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Abstract: The Visual Place Recognition problem aims to use an image to recognize the location that
has been visited before. In most of the scenes revisited, the appearance and view are drastically
different. Most previous works focus on the 2-D image-based deep learning method. However, the
convolutional features are not robust enough to the challenging scenes mentioned above. In this
paper, in order to take advantage of the information that helps the Visual Place Recognition task
in these challenging scenes, we propose a new graph construction approach to extract the useful
information from an RGB image and a depth image and fuse them in graph data. Then, we deal with
the Visual Place Recognition problem as a graph classification problem. We propose a new Global
Pooling method—Global Structure Attention Pooling (GSAP), which improves the classification
accuracy by improving the expression ability of the Global Pooling component. The experiments
show that our GSAP method improves the accuracy of graph classification by approximately 2–5%,
the graph construction method improves the accuracy of graph classification by approximately 4–6%,
and that the whole Visual Place Recognition model is robust to appearance change and view change.

Keywords: graph construction; graph neural networks; graph convolution; graph global pooling;
visual place recognition

1. Introduction

With the development of robotics and computer vision in recent years, improvement
in the accuracy of localization and mapping is urgently needed. Given a sequence of images
captured from different places, the images of the same place should be found, which is
the Visual Place Recognition (VPR) problem [1]. VPR is a key component of image-based
Localization, Mapping, and Simultaneous Localization and Mapping (SLAM). Because
VPR can help reduce the accumulative error in the applications mentioned above, it has
attracted more attention in recent years. It is a challenging task for the following three
reasons (the first two are shown in Figure 1):

• The viewpoint of the same place can change drastically when the place is revisited.
• The appearance can change due to the illumination and seasonal change.
• Having a large number of images in the database causes high computational cost.

Most of the previous research focuses on the image processing of the VPR system.
Early studies (e.g., Bag of Words (BoW)-based [2]) use traditional descriptors such as
SIFT or SURF, while it is not necessarily effective when appearance changes. Artificial
intelligence has made great progress in recent years, with most researches focusing on
deep learning methods [3–5]. Most of the VPR studies use convolutional features [6–13].
Chen et al. design a framework using convolutional features and untrainable pooling
layers [8]. Arandjelovic et al. design a trainable pooling layer to improve the performance.
However, convolutional features are not robust enough on appearance and viewpoint
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change [6]. In addition, semantic segmentation is introduced to construct a graph [14,15].
As semantic graph expression is invariant in the first two challenging scenarios, Gawel et al.
use a random walk graph kernel method to extract descriptors in the semantic graph [14].
However, random walk is a kind of graph kernel method, and good performance of
graph kernel methods usually comes at the cost of heavy computational consumption.
Furthermore, the semantic segmentation results are not fully utilized when constructing
graph data in Abel’s study [14].

(a) (b)

(c) (d)

Figure 1. A difficult scene in the SYNTHIA dataset for the Visual Place Recognition (VPR) problem.
Subfigures (a–d) are taken from one place in different views, when they have different appearance
(e.g., illumination, weather or seasonal change, or all), or both: Viewpoint changes between subfigures
(a–d). Appearance changes between subfigures (a–d). Viewpoint and appearance both change
between subfigures (a,d), which is the most challenging scene.

To solve the appearance change and viewpoint change problem, we try to extract
more robust features. We first transform the image sequence to graph sequence by using
results of semantic segmentation and depth image, i.e., we transform the place recognition
to graph classification problem and we fuse the semantic and geometric features that
are robust to appearance and view changes. As the Graph Neural Network (GNN) has
shown advantages in dealing with graph data [16], we use the GNN model to complete the
classification task, and we propose a novel graph Global Pooling method to improve the
classification accuracy. The training of the constructed graph data is more time-consuming
than training on the original image data directly. Because the most commonly used Graph
Global Pooling is not injective, it cannot map distinct multisets of node features into unique
embeddings [17]. This can lead to false positive results. We design a trainable global
pooling layer to improve the expression ability, though the injective property is still not
guaranteed.

The contributions of this paper are as follows.

• Based on the graph construction approach in X-View [14], we propose a graph data
construction approach that transforms the RGB image and the depth image into the
graph for place recognition by extracting both semantic and geometry information.

• To improve the expression ability of the GNN architecture, we propose a Global Pool
method—Global Structure Attention Pooling. Compared with the most commonly
used global pooling methods, e.g., global mean pooling, global max pooling, and
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global sum pooling, our pooling method is a trainable pooling method improving
the expression ability. Compared with other trainable pooling methods, our work
not only catches the first-order neighbor information by learning attention scores, but
also models the spatial relation by the Gate Recurrent Unit (GRU) for higher-order
neighbor information.

The rest of the paper is organized as follows. Some related work and their similarities
and differences with the VPR problem are presented in Section 2. The methodology of
the proposed graph construction method and GSAP is presented in Section 3. Experiment
results are shown in Section 4 and followed by discussions in Section 5. The conclusion is
drawn in Section 6.

2. Related Work

In this section, we review some literatures related to the components of our proposed
VPR architecture, including VPR research works based on different kinds of feature or
information, image retrieval, and graph classification.

