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 A novel federated learning framework is proposed for FDI attack detection.

 Unknown system parameters and small decentralized data sets are considered.

 An incentive mechanism is designed to deal with the strategic data owners.

 The impact of incentive mechanism on detection accuracy is characterized.

 Optimal detection accuracy is achieved under a given incentive budget.
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ABSTRACT

With the growing concern in security and privacy of smart grid, false data injection attack detection
on power grid state estimation now faces new challenges including unknown system parameters and
small decentralized data sets with strategic data owners. To deal with these technical bottlenecks,
this paper proposes a novel edge-based federated learning framework for false data injection attack
detection on power grid state estimation, which has great potential in real-world applications with
unknown system parameters. Furthermore, to seek a high detection accuracy with small decentralized
data set and strategic data owners, an incentive mechanism is designed to encourage the desired data
owners contributing to false data injection attack detection. To explore the impact of the incentive
mechanism on the detection accuracy, a bi-level model depicting the data owners’ participation in
false data injection attack detection is formulated, based on which the impact is quantified. Moreover,
a novel preference criterion is proposed for optimal mechanism design. It can achieve the optimal
detection accuracy under a certain incentive budget. The incentive mechanism is designed and tested
for 100Monte Carlo scenarios. Simulations of false data injection attack detection on power grid state
estimation show that the proposed framework outperforms the existing works without mechanism
design.

1. Introduction
With the prevalence of smart meters and the informa-

tion network, traditional power system is experiencing an
integration with information and communication technolo-
gies. The integrationmakes the traditional power grid evolve
into a cyber-physical system [1], which generates, transmits
and distributes electricity in a modernized manner [2]. Al-
though the transition improves the reliability, flexibility and
efficienc-y of the power system, its reliance on the informa-
tion network exposes it to cyber attacks [3, 4, 5].

As a confirmed cyber attack targeting the power system,
the 2007 Aurora cyber attack led to the explosion of large
numbers of generators [6]. Since then, cyber attacks have
become a growing concern in power grid operation, espe-
cially for the power system state estimation [7, 8]. The stabil-
ity control will be disrupted if the state estimation operates
under a cyber attack, which disables the total energy man-
agement strategy. Among all the cyber attacks, false data
injection (FDI) attacks show great threats on power system
state estimation with its various types and dramatic impacts.
FDI attackers pour large amounts of interference data into
the measurement set with an expectation to obtain illegal in-
come or to commit sabotage acts, misleading the whole state
estimation process [9, 10]. This leads to a great concern on
the reliability and security of the power grid [11].
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Due to its dramatic damage, recently FDI attack detec-
tion has attracted a wide range of research interests from
both energy and information fields. Various methods were
explored for detecting FDI attacks, which can be catego-
rized into model-based and data-driven methods. For the
first category, the weighted least squares method was used
for FDI attack detection for resilient control of a DC micro
grid under the assumption that the power system operates in
a steady state [12]. As we know, apart from the stability im-
pact, FDI attacks can also interrupt the information exchange
tunnel. In [13, 14], the impact of FDI attack on the infor-
mation exchange topology was quantified, where weighted
least squares method was employed for the attack detection.
In [15], a recursive state estimation method was proposed by
combining the historical data with the current measurement,
which achieved the FDI attack detection of power systems.
All of these methods are based on the weighted least squares
approach. Restricted by the fitting accuracy of the weighted
least squares methods, the detection accuracy of these ap-
proaches are limited. To overcome this problem, [16] pro-
posed a novel fusion detection approach by incorporating
the cyber security incidents into the state estimation model,
which showed improvement on detection accuracy. These
methods were built under the assumption that the power sys-
tem operates in a steady state. However, due to the uncer-
tainties in real-time load and power generation [17, 18, 19],
the power system usually operates in a dynamic environ-
ment, which cannot be solved directly by the aforementioned
detection methods. Thus dynamic estimation based methods
quickly became the most popular solution, with Kalman fil-
ter being the main approach. In [20], the Kalman filter was
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adopted for estimation of various state processes, which can
achieve FDI attack detection in a dynamic environment.

All the aforementioned detection methods are model-ba-
sed, which means that their effectiveness relies directly on
the accurate system parameters. Recently, the emergence of
stealthy attack has driven the existing FDI attack detection
mechanism evolving into a proactive FDI attack detection
manner, which is achieved by employing distributed flexi-
ble AC transmission system (D-FACTS) devices [21, 22].
In these proactive FDI attack detection mechanisms, the D-
FACTS devices are used for topology perturbation. It pre-
vents the attackers from acquiring the measurement matrix,
thus makes the stealthy attacks unavailable. Although the
use of D-FACTS devices is effective in detecting the stealthy
attacks, it also prevents the detection system from obtain-
ing the information of the measurement matrix. This means
the aforementionedmodel-based detectionmethodswill lose
their effectiveness under this circumstance.

This problem can be solved by the data-driven methods,
which are model-free and are classified as the second cate-
gory. In [23], support vector machine (SVM) was employed
for FDI attack detection in smart grid, which showed an ac-
ceptable accuracy in locating the electricity theft. Motivated
by the efficiency of biological neural network, in [20, 24, 25],
various neural networks were designed for FDI attack detec-
tion, including the feedforward, recurrent, deep and convo-
lutional neural networks. The data-drivenmethods do not re-
quire the system parameters, while they need a large amount
of local data [26]. However, the measurement data sets are
usually distributed, each possessed by an independent power
system state owner (PSSO). Direct data transmission among
PSSOs is time-consuming and expensive, which also leads to
data privacy issue. Thus, the strategic PSSOs will not agree
to transmit their local data over the network, which means a
large local data set is unavailable in real-world applications.
How to coordinate these PSSOs to detect FDI attacks while
preserving the data privacy remains a challenging problem.

