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Abstract

In most Music Emotion Recognition (MER) tasks, researchers tend to use supervised learning mod-
els based on music features and corresponding annotation. However, few researchers have considered
applying unsupervised learning approaches to labelled data except for feature representation. In this
paper, we propose a segment-based two-stage model combining unsupervised learning and supervised
learning. In the first stage, we split each music excerpt into contiguous segments and then utilize an
autoencoder to generate segment-level feature representation. In the second stage, we feed these time-
series music segments to a Bidirectional Long Short-Term Memory deep learning model to achieve the
final music emotion classification. Compared with the whole music excerpts, segments as model inputs
could be the proper granularity for model training and augment the scale of training samples to reduce
the risk of overfitting during deep learning. Apart from that, we also apply frequency and time masking
to segment-level inputs in the unsupervised learning part to enhance training performance. We evalu-
ate our model on two datasets. The results show that our model outperforms state-of-the-art models,
some of which even use multimodal architectures. And the performance comparison also evidences
the effectiveness of audio segmentation and the autoencoder with masking in an unsupervised way.
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1 Introduction

Within the research area of Music Information
Retrieval (MIR), emotion recognition is an impor-
tant branch and benefits various MER application
areas. In recent years, deep learning models have
become primary methods used to implement emo-
tion prediction [1, 2]. With layers of neural net-
works, these models are capable of learning music
features automatically from raw audio or low-level
audio features. In Music Emotion Recognition
(MER) tasks, much research is based on music
datasets containing emotion annotation, which

naturally adopts supervised learning methods to
find patterns between each music input and its
corresponding annotation. Few studies take into
account unsupervised learning for labelled data.

In addition, most researchers keep the dura-
tion of each audio input in accordance with the
given annotation, seldom considering the effect
of changing that duration. For dynamic emotion
detection, to match the time-varying annotation
sampling frequency which is usually 2 Hz or 1 Hz,
the length of each music clip is 0.5s or 1s. These
audio clips are fed into a training model [3] and
thus implement a one-to-one mapping with those
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labels. For static emotion recognition, each music
excerpt (usually the duration of 30s or more) cor-
responds to one annotation. According to this
approach, researchers usually extract music fea-
tures from these music excerpts without further
splitting them into shorter segments. However, not
all music duration are appropriate for emotion
analysis and model training [4, 5]. Some research
even splits longer-duration music recordings into
a series of short segments but assign presump-
tive segment-level labels as the training targets
rather than using the original annotation [6]. Few
research has paid attention to adjusting the length
of audio input without adding extra annotation.

In this paper, we focus on static emotion recog-
nition and propose an architecture that uses music
segments split from each music excerpt as model
inputs, while only using the original emotion anno-
tation. Here we divide our framework into 2 parts.
The first part is an unsupervised learning model
which generates the feature representation for
segment-level music without defining new emotion
labels for them. The second part is a supervised
training model where we view segments as the
sequential units of each music excerpt and train
them in a deep learning model of handling time-
series data to predict the final emotion. In the
module of unsupervised learning, we utilize the
SpecAugment technique [7] to partially mask log-
mel spectrogram input data from frequency and
time dimensions to enhance the robustness of the
training model.

The main contribution of this work is design-
ing a two-stage MER architecture that combines
segment-based unsupervised learning as a feature
extractor and supervised learning as an emotion
detector. In this way, we could split each music
excerpt into contiguous segments without hav-
ing to provide segment-level annotations, and feed
them into appropriate training models to explore
potential features effectively. From the perspec-
tive of data augmentation, segment-level music
with partial masking increases the data scale and
data variation for unsupervised learning, thereby
boosting the model performance.

2 Related works

With the evolution of MIR research, deep learning
has played a vital role in improving performance.
Based on such models, various factors have been

considered, including feature sources, feature rep-
resentation and model design.

