Xt is also given by the second order differential
operator

Lt(f)(x) := ∇f(x)′bt(x) +
1

2
Tr

(
∇2f(x)αt(x)

)
with the trace operator Tr( · ). Here and throughout, and without further mention,
we assume that functions f acted on by a second order differential generator are, in
addition, twice differentiable with bounded derivatives.

For a measure µ and test function f of compatible dimension, we write

µ(f) :=

∫
µ(dx) f(x).

An integral operator Q(x, dz) acts on the right on scalar test functions f and on the
left on measures µ according to the formulas

Q(f)(x) :=

∫
Q(x, dz) f(z) and (µQ)(dz) :=

∫
µ(dx)Q(x, dz).

We extend this operator to an integral operator on matrix functions h(x) = (hi,j(x))i,j
by setting

Q(h)(x)i,j = Q(hi,j)(x).

2. Main result. In the further development of this paper we assume, for any
t > 0, that the conditional distribution πt has a positive density pt := dπt/dλ with
respect to the Lebesgue measure λ on Rm. In addition, pu(x) and its derivative
∇pu(x) are uniformly bounded with respect to (u, x)∈ [s, t]×Rm, for any given s > 0,
almost surely with respect to the distribution of the observation process. A more
detailed discussion on these regularity conditions is provided in subsection 2.2.
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248 B. D. O. ANDERSON, A. N. BISHOP, P. DEL MORAL, AND C. PALMIER

The main result of the paper is as follows.

Theorem 2.1. For any t ⩾ u ⩾ s, we have the transport equation

(2.1) πt,s(dx) = (πt,u Ku,s)(dx) :=

∫
πt,u(dz)Ku,s(z, dx),

where Ku,s denotes the Markov semigroup of the backward diffusion flow

dXu,s(x) = −
((
ps(Xu,s(x))

−1 divαs
(ps)(Xu,s(x))− as(Xu,s(x))

)
ds

+ σs(Xu,s(x)) dWs

)
(2.2)

with the boundary condition Xu,u(x) = x, and where Wt ∈ Rp denotes a p-dimensional
Brownian motion independent of the observations.

The proof of the above theorem is provided in subsection 4.1. The backward sto-
chastic differential equation (2.2) should be read as shorthand for the backward Itô
integration formula

Xt,s(x) = x+

∫ t

s

(
pu(Xt,u(x))

−1 divαu
(pu)(Xt,u(x))− au(Xt,u(x))

)
du

+

∫ t

s

σu(Xt,u(x)) dWu(2.3)

with the terminal condition Xt,t(x) = x. The rightmost term in the above formula is
an Itô backward stochastic integral such that for any terminal time t this process
is a square integrable backward martingale with respect to the variable s ∈ [0, t].

Formally, we may slice the time interval [s, t]h := {u0, . . . , un−1} via some time
mesh ui+1 = ui+h from u0 = s to un = t and with time step h > 0. In this notation,
according to the backward equation (2.2) or (2.3), we compute Xt,u−h(x) from Xt,u(x)
using the formula

Xt,u−h −Xt,u ≃
(
pu(Xt,u)

−1 divαu(pu)(Xt,u)− au(Xt,u)
)
h

+ σu(Xt,u)(Wu −Wu−h).(2.4)

We provide some comments on the above theorem. By construction, given the
observations and for any given x ∈ Rm and t ⩾ s, the probability Kt,s(x, dz) intro-
duced in (2.1) coincides with the distribution of the random state Xt,s(x). In addition,
for any t ⩾ u ⩾ s, we have the integral and stochastic semigroup properties

(2.5) Kt,s(x2, dx0) :=

∫
Kt,u(x2, dx1)Ku,s(x1, dx0)

and

(2.6) Xt,s = Xu,s ◦ Xt,u,

where Xu,s ◦ Xt,u denotes the composition of the mappings Xu,s and Xt,u.
We let Xt be an r.v. with distribution πt for some t ⩾ 0. According to (2.1) the

random state Xt,s(Xt) of the process (2.2) at any given s ∈ [0, t] is distributed accord-
ing to πt,s = πtKt,s. In other words, the backward process Xt,s(Xt) is distributed
according to the smoothing distribution πt,s for any s ⩽ t whenever the terminal con-
dition Xt,t(Xt) = Xt is distributed according to the filtering distribution πt. In this
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BACKWARD NONLINEAR SMOOTHING DIFFUSIONS 249

sense, (2.2) constitutes a backward nonlinear smoothing diffusion. A forward diffusion
flow that has a marginal distribution at any time equal to the filtering distribution is
considered in [43], [44].

More generally, we have the backward Itô formula

(2.7) df(Xt,s(x)) = −Ls,πs
(f)(Xt,s(x)) ds−∇f(Xt,s(x))

′σs(Xt,s(x)) dWs

with the second order differential operator

(2.8) Ls,πs
(f) =

∑
1⩽j⩽m

(
−ajs +

1

ps
divαs

(ps)
j

)
∂xj

f +
1

2

∑
1⩽i,j⩽m

αi,j
s ∂xixj

f.

