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ABSTRACT Thanks to themerits of superior dynamic response capability and current tracking performance,
the deadbeat predictive current control (DPCC) has become a research hotspot for the permanent magnet
synchronous motor (PMSM) drive system. However, DPCC is a model parameter sensitive control method.
If there is a motor parameter mismatch, the performance of the DPCC drive system in terms of expected
voltage vector, current harmonics, and torque ripple would be influenced. In this paper, firstly, a novel
power sliding mode reaching law is proposed, which shortens the convergence time of the system state no
matter what the initial state is. Then, an improved non-homogeneous disturbance observer (NHDO) with the
proposed power sliding mode reaching law is established, which guarantees d-q axis current errors converge
to zero when the PMSM drive system suffers uncertain disturbances, such as motor parameter mismatch.
Finally, an improved DPCC using the novel stator current and disturbance observer, which includes the
proposed power sliding mode reaching law and NHDO, is established. Hence the accuracy of the predicted
current increases significantly, and voltage vectors can be immediately compensated once disturbances
occur. Both simulation and platform experiments verify that the improved DPCC can maintain the current
tracking performance with lower current ripples than the traditional DPCCwhen the major motor parameters
mismatch. The proposed novel stator current and disturbance observer may also enhance the PMSM’s drive
performance under other control strategies.

INDEX TERMS Deadbeat predictive current control, disturbance suppression, non-homogeneous distur-
bance observer, parameter mismatch, stator current and disturbance observer.

I. INTRODUCTION
The performance of the current control strategy has a
significant impact on the permanent magnet synchronous
motor (PMSM) under different working conditions. Scholars
have proposed many control methods to achieve precise and
fast current dynamic response control. The commonly used
current control algorithms are the proportional-integral (PI)
control [1]–[4] and model predictive control (MPC) [5]–[9].

The PI control has been widely used in industrial
applications since its high reliability and straightforward
structure [10]. However, the PI control cannot meet high
accuracy dynamic control requirements, especially when
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there are internal and external unknown disturbances [11].
The predictive control based on the PMSM mathematical
model can acquire better dynamic and steady-state perfor-
mance [12]. The MPC has two forms: finite set control
model predictive control (FSC-MPC) and continuous set
control model predictive current control (CSC-MPC) [13].
The FSC-MPC selects one of the six fundamental vectors
as the voltage vector for the output by minimizing the
cost function. For multi-step prediction, the computational
effort of FSC-MPC grows exponentially. In comparison, the
CSC-MPC can obtain better static performance with less
computation. Deadbeat predictive current control (DPCC),
as one of the CSC-MPC, has been widely used for improving
the high accuracy dynamic and steady performance of the
drive system.
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The accuracy of DPCC is highly dependent on the accu-
racy of the controlled mathematical model, which means that
model parameter mismatch will lead to deviations in predic-
tion calculations. In addition, the control delay of the dis-
crete model will decrease the performance of the controlled
system [14]. Reference [15] analyzed seven main parameter
identification methods to reduce the influence caused by
parameter mismatch of PMSM.

Furthermore, scholars have proposed a number of control
strategies combined with disturbance observers to improve
the accuracy of predictive control performance [5], [16]–[20].
Reference [5] proposed a novel super-twisting algorithm
observer by designing an adjustable gain that changes the sys-
tem state to realize parameter error estimation. Reference [16]
developed an extended state observer (ESO) to observe the
stator current when parameter mismatch in the open-winding
PMSM with a common DC bus. Reference [17] proposed a
predictive speed control based on the continuous control and
the fast terminal cost index to enhance the tracking perfor-
mance. Reference [18] proposed a model predictive torque
control based on active disturbance rejection to solve the
unavoidable electromagnetic torque tracking error caused by
parameter mismatch. Reference [19] designed a discrete-time
power disturbance observer to predict the complex state
and observe unknown disturbances of the controlled sys-
tem as set-total disturbances. Reference [20] used a distur-
bance observer to improve the robustness under parameter
mismatch conditions, and analyzed the internal relationship
between the accuracy of the discrete control set and the
disturbance observer.

A stator current disturbance observer was designed in [21].
When the motor parameters mismatch, the observer can
predict the future current and perform state deviation com-
pensation accurately. The robustness of the observer ensures
the stability of the drive system under random distur-
bances [22], [23]. To enhance the stability of the system,
the disturbance observer adopts the exponential sliding mode
reaching law which does not require the high modeling accu-
racy of the controlled system. Sliding mode control (SMC) is
invariant to the matching disturbance items in the system dur-
ing the sliding mode motion stage [24], [25]. Therefore, it can
use SMC characteristics to solve the parameter sensitivity
problem of predictive control. No matter what switching gain
is selected in the SMC, it will cause the contradiction between
convergence speed and chattering irreconcilable. There are
two main reasons for the chattering: (1) there is a parasitic
dynamic in series with the control system, which causes a
small high-frequency oscillation; and (2) non-ideal switching
characteristics cause high-frequency oscillations.