2.1 Feature Source

To train a deep learning model, the first thing
researchers need to determine is what kind of
sources are used to extract features. Music audio
data is the primary consideration. Compared
with traditional machine learning where tens
or hundreds of human-engineered features are
selected, the typical inputs for deep neural net-
works are 1-dimensional (1D) raw audio data [8],
2-dimensional (2D) mel-scaled spectrogram [9] or
a mix of both [10]. Further, some research made
use of a Music source separation (MSS) mod-
ule Demucs [11] to generate vocals, drums, bass
and other sources from the raw waveform and fed
them into deep learning models with three fusion
strategies [12]. On the other hand, some attempts
have been made only using lyrics [13, 14] or elec-
troencephalogram (EEG) signals [15]. Apart from
this, much research tends to employ multimodal
methodologies based on multiple data sources to
take advantage of their complementarity. Among
them, the combination of audio and lyrics is a pop-
ular solution [16, 17]. In some cases, researchers
achieved better performance by leveraging audio
as the main source and aggregating supplementary
resources such as Electrodermal Activity (EDA)
[18], social tags [19] and even facial expression
images when the video is available [20].

2.2 Feature Representation

In recent years, feature representation has gained
more attention in many studies on account of
training deep neural networks more efficiently.
Distinct from engineered features extracted from
source data directly, feature representation ben-
efits from the ability of deep learning to extract
more meaningful information and generate vector-
based features to represent sources. One practical
method is utilizing unsupervised learning models.
Generally, unsupervised learning is used to ana-
lyze unlabelled datasets for the purpose of cluster-
ing, association, and dimensionality reduction. In
recent years, with the development of neural net-
works, unsupervised learning models could learn
efficient feature representation from data input,
such as an autoencoder or Restricted Boltzmann



Springer Nature 2021 LATEX template

Article Title 3

Machine (RBM) [21]. In this situation, unsu-
pervised learning models usually act as feature
extractors, followed by supervised learning models
for prediction. Sometimes, unsupervised learning
is also used to correlate and blend the multimodal
features into new features that contain more com-
mon information [22]. Furthermore, transfer learn-
ing is another well-known approach for feature
representation. Fan et al. [23] utilized a pretrained
model VGGish [24] as a feature extractor where
the audio data is converted into latent feature vec-
tors as inputs for subsequent training. MusiCoder
[25] combined these two approaches. They con-
ducted unsupervised learning on unlabeled audio
data to build up a pretrained model which serves
other labelled datasets to form feature representa-
tion. In our work, we adopt unsupervised learning
to extract feature representations.

2.3 Model Design

To pursue better performance, researchers have
put a great deal of effort into investigating alter-
native model designs. Inspired by the success
of deep learning in image detection, convolu-
tional neural network (CNN) models are applied
widely in MIR research [6, 8, 26]. Such models
could exploit highly-abstract features automati-
cally from inputs. Since music is sequential data,
recurrent neural network (RNN) models have
become a complementary approach for captur-
ing time-varying information [10, 17, 27]. These
models were ever used to make up the unsuper-
vised autoencoder [28]. Besides CNNs and RNNs,
multiple layers of multi-head attention model was
proposed as the components of an autoencoder for
music classification [25], which is also known as
the transformer architecture inspired by research
in Natural Language Processing (NLP) [29] and
speech recognition [30]. However, the complexity
of this approach is very high and the pre-training
duration is beyond 800 hours for each dataset.
It may not productive for some MER tasks to
train such attention model in terms of computing
cost. Regarding multimodal fusion, deep learning
also contributes to fusion strategies. An emerging
strategy takes advantage of graph attention net-
works (GAT) to make decision-level fusion [31],
and could be a good option for future research.

As mentioned above, most research work con-
centrates on model design regardless of the impact

of the length of each input. Focusing on audio seg-
mentation, Wu et al [32] argued that song-level
features may lead to inaccurate feature represen-
tation for emotion recognition due to music emo-
tion varying between segments. However, emotion
is mostly consistent within each segment. Fur-
ther, Aljanaki et al [33] distinguished emotional
segments from structural segments for music.
They compared these two types of segmentation,
and found that emotional boundaries coincide
with structural boundaries very often. Therefore,
segment-level emotion detection for music is rea-
sonable. In practice, Lee et al [8] compared a
sample-level deep learning approach with a frame-
level approach through configuring convolutional
filter length and stride rather than partition-
ing the raw waveform directly. The segmentation
occurs during training, which leads to no way to
obtain segment-level data for additional manip-
ulation. In contrast, Sarkar et al [6] split each
audio clip into 5-second segments and transformed
them into mel-scaled spectrogram as inputs to
a VGGNet-style model. But they assigned clip-
level labels to segments as training targets, which
may mislead the final prediction. In our work, we
are allowed to process segment-level data before
training so as to find more ways to improve per-
formance. Meanwhile, no extra labels are required
for segments.