As discussed above, we can see that FDI attack detection
on state estimation now faces new challenges including un-
known system parameters and small decentralized data sets
with strategic data owners. In this paper, a novel edge-based
federated learning framework is proposed for FDI attack de-
tection on power grid state estimation. A direct illustration
of the proposed framework is given in Fig.1. In the pro-
posed framework, monetary incentives are given to the de-
sired PSSOs, based on which the coordination of PSSOs is
formed to execute the detection task using the edge-based
federated learning method. The novelty and contribution of
this paper are summarized as follows:

1) The proposed framework can achieve FDI attack de-
tection on power grid state estimation with unknown sys-
tem parameters and small decentralized data sets, which pre-
serves the PSSOs’ private data from exposure. Moreover
only the intermediate model parameters are required to be
exchanged among the nodes, which further prevents the sys-
tem parameters from being divulged.

2) An incentive mechanism is designed to encourage the

desired PSSOs contributing to FDI attack detection on power
grid state estimation, which achieves a high detection accu-
racy with strategic PSSOs.

3) A bi-level model depicting the PSSOs’ participation
in FDI attack detection is proposed. Compared with the ex-
isting works in [27] where only monetary cost was consid-
ered in the incentive mechanism design, both the detection
accuracy and the monetary cost are considered in this study,
which characterizes the impact of the incentive mechanism
on the detection accuracy.

4) The impact of the incentive mechanism on the detec-
tion accuracy is explored and quantified. A novel preference
criterion is proposed to achieve the optimal detection accu-
racy under a given incentive budget.
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Figure 1: The proposed edge-based federated learning frame-
work.

2. PRELIMINARIES
In this section, the fundamental model of the power sys-

tem estimation problem is given, which follows the tradi-
tional residual test detection method.

2.1. Power System State Estimation
State estimation in smart grid aims to estimate the sys-

tem state variables (voltage phase angles) based on measure-
ments obtained from various sensors that are located in dif-
ferent places. Based on the characteristics of the measure-
ment matrix, the state estimation model can be divided into
two categories, which corresponds to the linear models in
DC system and the nonlinear models in AC system, respec-
tively. As is revealed in [28], the nonlinear AC state esti-
mation model can be linearized by replacing the nonlinear
relationship with the Jacobian matrices at the current state.
Thus the DC power flow model is used to design the fed-
erated learning framework for FDI attack detection in this
study. Without loss of generality, the proposed mechanism
is also suitable for FDI attack detection in AC state estima-
tion by using the conversion method in [28].
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Specifically, the following DC power flow model is ana-
lyzed [26]:

y = Hx + �, (1)

where y ∈ Rn represents the measurement vector (voltage
phase angle); x ∈ Rm is the system state vector;H ∈ Rn×m
represents the system-definedmeasurementmatrixwhichma-
ps the system state values to measurement values. � ∈ Rn
is the random measurement error of Gaussian distribution,
with zero mean and the following covariance matrix:

V = diag(�−21 , �−22 , ..., �−2n ), (2)

where �i represents the standard deviation of the ith mea-
surement.

2.2. FDI Attack Detection on Power System State
Detection

By employing the least squares method, the estimation
of system states can be obtained by solving the following
optimization problem:

x̂ = argmin
x

(y −Hx)TV −1(y −Hx) (3)

The solution can be deduced by using equation (4):

x̂ = (HTV −1H)−1HTV −1y ≜ Φy (4)

where Φ = (HTV −1H)−1HTV −1. Based on the state esti-
mation x̂, the estimation of the measurement can be obtained
as ŷ = Hx = HΦy. Thus we can further calculate the mea-
surement residual as follows:

r = y − ŷ = (I −HΦ)x. (5)

Following the calculation of the residual, to accomplish
the FDI attack detection task, the detection test based on
largest normalized residual (LNR) test method is employed
for FDI attack detection. This can be realized as follows:

D(yt) =
{1, if ‖r̄‖∞ ≥ �,
0, otℎerwise,

(6)

where r̄ =
√

V −1r is normalized based on covariance V .

Remark 1. The residual test in equation (6) is called the bad
data detection (BDD), which is widely used in FDI detection
on power state estimation. However, in the existing works,
it is assumed that the information of the measurement ma-
trix H is known to all, which is the premise of using BDD.
However, due to use of D-FACTS devices, it is hard for the
detection service provider (DSP) to know the full informa-
tion of the measurement matrix, which means the existing
methods relying on the knowledge of the measurement ma-
trix will not be available for the DSP. Thus in this paper, a
novel edge-based federated learning framework is proposed
for model prediction of the measurement matrix H .

3. Network Model of Federated Learning for
FDI Attack Detection
As we can see in section 2, the parameters in matrix

modelH are necessary for estimation-based FDI attack de-
tection. From the viewpoint of adversaries, the information
of the parameters in matrix model H is needed for launch-
ing a stealthy attack. Thus, it is necessary for us to learn the
information of the matrixH while keeping it from exposure
to the adversaries.