Scholars have proposed many methods to suppress the
chattering problem [26]–[31]. In [26], an adaptive SMC
was developed to accelerate the convergence in a limited
time and reduce the chattering phenomenon of the system
state on the sliding surface. Reference [27] designed a type
of non-linear fractional-order PID sliding surface combined

with the adaptive super-twisting reaching law for speed
control of the PMSM. The sliding mode stage can ensure
a fast convergence rate, good robustness, and reduced chat-
tering. Reference [28] proposed an adaptive SMC method
combined with a disturbance torque observer to suppress
chattering, and this observer can optimize the speed track-
ing performance of the PMSM. Reference [29] presented a
novel SMC algorithm that can shorten the convergence time.
To improve the anti-disturbance capability of the PMSM, [30]
proposed an ESO based on the fast terminal sliding mode
control method, which can enhance immunity to load distur-
bances, converge in a limited time, and effectively suppress
chattering. Reference [31] proposed an SMC method with
fuzzy switching gain to eliminate the chattering phenomenon
by using the saturation function.

The main novel contributions of this study are as follows:
firstly, a faster power sliding mode reaching law is devel-
oped to promote the dynamic response of the PMSM drive
system when disturbances occur. Secondly, an improved
non-homogeneous disturbance observer (NHDO) enables the
PMSM drive system to reach a stable state in a finite time.
Thirdly, an improved DPCC with the novel stator current and
disturbance observer, which incorporates the proposed power
sliding mode reaching law and NHDO, is established, and the
robustness of the drive system has been boosted when there
exists motor parameter mismatch.

The paper is structured as follows: Section II estab-
lishes the conventional DPCC of PMSM. Section III proposes
the derivation process of piecewise sliding mode control
and carries out the fixed-time stability analysis. The DPCC
with a novel SCDO of PMSM is illustrated in Section IV.
An improved DPCC, which has combined an NHDO to
observe and eliminate state error bound caused by distur-
bance, is presented in Section V. Sections VI and VII validate
the effectiveness and reliability of the proposed control
method through simulations and experiments. Section VIII
gives the conclusion and some vital discussion.

II. DEADBEAT PREDICTIVE CURRENT CONTROL OF PMSM
A. MATHEMATICAL MODELS OF PMSM
Assume that the PMSM stator windings are Y-connected,
and the three-phase windings are symmetrically distributed.
Ignore the core loss and non-linear magnetic characteristics
of the stator core. The voltage equations of the PMSM in
a synchronous rotating coordinate system can be expressed
as: 

ud = Rsid + Ld
did
dt
− ωeLqiq

uq = Rsiq + Lq
diq
dt
+ ωeLdid + ψfωe

(1)

where ud and uq are the d- and q-axis stator voltages, id and iq
are the d- and q-axis currents, Ld and Lq are the d- and q-axis
inductance, Rs is the stator resistance, 9f is the flux linkage
of permanent magnets, and ωe is the angular velocity.

142816 VOLUME 9, 2021



Z. Gong et al.: Improved DPCC of PMSM Using Novel Stator Current and Disturbance Observer

B. DISCRETE-TIME MATHEMATICAL MODEL FOR DPCC
Assume that the control system sampling time Ts is short
enough, and in the surface-mounted PMSM (SPMSM), Ld =
Lq = L. The SPMSM discretization is

i(k+ 1) = A(k)i(k)+ Cu(k)+ D(k) (2)

where

i(k+ 1) =
[
id(k+ 1)
iq(k+ 1)

]
, i(k) =

[
id(k)
iq(k)

]
,

u(k) =
[
ud(k)
uq(k)

]
,

A(k) =

 1−
Rs
L
Ts ωeTs

−ωeTs 1−
Rs
L
Ts

 , C =

 Ts
L

0

0
Ts
L

 ,
D(k) =

[
0

−
ψf

L
Tsωe(k)

]
.

In the conventional DPCC method, the output voltage vec-
tor equation is:

u(k) = C−1(i∗(k+ 1)− A(k)i(k)− D(k)) (3)

where i∗(k + 1) =
[
i∗d(k+ 1)
i∗q(k+ 1)

]
is the reference current

matrix.

III. DESIGN OF PIECEWISE POWER SLIDING
MODE REACHING LAW
A. COMPARISION OF TWO DIFFERENT REACHING LAWS
Gao presented the concept of reaching law and analyzed
isokinetic reaching law, exponential reaching law, and power
reaching law [32]. Among them, the isokinetic reaching law
has a constant reaching rate, and the exponential reaching
law adds a linear term to reduce convergence time. How-
ever, both of them contain a fixed gain of the sign function,
and there are constantly chattering. The gain of the sign
function of the power reaching law is variable power gain
and reduces the amplitude of chattering at the balance point.
Therefore, [33] analyzed that both fast power sliding mode
reaching law (FPSMRL) and dual power sliding mode reach-
ing law (DPSMRL) have second-order slip model properties.

The FPSMRL and DPSMRL can be respectively expressed
as:

ṡ = −k1s− k2 |s|1−γ sgn(s) (4)

ṡ = −k1 |s|1+γ sgn(s)− k2 |s|1−γ sgn(s) (5)

where k1 > 0 and k2 > 0 are the designed constants,
and γ is a positive power series that satisfy the condition
0 < γ < 1. Those above-mentioned two laws can realize
the second-order sliding mode characteristics, i.e., make s =
ṡ = 0 in a finite time without considering the disturbance.
The system state arriving at the sliding mode surface from the
initial state can be discussed in two stages: (a) |s| > 1: −k1s
in (4) and -k1|s|1+γ sgn(s) in (5) play the dominant role;

(b) |s| ≤ 1: -k2|s|1−γ sgn(s) in (4) and (5) play the dominant
role.