3 Methodologies

We propose a two-stage learning framework as
seen in Fig. 1. The first stage is an unsupervised
learning model to obtain segment-level feature
representation. The second stage is a supervised
learning model to predict emotion classification.
For feature source, we use music audio data to
serve this model structure. For emotion taxonomy,
we follow 2D valence-arousal space initiated by
Russell [34] and view it as a classification problem.

3.1 Feature Representation

The detailed design for feature representation is
shown in Fig. 2. In this part, we first process the
audio data and transform it into log-mel spectro-
gram. Then we partially mask these data from
time and frequency dimensions separately. After
that, these data are passed into an autoencoder
architecture to encode and decode with the target
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Fig. 1 Model overview: The two-stage learning framework includes an unsupervised learning model as a segment-level
feature extractor and a supervised learning model as an emotion recognizer

of minimizing the loss between the reconstructed
outputs and the inputs. In this way, the fea-
ture encoder module with the optimized training
weights become a feature extractor which accepts
log-mel spectrogram of segment-level audio data
and outputs their feature representation.

3.1.1 Frequency and Time Masking

Inspired by SpecAugment [7] and MusiCoder [25],
we mask the input data partially to increase the
robustness of the training model against partial
loss of information. More importantly, this proce-
dure feeds the model with deliberately perturbed
data to reduce overfitting during training. Due to
the log-mel spectrogram applied, we mask such
data in both the frequency domain and time
domain.

Frequency masking: Given the total number
of mel frequency channels Fc, we set the frequency
mask parameter F and make F < Fc. We spec-
ify a span of consecutive mel frequency channels
[f0, f0 + f) to be masked, where f is a randomly
selected number from a uniform distribution over
[0, F ) and f0 is a randomly selected number from
a uniform distribution over [0, Fc − f).

Time masking: Given a log-mel spectrogram
with the total time steps Ts, we set the time mask
parameter T and make T < Ts. We specify a
span of consecutive time steps [t0, t0 + t) to be
masked, where t is the randomly selected num-
ber from a uniform distribution over [0, T ) and t0
is the randomly selected number from a uniform
distribution over [0, Ts − t).

Here we mask one span for each domain.
Because the time duration for each segment is
not very long and only mel-scaled frequency is
included. Masking multiple spans of time or fre-
quency may increase the risk of under fitting
during training due to too much information loss.
For the option of masked value that replace true
value, either zero or the mean value could be
applied. We compare these two situations in our
experiments to find the best performance.

3.1.2 Convolutional Autoencoder

As shown in Fig. 2, this autoencoder model is
a deep CNN-based architecture and consists of a
feature encoding module and a decoding module.
We feed the masked log-mel spectrogram data into
the feature encoder and train the whole autoen-
coder model. Once the output of the decoder
achieves the minimized loss against the original
input, we save the optimized weights for the fea-
ture encoder that is used as a feature extractor
to generate latent feature representation. The fea-
ture encoder consists of 3 groups of stacked layers
where each 2D CNN layer is followed by a 2D
max-pooling layer. The CNN layers extract latent
audio features and the max-pooling layers com-
pact representations. The output of the feature
encoder retains the most relevant information of
the input and achieves dimensionality reduction,
while the reconstruction work is implemented by
the decoder where a series of 2D CNN layers
with 2D upsampling layers are applied. Here the
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Fig. 2 The detailed design for feature representation. For each segment-level audio, it is transformed into log-mel spec-
trogram, followed by frequency and time masking. Then such input is fed into a CNN-based autoencoder with the target
of minimizing loss. The feature encoder with the optimized weights is used as a feature extractor to provide segment-level
feature representations

2D CNN layers perform deconvolution and coop-
erate with the upsampling layers to reconstruct
the original data. For each CNN layer, the rec-
tified linear units (ReLU) activation function is
used to improve training efficiency. Through this
unsupervised learning architecture, we extract fea-
ture representations for music segments without
labelling the emotion for them.