2.1. Visual Place Recognition

As cameras are the primary sensors of autonomous systems, visual place recognition
has been attracting increasingly more attention, aiming to choose loop closure candidates
for the SLAM algorithm. There are two main challenges to perform visual place recognition
based on the differences of scenes: one is the appearance change caused by illumina-
tion condition and seasonal changes, and the other is the viewpoint change caused by
revisiting one place from different viewpoints [1]. In the VPR literature, various feature
extraction methods have been developed for visual place recognition, including deep con-
volutional feature-based methods [6–13], handicraft feature-based methods [2,18], semantic
information-based methods [19–25], sequence-based methods [26,27], and graph-based
methods [19,20,28–32]. Overall, most of these studies focus on the image processing mod-
ule of the visual place recognition system, which aims to extract and describe features that
are robust in the different challenge conditions as mentioned above. Compared with these
graph-based methods, our work also concentrates on the extraction and representation
of global features. However, the novelty lies in that we are the first to promote the VPR
problem by improving the expression ability of Global Graph Pooling. Our model can
recognize more complex patterns by learning structural information and property infor-
mation alternately. Compared with these convolutional-based methods, our work is more
robust in drastically view changing and appearance changing scenes.

2.2. Image Retrieval

With the wide spread of the Internet and search engines, efficient and accurate image
retrieval has greatly progressed in recent years, including class-level and instance-level
image retrieval. Given an image of an instance, other images of this instance in the database
should be found, which is the aim of instance-level image retrieval. If the given instance
is an image of a certain place and the database contains a sequence of images w.r.t. the
place, it becomes a VPR problem. Most VPR problems are considered retrieval problems as
well. In the literature, various methods have been developed for image retrieval, including
text-based methods, content-based methods [33–38], sketch-based methods [39–41], and
semantic-based methods [36,41,42]. Overall, most of the studies focus on feature extraction
and representation. Place recognition can be treated as a classification problem as well [8].

2.3. Graph Classification

In recent years, we have witnessed the success of Graph Neural Networks (GNNs) in
modeling complex and irregular data. Specifically, the Graph Convolutional Network [43]
(GCN) together with other GNN variants, e.g., Graph Attention Networks [44] (GAT),
GraphSAGE [45], Relational Graph Convolutional Networks [46] (R-GCNs), and Graph
Isomorphism Network [17] (GIN), have been proposed for neighborhood aggregation.
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Furthermore, some general representations of GNN have also been summarized, e.g.,
Message Passing Neural Network [47] (MPNN), Non-local Neural Network [48] (NLNN),
and Graph Networks [49] (GN).

Graph classification is a graph-level learning task, which concentrates on global
information. A common architecture is used to fuse the local information and then fuse the
global information. To fuse local information, Hierarchical Pooling is generally utilized,
e.g., TopKPooling [50,51], SAGPooling [52], EdgePooling [53], ASAPooling [54], etc.

After the Hierarchical Pooling layer, a Global Pooling layer is designed to get the
global embedding. Such mechanisms can aggregate all the nodes at one time and get
a fixed length global representation. A sum, mean, and max function is often utilized
as Global Pooling layer. However, the expression ability of such layers is not enough,
which means different graph features may have the same representation and result in false
classification. Structural information is completely lost using these kinds of Global Pooling
layers. To improve the variousness of global representation and classification accuracy,
some Global Pooling methods are studied [55–57]. The Recurrent Neural Network (RNN)
achieves increasing attention in modeling sequence data [58,59]. In this paper, we use
edges to compute the score for node features, get a feature sequence, and then extract
global representation by GRU [60], which can fuse the structural information and node
information together in global representation.

3. Methodology

In this section, we present the proposed graph-based VPR model. First, an overview of
the VPR pipeline is given. Second, we present the proposed graph construction approach
in detail. Finally, the details of the GSAP method are described, the process after Global
Pooling is described briefly, and the loss function used in our approach is presented.

3.1. Overview of the VPR Pipeline

An overview of the proposed VPR pipeline is shown in Figure 2. We use semantic
segmentation and depth image pairs to construct graph data, which are done off-line.
The detailed process of graph construction is presented in Section 3.2. The graph data
are fed into a GNN model to get the graph embedding. Then, the graph embedding is
used in a Multilayer Perception (MLP) to get the classification results. In our GNN model,
we use GIN [17] as Graph Convolution layer to aggregate the node features. After this,
we apply Batch Normalization (BN) over a batch of node features [61]. Then, we use a
Global Pooling (GP) layer to learn the global representation. The reason why we do not
adopt Hierarchical Pooling, e.g., SAGPooling [52] or EdgePooling [53], is that introducing
Hierarchical Pooling cannot improve the performance of graph classification. Actually,
in most GNN architectures, the convolutional layer can quickly lead to smooth node
representations [62].

The Graph Convolution layer (GIN) updates node representations as follows:

x′i = hΘ

(1 + ε) · xi + ∑
j∈N (i)

xj

 (1)

Here, hΘ denotes a neural network. We use MLP in this paper. ε can be a parameter to
be learned or a fixed scalar. xi is the node representation of the i−th node. N (i) is the set
of nodes adjacent to i. xj represents the neighbor node of xi. x

′
i is the node representation

of xi in the next layer.
We propose a novel Global Pooling method—Global Structure Attention Pooling. The

details are described in Section 3.3.
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Figure 2. The architecture of our Visual Place Recognition (VPR) pipeline. The top half is the
process of graph construction. The bottom half is our network architecture. We consider the Graph
Isomorphism Network (GIN), Batch Normalization (BN), and Global Pooling (GP) layer as a unit
which is piled up three times. The three outputs are concatenated as the graph global embedding.