Assume that the initial state is s(0) = |s0| > 1. The
convergence times of the two laws are discussed, respectively.

1) THE FIRST STAGE: | s(0)| = s0 → |s(t1)| = 1
Considering -k2|s|1−γ sgn(s) does not play a dominant role,
(4) and (5) can be simplified as:

ṡ = −k1s (6)

ṡ = −k1 |s|1+γ sgn(s) (7)

The integration of (6) and (7) can be calculated as:

s(tf 1) = s(0) exp(−k1tf 1) (8)

s−γ (td1) = s−γ (0)− (−γ )k1td1 (9)

where tf 1 and td1 denote the times required for the state s(0)
to converge to the sliding surface s = 1 under FPSMRL and
DPSMRL, respectively.
The convergence time of the first stage is as follows:

tf 1 =
1
k1

ln(s(0)) (10)

td1 =
1− s−γ (0)

k1α
(11)

Comparing (10) and (11), we have tf 1 > td1. The
DPSMRL has a faster convergence rate than the FPSMRL
in the first stage under the same conditions.

2) THE SECOND STAGE: |s(t1)| = 1→ |s(t2)| = 0
-k2|s|1−γ sgn(s) plays a dominant role in both (4) and (5).
Therefore, all the items should be considered in this conver-
gence time of this stage.

The convergence time for the system state from any initial
state s0 to origin Tf in (4) can be calculated as [34]:

Tf =
1
k1γ

ln
(
1+

k1
k2
|s0|γ

)
(12)

Similarly, the convergence time for the system state from
any initial state s0 to origin Td in (5) can be calculated as [35]:

Td =
∫
|s0|

0

1
k1x1+γ + k2x1−γ

ds

=
|s0|−γ

−γ
k
−

γ
1+γ

1 F
(
1,

1
2
;
3
2
;−

k2
k1
|s0|−2γ

)
(13)

whereF (•) denotes theGauss’ hypergeometric function [36].
Substituting the second stage initial state |s0| = |s(t1)| = 1

into (12) and (13) yields:

tf 2 = Tf
∣∣s0=1 = 1

k1γ
ln
(
1+

k1
k2

)
(14)

td2 = Td
∣∣s0=1 = k

−
γ

1+γ
1

−γ
F
(
1,

1
2
;
3
2
;−

k2
k1

)
(15)

where tf 2 and td2 respectively denote the convergence time
for the system state from the sliding surface s = 1 to s = 0
in FPSMRL and DPSMRL.
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Through the Gauss’ hypergeometric function and the
power series expansion of arctan (•), the quotient of (14)
and (15) can be written as [37]:

td2
tf 2
=

√
k1/k2 arctan

(√
k1/k2

)
ln(1+ k1/k2)

> 1 (16)

It is clear that td2 is greater than tf 2. Therefore,
the FPSMRL has a faster convergence rate than the DPSMRL
in the second stage under the same conditions.

B. A NOVEL POWER SLIDING MODE REACHING LAW
The above-mentioned analysis shows that (4) and (5)
have different convergence times at two stages. Therefore,
to acquire a fast convergence rate at both of two stages,
a piecewise reaching law formula consisting of FPSMRL and
DPSMRL is:

ṡ = −k1fal(s, 1+ γ, δ)− k2 |s|1−γ sgn(s) (17)

where k1 > 0 and k2 > 0 are the designed constants, and γ is
a positive power series which satisfy the condition 0 < γ <

1, δ = 1. Nonlinear piecewise function fal (•) is:

fal(s, 1+ γ, δ) =

{
|s|1+γ sgn(s), |s| > δ
s
δ−γ

, |s| ≤ δ
(18)

When the phase trajectory line is away from the sliding
mode surface, i.e., |s| > 1, (17) is equivalent to (5). When
|s| ≤ 1, (17) is equivalent to (4).

C. FIXED-TIME STABILITY ANALYSIS
Define an initial state of the system as x0 ∈ Rn. The origin
is the global finite-time convergence equilibrium point. If the
convergence time function T (x0) is bounded, T (x0) ≤ Tmax
for any x0 ∈ Rn is established. Then the origin is the
global fixed-time convergence equilibrium of the system.
Since the convergence time is independent of the initial state
of the system and only related to the constant parameters
of the system, the fixed-time stability analysis is adopted in
this study. Define a continuous radial unbounded function V :
Rn
→ R, an open connected set�: 0 ∈ int(�). For µ ∈ (0,1),

ν ∈ R, rµ ∈ R+, rν ∈ R+:
V̇ (x)

≤

{
−rµV 1−µ(x), x ∈ � : V (x) ≤ 1
−rνV 1+ν(x), x ∈ � : V (x) > 1

t > t0, x ∈ �

(19)

Then the origin of the system is a fixed-time stable point.
The maximum convergence time is estimated by:

Tx ≤ Tmax ≤
1
µrµ
+

1
νrν

(20)

If V is radially unbounded, the origin of the system is a
globally fixed-time stable point.