Equivalently, we have the backward martingale decomposition

f(Xt,s(x))− f(x)−
∫ t

s

Lu,πu(f)(Xt,u(x)) du

=

∫ t

s

∇f(Xt,u(x))
′σu(Xt,u(x)) dWu.(2.9)

This yields the backward evolution equations

(2.10) ∂sKt,s(f)(x) = −Kt,s(Ls,πs(f))(x)

and

(2.11) ∂sπt,s(f) = −πt,s(Ls,πs(f))

with the terminal conditions Kt,t(f) = f and πt,t = πt. Formula (2.11) coincides with
the conditional Fokker–Planck equation in [28], which was further developed in [1].

For further discussion on general backward integration of stochastic flows, see [11];
see also the appendix of [4] in the context of nonlinear diffusions, [35] in the context of
nonlinear filtering, and [14] on forward-backward perturbation analysis of stochastic
flows. Note that there is no issue with adaptation of the backward process in the
sense studied in [36] since we rely only on the independent backward Brownian motion
in (2.2). The “backward diffusion” in (2.2) is backward in the sense of a time reversed
stochastic differential equation as in [2], [15], [31].

2.1. Some corollaries. In this subsection, we present some direct consequences
of the above theorem.

Note that when bt = 0 the measure πt coincides with the distribution of the
random state Xt of the signal. In this context, Xt,s(Xt) reduces to the time reversal
of the signal starting at Xt,t(Xt) = Xt at the terminal time t. Using Theorem 2.1
we recover the fact that the time reversal process of the signal is itself a Markov
diffusion [2], [15], [31]. More precisely, we have the following corollary.

Corollary 2.1 (see [2]). Assume that bt = 0. For any time horizon t ⩾ 0, the
process Xt

s := Xt−s with s ∈ [0, t] is a Markov process with generator

(2.12) Lt
s(f) =

∑
1⩽j⩽m

(
1

pt−s
divαt−s(pt−s)

j − ajt−s

)
∂xjf +

1

2

∑
1⩽i,j⩽m

αi,j
t−s ∂xixjf.
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We consider now linear-Gaussian filtering/smoothing models with

(2.13)
at(x) = Atx, bt(x) = Btx

and homogeneous diffusion matrix σt(x) = Σt

for some matrices (At, Bt,Σt) with appropriate dimensions. Whenever X0 is a Gauss-

ian r.v. with mean X̂0 and covariance matrix R0, the optimal filter πt is a Gaussian
distribution with mean X̂t and covariance matrix Rt satisfying the Kalman–Bucy and
Riccati equations [6],

(2.14)

{
dX̂t = AtX̂t dt+RtB

′
tβ

−1
t (dYt −BtX̂t dt),

∂tRt = AtRt +RtA
′
t + αt −RtB

′
tβ

−1
t BtRt.

In this context, we also have

(2.15) − ps(x)
−1 divαs

(ps)(x) = αsR
−1
s (x− X̂s).

This yields the following corollary.

Corollary 2.2. For linear-Gaussian filtering models (2.13), the diffusion flow
Xt,s(x) satisfies the backward evolution equation

(2.16) dXt,s(x) = −
((
−AsXt,s(x)− αsR

−1
s (Xt,s(x)− X̂s)

)
ds+ΣsdWs

)
with the boundary condition Xt,t(x) = x.

Replacing x in (2.16) by an r.v. Xt with distribution πt for any t ⩾ s, we see that
Xt,s(Xt) has distribution πt,s. In addition, since the process is linear, the distribution

πt,s is Gaussian with mean X̂t,s and covariance matrix Rt,s. The discrete time version
of (2.16) can be found in section 9.9.6 of [13].

Now taking expectations we readily deduce the rather well-known Rauch–Tung–
Striebel smoothing equations [38], thereby simplifying the derivation using the
innovation techniques and the sophisticated approximation theory developed in [17],
[28], [40], or the formal variational approaches and maximum likelihood techniques
presented in the pioneering articles [7], [38].

Corollary 2.3 (see [38]). For any t ⩾ s, the parameters (X̂t,s, Rt,s) satisfy the
backward evolution equations

(2.17)

{
∂sX̂t,s = AsX̂t,s + αsR

−1
s (X̂t,s − X̂s),

∂sRt,s = (As + αsR
−1
s )Rt,s +Rt,s(As + αsR

−1
s )′ − αs

with the terminal conditions (X̂t,t, Rt,t) = (X̂t, Rt).

2.2. Comments on our regularity conditions. We end this section with
some comments on the regularity conditions discussed at the beginning of section 2.
These conditions are clearly met for linear-Gaussian filtering models (see, e.g., (2.14)
and (2.15)). They are also met for nonlinear models as soon as the signal satisfies
a classical controllability-type condition.

