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Abstract: Vertigo is a sensation of movement that results from disorders of the inner ear balance
organs and their central connections, with aetiologies that are often benign and sometimes serious.
An individual who develops vertigo can be effectively treated only after a correct diagnosis of the
underlying vestibular disorder is reached. Recent advances in artificial intelligence promise novel
strategies for the diagnosis and treatment of patients with this common symptom. Human analysts
may experience difficulties manually extracting patterns from large clinical datasets. Machine
learning techniques can be used to visualize, understand, and classify clinical data to create a
computerized, faster, and more accurate evaluation of vertiginous disorders. Practitioners can also
use them as a teaching tool to gain knowledge and valuable insights from medical data. This paper
provides a review of the literatures from 1999 to 2021 using various feature extraction and machine
learning techniques to diagnose vertigo disorders. This paper aims to provide a better understanding
of the work done thus far and to provide future directions for research into the use of machine
learning in vertigo diagnosis.

Keywords: artificial intelligence; vertigo; dizziness; machine learning; feature extraction

1. Introduction

Dizziness is a broad term that encompasses various symptoms, including unsteadi-
ness, vertigo, and light-headedness or presyncope, as shown in Figure 1. Vertigo is an
illusion of rotation, tilt, or any other movement of oneself (subjective vertigo) or one’s
surroundings (objective vertigo) in any plane. It can be classified, by aetiology, into ‘periph-
eral’ or ‘central’, depending on the location of the dysfunction of the vestibular pathway.
The vertigo that is caused by problems affecting the inner ear balance organs or vestibular
end organs—the vestibular nerve or Scarpa’s ganglion—is classified as peripheral [1]. In
contrast, vertigo that arises from disorders affecting the balance centers of the central
nervous system (in the brain stem, cerebellum, or vestibular cortex) is classified as cen-
tral [2]. Figure 1 illustrates common causes of different subtypes of dizziness. The most
common causes of peripheral vertigo are benign paroxysmal positional vertigo (BPPV),
Meniere disease (MD), and vestibular neuritis (VNE). The most encountered causes of
central vertigo include vestibular migraine and posterior circulation stroke [3–6]. Since
this classification is only applicable after a final diagnosis has been reached, a syndromic
approach to vertigo has been adopted in clinical settings. Acute vestibular syndrome
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(AVS) refers to a single attack of severe vertigo lasting more than 24 h, with nausea and
vomiting with postural instability, which is usually accompanied by spontaneous nystag-
mus [7]. Peripheral causes of AVS. include vestibular neuritis (VN), an innocuous viral
inflammation of the vestibular nerve [8]. A posterior circulation stroke may cause central
AVS. and is a life-threatening illness requiring urgent imaging and immediate treatment
with oral antiplatelet and sometimes endovascular therapies [9]. Episodic spontaneous
vertigo (ESV) refers to recurring attacks of spontaneous vertigo lasting more than 1 min,
not triggered by changes in head movement [10]. One of the most common causes of ESV
is vestibular migraine (VM), commonly presenting with spinning or swaying vertigo with
a history of current or past migraines. Meniere disease (MD), a less common cause of ESV,
is characterized by violent spinning vertigo, hearing loss, aural fullness, and tinnitus due
to fluid build-up in the inner ear [11,12]. Episodic positional vertigo (EPV) refers to vertigo
recurring due to changes in head position and is characterized by brief spells of spinning
vertigo. EPV is most often due to benign paroxysmal positional vertigo (BPPV), caused by
calcium carbonate particles dislodged into the semi-circular canals. Less commonly, EPV
can be caused by vestibular migraine or other central disorders, such as posterior fossa
tumors (central positional vertigo) [13,14].
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Figure 1. A flowchart depicting the differential diagnosis of dizziness.

Vertigo is a widespread and distressing symptom that may occur at any age. Dizziness
(including vertigo) affects from about 15% to over 20% of adults yearly in extensive
population-based studies [15]. Vestibular vertigo accounts for about a quarter of dizziness
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complaints and has a 12 month prevalence of 5% and an annual incidence of 1.4% [15]. In
most affected individuals, vertigo results in a medical consultation, interruption of daily
activities, or sick leave [16]. Prevalence and incidences increase with age and are reported
much higher in women than in men [15]. In one study [17], the prevalence of vertigo
and dizziness in people aged more than 60 years was found to be 30%. The presence of
dizziness in the elderly can be a strong predictor of falls, leading to accidental death [18].

Vertigo, being a common symptom in the general population, merits an organized
approach by healthcare practitioners at the levels of primary care, emergency room, and
specialty services, in order to secure an early and accurate diagnosis. Misdiagnosis at the
level of primary care or ER may result in inappropriate or ineffective therapies or referral
to an incorrect specialist, thus prolonging the symptoms and increasing the likelihood
of associated morbidities. Such a misdiagnosis is costly to the patient, the healthcare
system, and the economy and is inefficient and potentially harmful. Neuhauser H.K. [15]
suggests that BPPV and vestibular migraine (VM) are underdiagnosed, while MD is usually
overdiagnosed. Dizziness and vertigo account for about 4% of presenting symptoms in the
emergency department (ED) [19]. Stroke accounts for 4–15% of patients, and around 10%
are missed at first contact, with a substantial increase in morbidity and mortality [20].