Consider the Lyapunov function as:

V =
1
2
s2 (21)

The derivative of V along the trajectory of (17) is:

V̇ = sṡ

=

{
−k1V − k2V 1− γ2 , V ≤ 1

−k1V 1+ γ2 − k2V 1− γ2 , V > 1

≤

{
−k2V 1− γ2 , V ≤ 1

−k1V 1+ γ2 , V > 1
(22)

where rµ = k2, rν = k1, and µ = ν = γ /2. The convergence
time T satisfies the following inequality:

T ≤ Tmax ≤
1
µrµ
+

1
νrν
=

1
γ
(
1
k2
+

1
k1
) (23)

IV. DEADBEAT PREDICTIVE CURRENT CONTROL METHOD
WITH STATOR CURRENT AND DISTURBANCE
OBSERVER (DPCC+SCDO)
A. PROPOSED STATOR CURRENT AND
DISTURBANCE OBSERVER
Since the parameter mismatch is the most common distur-
bance, the drive system performances under the parameter
mismatch are studied in the following sections. With the
parameter mismatch, the extended voltage dynamic equations
of the SPMSM can be written as:

ud = Rsid + L
did
dt
− ωeLiq + 0d

uq = Rsiq + L
diq
dt
+ ωeLid + ψfωe + 0q

(24)


0d = 1Rsid +1L

did
dt
− ωe1Liq

0q = 1Rsiq +1L
diq
dt
+ ωe1Lid +1ψfωe

(25)

where Ld = Lq = L in this SPMSM. 0d and 0q respectively
represent the d- and q-axis collective parameter disturbances,
including the voltage change caused by resistance variation
1Rs, inductance variation 1L, and permanent magnetic flux
linkage variation 19f.

To estimate the voltage change caused by parameter
change, (24) can be redesigned as:{
ud = Rs îd + L

˙̂id − ωeLiq + 0̂d + ud_SMC

uq = Rs îq + L
˙̂iq + ωeLid + ψfωe + 0̂q + uq_SMC

(26)
d0̂d
dt
= ud_SMC

d0̂q
dt
= uq_SMC

(27)

where 0̂d and 0̂q are the estimations of0d and0q, îd and îq the
estimations of d- and q-axis currents, and ud_SMC and uq_SMC
are the d- and q-axis PPSMRL functions, respectively.

According to (24) and (26), the current error state equa-
tion between the actual model and predicted model can be
obtained as:

ėd = −
Rs
L
ed −

1
L
(0d − 0̂d)+

1
L
ud_SMC

ėq = −
Rs
L
eq −

1
L
(0q − 0̂q)+

1
L
uq_SMC

(28)
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{
ed = id − îd
eq = iq − îq

(29)

where ed and eq are the d- and q-axis current estimation
errors, respectively.

According to the proposed PPSMRL in Section III,
the novel sliding mode functions ud_SMC and uq_SMC are
designed. First, the sliding mode surface is designed as a
linear sliding mode surface, sd,q = ed,q = id,q − îd,q. Second,
the PPSMRL is selected as the sliding mode reaching law.{
ṡd = −k1fal(sd, 1+ γ, δ)− k2 |sd|1−γ sgn(sd)

ṡq = −k1fal(sq, 1+ γ, δ)− k2
∣∣sq∣∣1−γ sgn(sq) (30)

fal(sd, 1+ γ, δ) =

{
|sd|1+γ sgn(sd), |sd| > δ
sd
δ−γ

, |sd| ≤ δ

fal(sq, 1+ γ, δ) =


∣∣sq∣∣1+γ sgn(sq), ∣∣sq∣∣ > δ
sq
δ−γ

,
∣∣sq∣∣ ≤ δ

(31)

Substituting (28) into (30) yields:

−
Rs
L
ed −

1
L
(0d − 0̂d)+

1
L
ud_SMC

= −k1fal(ed, 1+ γ, δ)− k2 |ed|1−γ sgn(ed)

−
Rs
L
eq −

1
L
(0q − 0̂q)+

1
L
uq_SMC

= −k1fal(eq, 1+ γ, δ)− k2
∣∣eq∣∣1−γ sgn(eq)

(32)

Considering 0d − 0̂d and 0q − 0̂q as the disturbances
function, (32) can be simplified as:
ud_SMC = −k1Lfal(ed, 1+ γ, δ)− k2L |ed|1−γ sgn(ed)

+RsLed
uq_SMC = −k1Lfal(eq, 1+ γ, δ)− k2L

∣∣eq∣∣1−γ sgn(eq)
+RsLeq

(33)

B. ANALYSIS OF STEADY-STATE ERROR BOUNDARY
Take the d-axis as an example. Choosing the Lyapunov func-
tion, one has

Vd =
1
2
s2d (34)

The derivative of Vd can be obtained as:

V̇d = sdṡd
= edėd
= −k1ed fal(ed, 1+ γ, 1)− k2 |ed|2−γ sgn(ed)+ eddd(t)

(35)

Uncertain disturbance about d-axis current estimation
errors and d-axis disturbance estimation errors are bounded:

|dd(t)| ≤ Dd (36)

where Dd represents the bound of d-axis uncertain
perturbation dd.