Note first that whenever the signal is uniformly elliptic, in the sense that αt(x) =
σt(x)σ

′
t(x) ⩾ δ I for some δ > 0, it is well known that Xt has a smooth positive density
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with respect to the Lebesgue measure on Rm. Nevertheless, in many important appli-
cations this ellipticity condition is not satisfied. The parabolic Hörmander condition
for time varying models [8], [16] is a weaker condition. For linear-Gaussian filtering
problems, this condition reduces to the usual controllability condition. Indeed, if we
replace the Brownian motions Wt by some arbitrary smooth control functions, all
states are accessible from one to another, as soon as the Lie algebra generated by the
controlled vector fields is of full rank. This result is also called the Chow–Rashevskii
theorem [9], [39]. Under this Hörmander condition, the Hörmander theorem [16]
ensures that the signal states have a smooth density with respect to the Lebesgue
measure on Rm. In addition, for any s < t the Markov transition semigroup Ps,t

of the signal has a smooth positive density (x, z) 7→ ps,t(x, z) with respect to the
Lebesgue measure λ on Rm. In addition, the integral operator Ps,t with s < t maps
test functions f into bounded smooth functions Ps,t(f) given by

Ps,t(f)(x) =

∫
Ps,t(x, dz)f(z) =

∫
f(z)ps,t(x, z) dz.

A natural way to transfer the smoothing properties of Ps,t to the optimal filter is
to use the equation

(2.18) πt(f) = π0(P0,t(f)) +

∫ t

0

πs

(
Ps,t(f)(bs − πs(bs))

)′
β−1
s

(
dYs − πs(bs) ds

)
given in Theorem 1.1 of [23]. Using this formula we readily check that for any t > 0
the conditional distribution πt has a positive density pt on Rm. Whenever σt(x) and
bt(x) are also bounded, Theorem 3.6 in [30] (see also Theorem 6.3 in [24]) also ensures
that pu is smooth, and for any k ⩾ 1, any parameters h > 0, and any time horizon
t > 0 we have

(2.19) sup
h⩽s⩽t

sup
x∈Rm

(|ps(x)|+ ∥∇kps(x)∥) < ∞,

where ∥ · ∥ stands for any (equivalent) norm on Rm.
The above estimates are met for linear-Gaussian filtering models. Nevertheless,

some caution must be used when considering estimates of the form (2.19). Indeed,
most of the literature on stochastic partial differential equations arising in nonlin-
ear filtering, such as the strong formulation of the Zakai and Kushner–Stratonovich
equations, assumes that the sensor function is uniformly bounded; see, e.g., [24], [30],
[35], [42], [45]. To the best of our knowledge the extension of the estimate (2.19) to
more general unbounded sensor functions is still an open and important question.

We also note here that the Kallianpur–Striebel formula [18], [19] is valid as soon
as βu ⩾ εI for some ε > 0 and that the functions (au(x), bu(x), σu(x)) are smooth with
uniformly bounded derivatives with respect to x of all orders on (u, x) ∈ [s, t] ×Rm

for any s ⩽ t. Weaker conditions can also be found in [5] and the recent article [10].
Since Xt has continuous paths, for any continuous function f and any s ⩽ t the

random mapping u ∈ [s, t] 7→ f(Xu) is a.s. a uniformly bounded function. In addition,
f(Xt) is integrable as soon as f has polynomial growth. Up to some classical localiza-
tion procedure (see, e.g., Chapter 7 in [41]), these rather weak regularity properties
also ensure that the integral semigroups that transport (in time) the filtering mea-
sures discussed in section 3, as well as their stochastic partial differential evolution
equations, are well defined on any test function with polynomial growth.
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3. Nonlinear filtering equations. As is well known (see, e.g., [7], [38], [17],
[40], [28], [1], [3], [34], [35]), a solution to the smoothing problem will typically make
use of the solution of a related filtering problem. Consequently, we need to present
and develop some related filtering results to prove our main result, Theorem 2.1. This
section is largely self-contained, but it is vital in the proof in section 4 of our main
result.

The first part of this section presents the classical Kallianpur–Striebel formula,
which acts as a continuous-time version of Bayes law. In subsections 3.1 and 3.2,
respectively, we present the Zakai and Kushner–Stratonovich equations for the flow
of the conditional filtering distributions (both unnormalized and normalized). These
results are rather well known. For further background on these classical ideas, we refer
the reader to the pioneering articles by Kallianpur and Striebel [18], [19], Kushner [27],
and Zakai [45]. For more recent discussion on these probabilistic models, we refer the
reader to [10], [5], [13] and the references therein. In this paper, we present a novel and
self-contained derivation based on stochastic transport semigroups and their forward
evolution equations.

The solution of the Zakai equation is sometimes termed the unnormalized filter.
The semigroup that transports these filtering measures (in time) is discussed in sub-
section 3.1, and its normalized version is reviewed in subsection 3.2. Subsection 3.3
presents a novel direct approach for deriving the backward evolution of these trans-
port semigroups. Our approach in subsection 3.3 combines the backward Itô formula
for stochastic flows with the backward Itô–Ventzell formula presented in [14].