FDI attack detection problems are commonly solved in a
centralized framework, which has been pervasively utilized
in smart grid. Although it shows great convenience in cen-
tralized control on one single device, it requires all the infor-
mation to be collected on a central device. Note that themea-
surement data are distributed across the network, it requires
data transmission to a central node when using a centralized
approach. This leads to a large amount of data transmission,
and the potential of data leakage to the adversaries. More-
over, the centralized data collection process is costly due to
the strategic data owners. In this case, it is necessary to em-
ploy the federated learning framework. In this section, we
design a federated learning framework for distributed train-
ing of the measurement models. In the proposed framework,
a wireless network is employed, in which the desired power
system state owners (PSSOs) cooperatively perform param-
eter learning based on local data sets. The network can exe-
cute federated learning algorithm to estimate the parameters
of the measurement matrix, which further enables FDI at-
tack detection in power system state estimation. Note that
the local training is decentralized and distributed in differ-
ent devices, it avoids data transmission among multiple de-
vices. A DSP is designed to publish the FDI attack detection
task and coordinate the participation of PSSOs. The detailed
description of the PSSOs and the DSP will be given in the
following sections.

3.1. Power System States Owners
The key procedure is to construct the system measure-

ment matrixH with multiple geographically distributed lo-
cal PSSOs. The accuracy of the model prediction depends
on the PSSOs participation and offering sufficient high qual-
ity data sets. To promote PSSOs’ participation, it is neces-
sary to explore their cost during the model prediction pro-
cess.

Here we introduce Qi to characterize the data quality of
the samples provided by PSSO i.

Qi =
{ 0, PSSO is cheating,
(0, 1], otherwise.

(7)

Specifically, the cost of PSSO i, denoted as Wi(#i, si, Qi),
can be characterized by equation (8) using the data size si,
the data quality Qi and the marginal data cost #i:

Wi(#i, si, Qi) = #isiQi. (8)

3.2. Detection Service Provider
In the proposed edge-based federated learning framework,

aDSP is designed for task publishing and leading the PSSOs’

W.Lin et al.: Preprint submitted to Elsevier Page 3 of 10

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Incentive Edge-Based Federated Learning for False Data Injection Attack Detection

participation. Distinguished from the centralized model, the
model updates are executed locally. Thus it is not required to
deliver the local data to the DSP, which preserves the data’s
privacy. Furthermore, compared with the existing central-
ized federated learning framework, in the proposed edge-
based federated learning framework, each PSSOupdates bas-
ed on local information and the information it receives from
the neighbors. Thus, it is not necessary for the DSP to collect
the model parameters or execute an aggregation operation
with the proposed framework, which further reduces data
transmission and preserves the information privacy. The es-
sential function of DSP is to coordinate the PSSOs’ partic-
ipation with proper incentives, which will be explained in
detail in the section 4.

4. Incentive Federated Learning for False
Data Injection on Power Grid State
Estimation
In this section, we focus on the incentive federated learn-

ing (IFL) for FDI attack detection on power grid state estima-
tion. As we can see in equation (8), the revenues of PSSOs
are negative without incentive payments from the DSP. This
means additional time and efforts are required for PSSOs to
participate in FDI attack detection. Note that the PSSOs are
geographically distributed and are owned by different enti-
ties, they are probably strategic and will not participate in
FDI attack detection with negative revenues. Nevertheless,
as discussed in section 3, to obtain the model parameters
which are necessary for FDI attack detection, the edge-based
federated learning framework estimates the global model pa-
rameters through coordination learning of several PSSOs.
The global parameter learningwill fail without enough PSSOs’
participation, so will the FDI attack detection. Thus, the
feasibility of IFL for FDI attack detection needs further dis-
cussion. To ensure the feasibility of the proposed frame-
work, the most efficient method is monetary reward from
the DSP to the PSSOs. In this paper, this will be refined
into contractual transaction mechanism, and the detailed de-
sign will be given in section 4.1. Moreover, to further ex-
plore the economy of the IFL framework, a bi-level model
which depicts the PSSOs’ participation in FDI attack detec-
tion is proposed. On one hand, the incentive decisions for
PSSOs minimize the incentive cost while keeping a certain
data quality, which impacts the FDI attack detection decision
based on federated learning. On the other hand, the FDI at-
tack detection decision based on the PSSOs’ federated learn-
ing is achieved based on the incentive decisions for PSSOs,
and conversely influences the incentive decisions. Thus, the
whole IFL framework is formalized as a bi-level structure,
in which the optimal incentive mechanism is designed in the
upper layer and the economical and efficient FDI attack de-
tection relying on edge-based federated learning framework
is achieved in the lower layer. The detailed model descrip-
tion will be given in section 4.2 and section 4.3, respectively,
which follows by the details of the incentive mechanism de-
sign in section 4.4.

4.1. Transaction Mechanism Design
To guarantee that there are enough PSSOs to participate

in edge-based federated learning for FDI attack detection,
here we model the participation as a service transaction pro-
cess. During the whole learning process, the server trades
the high quality model learning service with monetary re-
wards. Note that the PSSOs are different in data and time
costs, several different transaction items are provided by the
DSP to specify these differences. Specifically, the transac-
tion items contain the maximum learning time, the data size
and the data quality. To guarantee the effectiveness of the
model learning process, monetary rewards are also specified
as a transaction item. Let I be the total number of the trans-
action types, tm denotes the maximum computational time,
s = {si|i ∈ {1, 2, ..., I} denotes the data size set for a total
number of I transaction types,Q = {Qi|i ∈ {1, 2, ..., I} de-
notes the data quality set, and r = {ri|i ∈ {1, 2, ..., I} be the
monetary reward set. Thus, the transaction rules can be em-
bodied as set & = (tm, s, Q, r), which provides a total number
of I transaction types for the PSSOs to choose. The detailed
procedures in transaction mechanism are listed as follows:

1) The DSP refines trading rules based on its pref-
erence: the DSP sets the maximum computational time tm
first, then it builds I transaction types based on the com-
plexity of FDI attack detection, i.e., there exist I choices
in each transaction items except for the maximum compu-
tational time.