3.2. Graph Construction

Based on Gawel et al.’s graph construction approach [14], we proposed a graph
construction approach for the 3-D case. In our approach, the geometric and semantic
information is utilized to reserve more information that contributes to the following clas-
sification. We define a graph G = (V , E ,X ), where V , E , X are the set of nodes, edges,
and node features, respectively. The workflow is listed in Algorithm 1. First, we get the
semantic segmentation and depth image corresponding to the RGB image, which is the
same as Gawel et al. [14] do in their work. Second, we extract semantic labels and blob
attributes from the semantic segmentation result and depth image. Finally, the undirected
graph is assembled as follows:

Algorithm 1 Graph Construction
Input: RGB image I, depth image D
Output: constructed graph G = (V , E ,X )

1: compute semantic segmentation results S
2: extract blobs in S
3: blobs→ V
4: for each blob do
5: compute u, v, x, y, w, h, a
6: find node label in S
7: find the depth corresponding to (u, v) in D
8: compute (X, Y, Z)
9:

(
onehot(label), X, Y, Z, x, y, w, h, a

)
→ x, x ∈ X

10: end for
11: for every two blobs do
12: b1 bitwise or b2 → bor
13: compute N in bor
14: compute de
15: if de < dt and N = 2 then
16: edge connected, edge ∈ E
17: else
18: do nothing
19: end if
20: end for

3.2.1. Nodes Determination and Node Labels

Every blob is regarded as a node. Every blob has a corresponding semantic label. We
regard the semantic label as the graph label.
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3.2.2. Node Attributes

The node attributes include 8 elements: X, Y, Z, x, y, w, h, a.
Where (X, Y, Z) is the 3-D location expressed in camera frame. The last 5 elements are blob
attributes: (x, y) is the top left corner coordinate of the external polygon of a blob, and
w, h, a are the width, height, and area of the external polygon of a blob, respectively.

Given the semantic segmentation result, the last 5 elements can be computed by using
openCV. The first three elements are derived as follows.

By using the depth image, every node has its corresponding depth and pixel location.
We transform this information to the 3-D location in the camera frame with a camera
projection model [63]:  X

Y
Z

 = Z

 fx 0 cx
0 fy cy
0 0 1

−1 u
v
1

 (2)

where (u, v) is the pixel coordinates, and fx, fy, cx, cy are camera intrinsics.

3.2.3. Edges Determination

The edges are connected by the blobs’ proximity and their 3-D distances. The edges
are without labels and attributes. We find the proximate blobs by bitwise or operation
of every two blobs b1, b2 and we can get bor. After that, we compute the number N of
connected components of bor. If N = 2, b1 and b2 are proximate blobs. To exclude the
false neighbors caused by the shelter, we also consider the Euclidean distance de between
(Xb1, Yb1, Zb1) and (Xb2, Yb2, Zb2) which are the locations of b1 and b2. If de is smaller than
the threshold dt, b1 and b2 are not false neighbors. Overall, if N = 2 and de < dt, the edge
between these two nodes is connected. Conversely, there is no edge between these two
nodes.

3.2.4. Node Features

We combine the node label and node attributes together as node feature. Thus, the
input node feature xi of our GNN architecture is

xi =
(
onehot(label) Xi Yi Zi xi yi wi hi ai

)
(3)

where onehot(label) is the node label one hot encoding of node i.
In this way, every image is transformed into a graph.

3.3. Global Structure Attention Pooling

Expression ability has been widely researched in recent GNN-related studies [17]. We
design a Global Structure Attention Pooling (GSAP) method to improve the expression
ability of the Global Pooling layer and the performance of graph classification. The basic
process of GSAP is shown in Figure 3 and the detailed process is as follows.

In general, edges and nodes in one graph have relation with each other. Considering
that edges in graphs contain structural information, we compute a score for each edge by
its corresponding two node features. We concatenate the two features and obtain the score
of every edge with a single full connection layer with LeakyReLU activation function. The
score of the edge between node i and node j is computed by the following equation:

αij = Leaky ReLU(wT(xi ‖ xj) + b), xi, xj ∈ Rn (4)

where ‖ represents concatenation, w and b are the parameters that need to be learned, n is
the dimension of xi, and xj.
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Then, the node score is computed according to its connected edges:

si = ∑
j∈N (i)

eαij (5)

where N (i) is the set of nodes adjacent to i.

FC

s1  s2   s3

GRU

x1

x2

x3

xs xg xg'

Figure 3. The Global Structure Attention Pooling (GSAP) process. Qualitatively, we assume that the
graph has three nodes.

Given node scores, the feature sequence fuses node information and structural in-
formation together. The node feature xi is weighted by its node score si. As graphs may
have a different number of nodes, the length of the feature sequences may be different. We
add 0 vector in the end to keep the sequence to a certain length. Then, we get the feature
sequence xs as follows:

xs =
(
s1x1 s2x2 ... sixi ... skxk 0 ...