Now we introduce some notation/terminology and briefly present the Kallianpur–
Striebel formula and the linear semigroup property of unnormalized measures. Let
Xs,t(x) be the stochastic flow of the signal on the time interval [s, t] and starting at x
at time s. Let Zs,t(x) be the multiplicative functional

(3.1) lnZs,t(x) :=

∫ t

s

bu(Xs,u(x))
′β−1

u dYu − 1

2

∫ t

s

bu(Xs,u(x))
′β−1

u bu(Xs,u(x)) du.

When x is replaced by Xs, we may write Zs,t instead of Zs,t(Xs), and when s = 0,
we may also write Zt instead of Z0,t. With this notation, we have the classical
Kallianpur–Striebel formula

πt(f) =
γt(f)

γt(1)
with γt(f) := E0

(
f(Xt)Zt

)
.

Here, E0( · ) denotes the expectation operator with respect to the signal with a fixed
observation process.

The transport semigroup of the unnormalized measures γt is given, for any s ⩽ t,
by the formula

(3.2) γt = γsQs,t with Qs,t(f)(x) := E0

(
f(Xs,t(x))Zs,t(x)

)
.

To check this claim observe that

Zt = Zs Zs,t =⇒ E0

(
f(Xt)Zt

)
= E0

(
ZsE0(f(Xt)Zs,t

∣∣ Xs)
)

= E0

(
ZsQs,t(f)(Xs)

)
.

Now, for any s ⩽ u ⩽ t, we have

Qs,t(f)(Xs) = E0

(
f(Xt)Zs,t

∣∣ Xs

)
= E0

(
Zs,uE

(
f(Xt)Zu,t

∣∣ Xu)
∣∣ Xs

)
= E0

(
Zs,uQu,t(f)(Xu)

∣∣ Xs

)
= Qs,u(Qu,t(f))(Xu).
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This yields the integral semigroup formula

Qs,t(x0, dx2) = (Qs,uQu,t)(x0, dx2) :=

∫
Qs,u(x0, dx1)Qs,u(x1, dx2).

In a more compact form, the semigroup property takes the form

Qs,t = Qs,uQu,t with Qt,t = I, where I denotes the identity operator.

3.1. Unnormalized stochastic semigroups. Consider the stochastic trans-
port semigroups Ps,t and Qs,t defined by the composition of functions

Ps,t(f)(x) := (f ◦Xs,t)(x) and Qs,t(f)(x) := Ps,t(f)(x)Zs,t(x).

Using the semigroup properties of the stochastic flow Xs,t(x) for any s ⩽ u ⩽ t, we
check that

Ps,t(f)(x) = (f ◦Xs,t)(x) = (f ◦Xu,t)(Xs,u(x)) = Ps,u(Pu,t(f))(x).

Similarly, we have

Qs,t(f)(x) = Zs,u(x)
(
Zu,t(Xs,u(x))(f ◦Xs,t)(Xs,u(x))

)
= Qs,u(Qu,t(f))(x).

In the more compact form we have the semigroup properties

Ps,t = Ps,u ◦Pu,t and Qs,t = Qs,u ◦Qu,t with Pt,t = I = Qt,t.

We also observe that

Ps,t(f)(x) := E0

(
Ps,t(f)(x)

)
and Qs,t(f)(x) := E0

(
Qs,t(f)(x)

)
.

The forward evolution equations of the above semigroups are described in the following
proposition.

Proposition 3.1. For any t ⩾ s, we have the forward stochastic evolution equa-
tion

(3.3) dQs,t(f) = Qs,t(Lt(f)) dt+Qs,t(f b′t)β
−1
t dYt +Qs,t((∇f)′σt) dWt,

with the initial condition Qs,s(f) = f, when t = s. In particular, we have the forward
equation

(3.4) dQs,t(f) = Qs,t(Lt(f)) dt+Qs,t(f b′t)β
−1
t dYt,

with the initial condition Qs,s(f) = f, when t = s.

Proof. Assume that the sensor function bu(x) is uniformly bounded on [s, t]×Rm

for any s ⩽ t. Then the random process (Xs,u(x), Zs,u(x)) also has uniformly bounded
absolute moments of any order on any compact interval [s, t] for any time parameters
s ⩽ t. In this context, we use the Itô formula to check that

dZs,t(x) = Zs,t(x)bt(Xs,t(x))
′β−1

t dYt

as well as that

dPs,t(f)(x) = Ps,t(Lt(f))(x) dt+Ps,t(∇f ′σt)(x) dWt.
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An integration by parts yields

dQs,t(f)(x) = Zs,t(x) dPs,t(f)(x) +Ps,t(f)(x) dZs,t(x)

= Lt(f)(Xs,t(x))Zs,t(x) dt+ Zs,t(x)f(Xs,t(x))bt(Xs,t(x))
′β−1

t dYt

+ Zs,t(x)∇f(Xs,t(x))
′σt(Xs,t(x)) dWt.

By classical localization principles of Itô integrals (see, for instance, Chapter 7 in [41]),
the above result is also true for unbounded sensor functions. This completes the proof
of (3.3). Taking the expectations, we conclude that

dE0(Qs,t(f)(x)) = E0

(
Qs,t(Lt(f))(x)

)
dt+E0

(
Qs,t(fb

′
t)(x)

)
β−1
t dYt.