Therefore, (35) can be written as follows:{
V̇d = −k1 |ed|2+γ − k2 |ed|2−γ + dd(t) |ed| , |ed| > 1
V̇d = −k1 |ed|2 − k2 |ed|2−γ + dd(t) |ed| , |ed| ≤ 1

(37)

Equation (37) can be expanded into four different forms:
V̇d ≤ −k1 |ed|2+γ − |ed| (k2 |ed|1−γ − Dd), |ed| > 1
V̇d ≤ −k2 |ed|2−γ − |ed| (k1 |ed|1+γ − Dd), |ed| > 1
V̇d ≤ −k1 |ed|2 − |ed| (k2 |ed|1−γ − Dd), |ed| ≤ 1
V̇d ≤ −k2 |ed|2−γ − |ed| (k1 |ed| − Dd), |ed| ≤ 1

(38)

To satisfy the stability of Lyapunov, k1 and k2 are shown in
the following table.

TABLE 1. Values of k1 and k2 and state error boundary.

Fromwhat has been discussed above, the error ed will reach
the boundary shown in Table 1 within the validity period:

|ed| ≤ min
{
(Dd/k1) , (Dd/k1)1/(1+γ ) , (Dd/k2)1/(1−γ )

}
(39)

To ensure V̇d ≤ 0, k1 and k2 should be selected as:{
k1 > Dd/ |ed|1+γ

k2 > Dd/ |ed|1−γ
(40)

Similarly, to ensure V̇q ≤ 0, k1 and k2 should be selected
as: {

k1 > Dq/
∣∣eq∣∣1+γ

k2 > Dq/
∣∣eq∣∣1−γ (41)

To ensure that thewhole observer is stable, k1 and k2 should
be selected as:{

k1 > max(Dd/ |ed|1+γ ,Dq/
∣∣eq∣∣1+γ )

k2 > max(Dd/ |ed|1−γ ,Dq/
∣∣eq∣∣1−γ ) (42)

where Dd and Dq represent the bounds of the d-axis and
q-axis with uncertain disturbance, respectively.
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C. DISCRETE EXPRESSION OF DPCC+SCDO
For the discrete system, if the sampling period T is short
enough, at the kth period, the discrete expression form of
DPCC+SCDO can be written as:

i(k+ 1) = A(k)i(k)+ Cu(k)+ D(k)−
T
L

0̂(k)

−
T
L
H(k)

u(k+ 1) = C−1 [i(k+ 2)− A(k)i(k+ 1)− D(k+ 1)]
0̂(k+ 1) = 0̂(k)− TH(k)
U∗ = u(k)+ 0̂(k+ 1)

(43)

where

0̂(k) =
[
0̂d(k)
0̂q(k)

]
, 0̂(k+ 1) =

[
0̂d(k+ 1)
0̂q(k+ 1)

]
,

H(k) =
[
ud_SMC(k)
uq_SMC(k)

]
, i(k+ 2) =

[
id(k+ 2)
iq(k+ 2)

]
=

[
i∗d
i∗q

]
,

u(k+ 1) =
[
u(k+ 1)
u(k+ 1)

]
, and U∗ =

[
U∗d
U∗q

]
is the reference voltage of SVPWM.

V. IMPROVED DEADBEAT PREDICTIVE CURRENT
CONTROL (DPCC+SCDO+NHDO)
A. ANALYSIS OF THE PIECEWISE POWER SLIDING MODEL
REACHING LAW
For the system (17), if k1 > 0, k2 > 0, 0 < γ < 1, then the
system state s and ṡ tend to 0 in a finite time T .
From (39), when there is uncertainty in the system,

the PPSMRL cannot guarantee that s and ṡ converge to (0,0)
but can only converge to a neighborhood of (0,0) in the limited
time.

Consider the following nonlinear system:

ṡ = −k1fal(s, 1+ γ, 1)− k2 |s|1−γ sgn(s)+ d(t) (44)

Assuming the disturbance d(t) 6= 0 and |d(t)| < D, D is a
positive series which satisfies the condition D > 0, s and ṡ
converge to the following bounds in T .

|s| ≤ min
{
(D/k1) , (D/k1)1/(1+γ ) , (D/k2)1/(1−γ )

}
|ṡ| ≤ min


fal ((D) , 1+ γ, 1) ,

fal
(
(D)1/(1+γ ) kγ /(1+γ )1 , 1+ γ, 1

)
,

k1fal
(
(D/k2)1/(1−γ ) , 1+ γ, 1

)


+min
{
k2 (D/k1)1−γ , k2 (D/k1)(1−γ )/(1+γ ) , (D/k2)

}
+D

(45)

When the system has uncertain disturbance d(t),
the PPSMRL can only guarantee that the sliding mode vari-
ables s and ṡ converge to a region containing the origin in a
finite time. s = ṡ = 0 cannot be guaranteed. Therefore, to use
the second-order sliding mode property of the PPSMRL,

the system uncertain disturbance d(t) needs to be compen-
sated. This problem will be studied in the next subsection.