)
(6)

where k is the number of nodes in the graph. 0 is zero vector whose dimension is n as well.
The number of 0 is an adjustable parameter m. In order to reserve all the information of a
feature graph, k and m should satisfy the following condition:

k + m ≥ kmax (7)

where kmax is the maximal number of nodes in all graphs.
Even if we get the sequence of xs by considering the first-order neighbor of each node,

the nodes without connection to each other can also have a certain relation. GRU can model
the information of several consecutive nodes with its reset gate and update gate. We utilize
GRU to extract the feature graph global descriptor xg.

xg = GRU(xs), xs ∈ Rn×(k+m) (8)

where xg, xg ∈ Rp×(k+m) is a padded concatenation of every GRU output.
Finally, we reshape matrix xg into a vector x

′
g:

x
′
g = reshape(xg) (9)

Let q = p × (k + m), then x
′
g ∈ Rq. In our GNNs, we concatenate the three fea-

ture graph global descriptors x
′
g1, x

′
g2, and x

′
g3. Thus, the graph global descriptor for

classification is

xgd =‖3
i=1 x

′
gi (10)

xgd, xgd ∈ R3q is passed into MLP layer, followed by a Log Softmax function to
generate a probability distribution over all classes and compute its logarithm for numerical
stability, and then we compute NLL loss to optimize the parameters of the network.
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4. Results
4.1. Datasets

We use two original datasets to prepare their corresponding graph datasets: Airsim
dataset [14] and SYNTHIA dataset [64], in which RGB images, depth images, semantic
segmentation labels, and odometry information are provided.

4.1.1. Airsim

This is a simulated dataset made by a photo-realistic Airsim framework [14]. Images
of top-down view and forward-facing view (as shown in Figure 4) are collected by an Un-
manned Aerial Vehicle and a car. Each of these view sequences contains over 5000 images
with associated ground truth. Here, the semantic classes are misc, street, building, car, sign,
fence, hedge, tree, wall, bench, power line, rock, and pool. For each view sequence, useful
information is provided, such as ground truth for semantic segmentation, instance seg-
mentation, global camera poses, depth images, and calibration parameters. The viewpoint
change between each top-down and forward-facing view pair is 90◦. The class is balanced
as the camera motion is uniform.

Forward view Downward view

Figure 4. The samples of forward view and downward view images in the Airsim dataset. They are
sampled from the same location.

We use the waypoint files to sample images at a constant distance of around 10 m
that contains 50 image frames. We deal with the forward-facing trajectory in the same way.
Ignoring the offset in z direction, the forward view and its corresponding downward view
are given the same label when constructing graph label file. Every class has 100 graphs
in total. We construct the node and edge level information by the approach described in
Section 3.2. Some statistical data of our Airsim graph dataset are shown in Table 1. The
number of nodes reflects the richness of the semantic information. The number of edges
reflects the complexity of the graph structure. Whether the class is balanced has an effect
on the choice of evaluation metrics.

Table 1. Statistics of our graph datasets.

Statistics Airsim SYNTHIA

Number of Graphs 10,000 10,479
Number of Classes 100 89

Class Imbalance No Yes
Average of Nodes per Graph 27.19 68.60
Average of Edges per Graph 64.11 88.58

4.1.2. SYNTHIA

Different from the Airsim dataset, each subsequence in the SYNTHIA dataset con-
sists of the same traffic situation but under different weather, illumination, and season
conditions, and the class is imbalanced as the camera motions are not uniform. The cur-
rent subsequences are Spring, Summer, Fall, Winter, Rain, Soft-rain, Sunset, Fog, Night,
and Dawn. Each of these subsequences contains approximately 8000 images with associ-
ated ground truth. For each subsequence, useful information is provided, such as 8 views,
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ground truth for semantic segmentation, instance segmentation, global camera poses, depth
images, and calibration parameters. Here, the semantic classes are misc, sky, building, road,
side walk, fence, vegetation, pole, car, sign, pedestrian, cyclist, and lane-marking.

We use global camera locations to label image frames every 20 m. As shown in
Figure 5, we choose the forward and leftward views to make sure the viewpoint change is
90◦, and we choose four kinds of appearances, i.e., Dawn, Night, Summer, and Fog. The
key steps of node and edge construction are the same as Airsim. The statistical data of
the SYNTHIA graph datasets are shown in Table 1 as well. The same places in different
subsequences have different appearances and views.

Forward view

Leftward view

Dawn Night Summer Fog

Figure 5. The samples of the forward view and leftward view images with four different appearances:
Dawn, Night, Summer, and Fog in the SYNTHIA dataset. They are sampled from the same location.

4.2. Evaluation Metrics

For the graph classification task, we utilize various evaluation metrics from the
previous classification work. For the experiments using the Airsim dataset, we aim to
measure the contribution of the key components in our GNN model. We use Accuracy
(Accuracy = Correcct Prediction Number

Total Sample Number ) as the evaluation metric, as the Airsim dataset has a
balanced class. We use Training Accuracy to measure the expression ability of the GP
methods and use Test Accuracy to measure the generalization ability.

For the experiments using the SYNTHIA dataset, we aim to compare the performance
of our VPR model with other VPR methods. We remove the MLP after training, compute
the embeddings of all the graphs in test set, and then compute the Euclidean distances of
every two embeddings. We show the performances via the Precision–Recall Curve as the
class in SYNTHIA dataset is imbalanced.