This completes the proof of (3.4). The proof of the proposition is completed.

Combining (3.2) with Fubini’s theorem, we readily check the weak form of the
Zakai equation given by the formula

(3.5) dγt(f) = γt(Lt(f)) dt+ γt(fb
′
t)β

−1
t dYt.

Arguing as in (2.18), we transfer the smoothing properties of Ps,t to Qs,t using
the perturbation formulas given, for any s < t, by

Qs,t(f) = Ps,t(f) +

∫ t

s

Qs,u(Pu,t(f)b
′
u)β

−1
u dYu.

Arguing as in [45], the above formula shows that, for any s < t, the integral operator
Qs,t(x0, dx1) has a density x1 7→ qs,t(x0, x1) with respect to the Lebesgue measure
on Rm given by the integral equation

(3.6) qs,t(x0, x1) = ps,t(x0, x1) +

∫ t

s

[∫
qs,u(x0, z)pu,t(z, x1)b

′
u(z) dz

]
β−1
u dYu.

3.2. Normalized stochastic semigroups. Let Zs,t(x) be the multiplicative
functional defined as Zs,t(x) by replacing in (3.1) the function bu and the observa-
tion increment dYu by the centered function bu and the innovation increment dY u,
respectively, defined by the formulas

bu := bu − πu(bu) and dY u := dYu − πu(bu) du.

Under our assumptions, the random process πt(bt) is a.s. square integrable on any
compact time interval so that the innovation process is well defined. Choosing f = 1
in (3.5), we check that

ln γt(1) =

∫ t

0

πu(bu)
′β−1

u dYu − 1

2

∫ t

0

πu(bu)
′β−1

u πu(bu) du.

Observe that

πsQs,t(1) =
γt(1)

γs(1)
= exp

(∫ t

s

πu(bu)
′β−1

u dYu − 1

2

∫ t

s

πu(bu)
′β−1

u πu(bu) du

)
.

We also consider the normalized stochastic semigroup

Qs,t(f)(x) := (f ◦Xs,t)(x)Zs,t(x) = Ps,t(f)(x)Zs,t(x).
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Arguing as above, for any s ⩽ u ⩽ t we check that

Qs,t = Qs,u ◦Qu,t and Zs,t(x) = Zs,t(x)/πsQs,t(1).

Consider the semigroup

Qs,t(f)(x) := E0

(
Qs,t(f)(x)

)
= E0

(
f(Xs,t(x))Zs,t(x)

)
= Qs,t(f)(x)/πsQs,t(1).

In this notation, using the same arguments as in the proof of Proposition 3.1,
we have the following forward evolution equations.

Proposition 3.2. For any given time horizon s and for any t ⩾ s, we have the
forward stochastic evolution equation

dQs,t(f) = Qs,t(Lt(f)) dt+Qs,t(fb
′
t)β

−1
t dY t +Qs,t((∇f)′σt) dWt,

with the initial condition Qs,s(f) = f, when t = s. In particular, we have the forward
equation

dQs,t(f) = Qs,t(Lt(f)) dt+Qs,t(fb
′
t)β

−1
t dY t,

with the initial condition Qs,s(f) = f, when t = s.

The above proposition yields the weak form of the Kushner–Stratonovich equation
defined by

(3.7) dπt(f) = πt(Lt(f)) dt+ πt(fbt)
′β−1

t dY t.

Formally, using the same notation as in (3.11), we have the forward approximation
equation

(3.8) πu+h(f) ≃ πu(f) + πu(Lu(f))h+ πu(fbu)
′β−1

u (Y u+h − Y u).

3.3. Backward evolution equations. This subsection is concerned with the
backward evolution equation associated with the unnormalized semigroup Qs,t and
its normalized version. The main result of this subsection is the following theorem.

Theorem 3.1. For any twice differentiable function f with bounded derivatives
and for any s ⩽ t, we have the backward evolution equation

dQs,t(f)(x) = −
(
∇Qs,t(f)(x)

′as(x) +
1

2
Tr

(
∇2Qs,t(f)(x)αs(x)

))
ds

−Qs,t(f)(x)bs(x)
′β−1

s dYs −∇Qs,t(f)(x)
′σs(x) dWs,(3.9)

with the terminal condition Qt,t(f) = f, when s = t. In particular, we have the
backward equation

(3.10) dQs,t(f) = −
(
Ls(Qs,t(f)) ds+Qs,t(f)b

′
sβ

−1
s dYs

)
,

with the terminal condition Qt,t(f) = f, when s = t.

Proof. We use a direct approach combining the backward filtering calculus devel-
oped in [24], [42] based on the backward Itô calculus developed in [11], [12], [22], [26];
see also the more recent article [14] and the references therein.
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Consider the stochastic flow χs,t(x) starting at

χs,s(x) = x :=

(
x
z

)
∈ (Rm ×R)

on the time interval [s,∞[ and given, for any t ⩾ s, by

χs,t(x) :=

(
Xs,t(x)
Zs,t(x)z

)
∈ (Rm ×R).