B. DESIGN OF NON-HOMOGENEOUS
DISTURBANCE OBSERVER
Consider the first-order single input single output (SISO)
nonlinear system:

ṡ = d(t)+ u (46)

where s = 0 defines the sliding surface, u ∈ R is a system
control input, and d(t) is an uncertain function.
Designing a suitable input variable u can ensure that s and ṡ

converge to the originwithin a finite time. From (46), it is seen
that ṡ is sensitive to the unknown disturbance d(t). If s and u
can be obtained in real-time, d(t) ism−1 times differentiable,
and d (m−1)(t) has a known Lipschitz constant L.
Based on the non-homogeneous differentiator proposed

by Levant in [38], this paper uses a NHDO to improve the
steady-state accuracy [39]:

ż0 = v0 + u
v0 = h0(z0 − s)+ z1
ż1 = v1
v1 = h1(z1 − v0)+ z2
...

żm−1 = vm−1
vm−1 = hm−1(zm−1 − vm−2)+ zm
żm = hm(zm − vm−1)

(47)

where hi is a function as follows:

hi(s) = −λm−iL
1

m−i+1 |s|
m−i

m−i+1 sgn(s)− µm−is (48)

where µi > 0, i = 0, 1, . . . , k .
Assuming that s(t) and u(t) are measurable while λi and µi

are sufficiently large in the reverse order, the following equa-
tion holds after experiencing a finite time transient process:

z0 = s(t)
z1 = d(t)
...

zi = vi−1 = d (i−1),

i = 1, . . . ,m (49)

Equations (47) and (48) hold in the Filippov sense. λi
is chosen to provide for the finite-time convergence of the
differentiator with L ≡ 1. The known standard values of the
sequence λi are λ0 = 1.1, λ1 = 1.5, λ2 = 2, λ3 = 3, λ4 = 5,
and λ5 = 8, which are sufficient form ≤ 5 [38]. The standard
values of the sequence µi can be chosen as µ0 = 3, µ1 = 6,
µ2 = 8, µ3 = 10, µ4 = 11, and µ5 = 12.

C. SLIDING MODE WITH NON-HOMOGENEOUS
DISTURBANCE OBSERVER
If the sliding mode dynamic is of (49) and d(t) is smooth with
a known Lipschitz constant L > 0 of d (m−1)(t), u is taken as:

u = −k1 fal(s, 1+ γ, 1)− k2 |s|1−γ sgn(s)− z1 (50)
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FIGURE 1. Three different system state conditions.

FIGURE 2. Block diagram of DPCC+SCDO+NHDO.



ż0 = v0 + u

v0 = −2L
1
3 |z0 − s|

2
3 sgn(z0 − s)− 8(z0 − s)+ z1

ż1 = v1
v1 = −1.5L

1
2 |z1 − v0|

1
2 sgn(z1 − v0)

−6(z1 − v0)+ z2
ż2 = −1.1Lsgn(z2 − v1)− 3(z2 − v1)

(51)

where z1 is the output of (51). According to (49), z1 = d(t)
after a finite time transient process. The dynamic characteris-
tics of the sliding mode at this time are consistent with (49).
It can be seen that after a finite time, the sliding mode
variables s and ds/dt converge to the origin, i.e., s = ṡ = 0.
Consider the following state disturbance:

d(t) = 0.7 sin(2t)+ 0.5 cos t (52)

The state initial value is s0 = 6, and the disturbance
upper bound is D = 10. Fig. 1 verifies the discussions
conducted above. The convergences of the system state s
and ds/dt in the three cases are simulated. Figs. 1 (a) and (b)
show the state convergences of s and ds/dt without any
disturbance, which can go back to the origin in a limited
time. Figs. 1 (c) and (d) show the s and ds/dt convergence to
a bounded region as in (45) under a random disturbance, such
as (52). Figs. 1 (e) and (f) are the simulation results with the
proposed NHDO. It is seen that s and ds/dt can converge to
the origin in a finite time under the disturbance. In conclusion,

TABLE 2. Parameters of the SPMSM.

FIGURE 3. d-q axis current responses without parameter mismatch:
(a) traditional DPCC; (b) improved DPCC.

with the proposed NHDO, more robust system is achieved
under disturbance.

In conclusion, the discrete expression form of the DPCC+
SCDO+NHDO can be written as:

i(k+ 1) = A(k)i(k)+ Cu(k)+ D(k)−
T
L

0̂(k)

−
T
L
Ĥ(k)

u(k+ 1) = C−1 [i(k+ 2)− A(k)i(k+ 1)− D(k+ 1)]
0̂(k+ 1) = 0̂(k)− T Ĥ(k)
U∗ = u(k)+ 0̂(k+ 1)

(53)

where Ĥ(k) =

 ud_SMC(k)− z1d(k)
uq_SMC(k)− z1q(k)

 represents the slid-

ing mode reaching law including the compensation term for
disturbance caused by SPMSM parameter mismatch

VI. SIMULATION
To evaluate the feasibility and efficiency of the proposed con-
trol method, simulation comparisons between the traditional
DPCC and the improved DPCC algorithm are illustrated, and

FIGURE 4. d-q axis current responses with L’ = 4L: (a) traditional DPCC;
(b) improved DPCC.
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FIGURE 5. d-q axis current responses with 9’f = 0.59f: (a) traditional
DPCC; (b) improved DPCC.