3.1.3 Loss Function

During the autoencoder model training, we mon-
itor the best reconstruction driven by minimizing
Huber loss. Huber loss is a robust regression loss
that is less sensitive to outliers than the squared
error loss [35]. This loss function is defined as
below,

Lδ(x) =

{
0.5 · x2 if |x| ⩽ δ

δ · |x| − 0.5 · δ2 otherwise
(1)

where x means the difference between the
observed and predicted values. We set δ = 1
by default. In this way, Huber loss could reduce
the impact of the outliers and promote training
convergence [25].

3.2 Emotion Classification

The second part of our framework is a super-
vised learning structure for emotion classification.
A Bidirectional Long Short-Term Memory (BiL-
STM) model is utilized to capture temporal music
information and detect emotion classification. For
this model, each input is a sequence of feature
representations of time-series segments which con-
stitute one music excerpt. The output is the
Valence/Arousal (VA) predictions corresponding
to this music excerpt. From the perspective of
model implementation, we can regard the feature
encoder and BiLSTM as a whole. During training,
the encoder module is frozen and holds the opti-
mal weights from unsupervised training while the
BiLSTM neural network tunes the weight itself to
achieve the final fitting.

4 Experiment

4.1 Dataset Description

To validate the model, we employ the PMEmo
dataset1, which is designed for MER research. The
dataset contains songs with VA annotations, song
metadata, EDA signals, pre-computed audio fea-
tures, lyrics and even user comments. This music

1https://github.com/HuiZhangDB/PMEmo
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set targets popular songs and selects the chorus
part for each song in mp3 format. Among the
total 794 songs, we select 767 songs that have been
labelled with static VA annotations. Regarding
annotation consistency, each subject listened to 20
excerpts including duplicated ones. Each song was
annotated by at least 10 subjects and the bias for
repeated annotation from one subject was taken
into consideration. So that the quality of the anno-
tation is guaranteed. The chorus excerpts are of
various length and most of them are not less than
30 seconds (30s). According to this, we retain 30s
for each song. For songs less than 30s, we pad them
to 30s by repeating themselves from the start to
the end. Totally, 230 clips are processed. In this
manner, we make sure all music excerpts are the
same duration to facilitate subsequent audio pro-
cessing. More details about this dataset could refer
to PMEmo document [36]. Based on this dataset,
we compare our model with previous models to
check the effect of audio segmentation and model
architecture. However, PMEmo dataset has some
problems such as single genre and imbalanced tar-
get labels. It is necessary to add another dataset
to support some viewpoints in our experiment.

To prove the effectiveness of our model, we
also validate our model on AllMusic dataset [37].
This dataset contains 900 song clips balanced in
terms of Russell’s VA quadrants and genres in
each quadrant, which avoids the pitfall of PMEmo
dataset. The quadrantal annotation is obtained
based on AllMusic emotion tags and Warriner’s
list [38]. A manual blind inspection was conducted
to exclude songs with unclear emotions so as
to validate the annotation. Most songs are 30-
second clips. Only about 2% songs need be padded
to 30s by using the same strategy in PMEmo
dataset. This dataset is mainly used to check the
performance of different segment duration and
masking.

4.2 Audio Processing

We process this music audio data to prepare the
inputs for the training model. First, we split each
30-second music excerpt into contiguous segments.
The selection of the segment duration should bal-
ance the validity of emotional response and the
homogeneity of each segment for feature learning,
and meanwhile consider the model adaptability.
Referring to previous research [4, 23, 39, 40], we

test segment duration from the value set of {1s,
3s, 5s, 10s} and compare the results. For PMEmo
dataset, due to audio signal values falling into the
range [−1, 1], no extra normalization is required.
For AllMusic dataset, we normalize data into the
same range.