We set

Bt(x) :=

(
at(x)
0

)
, Ut :=

(
Wt

Yt

)
,

Λt(x) :=

(
σt(x) 0
0 zbt(x)

′β−1
t

)
, At(x) := Λt(x)Λt(x)

′.

Assume that the sensor function bu(x) is uniformly bounded on [s, t] × Rm for any
s ⩽ t. Then, the process (Zs,u(x), χs,u(x)) has continuous partial derivatives and also
has uniformly bounded absolute moments of any order on ([s, t]×Rm) for any s ⩽ t.
In this situation, we have the forward stochastic evolution equation

dχs,t(x) = Bt(χs,t(x)) dt+ Λt(χs,t(x)) dUt.

For any twice differentiable function F on (Rm×R) with bounded derivatives we also
have the backward equation

d(F ◦ χs,t)(x) = −
(
∇(F ◦ χs,t)(x)

′Bs(x) +
1

2
Tr

(
∇2(F ◦ χs,t)(x)As(x)

))
ds

−∇(F ◦ χs,t)(x)
′Λs(x) dUs.

A proof of the above formula can be found in [11], [12]; see also [14]. Choosing the
function F (x) = f(x)z, for some twice differentiable function f on Rm with bounded
derivatives and letting z = 1 we check that

d(f(Xs,t(x))Zs,t(x)) = −
(
∇
(
f(Xs,t(x))Zs,t(x)

)′
as(x)

+
1

2
Tr

(
∇2

(
f(Xs,t(x))Zs,t(x)

)
αs(x)

))
ds

−
(
f(Xs,t(x))Zs,t(x)

)
bs(x)

′β−1
s dYs −∇

(
f(Xs,t(x))Zs,t(x)

)′
σs(x) dWs.

This completes the proof of (3.9). By localization arguments, the above result is
also true for unbounded sensor functions. Integrating the flow of the signal we
obtain (3.10). The theorem is proved.

We can also check (3.10) by considering a discrete time interval [s, t]h :=
{t0, . . . , tn−1} associated with some refining time mesh ti+1 = ti + h from t0 = s to
tn = t for some time step h > 0. By (3.4), for any u ∈ [s, t]h, we compute Qu,t(f)
from Qu+h,t(f) using the backward equation

Qu,t(f) = Qu+h,t(f) + (Qu,u+h − I)(Qu+h,t(f))

≃ Qu+h,t(f) + Lu(Qu+h,t(f))h+Qu+h,t(f)b
′
uβ

−1
u (Yu+h − Yu).(3.11)
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For null sensor functions the evolution equation (3.9) coincides with the backward
Itô formula discussed in [11], [12], [14], [24], [25].

Choosing f = 1 in (3.10) we recover the backward evolution of the likelihood
function presented in [3], [34] (see formula (5.9) in [3] and equation (3.15) in [34]).
Arguing as in (3.6), using (3.10) we check the perturbation formulas given, for any
s < t, by

Qs,t(f) = Ps,t(f) +

∫ t

s

Ps,u(Qu,t(f)b
′
u)β

−1
u dYu.

So, for any s< t, the integral operatorQs,t(x0, dx1) has a density (x0, x1) 7→qs,t(x0, x1)
given by (3.6) and the integral formula

(3.12) qs,t(x0, x1) = ps,t(x0, x1) +

∫ t

s

[∫
ps,u(x0, z)qu,t(z, x1)b

′
u(z) dz

]
β−1
u dYu.

Using the same arguments as in the proof of Theorem 3.1 we also have the fol-
lowing backward evolution equation.

Proposition 3.3. For any twice differentiable function f with bounded deriva-
tives and for any s ⩽ t we also have the backward equation

dQs,t(f)(x) = −
(
∇Qs,t(f)(x)

′as(x) +
1

2
Tr

(
∇2Qs,t(f)(x)αs(x)

))
ds

−Qs,t(f)(x)bs(x)
′β−1

s dY s −∇Qs,t(f)(x)
′σs(x) dWs

with the terminal condition Qt,t(f) = f . In particular, we have the backward equation

(3.13) dQs,t(f) = −
(
Ls(Qs,t(f)) ds+Qs,t(f)b

′
sβ

−1
s dY s

)
with the terminal condition Qt,t(f) = f .

Using the same notation as in (3.11), we also have the approximating backward
equation

(3.14) Qu,t(f) ≃ Qu+h,t(f) + Lu(Qu+h,t(f))h+Qu+h,t(f)b
′
uβ

−1
u (Y u+h − Y u).

4. Smoothing semigroups and proof of the main result. This section is
concerned with forward-backward evolution equations for the conditional smoothing
distribution and with the proof of our main result.

Let Kt,s be the backward integral operator defined by

(4.1) Kt,s(f)(x) :=

∫
πs(dz)

dQs,t(z, · )
dπt

(x) f(z).