4.3. Task Setting

For the experiments in Section 5, the Airsim dataset is divided into three parts with
a ratio of 6:2:2, the data of two sequences are mixed together, namely, the training set,
validation set, and test set.

For the experiments in Section 4.5, the forward sequence and downward sequence are
divided into three parts with a ratio of 6:2:2, respectively. Here, we use the same random
seed of the random split function for different sequences to make sure the train, validation,
and test sets have no geographical overlap. The first and second parts of the downward
sequence are considered as the training set and validation set, respectively. The third part
of the forward sequence is considered as the test set.

As for the SYNTHIA dataset, the four subsequences are divided in the same way
as mentioned above for the Airsim dataset. The first and second parts of the “Dawn”
subsequence are considered as the training set and validation set, respectively. The third
part of the “Night”, “Summer”, and “Fog” subsequences is considered as the test set,
respectively.

We use AdapNet [65] as a semantic segmentation net. First, we train AdapNet [65] on
the training set. Second, we use AdapNet [65] and Algorithm 1 to obtain the graph data
of all the datasets. Third, we train the GNN model by using the graph data. Finally, the
classification test results can be obtained.
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4.4. Methods to Compare

The hyperparameters for our model and all the models to be compared are searched in
a certain range as shown in Table 2. We consider the following VPR methods as comparison
to our VPR model in the SYNTHIA dataset.

Table 2. The hyperparameters of our model and compared models. The hidden size is only for Graph
Neural Network (GNN) models. The 0 value of Weight decay is used for the experiments on training
set to show the expression ability of the GNN models. The number of nodes reserved is only for the
model with GSAP.

Hyperparameter Range

Learning rate 1 × 10−4, 5 × 10−3, 1 × 10−3, 1 × 10−2

Hidden size 128, 256, 512
Weight decay 0, 1 × 10−2, 1 × 10−3, 1 × 10−4

Number of nodes reserved 50–100

• NetVLAD [7]: This is a deep learning method that combines Locally Aggregated
Descriptors (VLAD) with Convolutional Neural Networks. For a fair comparison,
we use MLP to classify after getting the global descriptor, and the training and test
processes are also the same as our VPR method.

• AMOSNet [8]: This is also a deep leaning method using a 2-D image. It uses a
convolution kernel, and the feature map is fed into two fully connected layers.

• DBoW2 [2]: It extracts the handicraft features, generates the dictionary by clus-
tering these features, and looks for the corresponding words of a query image
in the dictionary.

We consider the following Global Pooling methods to be compared with our GSAP
methods in the Airsim dataset.

• Global Add Pooling (GDP): It returns batch-wise graph-level outputs by adding node
features across the node dimension.

• Global Mean Pooling (GMP): It returns batch-wise graph-level outputs by averaging
node features across the node dimension.

• Global Max Pooling (GAP): It returns batch-wise graph-level outputs by taking the
channel-wise maximum across the node dimension.

• Set2Set [55]: Based on iterative content-based attention, it has the property that the
vector retrieved from our memory would not change if we randomly shuffled the
memory to output sequences.

The abstracted information in the graph construction step has an effect on the follow-
ing task. We conduct the experiments in the Airsim dataset to compare the different kinds
of graph construction approaches:

• Semantic Information based [14]: It extracts semantic labels, and instances center 3-D
locations as graph features.

• Geometric Information based: We evaluate the effectiveness of the geometric infor-
mation separately. It extracts the instance center 3-D location; the top left corner
coordinate of the external polygon of a blob; and the width, height, and area of the
external polygon of a blob as graph feature.

4.5. Results and Analysis

We present the results of all the VPR comparison methods in the SYNTHIA dataset in
Figure 6. First, our VPR model performs the best among all the compared VPR models; it
ensured a relatively high Precision Rate when Recall Rate becomes larger. The Precision
Rate becomes very low when the Recall Rate is close to 1. On one hand, this could be
because the overlap between two adjacent frames is relatively high, i.e., they are on the
class boundary. As the data we use are image sequences, the gap between two proximate
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frames with different classes is too small to distinguish. On the other hand, some images
of the same class with different views do not have overlap with each other, which is
another possible reason. Second, the 2-D image deep learning-based method NetVLAD
does not perform better than our VPR model. This could be because it cannot utilize
the 3-D information. Besides, it relies on the scene appearance and viewpoint. In our
experiments, the data in the test set have very different appearances and views compared
with the training set. NetVLAD is not robust to these kinds of changes, which leads to
a bad performance generalizing to different scenes. Third, AMOSNet performs worse
than NetVLAD. It uses similar convolutional layers for feature map generation. Different
from AMOSNet, NetVLAD has a trainable pooling layer to learn the crusting centers of
local features (as shown in Table 3), which leads to the generation of more effective image
representations. Finally, DBoW2 gives a worse performance as the handicraft feature is not
robust enough compared with the graph feature and deep convolutional feature.
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Figure 6. The Precision–Recall Curve comparison of the VPR models in subsequences “Night”,
“Summer”, and “Fog” of SYNTHIA dataset.

Table 3. The comparison and component analysis of the VPR models.