2) Each PSSO chooses a transaction type: each PSSO
chooses a transaction type strategically, making sure it ben-
efits from participating in the FDI attack detection.

3) The PSSOs execute the FDI attack detection based
on the transaction rules: if a PSSO chooses transaction
type i and obeys the rules, i.e., it contributes a data set with
scale no smaller than si and quality no worse than Qi, and
accomplishes the model learning task in tm, then it receives
reward ri from the DSP accordingly. Otherwise, it will get a
zero reward.

4.2. Upper-Layer Model
LetC(tm, s, Q, r, w) be the total cost of DSP. For the con-

venience of further analysis, here we assume that the number
of rows and columns of the measurement matrixH are both
D. Let w = [w1, w2, ..., wD], and denote the ith column
of the measurement matrix as wi. Then the measurement
matrix prediction problem can be converted to estimation of
wi, i = 1, 2, ..., D. From an economical viewpoint, when
executing the federated learning framework to achieve FDI
attack detection, the total cost needs to be minimized while
keeping a certain data quality. In other words, the total cost
of the DSP should be minimized under the condition that
a certain number of PSSOs are willing to participate in the
federated learning process, which admits the following up-
per layer model.

min
tm,s,Q,r,w

C(tm, s, Q, r, w)

s.t. w ∈ argminwf (w, x, y, r). (9)
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where C(tm, s, Q, r, w) is the total cost of DSP. During the
service transaction process, the DSP pays the PSSOs for FDI
attack detection service. Thus the utility function of the DSP
consists of two parts, the total rewards given to the PSSOs
and the accuracy loss of the federated learning model. Here
we consider the total rewards given to the PSSOs first. Note
that the reward is designed for each iteration, the total re-
wards given to PSSO i should be the production of number
of iterations, denoted as E, and the reward ri for each itera-
tion. From this viewpoint, the total cost C(tm, s, Q, r, w) can
be formulated as follows:

C(tm, s, Q, r, w) =�1(f (w) − f (w∗))

+ �2E
M
∑

i=1
1ti⩽tmNiri. (10)

where

1 =
{1, if ti ⩽ tm,
0, otherwise,

(11)

�1 and �2 are weight coefficients of the accuracy loss and the
rewards, respectively.

The total cost of the DSP consists of two parts, the ac-
curacy loss (f (w) − f (w∗)) and the rewards it pays to the
PSSOs, E

∑M
i=1 1ti⩽tmNiri. On one hand, it can achieve a

balance between the rewarding cost and the accuracy loss by
tuning the weight coefficient �1 and �2. On the other hand,
given a certain incentive budget, the impact of the incentive
mechanism on the detection accuracy can be explored and
quantified based on equation (10). This leads to the problem
of the optimal incentive mechanism design, which is charac-
terized in equation (9). Note that it is a bi-level optimization
problem, the detailedmechanism designwill be given in sec-
tion 4.4, following the analysis of the lower-layer model.

Specifically, note that the PSSOs are strategic, it is nec-
essary to ensure the desired PSSOs receive non-negative rev-
enues. In this way, the desired PSSOs will accept the trans-
action items and obey the transaction rules, i.e., to ensure the
feasibility of IFL for FDI attacks, it is necessary that

Wr(ti, si, Qi, ri) = ri − #isiQi ⩾ 0. (12)

As we can see from equation (12), from the perspective
of DSP, it is optimal to choose ri = #isiQi. Then we can
obtain that to guarantee the feasibility of PSSO i’s partici-
pation, the minimum choose of the reward is ri = #isiQi.
Nevertheless, the PSSOs are different in the computation
time tm, the data quality Qi and the data size si it can pro-
vide, which has great influence on the model learning pro-
cess. The model learning process will work more efficiently
and economically with a good choice of the PSSOs. This
will be discussed in section 4.4.

4.3. Lower-Layer Model
In our model, each PSSO i collects a matrix xi = [xi1,

xi2, ..., xiMi
] of voltage angle data and amatrix yi = [yi1, yi2,

..., yiMi
] of power data, with Mi being the number of mea-

surements collected by each PSSO i. For local PSSO i, it
learns the local state estimates x̂i based on the measurement
inputs xi and yi. Let x = [x1, x2, ..., xU ], y = [y1, y2, ..., yU ]
with U being the number of participating PSSOs. To de-
tect the FDI attack in smart grid, calculation of the estimates
should be accomplished first. For static estimation, to obtain
the estimates of system states, the following problem should
be solved:

min
w1,w2,...,wU

f (w, x, y, r) (13a)

s.t. w1(i, j) = w2(i, j) = ...
=wU (i, j) = Hg(i, j),
∀i = 1, 2, ..., D, j = 1, 2, ..., D, (13b)

where Hg is the global measurement model, f (w, x, y, r) is
the loss function which is relative to the first-stage decision
variable r. Specifically, let

f (w, x, y, r)

= 1
M

∑

i∈Γ(r)
(yi −wixi)TV −1(yi −wixi) (14)

where M =
∑U
i=1Mi is the total number of measurement

data from all local devices, and

Γ(r) = {i ∈ {1, 2, ..., U}|r ⩾ #isiQi}. (15)

Note that the loss function f (w, x, y, r) increases with the
prediction error, by minimizing f (w, x, y, r), we can obtain
the optimal measurement model. Constraint (13b) is de-
signed to guarantee that all the measurement data sets are co-
ordinated for a global consensus measurement model, which
captures the characteristic of federated learning algorithm
that all the local users acquire the same global model. To
explain the bi-level model intuitively, in Fig.2, the bi-level
framework is given for the proposed IFL for FDI attack de-
tection.