We then convert each segment-level audio into
a mel-scaled spectrogram Sm by using the function
provided in Python Librosa2 package. To reduce
the impact of outliers, Sm is further transformed
into logarithmic scale base 10. The detail is defined
as below:

Slm = lg(Sm +∆) (2)

where we set ∆ as 1 rather than a tiny incre-
ment like 1e − 6. In the preliminary experiment,
we found that ∆ = 1 could result in relatively
narrow data range with non-negative numbers,
which bring about lower reconstruction losses.
After that, we transpose 2D log-mel spectrogram
data to generate the inputs before the masking
operation. The expected data size for each input
is 216 × 128, where 128 represents the number of
mel-frequency channels while 216 is the number
of fast Fourier transform (FFT) windows calcu-
lated from audio data. In order to gain the same
data shape for different segment duration to adapt
to the model, we need to adjust the length of
the FFT window n fft and the number of sam-
ples between successive windows hop length when
computing the mel spectrogram. Table 1 lists the
parameters for mel spectrogram transformation.

Table 1 The parameters for mel spectrogram
transformation

Dataset
Sample Segment n fft hop length
Rate Duration

PMEmo 44100Hz

1s 1024 205
3s 1024 615
5s 2048 1024
10s 2048 2048

AllMusic 22050Hz
3s 1024 307
5s 1024 512
10s 2048 1024

In this table, ’s’ denotes second. For AllMusic dataset, ’1s’
segment duration is inapplicable due to the limitation of the
model input shape.

2https://librosa.github.io/librosa/
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(a) (b) (c)

Fig. 3 The distribution of static emotion annotation and
the division for target classes. (a) 2 centers of k-means
clustering and their midpoint (b) binary classification for
high/low valence (c) binary classification for high/low
arousal

For the frequency and time masking, we set
F = 30 and T = 32. Then we pad the masked
spans by either zero or the mean value of log-
mel spectrogram. As observed, the mean value is
not zero but the gap is small. Hence, padding the
mean value shows a very small increase in perfor-
mance. In the following experiments, we use the
mean value to mask the frequency and time spans.

4.3 Annotation Transformation

For PMEmo dataset, the original annotation data
was based on subjective responses in the range
from 1 to 9 for both valence and arousal, and was
scaled into [0, 1] in the form of continuous val-
ues for storage in the dataset. To consider this
task as a classification problem, we need to trans-
form these continuous values into categories. We
observe the distribution of the annotation data in
2D emotion space as seen in Fig. 3. Quadrantal
classification is not appropriate due to imbalanced
training samples in each quadrant. Thus, we use
binary classification based on high/low level for
each dimension. Moreover, we draw on the method
used in [18, 41] to adjust the neutral threshold.
That is, K-means clustering is applied to generate
2 clusters, followed by calculating 2 cluster cen-
ters and their midpoint. Then we set up thresholds
for each dimension on the basis of the coordinates
of the midpoint. In this way, we could balance
training data in each category.

For AllMusic dataset, the original annotation
is quadrants. In accordance with our predic-
tive targets and the annotation used in PMEmo
dataset, we transform quadrants into binary
valence and arousal values.

4.4 Training Model Setup

In the unsupervised learning stage, the masked
data is fed into a CNN-based autoencoder model.

The parameters of the proposed neural networks
are given in Table 2. All of the 2D CNN layers
specify 3 × 3 kernel size with one stride. 2 × 2
pool size with stride length of 2 is applied for
2D maxpooling layers and same size is applied
for 2D upsampling layers as well. The filter size
starts with 128 and decreases layer by layer in
the encoder, then increases correspondingly in the
decoder ending with 1 to return to the initial
shape. During optimization, the L2 regularizer
applies a penalty to the output of the first CNN
layer with a 0.001 learning rate to benefit model
convergence. Once the training is finished, we save
the optimal weights of the encoder module.