Method Component

Our model Graph construction + GSAPs
NetVLAD 2D image + deep feature + trainable pooling
AMOSNet 2D image + deep feature

DBoW2 2D image + handicraft feature

We present the results of all the VPR comparison methods in the Airsim dataset as
well. As shown in Figure 7, compared with the results in the SYNTHIA dataset, our VPR
model also performs the best among all the compared VPR models. However, AMOSNet
performs better than NetVLAD in the Airsim dataset, which means that AMOSNet is better
at recognizing the viewpoint change scene. The trainable pooling layer of NetVLAD can
improve the expression ability, but strong expression ability may lead to weak generation
ability sometimes. Thus, expression ability and generation ability need to be balanced.
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Figure 7. The Precision–Recall Curve comparison of the VPR models in “Forward view” sequence of
the Airsim dataset.

By summarizing all the results, we can see that our GNN-based model is competitive
for solving the VPR task on both the SYNTHIA and Airsim datasets, especially when the
view and appearance change drastically.

5. Discussions
5.1. Effect of Structure Attention Pooling Method

We conduct the experiments in the Airsim dataset in order to compare the perfor-
mances of Global Pooling methods. Global Pooling is a necessary component in graph
classification. In our GNN model, we propose GSAP to get the global descriptor. We
first examine the effect of GSAP by comparing with other Global Pooling methods. We
compare them by using classification accuracy. The expression ability can be measured in
the training dataset. Figure 8 shows that GSAP reaches the highest accuracy using the least
epochs and its curve is the most stable without sudden change. GDP, GMP, and Set2set
have similar performance. GAP performance the worst. As for generalization ability, it
shows that our GSAP method achieves the best accuracy among these methods in the
upper half of Table 4. Structural information can help improve the classification accuracy.

Table 4. The results of different global pooling methods and graph construction methods on Airsim
test set. Here, the performances are presented by average accuracy and standard deviation of 10
random seeds of model initialization parameters.

Global Pooling Methods Accuracy

GDP 91.485 ± 0.716
GMP 91.315 ± 1.255
GAP 90.270 ± 0.567

Set2Set 88.570 ± 1.314
Our GSAP 93.575 ± 0.699

Graph Construction Methods Accuracy

Semantic based 87.630 ± 0.361
Geometric based 90.063 ± 1.892

Semantic and geometric based 93.575 ± 0.699
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Figure 8. The Training Accuracy results. The right half is a partial enlargement of the left half. This
figure reflects the expression ability of the compared global pooling methods. The higher the training
accuracy they achieve, the stronger expression ability they have.

5.2. Effect of Graph Construction

We conduct the experiments in Airsim to compare and evaluate the effectiveness of
the graph construction approaches. By using different construction approaches shown in
Section 4.4, we get different graph data. Results in the lower half of Table 4 show that a
relatively high accuracy is achieved when just relying on geometric information, but the
distribution of values is relatively dispersed. Semantic information contributes to a more
stable performance but the accuracy values are relatively low. Our graph construction
approach integrates and reserves more effective information for the graph classification
task, which leads to the best performance. The main difficulty when applying it is that the
graph construction would be time-consuming if computing resources are limited.

6. Conclusions

In this paper, we transform the VPR problem into a graph classification task, and then
we use the GNN model to solve the VPR problem. In our data preparation task, we propose
a graph construction approach that extracts core information for the classification task.
In our GNN model, we design a Global Pooling method by transforming graph features
to a sequence and predicting the global representation by GRU. We conduct extensive
experiments in different appearances and view scenes to verify the effectiveness and
robustness of our VPR model. We can conclude that the expression ability improvement
of GNNs can contribute to the graph classification performance. The proposed method
outperforms the state-of-art VPR algorithms in terms of the Precision rate and Recall rate.
The limitation is that the graph construction would be time-consuming if the computing
resource is limited.

In our current work, the graph construction is done off-line. The whole architecture
is not end to end. In future work, we will consider improving the edges construction
approach by link prediction to make the constructed data more suitable for the following
classification task and so that the whole network can be trained end to end.

Author Contributions: Methodology, experiments and manuscript writing Y.Y.; experiments im-
provement guidance and review, B.M.; supervision and funding acquisition, X.L.; language modifi-



Remote Sens. 2021, 13, 1467 14 of 16

cation and review, L.Z. and S.H. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lowry, S.; Sunderhauf, N.; Newman, P.; Leonard, J.J.; Cox, D.D.; Corke, P.; Milford, M. Visual Place Recognition: A Survey. IEEE

Trans. Robot. 2016, 32, 1–19. [CrossRef]
2. Galvezlopez, D.; Tardos, J.D. Bags of Binary Words for Fast Place Recognition in Image Sequences. IEEE Trans. Robot. 2012,

28, 1188–1197. [CrossRef]
3. Mustaqeem; Kwon, S. MLT-DNet: Speech emotion recognition using 1D dilated CNN based on multi-learning trick approach.

Expert Syst. Appl. 2021, 167, 114177. [CrossRef]
4. Mustaqeem.; Kwon, S. A CNN-Assisted Enhanced Audio Signal Processing for Speech Emotion Recognition. Sensors 2019,

20, 183. [CrossRef]
5. Mustaqeem; Kwon, S. Att-Net: Enhanced emotion recognition system using lightweight self-attention module. Appl. Soft Comput.

2021, 102, 102.
6. Sunderhauf, N.; Shirazi, S.; Dayoub, F.; Upcroft, B.; Milford, M. On the performance of ConvNet features for place recognition.