4.4. Incentive Mechanism Design
To realize IFL for FDI attack detection, the following

procedures need to be undertaken at each training epoch:
1) DSP announces the task and provide preferential

contracts: When the DSP receives a FDI attack detection
task, it announces the task on cloud. Then based on PSSOs’
type information, the DSP provides several preferential con-
tracts to incentive PSSOs’ participation in the FDI attack de-
tection task.

2) Each PSSO analyzes the feasibility and choose ra-
tionally: At the beginning of the model learning process,
each PSSO analyze the revenue and the cost in participating
in the FDI attack detection. Note that the PSSOs are con-
trolled directly bymachines or people, here it is assumed that
they are strategic, i.e., they will participate in the FDI attack
detection only if the benefit of participation outweighs the
cost.
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Figure 2: The bi-level framework for the proposed IFL for FDI
attack detection.

3) EachPSSO executes the edge-based federated learn-
ing: Let wji be the estimate of PSSO i for wj , and zji be the
auxiliary variables. The strategywji (0) is initialized without
additional requirement, while the auxiliary variables zji are
all set to 0. Let aim be the connectivity index of PSSO i and
PSSO m, aim = 1 if they are connected and communicate
with each other, otherwise aim = 0. Without loss of general-
ity, here it is assumed that all the participating PSSOs consti-
tute a connected graph. Then for i ∈ Γ(r), j = 1, 2, ..., D, the
local model parameters are updated iteratively as follows:

wji (k + 1) =w
j
i (k) − �(∇fi(w

j
i ) + z

j
i (k))

−
∑

i∈Γ(r)
aim(w

j
i (k) −w

j
m(k)) (16)

zji (k + 1) =z
j
i (k) +

∑

i∈Γ(r)
aim(w

j
i (k) −w

j
m(k)) (17)

4) Learning ends: The model learning process ends if
the learning parameters reach a predefined accuracy.

From the perspective of mathematical modeling, the pro-
posed bi-level model in Fig.2 is a nested optimization prob-
lem, which means the upper-layer incentive decision can-
not be obtained before the federated learning process. How-
ever, as we can see in section 4.1, in real applications, the
incentive mechanism should be clarified at first. To solve
this problem, the upper-layer incentive decision optimiza-
tion problem is converted, and a preference index is intro-
duced as a reference for a timely incentive mechanism de-
sign.

As we know, the preference for certain PSSOs can be
realized by monetary reward, thus the choice on PSSOs is
converted into the problem of optimal reward design. The
social welfare of the DSP can be maximized through incen-
tivizing the optimal PSSOs to the model learning process.
From this viewpoint, firstly, it is necessary to quantify the
DSP’s preference for each PSSO. Here we start by consider-
ing its cost characterized in (10). During the service trans-
action process, the DSP pays the PSSOs for FDI attack de-
tection service, thus the utility function of the DSP consists

of two parts, the total reward given to the PSSOs and the
accuracy loss of the federated learning model. Here we con-
sider the total reward given to the PSSOs first. Note that the
reward is designed for each iteration, the total reward given
to PSSOs of type i should be the production of number of
iterations, denoted as E, and the reward ri for each iteration.
Recalling that the upper limit of time for each iteration is tm,
we can obtain that for a certain time period T , the number
of iterations is E = T

tm
. Thus the total reward given to the

PSSOs can be characterized as T
tm

∑M
i=1 1ti⩽tmNiri, with Ni

being the number of PSSOs of type i.
We consider the accuracy loss of the federated learning

model next. The accuracy loss of algorithm (16)-(17) af-
ter E iterations, i.e., f (wE) − f (w∗), is upper bounded by
O(1∕

√

∑M
i=1 1ti⩽tmNisiE + 1∕E). To summarize, the total

cost for the DSP can be characterized as

C(tm, s, Q, r) =�1min{
1

√

∑M
i=1 1ti⩽tmNisiQiE

+ 1∕E,

F } + �2E
M
∑

i=1
1ti⩽tmNiri

=�1min{
1

√

∑M
i=1 1ti⩽tmNisiQi

T
tm

+
tm
T
,

F } + �2
T
tm

M
∑

i=1
1ti⩽tmNiri. (18)

Through the conversion in (18), the total cost for the DSP,
denoted asC(tm, s, Q, r), is irrelevant to the lower-layermodel
parameterw now. Thismeans the upper-layer incentivemech-
anism characterized by (18) can be designed before the lower-
layer federated learning process, which coincides with the
real application scenarios. As we can see from (18), for a
certain upper time limit tm, the DSP’s total cost increases
with the individual reward ri. Note that optimal value of ri is
proportional to the product #isiQi, it costs more for the DSP
to choose a PSSO with a large value of the product #isiQi,
which means a lower value of the preference index for this
PSSO.