FIGURE 6. d-q axis current responses with R’s = 7Rs: (a) traditional DPCC;
(b) improved DPCC.

the simulation block diagram is shown in Fig. 2, and themotor
parameters are listed in Table 2.

The inverter input DC voltage is 310 V, and the controller
sampling time is 50 µs, while the deadtime is 2.5 µs. The
parameters of the SCDO are k1 = 4000, k2 = 2000, and
γ = 0.5, which are optimally selected based on simulation
and experimental results. λ0 = 1.1, λ1 = 1.5, λ2 = 2,
µ0 = 3, µ1 = 6, and µ2 = 8 are parameters in the
NHDO, they are fixed parameters and do not need to modify
further [39].

In Fig. 3, the given mechanical speed is 900 r/min, and
the load torque command is switched from 4 Nm to 6 Nm
at 0.05 s and to 2 Nm at 0.1 s. idref and iqref represent the
referenced d- and q-axis currents, while id and iq represent the
real-time d- and q-axis currents, respectively. After the rotor
speed reaches a steady state, the iqref changes from 4 A to 6 A
and 2 A. It is found that the current ripples in the improved

FIGURE 7. d-q axis current responses with R’s = 5Rs, L’ = 4.5L,
9’f = 1.59f: (a) traditional DPCC; (b) improved DPCC.

FIGURE 8. d-q axis current responses with R’s = 0.1Rs, L’ = 2L, 9’f =

0.89f: (a) traditional DPCC; (b) improved DPCC.

FIGURE 9. Experiment platform of the SPMSM system.

DPCC method, as shown in Fig. 3 (b), are lower than that in
the traditional DPCC, as shown in Fig. 3 (a).

Fig. 4 demonstrates the current dynamic and steady
responses when the inductance parameters mismatch, i.e., the
estimated value of inductance L’ is four times of real value L.
The load torque command varies from 5 Nm to 10 Nm and
7 Nm with a rotor speed of 1000 r/min. In the traditional
DPCC, the iqref changes from 5 A to 10 A and 7 A. The d-q
axis currents fail to accurately follow the reference currents
and with large ripple, as shown in Fig. 4 (a). However, under
the same operating condition, in the improvedDPCC, d-q axis
currents can change immediately according to the reference
current and with lower ripples, as shown in Fig. 4 (b).

When the permanent magnet (PM) flux linkagesmismatch,
e.g., 9’f = 0.59f, the steady-state error of q-axis current
is approximately zero in the improved DPCC, while that
in the traditional DPCC is far away from zero, as shown
in Fig. 5. Moreover, the current ripple in the improved DPCC
is significantly smaller than that in the traditional DPCC.
Similarly, superior performance can be obtained with the
improved DPCC when the resistance mismatch, as shown
in Fig. 6.

FIGURE 10. Experimental results of d-q axis current responses without
parameter mismatch: (a) traditional DPCC; (b) improved DPCC.

When three major parameters mismatch, two cases are
investigated in this study. In Fig. 7, the mismatched parame-
ters are R’s = 5Rs, L’ = 4.5L, and 9’f = 1.59f. If the drive
system is with the traditional DPCC, the d-q axis currents
oscillate widely near the reference currents. Furthermore,
the negative q-axis current appears, resulting in serious vibra-
tion, as shown in Fig. 7 (a). However, in the improved DPCC
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FIGURE 11. Experimental results of d-q axis current responses with L’ =

4L: (a) traditional DPCC; (b) improved DPCC.

drive system, as shown in Fig. 7 (b), the performance of the
d-q axis currents keeps accurate and has low ripples. In Fig. 8,
with R’s = 0.1Rs, L’ = 2L, 9’f = 0.89f, more robust
current responses are revealed in the improved DPCC drive
system. The simulation results of six parameter mismatch
situations suggest that, compared with the traditional DPCC,
the improved DPCC can acquire better dynamic and static
tracking characteristics.

FIGURE 12. Experimental results of d-q axis current responses with
9’f = 0.59f: (a) traditional DPCC; (b) improved DPCC.

FIGURE 13. Experimental results of d-q axis current responses with
R’s = 7Rs: (a) traditional DPCC; (b) improved DPCC.

VII. EXPERIMENTS VERIFICATION
Both the traditional DPCC and the improved DPCC dive sys-
tems are experimentally tested under the same load conditions
on the SPMSM experimental platform, as shown in Fig. 9.
It mainly includes an SPMSMof 2.6 kW rated power, anABB
load motor, an inverter with a DC power supply (130 V),
an oscilloscope, and a PC. The main control chip adopts
TMS320F28377d. The controller sampling time is 50 µs,
and the deadtime is 2.5 µs. The experimental conditions
are consistent with the simulation conditions to verify the
authenticity and validity of the simulation results. However,
it is complicated to change the parameters of the motor
in the experiment. The alternative method is changing the
parameters of the motor in the control program to simulate
the parameter mismatch.

Fig. 10 shows the tracking performance of d-q axis real-
time currents without parameter mismatch at 900 r/min. Due
to the non-linear characteristics of the actual control circuit

FIGURE 14. Experimental results of d-q axis current responses with
R’s = 5Rs, L’ = 4.5L, 9’f = 1.59f: (a) traditional DPCC; (b) improved DPCC.