In the supervised learning stage, we assem-
ble temporal segment-level representations in
sequence through the saved encoder module, and
then put them into the BiLSTM model. We set
the output units of the LSTM layers as 512 for
forward and backward direction separately. After
that, the dropout rate of 0.5 is applied. The final
binary classification is obtained through the dense
layer with the softmax activation. In this part, we
also consider LSTM and GRU (Gated Recurrent
Unit) models instead due to less parameters and
training cost. However, BiLSTM model could cap-
ture sequential information in both directions and
has higher performance in the experiment. Then
we check the detail of training cost for BiLSTM
model: the training time for each epoch is gener-
ally 5s–21s and the number of epochs for each fold
is averagely 25. Based on this, time cost is com-
pletely affordable. Therefore, we give priority to
performance and choose BiLSTM model.

We evaluate the whole model by running 10-
fold cross validation and obtaining the average
performance based on classification accuracy and
F1-score. Accordingly, we split training/test sets
with the ratio of 9:1. In each fold, we run 5 rounds
for Valence/Arousal predictions respectively to
check the statistical results. For both unsupervised
learning and supervised learning, the Adam opti-
mizer [42] is used, and the early stopping strategy
is configured with the patience of 10-epoch for
the validation dataset to avoid overfitting during
training. The former model monitors reconstruc-
tion Huber loss while the latter model monitors
classification accuracy. The details of some hyper-
parameters are summarized in Table 3. Moreover,
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Table 2 The parameters of the proposed autoencoder model

Layer Type Parameters Output Shape

Input - (216, 128, 1)
2D CNN kernel=3× 3, stride=1, filter=128 (216, 128, 128)
2D Maxpooling pool size=2× 2, stride=2 (108, 64, 128)
2D CNN kernel=3× 3, stride=1, filter=64 (108, 64, 64)
2D Maxpooling pool size=2× 2, stride=2 (54, 32, 64)
2D CNN kernel=3× 3, stride=1, filter=32 (54, 32, 32)
2D Maxpooling pool size=2× 2, stride=2 (27, 16, 32)
2D CNN kernel=3× 3, stride=1, filter=32 (27, 16, 32)
2D Upsampling size=2× 2 (54, 32, 32)
2D CNN kernel=3× 3, stride=1, filter=64 (54, 32, 64)
2D Upsampling size=2× 2 (108, 64, 64)
2D CNN kernel=3× 3, stride=1, filter=128 (108, 64, 128)
2D Upsampling size=2× 2 (216, 128, 128)
2D CNN kernel=3× 3, stride=1, filter=1 (216, 128, 1)

Table 3 The hyper-parameters for model training

Hyper-parameter Unsupervised
Learning

Supervised
Learning

Optimizer Adam Adam
Optimizer’s Learning
Rate

1e-3 1e-5

Batch Size 64 10
Loss Huber Categorical

Cross
Entropy

we report the general time cost of our model train-
ing on two datasets (see Table 4). All experiments
are implemented via Nvidia GeForce GTX 1080
GPU. The unsupervised learning usually takes
100–200 epochs per fold. The supervised learning
usually takes 20-30 epochs per fold.

To validate the advantage of the proposed
autoencoder model, we also build up a base-
line model that combines CNN and BiLSTM
directly. The CNN module reuses the structure of
the feature encoder in the unsupervised learning,
followed by BiLSTM for emotion classification.
These two parts are trained together.

5 Results

In this section, we report our experiment results
based on selected segment duration and compare
our performance with previous work.

5.1 Performance of Different
Segment Duration

The segments of different duration have been
applied in our experiments. In multiple runs for
each segment duration, we average 10-fold scores.
The results are shown in Table 5, and show
that the performance for arousal recognition is
always better than valence in all of the segment
lengths investigated. The results also indicate that
shorter segment length shows better performance
on the valence dimension while longer segment
duration benefits arousal performance. For exam-
ple, in PMEmo dataset, 1-second segment shows
the best valence results with 79.01% accuracy
and 83.2% F1-score while 5s/10s’s segments show
better accuracy (83.62%/83.51%) and F1-score
(86.52%/86.62%) on arousal dimension. AllMusic
dataset shows the similar trends. For such results,
we analyze the possible reasons in the discussion
section.