In the following, we consider the case where the PSSOs
are with the same value of the product #isiQi and different
upper time limits tm. Given a certain value of the product
#isiQi, the DSP’s cost function can be derived as follows:

C(tm, s, Q, r) =�1min{
1

√

∑M
i=1 1ti⩽tmNisiQi

T
tm

+
tm
T
,

F } + �2
T
tm

M
∑

i=1
1ti⩽tmNi#si. (19)

Recalling that the data size s is positive, the cost function
C(tm, s, Q, r) is convex, thus we can obtain that

s∗ = 1

N T
tm
[ 2�2#�1

]
2
3Q

1
3
i

. (20)
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Given the optimal data size s∗, we can obtain the cost func-
tion of the DSP as follows:

C(tm, s, Q, r) =
�1tm
T

+ (2
1
3 + 2−

2
3 )�

2
3
1 �

1
3
2 #

1
3
i Q

− 13
i . (21)

Note that in (21), the cost function increases with tm. Given
the same value of the product #isiQi, the DPS prefers PSSO
with smaller upper time limit tm.

From the perspective of the DSP, it is easy to construct a
preference order given the same value of the cost #isiQi or
the same quality of service level. However, in practice, it is
common that there exist differences in both the marginal cost
#i, the quality of data Qi and the upper time limits tm. To
strike a balance between these conflicting objectives, some
balancing index needs to be constructed. Here we consider
the most complicated case, where the marginal cost satisfy-
ing #1∕Q1 < #2∕Q2 < ... < #M∕QM and the upper time
limit satisfying t1 > t2 < ... > tM . Recalling the analysis in
the case with the same value of the product #isiQi, for the
PSSOs of type-i, the optimal data size s∗ = 1

Ni
T
ti
[ 2�2#i�1

]
2
3Q

1
3
i

,

and the corresponding reward is r∗ = #i

Ni
T
ti
[ 2�2#i�1

]
2
3Q

1
3
i

. Note

that the DSP is strategic, it will choose the optimal PSSOs
and set the rewards for other PSSOs as 0. Thus, by substitut-
ing the optimal data size s∗ and the optimal reward r∗ into
the cost function, we can obtain the minimum cost for the
DSP as follows:

Cmin =
�1ti
T

+ (2
1
3 + 2−

2
3 )�

2
3
1 �

1
3
2 #

1
3
i Q

− 13
i , (22)

which conflicts between the cost and the quality of service
level. By choosing PSSOs with smaller Cmin, the economy
of the DSP and the quality of service on the FDI attack detec-
tion can be balanced, which consists of the preference index
PRIi.

Based on the formulation in (22), the following prefer-
ence index PRIi is introduced for PSSO i,

PRIi ≜
�1ti
T

+ (2
1
3 + 2−

2
3 )�

2
3
1 �

1
3
2 #

1
3
i Q

− 13
i , (23)

where ti is the computational time of PSSO i, �1 is quantified
accuracy loss factor and �2 is quantified payment factor. The
preference index PRIi characterizes the economy of PSSOs
by quantifying their potential cost for DSP. Given PSSO i
and j, PRIi ⩽ PRIj means the marginal cost of choosing
PSSO i is smaller than PSSO j, thus the DSP will have a
high preference for PSSO i. For FDI attack detection based
on federated learning framework, the difficulty lies in how
to employ the PSSOs with different data quality and compu-
tational ability efficiently. The PSSOs with high data quality
and good computational ability should be taken in priority.
However, in the incentive mechanism design, considering
the economy of the DSP, it is key to balance between the in-
centive cost and the computational accuracy. Thus here, the
criterion in (23) is introduced, which aims to strike a bal-
ance between these two conflicting objectives. Based on this

criterion, the PSSOs can be ranked according to their com-
prehensive performance in cost and serve. In this way, by
selecting the PSSOs in order, the FDI attack detection task
can be accomplished both efficiently and economically.

Recalling the procedures of transaction mechanism de-
sign, it remains to refine the transaction rules based on the
criterion in (23), i.e., the transaction items which contain the
maximum learning time tm, the data size s and the reward r.
This can be solved by exploring the establishment of crite-
rion (23). Specifically, the preference index PRIi is built
based on the following considerations. First, note that the
preference index PRIi is built from the interest of the DSP,
the utility function of the DSP should be built.

From the aforementioned analysis, we can obtain that
the optimal mechanism design as follows: By using crite-
rion (23), find the DSP’s most preferred type, denoted as
type i; build the most popular transaction type, in which the
transaction rules are set as t∗m = ti, s∗ =

1

N T
tm
[ 2�2#�1

]
2
3Q

1
3
i

,

r∗ = #i

Ni
T
ti
[ 2�2#i�1

]
2
3Q

1
3
i

, Q = Qi. For other transaction types,

set r = 0.

5. Simulation
In this section, the effectiveness of bi-level model de-

picting the PSSOs’ participation in FDI attack detection is
verified based on IEEE 30-bus system [29], where both the
multiple-bus and single-bus FDI attacks are considered. By
employing the proposed preference criterion, the impact of
the incentivemechanism on the detection process is explored
in terms of the model prediction accuracy and the FDI attack
detection accuracy. The 30th node is chosen as the reference
node. It should be noted that the voltage angle of the refer-
ence node is set to be fixed. Thus the state estimation of
node 30 is not considered here, which makes the measure-
ment matrixH to be 29×29. To verify the robustness of the
proposed mechanism, multiple-bus FDI attacks and single-
bus FDI attacks are considered for 100 Monte Carlo (MC)
scenarios, and attack magnitudes are randomly distributed
in the interval [1, 10].