For any s ⩽ u ⩽ t, we have the backward semigroup property

(4.2) Kt,s = Kt,u Ku,s,

which follows via

(Kt,u Ku,s)(f)(x) =

∫
πs(dx0)Qs,u(x0, dx1)

dQu,t(x1, · )
dπt

(x) f(x0)

=

∫
πs(dx0)

dQs,t(x0, · )
dπt

(x) f(x0) = Kt,s(f)(x),

and where we exploit the semigroup properties of the operators Qs,t.
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Also observe that, for any t > s > 0, the integral operator Kt,s(x1, dx0) has
a density (x1, x0) 7→ ks,t(x1, x0) with respect to the Lebesgue measure on Rm given
by kt,s(x1, x0) := ps(x0)qs,t(x0, x1)/pt(x1) with qs,t(x0, x1) = qs,t(x0, x1)/πs(Qs,t(1)).
The function qs,t denotes the density of the integral operator Qs,t discussed in (3.6)
and (3.12).

Now, for any pair of functions (f, g) we readily check the duality formula

(4.3) πs(fQs,t(g)) = πt(Kt,s(f)g).

The following technical result is key in the proof of Theorem 2.1.

Lemma 4.1. For any time parameter s ⩽ t, we have the forward-backward differ-
ential equation

(4.4) ∂s
(
πs(fQs,t(g))

)
= −πs

(
Qs,t(g)Ls,πs(f)

)
with the second order differential operator

Ls,πs
(f) := −Ls(f) +

1

ps

∑
1⩽i,j⩽m

∂xi
(psα

i,j
s ∂xj

f).

Proof. Observe that (4.4) does not involve the derivatives of the function g. Thus,
up to a smooth-mollifier-type approximation of the function g, it suffices to check (4.4)
for any pair of bounded and twice differentiable functions f , g with bounded differen-
tials. Arguing as in the proof of Proposition 3.1 and Theorem 3.1, it suffices to prove
the result for uniformly bounded sensor functions bu(x) on [s, t]×Rm for any s ⩽ t.

In this situation, combining the Kushner–Stratonovich equation (3.7) and the
backward equation (3.13), it is straightforward to check that the forward-backward
evolution equation,

(4.5) ∂s
(
πs(fQs,t(g))

)
= πs

(
Ls(fQs,t(g))− fLs(Qs,t(g))

)
,

follows for any s ⩽ t. The above equation can be proved using the backward
Itô–Ventzell formula in [14]. We use the same notation as in the proof of Theo-
rem 3.1. Let Zs,t(x) be the multiplicative functional defined as Zs,t(x) by replacing
the function bu and the observation Itô-increment dYu by the centered function bu
and the innovation increment dY u.

Consider the backward random field Fs,t with the terminal condition Ft,t(x) =
f(x)g(x)z defined by the formula

Fs,t(x) := f(x)Qs,t(g)(x)z and we set χs :=

(
Xs

Zs

)
∈ (Rm ×R).

In this notation, we have

E0(Fs,t(χs)) = E0

(
f(Xs)ZsE0

(
Qs,t(g)(Xs)

∣∣ (Xs, Zs)
))

= πs(fQs,t(g)).

Observe that Fs,t(x) = f(x)(F ◦ χs,t)(x) with the function F (x) := g(x)z and the
stochastic flow

χs,t(x, z) :=

(
Xs,t(x)
Zs,t(x)z

)
.

Following the proof of Theorem 3.1, we check that

dFs,t(x) = f(x) d(F ◦ χs,t)(x) = −
(
Gs,t(x) ds+Hs,t(x) dUs

)
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with the drift function

Gs,t(x) := f(x)z

(
∇Qs,t(g)(x)

′as(x) +
1

2
Tr

(
∇2Qs,t(g)(x)

′αs(x)
))

and the diffusion term

Hs,t(x) dUs := f(x)z
(
∇Qs,t(g)(x)

′σs(x) dWs +Qs,t(g)(x)bs(x)
′β−1

s dYs

)
.

Applying the backward Itô–Ventzell formula [14] we check that

dFs,t(χs) = (dFs,t)(χs) +∇Fs,t(χs)
′ dχs +

1

2
Tr

(
∇2Fs,t(χs)

′At(χs)
)
ds,

from which we conclude that

dFs,t(χs) = Zs

(
∇
(
Qs,t(g)(x)f(x)

)′∣∣
x=Xs

− f(Xs)Zs∇Qs,t(g)(Xs)
′)σs(Xs) dWs

− f(Xs)Zs

(
∇Qs,t(g)(Xs)

′as(Xs) ds+
1

2
Tr

(
∇2Qs,t(g)(Xs)αs(Xs)

))
ds

+ Zs

(
∇
(
Qs,t(g)(x)f(x)

)′∣∣
x=Xs

as(Xs)ds

+
1

2
Tr

(
∇2

(
Qs,t(g)(x)f(x)

)′∣∣
x=Xs

αs(Xs)
))

ds.