In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany,
28 September–2 October 2015; pp. 4297–4304.

7. Arandjelovic, R.; Gronat, P.; Torii, A.; Pajdla, T.; Sivic, J. NetVLAD: CNN Architecture for Weakly Supervised Place Recognition.
IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1437–1451. [CrossRef] [PubMed]

8. Chen, Z.; Jacobson, A.; Sunderhauf, N.; Upcroft, B.; Liu, L.; Shen, C.; Reid, I.; Milford, M. Deep learning features at scale for visual
place recognition. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017; pp. 3223–3230.

9. Latif, Y.; Garg, R.; Milford, M.; Reid, I. Addressing Challenging Place Recognition Tasks Using Generative Adversarial Networks.
In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia,
21–25 May 2018; pp. 2349–2355.

10. Yin, P.; Xu, L.; Li, X.; Yin, C.; Li, Y.; Srivatsan, R.A.; Li, L.; Ji, J.; He, Y. A Multi-Domain Feature Learning Method for Visual Place
Recognition. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada,
20–24 May 2019; pp. 319–324.

11. Li, Q.; Li, K.; You, X.; Bu, S.; Liu, Z. Place recognition based on deep feature and adaptive weighting of similarity matrix.
Neurocomputing 2016, 199, 114–127. [CrossRef]

12. Mao, J.; Hu, X.; He, X.; Zhang, L.; Wu, L.; Milford, M. Learning to Fuse Multiscale Features for Visual Place Recognition. IEEE
Access 2019, 7, 5723–5735. [CrossRef]

13. Zhang, W.; Yan, Z.; Wang, Q.; Wu, X.; Zuo, W. Learning Second-order Statistics for Place Recognition based on Robust Covariance
Estimation of CNN Features. Neurocomputing 2020, 398, 197–208. [CrossRef]

14. Gawel, A.; Don, C.D.; Siegwart, R.; Nieto, J.I.; Cadena, C. X-View: Graph-Based Semantic Multi-View Localization. IEEE Robot.
Autom. Lett. 2018, 3, 1687–1694. [CrossRef]

15. Kong, X.; Yang, X.; Zhai, G.; Zhao, X.; Zeng, X.; Wang, M.; Liu, Y.; Li, W.; Wen, F. Semantic Graph Based Place Recognition
for 3D Point Clouds. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Las Vegas, NV, USA, 25–29 October 2020; pp. 8216–8223.

16. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural
Netw. 2020, 32, 1–21. [CrossRef] [PubMed]

17. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How powerful are graph neural networks? arXiv 2018, arXiv:1810.00826.
18. Zaffar, M.; Ehsan, S.; Milford, M.; McDonald-Maier, K. CoHOG: A Light-Weight, Compute-Efficient, and Training-Free Visual

Place Recognition Technique for Changing Environments. IEEE Robot. Autom. Lett. 2020, 5, 1835–1842. [CrossRef]
19. Shimoda, S.; Ozawa, T.; Yamada, K.; Ichitani, Y. Long-term associative memory in rats: effects of familiarization period in

object-place-context recognition test. bioRxiv 2019, 728295. [CrossRef]
20. Wang, Y.; Qiu, Y.; Cheng, P.; Duan, X. Robust Loop Closure Detection Integrating Visual–Spatial–Semantic Information via

Topological Graphs and CNN Features. Remote Sens. 2020, 12, 3890. [CrossRef]
21. Garg, S.; Suenderhauf, N.; Milford, M. Don’t Look Back: Robustifying Place Categorization for Viewpoint- and Condition-

Invariant Place Recognition. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, QLD, Australi, 21–25 May 2018; pp. 3645–3652.

22. Tsintotas, K.A.; Bampis, L.; Gasteratos, A. Assigning Visual Words to Places for Loop Closure Detection. In Proceedings of the
2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australi, 21–25 May 2018; pp. 5979–5985.

23. Garg, S.; Jacobson, A.; Kumar, S.; Milford, M. Improving condition- and environment-invariant place recognition with semantic
place categorization. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 6863–6870.

http://doi.org/10.1109/TRO.2015.2496823
http://dx.doi.org/10.1109/TRO.2012.2197158
http://dx.doi.org/10.1016/j.eswa.2020.114177
http://dx.doi.org/10.3390/s20010183
http://dx.doi.org/10.1109/TPAMI.2017.2711011
http://www.ncbi.nlm.nih.gov/pubmed/28622667
http://dx.doi.org/10.1016/j.neucom.2016.03.029
http://dx.doi.org/10.1109/ACCESS.2018.2889030
http://dx.doi.org/10.1016/j.neucom.2020.02.001
http://dx.doi.org/10.1109/LRA.2018.2801879
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.1109/LRA.2020.2969917
http://dx.doi.org/10.1101/728295
http://dx.doi.org/10.3390/rs12233890


Remote Sens. 2021, 13, 1467 15 of 16

24. Cascianelli, S.; Costante, G.; Bellocchio, E.; Valigi, P.; Fravolini, M.L.; Ciarfuglia, T.A. Robust visual semi-semantic loop closure
detection by a covisibility graph and CNN features. Robot. Auton. Syst. 2017, 92, 53–65. [CrossRef]

25. Garg, S.; Suenderhauf, N.; Milford, M. Semantic-geometric visual place recognition: a new perspective for reconciling opposing
views. Int. J. Robot. Res. 2019, 0278364919839761. [CrossRef]

26. Milford, M.J.; Wyeth, G.F. SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights. In Pro-
ceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012;
pp. 1643–1649.