Define the threshold for the largest normalized residual
(LNR) as �. Without loss of generality, the measurement
data from advanced metering infrastructure is only available
for local PSSOs with the consideration of data privacy.

As for the system parameters, we choose T = 30, �1 =
17885, �2 = 1. The measurement data are distributed in
50 PSSOs, which can be divided into five types (each type
with 10 PSSOs, and each PSSO possesses 10 groups of valid

data), with the transaction parameters being (#
1
3
AQ

− 13
A , tA) =

(1, 3), (#
1
3
BQ

− 13
B , tB) = (1.7, 2.5), (#

1
3
CQ

− 13
C , tC ) = (1.8, 2.4),

(#
1
3
DQ

− 13
D , tD) = (1.9, 2.7), (#

1
3
EQ

− 13
E , tE) = (2, 2). QB =

QC = QC = QE = 0.5, QA = 1, #A = 1, #B = 0.597,
#C = 0.608, #D = 0.619, #E = 0.630. For the convenience
of the preference comparison, based on the proposed crite-
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rion (23), the heatmap of DSP’s preference is given in Fig.3,
where the five types are marked with ∗. The red line divides
the whole area into two parts with PRI = 3167, where the
part close to the origin refers to PRI < 3167 and the re-
maining refers to PRI > 3167. It is clear in Fig.3 that the
PSSOs can be ranked as A > B > C > E > D accord-
ing to the DSPs preference. While when using the price-
based incentive mechanism in [27], the preference order is
B > C > D > E > A. In the simulations, the effectiveness
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Figure 3: The heatmap of DPS’s preference.

of the proposed mechanism is verified by setting the total in-
centive as 100, where 100 Monte Carlo attack scenarios are
considered. For the convenience of comparisons, the local
data based mechanism in [26] and the price-based incentive
mechanism in [27] are also carried out with the same total
incentive cost. For the proposed edge-based framework, by
using proposed criterion (23), PSSOs of type A are chosen.
Furthermore, based on the theoretical results in section 4.4,
the optimal data size is s∗ = 1

NA
T
tA
[ 2�2#A�1

]
2
3Q

1
3
A

= 10, and the

optimal reward is r∗ = #i

Ni
T
ti
[ 2�2#i�1

]
2
3Q

1
3
i

= 10. Thus, given

the incentive cost of 100, the DSP can afford to employ 10
PSSOs of type A, which are willing to participate in the fed-
erated learning process with data size s∗ = 10. While for the
price-based incentive mechanism in [27], limited by the in-
centive cost, the number of participating PSSOs are only 2,
which leads to insufficient data source for model prediction.
For the convenience of comparison, the model prediction ac-
curacy is defined first.

5.1. Model Prediction Accuracy
For the FDI attack detection without knowledge of mea-

surement matrix H , the accuracy of model prediction is a
key step. To compare the performance of the proposedmech-
anism in model prediction with other methods, the mean ab-
solute error " is introduced, which acts as the prediction ac-
curacy metric:

" =
‖Hp −H‖

2

m2
, (24)

whereHp is the prediction of measurement matrix,H is the
real one, m is the dimension ofH .

To demonstrate the accuracy of model prediction, the
heatmap of measurement matrix (Fig.5(a)) based on the pro-
posed mechanism is given and compared with the real one
(Fig.4), from which we can see the proposed mechanism
has a good performance. The prediction results with the
local data based mechanism in [26] and that using price-
based incentive mechanism in [27] are described in Fig.5(b)
and Fig.5(c),respectively, showing unacceptable prediction
errors. To characterize the model prediction error in detail,
the mean absolute errors " of these three mechanisms with
differentmeasurement noise levels are given in Table I. It can
be seen from Table I that the proposed framework with opti-
mal mechanism design can achieve high precision prediction
of themodel, while that with the local data basedmechanism
in [26] and that using price-based incentive mechanism in
[27] cannot.
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Figure 4: The heatmap of the actual Jacobian matrix.

5.2. Advantage of the incentive mechanism
In this section, the effectiveness of the proposed incen-

tive edge-based federated learning framework is explored on
detection of multiple-bus and single-bus FDI attacks. As
shown in Fig.5, the proposed edge-based framework with
optimal mechanism design can achieve an exact model pre-
diction of the measurement matrix H , while the prediction
results with the local data based mechanism in [26] and that
using price-based incentive mechanism in [27] are far from
the real value. The model prediction results directly impact
the accuracy of the FDI attack detection result. From Fig.6,
we can see that although the specific LNR values with the
proposed mechanism vary with different non-attack scenar-
ios, they remain in the interval [0.02, 0.25]. While for the
attack scenarios, the LNR values show much bigger values
in the interval [2.5, 35]. Thus FDI attacks can be detected ef-
fectively with the proposed mechanism by choosing � = 2.
However, in Fig.7, the LNR values with or without multiple-
bus attacks are both in the interval [20, 75], which are too
close to distinguish. The FDI attacks cannot be accurately
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Table I: Model prediction accuracy comparison.
Mechanism Federated learning with optimal contract Local prediction Federated learning with random constract

Noise 0 5% 10% 0 5% 10% 0 5% 10%
" 0.788 0.9251 1.0092 107.9003 108 108.0685 33.9764 35.0697 21.1091

detected no matter how the LNR threshold value � is cho-
sen. Moreover, similar test results are shown in Fig.8, where
the price-based incentive mechanism in [27] is employed.
This further demonstrates that the proposed incentive edge-
based federated learning framework can detect FDI attacks
efficiently, while the local data based mechanism in [26] and
that using price-based incentive mechanism in [27] cannot.