FIGURE 15. Experimental results of d-q axis current responses with
R’s = 0.1Rs, L’ = 2L, 9’f = 0.89f: (a) traditional DPCC; (b) improved DPCC.

with the traditional DPCC, id and iq deviate slightly from the
reference values, as shown in Fig. 10 (a). Fig. 10 (b) depicts
a better real-time current tracking performance in the same
condition with the improved DPCC drive system.

Compared with the same condition of L’ = 4L in the
simulation, experimental results are quite different due to the
error between the theoretical model and the actual motor.
In the traditional DPCC, id has large ripples, and iq cannot
accurately follow the reference current and produces irreg-
ular vibrations, as shown in Fig. 11 (a). The current oscil-
lation caused by the inductance estimation mismatch can be
vastly reduced with the improved DPCC algorithm, as shown
in Fig. 11 (b).

FIGURE 16. Experimental results of THD (%) of two methods under
different motor speeds.

The experimental verification under the flux linkage mis-
match is shown in Fig. 12. It can be seen that the experimental
results are similar to the simulation in Fig. 5. The steady-state
error of iq in the improved DPCC is much smaller than that
in the traditional DPCC, and the current ripples are also more
minor, as shown in Fig. 12 (b). Similar results also occur in the
experimental verification of the stator resistance mismatch,
as shown in Fig. 13.

Figs. 14 and 15 demonstrate the two cases of three major
parameters of the SPMSM mismatch. In Fig. 14, the same
mismatched parameters with simulation are R’s = 5Rs,
L’ = 4.5L, 9’f = 1.59f. The d-q axis currents fluctuate
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FIGURE 17. MT (Nm) of two methods under different parameter
mismatch conditions.

FIGURE 18. JT (Nm) of two methods under different parameter mismatch
conditions.

greatly near the reference value, especially the d-axis current
fluctuation phenomenon is more severe in the traditional
DPCC, as shown in Fig. 14 (a). The fluctuation caused by
this parameter mismatch is reduced in the improved DPCC,
as shown in Fig. 14 (b). However, in the case of another three
parameters mismatch, R’s = 0.1Rs, L’ = 2L, 9’f = 0.89f
in Fig. 15, the d-axis current can be well maintained near
0 under both algorithms. The error between the q-axis current
and the reference current is 1 A, as shown in Fig. 15 (a). The
improved DPCC drive system revealed more robust current
responses, as shown in Fig. 15 (b).

It is found that the experimental results look better than
the simulation results. The reasons behind it may be that
instruments and meters in the experiment contain signal pro-
cessing and filtering functions, but there is no further filter
and processing in the simulation model.

To further illustrate the effectiveness of the proposed
method, Fig. 16 compares the total harmonic distor-
tion (THD) of phase current of traditional DPCC and
improved DPCC when inductance parameter mismatch. The
THD of the traditional DPCC is much higher than that of the
improved DPCC in the motor speed range from 300 r/min
to 1000 r/min. More specifically, the maximum THD of the
traditional DPCC exceeds 40 %, while that in the improved
DPCC is less than 8 %.

To further evaluate the magnitude of motor torque pul-
sation under SPMSM parameter mismatch, two evaluation
formulas (54) and (55) of torque pulsation evaluation [12]
are used in this paper. The mechanical speed of SPMSM
is 800 r/min, and the load torque is 6 Nm. Figs. 17 and 18
present the torque tracking performance under different
conditions. It can be seen that the torque tracking accuracy
in the improved DPCC is much better than that in the tra-
ditional DPCC. The above-mentioned parameter mismatch

TABLE 3. Different working conditions.

conditions are listed in Table 3.

MT =
1
N

N∑
k=1

|eT(k)| =
1
N

N∑
k=1

∣∣∣T ref (k)− T (k)∣∣∣ (54)

JT =

√√√√ 1
N

N∑
k=1

(eT(k))2 =

√√√√ 1
N

N∑
k=1

(
T ref (k)− T (k)

)2
(55)

Evidently, the above experiment and analysis results stated
that in the case of motor parameter mismatch, the torque
pulsation of improved DPCC can be dramatically reduced
compared with the traditional DPCC.

VIII. CONCLUSION
This paper presented an improved DPCC with an enhanced
disturbance observer to increase the robustness of the
PMSM drive system. With the SCDO and NHDO, the
d-q axis currents can be accurately observed, and the voltage
compensation can be immediately output when there are
disturbances, such as parameter mismatch. In the SCDO, the
PPSMRL suppresses the sliding-mode chattering and acceler-
ates the current error convergence rate. To further increase the
robustness of the drive system, NHDO is proposed to observe
and compensate for the disturbances to eliminate chattering.

Both simulations and experiments are explored to verify
the superior performance of the improved DPCC. Whether
parameter mismatch occurs, the current ripples and current
harmonics in the traditional DPCC are more significant than
those in the proposed DPCC. When parameter mismatch
occurs with different situations, the output current of the
traditional DPCC fails to follow the reference current accu-
rately. Moreover, torque pulsation of the traditional DPCC is
significant. In contrast, the current ripple, current harmonics,
and torque pulsation in the proposed DPCC can be effectively
suppressed. Once parameter mismatched, the robustness of
the PMSM drive system in output current tracking perfor-
mance can be enhanced remarkably.
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