27. Talbot, B.; Garg, S.; Milford, M. OpenSeqSLAM2.0: An Open Source Toolbox for Visual Place Recognition Under Changing
Conditions. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid,
Spain, 1–5 October 2018; pp. 7758–7765.

28. Yue, H.; Miao, J.; Yu, Y.; Chen, W.; Wen, C. Robust Loop Closure Detection based on Bag of SuperPoints and Graph Verification.
In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–
8 November 2019; pp. 3787–3793.

29. Stumm, E.; Mei, C.; Lacroix, S.; Nieto, J.; Hutter, M.; Siegwart, R. Robust Visual Place Recognition with Graph Kernels. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016, pp. 4535–4544.

30. Cao, S.; Snavely, N. Graph-Based Discriminative Learning for Location Recognition. Int. J. Comput. Vis. 2015, 112, 239–254.
[CrossRef]

31. Sun, Q.; Liu, H.; He, J.; Fan, Z.; Du, X. DAGC: Employing Dual Attention and Graph Convolution for Point Cloud based Place
Recognition. In Proceedings of the 2020 International Conference on Multimedia Retrieval, Dublin, Ireland, 26–29 October 2020,
pp. 224–232.

32. Zhang, X.; Wang, L.; Zhao, Y.; Su, Y. Graph-Based Place Recognition in Image Sequences with CNN Features. J. Intell. Robot. Syst.
2019, 95, 389–403. [CrossRef]

33. Tzelepi, M.; Tefas, A. Deep convolutional learning for Content Based Image Retrieval. Neurocomputing 2018, 275, 2467–2478.
[CrossRef]

34. Tang, J.; Lin, J.; Li, Z.; Yang, J. Discriminative Deep Quantization Hashing for Face Image Retrieval. IEEE Trans. Neural Netw.
2018, 29, 6154–6162. [CrossRef]

35. Bai, C.; Huang, L.; Pan, X.; Zheng, J.; Chen, S. Optimization of deep convolutional neural network for large scale image retrieval.
Neurocomputing 2018, 303, 60–67. [CrossRef]

36. Zhu, L.; Huang, Z.; Li, Z.; Xie, L.; Shen, H.T. Exploring Auxiliary Context: Discrete Semantic Transfer Hashing for Scalable Image
Retrieval. IEEE Trans. Neural Netw. 2018, 29, 5264–5276. [CrossRef] [PubMed]

37. Radenovic, F.; Tolias, G.; Chum, O. Fine-Tuning CNN Image Retrieval with No Human Annotation. IEEE Trans. Pattern Anal.
Mach. Intell. 2019, 41, 1655–1668. [CrossRef] [PubMed]

38. Song, J. Binary Generative Adversarial Networks for Image Retrieval. In Proceedings of the Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21–26 July 2017.

39. Xu, P.; Yin, Q.; Huang, Y.; Song, Y.; Ma, Z.; Wang, L.; Xiang, T.; Kleijn, W.B.; Guo, J. Cross-modal subspace learning for fine-grained
sketch-based image retrieval. Neurocomputing 2018, 278, 75–86. [CrossRef]

40. Pang, K.; Li, K.; Yang, Y.; Zhang, H.; Hospedales, T.M.; Xiang, T.; Song, Y.Z. Generalising Fine-Grained Sketch-Based Image
Retrieval. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, 15–20 June 2019; pp. 677–686.

41. Dutta, A.; Akata, Z. Semantically Tied Paired Cycle Consistency for Zero-Shot Sketch-Based Image Retrieval. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 5089–5098.

42. Guo, X.; Wu, H.; Cheng, Y.; Rennie, S.J.; Tesauro, G.; Feris, R.S. Dialog-based Interactive Image Retrieval. arXiv 2018,
arXiv:1805.00145.

43. Kipf, T.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907.
44. Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph Attention Networks. arXiv. 2017, arXiv:1710.10903.
45. Hamilton, W.L.; Ying, Z.; Leskovec, J. Inductive Representation Learning on Large Graphs. 2017. Available online: https:

//arxiv.org/abs/1706.02216 (accessed on 16 February 2021)
46. Schlichtkrull, M.S.; Kipf, T.N.; Bloem, P.; van den Berg, R.; Titov, I.; Welling, M. Modeling Relational Data with Graph

Convolutional Networks. In Proceedings of the 15th International Conference on Extended Semantic Web Conference, ESWC
2018, Heraklion, Crete, Greece, 3–7 June 2018; pp. 593–607.

47. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural Message Passing for Quantum Chemistry. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, Sydney, Australia, 6–11 August 2017; pp. 1263–1272.

48. Wang, X.; Girshick, R.B.; Gupta, A.; He, K. Non-local Neural Networks. arXiv 2017, arXiv: 1711.07971,
49. Battaglia, P.W.; Hamrick, J.B.; Bapst, V.; Sanchezgonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.; Raposo, D.; Santoro, A.;

Faulkner, R.; et al. Relational inductive biases, deep learning, and graph networks. arXiv 2018, arXiv:1806.01261.
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