As we know, the multiple-bus FDI attacks act on several
buses, which leads to bigger LNR values and thus is rela-
tively easier to detect. To verify the robustness of the pro-
posed edge-based framework, in the following, single-bus
FDI attack is launched over an IEEE 30-bus system. The pa-
rameters are chosen to be the same as those in section 5.2. As
shown in Fig.9-11, the model prediction results also directly
impact the accuracy of the single-bus FDI attack detection.

From Fig.9, we can see that the LNR values with the pro-
posed mechanism under no attacks remain small in the inter-
val [0, 0.205], while the values with single-bus FDI attacks
show much bigger values. Thus, the single-bus FDI attack
can be detected effectively based on the proposed mecha-
nism by choosing � = 0.5. However, as shown Fig.10, due to
the incorrect model prediction results, the LNR values with
the local data based mechanism in [26] under no attacks and
single-bus FDI attacks are too close to distinguish in the in-
terval [15, 65]. Moreover, the LNR values with the price-
based incentive mechanism in [27] show similar test results
in Fig.11, which means both of them fail to detect the FDI
attacks.

5.3. Advantage of the federated framework
In this section, to further discuss the performance of the

proposed federated learningmechanism, the local data based
mechanism in [26] without limiting the budget has also been
carried out for comparison. It executes the FDI attack de-
tection in a single device, which is centralized. With ade-
quate monetary rewards, here it is assumed that the PSSOs
are willing to deliver their local state data to a central node.
Thus the local data based mechanism in [26] without limit-
ing the budget empowers a centralized FDI attack detection
with sufficient data. However, the data transmission process
also discloses the key state data to the adversaries, through
which they can obtain the information of the measurement
matrix indirectly. This provides the necessary information of
stealthy attacks, which can be avoided in the proposed feder-
ated formulation. Thus here, we consider the case where the
local data basedmechanism in [26] without limiting the bud-
get is used to detect the stealthy attacks based on 100 Monte
Carlo scenarios. As we can see in Fig.12, the LNR results
with and without stealthy attacks show close values in the
interval [0, 0.3], which means the local data based mecha-
nism in [26] without limiting the budget fails in FDI detec-
tion. While for the proposed federated mechanism, no state

data is required to be delivered, which prevents the adver-
saries from obtaining the information of the measurement
matrix. Thus, the proposed federated mechanism prevents
the stealthy attacks originally, which outperforms the cen-
tralized mechanism.

6. Conclusion
This paper proposed a novel edge-based federated learn-

ing framework for FDI attack detection on power grid state
estimation, which shows great potential in real-world appli-
cations with unknown system parameters. The major find-
ings are summarized as follows:

1) To seek a high detection accuracy with limited mea-
surement data sets, an incentive mechanism is designed to
encourage the desired data owners to contribute to FDI at-
tack detection. By careful design of the transaction items
in the incentive mechanism, the participation of the desired
PSSOs can be achieved.

2) A novel preference criterion has been proposed to achi-
eve the optimal detection accuracy under a given incentive
budget.

3) A bi-level model depicting the PSSOs’ participation
in FDI attack detection has been proposed, in which both
the detection accuracy and the monetary cost are considered.
This characterizes the impact of the incentive mechanism on
the detection accuracy.

4) The incentivemechanism has been tested for 100Monte
Carlo scenarios on different FDI attacks, including detec-
tion of multiple-bus and single-bus FDI attacks. The simu-
lation results demonstrate that the proposed framework out-
performs the existing works (e.g. local data base mecha-
nism, price-based mechanism) without mechanism design.
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Figure 5: The heatmaps of the predicted Jacobian matrix using
the proposed federated learning framework (a), using the local
data based mechanism in [26] (b), using price-based incentive
mechanism in [27] (c).]
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Figure 6: The LNR results for 100 Monte Carlo simulations
with the proposed mechanism under no attacks (a), under
multiple-bus FDI attacks (b).
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Figure 7: The LNR results for 100 Monte Carlo simulations
with the local data based mechanism in [26] within limited
budget, under no attacks (a), under multiple-bus FDI attacks
(b).
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Figure 8: The LNR results for 100 Monte Carlo simulations
with the price-based incentive mechanism in [27], under no
attacks (a), under multiple-bus FDI attacks (b).
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Figure 9: The LNR results for 100 Monte Carlo simulations
with the proposed mechanism, under no attacks (a), under
single-bus FDI attacks (b).
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Figure 10: The LNR results for 100 Monte Carlo simulations
with the local data based mechanism in [26] within limited
budget, under no attacks (a), under single-bus FDI attacks
(b).
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Figure 11: The LNR results for 100 Monte Carlo simulations
with the price-based incentive mechanism in [27], under no
attacks (a), under single-bus FDI attacks (b).
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Figure 12: The LNR results for 100 Monte Carlo simulations
with the local data based mechanism in [26] without limiting
the budget, under no attacks (a), under stealthy FDI attacks
(b).
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