We complete the proof of (4.5) by simple integration.
To take the final step, we recall the integration by parts formula

Lt(fg) = fLt(g) + gLt(f) + ΓLt
(f, g)

with the carré-du-champ (also known as the square field) operator ΓLt
associated with

the generator Lt defined by ΓLt
(f, g) := (∇f)′αt∇g. Combining (4.5) with the above

formula we check that

∂s
(
πs

(
fQs,t(g)

))
= πs

(
Ls(f)Qs,t(g)

)
+ πs

(
ΓLs(Qs,t(g), f)

)
.

On the other hand, by integration by parts we have

πs

(
ΓLs

(Qs,t(g), f)
)
=−

∑
i,j

∫
ps(x)Qs,t(g)(x)

1

ps(x)
∂xi

(
ps(x)α

i,j
t ∂xj

f(x)
)
dx.

This completes the proof of the lemma.

Another approach for finding (4.5) is to use, for any u ∈ [s, t]h, the decomposition

πu+h

(
fQu+h,t(g)

)
− πu

(
fQu,t(g)

)
= πu

(
f(Qu+h,t −Qu,t)(g)

)
+ (πu+h − πu)

(
fQu+h,t(g)

)
.(4.6)

Note that πu depends on the observations (Ys −Y0) from s = 0 up to time s = u,
while the increment Qu,t is computed backward in time and depends only on the
observations (Ys − Yu) from s > u up to s = t. Conversely, πu+h depends on the
observations (Ys − Y0) from s = 0 up to time s = u + h, while Qu+h,t is computed
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backward in time and depends only on the observations (Ys − Yu+h) from s > u+ h
up to time s = t.

Following the two-sided stochastic integration calculus developed by Pardoux and
Protter in [37] (see also [14] for extended versions to interpolating stochastic flows),
combining the forward equation (3.8) with the backward equation (3.14), when h ≃ 0
we can check the approximation∑

u∈[s,t]h

{
πu+h

(
fQu+h,t(g)

)
− πu

(
fQu,t(g)

)
− πu

(
Lu(fQu+h,t(g))− fLu(Qu+h,t(g))

)
h
}
≃ 0.

4.1. Proof of Theorem 2.1. With the definition in (4.1) we have

(4.7) πt,s(dx) = (πtKt,s)(dx) = πs(dx)Qs,t(1)(x).

The formulation of the conditional distribution πt,s of Xs given Yt in (4.7) is rather
well known; see, e.g., Theorem 3.7 and Corollary 3.8 in [35], as well as equation (3.9)
in [3]. The proof of this formula is a direct consequence of (4.1). With (4.2) we have

πtKt,s = πt,uKu,s = πt,s.

Thus with Kt,s as defined in (4.1) we immediately have the transport equation (2.1).
It remains to show that this integral operator (as defined in (4.1)) is also the

Markov transition kernel of the backward diffusion flow in (2.2). The rest of the proof
of Theorem 2.1 is a consequence of the duality formula (4.3) and Lemma 4.1.

Rewritten in a slightly different form, the duality formula (4.3) reads

E
(
f(Xs)g(Xt)

∣∣ Yt

)
= E

(
Kt,s(f)(Xt)g(Xt)

∣∣ Yt

)
.

This implies that
Kt,s(f)(Xt) = E

(
f(Xs)

∣∣ Xt,Yt

)
.

Finally, combining (4.4) with the duality formula (4.3) we have

πt

(
g∂sKt,s(f)

)
= −πt

(
gKt,s(Ls,πs(f))

)
.

Since the above formula is valid for any test function g, and since πt has a bounded
positive density, we check the backward Kolmogorov equation

(4.8) ∂sKt,s(f)(x) = −Kt,s(Ls,πs(f))(x),

with the terminal condition Kt,t(f) = f , when s = t, for a.e. x ∈ Rm (and a.s. with
respect to the law of the observation process from the origin up to the time t). Since
both terms in (4.8) are continuous, the above equality holds for any x ∈ Rm a.s.

We now complete the proof by showing that the integral operator Kt,s(x, dz)
(defined in (4.1)) does indeed coincide with the transition kernel associated with the
flow Xt,s(x) in (2.2). First, observe that (4.8) coincides with the backward Kolmogorov
equation (2.11) associated with the transition semigroup of the stochastic flow Xt,s(x).
Denote this transition semigroup by Kt,s(x, dz) temporarily.

By the semigroup properties of Kt,s, for any s ⩽ u ⩽ t and any smooth function f ,
we have

∂uKt,s(f) = 0 = ∂u
(
Kt,u(Ku,s(f))

)
= −Kt,u(Lu,πu(Ku,sf)) +Kt,u(∂uKu,s(f)).
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Choosing u = t we obtain the forward equation ∂tKt,s(f) = Lt,πt(Kt,s(f)). Arguing
as above, this implies that

∂u
(
Kt,u(Ku,s(f))

)
= −Kt,u(Lu,πu(Ku,sf)) +Kt,u(Lu,πu(Ku,s(f))) = 0.

Integrating over the interval [s, t], we check that Kt,s = Kt,s. This completes the
proof of Theorem 2.1.
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