5.2 Performance Comparison with
Different Models and Sources

Table 6 shows a performance comparison with
cutting-edge benchmarks based on different mod-
els and sources. From this comparison it is clear
that our model can outperform any models using
a single data source, either music or electroder-
mal activity signals. Compared to the Yin et al.
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Table 4 The general time cost of the proposed model during training

Dataset
Segment Unsupervised Learning Supervised Learning
Duration (CNN-based autoencoder) (BiLSTM)

PMEmo

1s 75s/epoch, 3h/fold 21s/epoch, 525s/fold
3s 24s/epoch, 1h/fold 13s/epoch, 325s/fold
5s 15s/epoch, 0.6h/fold 7s/epoch, 175s/fold
10s 8s/epoch, 0.3h/fold 5s/epoch, 138s/fold

AllMusic
3s 28s/epoch, 1.1h/fold 18s/epoch, 450s/fold
5s 18s/epoch, 0.7h/fold 13s/epoch, 325s/fold
10s 9s/epoch, 0.4h/fold 9s/epoch, 225s/fold

In this table, ’s’ denotes second, ’h’ denotes hour.

Table 5 The performance comparison based on different segment duration

Dataset Segment
Valence Arousal

Duration Accuracy F1-score Accuracy F1-score

PMEmo

1s 79.01% 83.2% 83.19% 86.1%
3s 78.75% 82.95% 82.67% 85.59%
5s 78.23% 82.64% 83.62% 86.52%
10s 77.58% 82.18% 83.51% 86.62%

AllMusic
3s 67.11% 67.11% 85.67% 85.67%
5s 66.89% 66.89% 86.56% 86.56%
10s 66.45% 66.45% 86.11% 86.11%

model [43] that uses music sources only, the accu-
racy for valence prediction in our model increases
by more than 12% and the corresponding F1-
score increases by more than 10%. Similarly, there
are increases of almost 17% and 13% on arousal
recognition in terms of accuracy and F1-score
respectively. Our model even competes with the
latest multimodal framework [18] that utilizes
EDA signals and music together with attention
neural networks. Furthermore, we compared our
model with the baseline model which also use
segment-level inputs but lack of the autoencoder
architecture. The results show that our model is
superior to the baseline model in both emotion
dimensions.

6 Discussion

6.1 Segment Duration Analysis

From Table 5, we may suppose that a longer
segment length contains more acoustic cues for
arousal recognition while a shorter one has more
relevant information for valence prediction. Com-
pared with segments of long duration, shorter seg-
ments are more likely to avoid changes of musical
characteristics and reflect consistent perceptual
properties of music like harmony, pitches that ben-
efit valence recognition [45]. In contrast, relatively
long duration may capture more time-domain reg-
ularities like beat and tempo that benefit arousal
recognition [46]. Further, we conduct paired t-tests
to examine the performance of different segment
duration, the results demonstrate that there is
no statistical significance with respect to which
segment duration is best. The possible reason is
that we use log-mel spectrogram with same input
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Table 6 The performance comparison with different models and different sources based on PMEmo dataset

Models Core Methods Input Audio Valence Arousal

Source Segmentation Accuracy F1-score Accuracy F1-score

RTCAN-1D
[18]

attention module +
ResNet + openSMILE

EDA + Music No 77.30% 80.94% 82.51% 85.62%

RTCAG [18] attention module +
ResNet

EDA - 63.61% 62.47% 64.05% 64.82%

SVM[43] SVM Music No 70.43% 75.32% 71.49% 76.36%
SVM[44] SVM Music + Lyrics No 61.98% - 68.75% -

The baseline CNN + BiLSTM Music Yes 77.44% 81.91% 82.79% 85.17%
Our model CNN-based autoencoder

+ BiLSTM
Music Yes 79.01% 83.2% 83.62% 86.52%

shape for different segment duration, which lim-
its the selection of the length of FFT window
and the hop length thereby impacting the musical
pattern extraction from audio data. Another rea-
son is to what extent the segment duration could
match with the emotional boundary. The perfor-
mance depends on whether the fixed segmentation
could cover emotional segmentation well for most
of songs [33]. Generally, 5-second segment is a rel-
atively better choice for our model as this duration
is a reasonable trade-off between performance and
computing cost.

6.2 Performance Analysis
Compared with Other Models

In this part, we discuss segment-based framework
and model structures. Compared with the models
in Table 6, our model using segment-level learn-
ing shows better performance than other models
that used the whole music excerpts directly. The
long duration may contain acoustic cue varia-
tions and emotional state changes [4], which may
make learning models confused and have diffi-
culty extracting unified musical features targeted
to one kind of emotion [33]. Segment-based learn-
ing relieves this problem as the relatively shorter
duration usually reflects consistent music feature
patterns that facilitate emotion recognition and
improve the effectiveness of learning [32]. On
the other hand, we compared two models with
audio segmentation. Under the same experimen-
tal circumstance, our model with the autoencoder
structure outperforms the baseline model. It is
demonstrated that the autoencoder can contribute
to the increase of final performance. The advan-
tage is that the autoencoder makes it possible to

separate two-stage training with their own opti-
mum parameters. In the meantime, as an unsu-
pervised learning method, no labels are required.
Further, our segment-level unsupervised learning
brings about more flexibility of model structure
design. The framework is divided into 2 parts,
one part concentrates on feature representation
while the other part focuses on target predic-
tion. It is possible that we could replace one part
without changing the other part as long as the
data interfaces could match well with each other
meaningfully. For example, another effective deep
neural network is used to predict final emotion
instead of the LSTM model. This approach could
be considered in future research.

Another factor we consider is the cost. The
state-of-the-art work adopted attention mecha-
nisms [18]. This is powerful for learning music
representations, but it introduces more training
parameters and increases the complexity of com-
puting which requires more computing resources
and aggravates the burden of operating envi-
ronment, even more time cost [47]. We replaces
the attention architecture with stacked convolu-
tional neural networks, which reduces the time
cost (refer to Table 4) but achieves the equivalent
results. We argue that our model is generally more
cost-effective.

6.3 Ablation Test for Masking Data

We carry out the ablation test to examine the
effectiveness of the masking methods. The 10
folds of accuracy and F1-score for valence/arousal
recognition are visualized in Fig. 4. In each sub-
figure, both lines represent the performance of the
model without masking and the model with mask-
ing. For PMEmo dataset, both lines go across each
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(d) (e) (f)

Fig. 4 Masking impact on the performance. For PMEmo dataset: (a) shows the accuracy for valence; (b) shows F1-score
for valence; (c) shows the accuracy for arousal; (d) shows F1-score for arousal. For AllMusic dataset: (e) shows F1-score for
valence; (f) shows F1-score for arousal; the accuracy comparison is same as F1-score.

other several times. This result can be explained
by characteristics of the dataset. As the chorus
part of a popular song contains the repetition of
musical content that shows more clear and intense
emotion expression [48]. Such data morphology
decreases the data variation and the outliers so
as to lessen the effect of masking methodology.
For AllMusic dataset, it contains different gen-
res of songs and balanced training samples. The
effectiveness of masking is statistically significant.
Overall, we think that masking could benefit the
model robustness. In the future work, we may
investigate the effect of different proportions of
masking span on performance.

7 Conclusion

In this paper, we propose a segment-level two-
stage learning framework. This naturally combines

the unsupervised learning as a feature extractor
with the supervised learning as a music emotion
classifier. First, we use a CNN-based autoencoder
to calculate feature representations for contigu-
ous segments that make up each music excerpt.
And then, the time-series segments are fed into
the BiLSTM model to predict emotion for this
music excerpt. In this way, we implement segment-
level feature extraction without being limited to
song-level annotation. Additionally, we apply the
time/frequency masking approach to the segment
inputs for enhancing model robustness. The exper-
imental results show that our model achieves
better performance than those models using a
single feature source, even competing with the
cutting-edge multi-modal framework. Compared
with the whole music excerpts as model inputs,
segments with relatively short duration increase
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the data scale and contain less change of acous-
tic cues. Due to this, the learning models could
detect the correlation between musical features
and emotion more effectively. Apart from that,
this two-stage training framework is more flexible
and makes changing the combinations of neural
networks possible. That means much potential for
performance improvement.
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