Recently, Ahmadi S.A. et al. [21] proposed that machine learning methods have the
potential to perform better than clinical scores (e.g., HINTS (head impulse, nystagmus
type, test of skew); ABCD2 (age, blood pressure, clinical features, duration of symptoms,
diabetes)) in stroke detection. Machine learning (ML) has been widely used in disease
diagnosis, with the aim of improving the speed and accuracy of diagnosis. ML has also
been employed to analyze the importance of clinical parameters and their combinations for
prognosis (e.g., prediction of disease progression), for the extraction of medical knowledge
for outcomes research, therapy planning, and support, in order to improve overall patient
management. Many attempts have been made to apply machine learning techniques for
the differential diagnosis of vertigo over the last few decades. These models process the
patients’ data, find the correlations and associations of presenting symptoms, familiar
antecedents, habits, and background medical history with a view to predicting vertigo
aetiology. The machine learning models most commonly used in vertigo diagnosis include
decision trees [22–25], support vector machines (SVM) [22,25–34], k-Nearest neighbors
(KNN) [20,23,25–27,30,35,36], and deep learning techniques [35,37,38]. Some researchers
have also used novel ML algorithms and ensemble learning to improve diagnostic accu-
racy [28,33,39–42].

This paper aims to provide a comprehensive analysis of the application of artificial
intelligence in the diagnosis of vertigo. The rest of the paper is organized as follows:
Section 2 discusses different datasets and features used to train models. Section 3 discusses
the advantages and disadvantages of ML techniques and explains the selection criteria of
articles for the literature review. Section 4 provides a review of different ML techniques
used in the literature, followed by a discussion in Section 5, with possible future directions
for researchers, and finally, paper is concluded in Section 6.

2. Data Collection and Analysis for Machine Learning in a Specialist Vertigo Clinic

In a specialty clinic, the diagnostic process of the non-specific symptom of dizziness
involves first eliciting information on the patient’s background medical history (comor-
bidities) and then clarifying presenting symptoms (whether the vertigo is spontaneous
or positional, its duration, and associated phenomena). Next, a physical examination is
performed—one important component of this examination is a general inspection for head
tilt, obvious cranial nerve palsies, and Horner’s syndrome. Next, an eye examination,
which includes assessment for spontaneous, gaze-evoked, and positional nystagmus, head
impulse testing, testing saccadic and pursuit eye-movements, and assessment of vestibulo-
ocular reflex suppression is undertaken. Tests of standing balance such as the matted
Romberg test, Unterberger tests, tandem walking, and screening neurological tests for limb
weakness and ataxia are important parts of the examination, as is postural blood pressure
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testing. In many instances, an expert clinician will arrive upon a diagnosis with the history
and examination, in others, the assistance of audio vestibular tests—which interrogate the
cochlear and vestibular end organ function—is sought. Tests conducted most often are
audiometry to assess cochlear function, caloric testing, video head impulse tests to assess
horizontal semi-circular canal function, and vestibular evoked myogenic potentials to test
otolith function. These tests require interpretation in the context of the history and physical
examination. Rotational chair testing is employed when seeking evidence of poor VOR
suppression and for further quantification of bilateral vestibular loss (BVL). Posturography
and gait analyses are now seldom used in the differential diagnosis of vertigo but can help
identify vestibular disorders as a cause of imbalance, estimate the risk of falls, monitor the
disorder’s progression, and track treatment effects [43]. Screening laboratory tests, such
as a complete blood count, electrolytes, thyroid function tests, and vitamin B1 and B12
levels and iron studies, are used in seeking the nutritional and metabolic causes of dizzi-
ness. Imaging studies (MRI Brain, CT angiography, and CT Petrous temporal bones with
canal plane reconstructions), seeking a structural cause for dizziness, are often undertaken.
There are many tests that could be performed when assessing vertigo, yet their utility is
context-specific, thus a clinician needs to select the tests as befits the clinical syndrome.

ONE [44] was an early expert system developed to aid the diagnosis of vertigo.
It implemented a database of vertiginous patients for research purposes and used this
database in several research studies [45,46]. The data included was collected through a
questionnaire related to presenting symptoms, comorbidities, and results of vestibular,
audiology, and imaging tests amounting to 170 variables. DizzyReg [47] is a modern
clinical registry containing information on history, examination, test results, diagnosis,
treatment, and outcome of patients with vertigo and dizziness. It contains anamnestic,
sociodemographic, diagnostic, and therapeutic information of patients presenting with
vertigo, including duration and type, neurological examination findings, audio vestibular
test results, and the video head impulse test amounting to over 300 variables. The data
was collected through the perusal of medical reports and questionnaires and used for
intelligent diagnosis of vestibular disorders in [47]. The Dizziness Handicap Inventory
(DHI) [33] is a validated questionnaire of twenty questions for quantitative evaluation of the
degrees of handicap in the daily lives of patients with vestibular disorders. Data collected
using DHI has been used for differential diagnosis of posterior canal benign paroxysmal
positioning vertigo (PC-BPPV) and horizontal canal benign paroxysmal positioning vertigo
(HC-BPPV) via machine learning techniques [33]. It is conceivable that a modern database
created for diagnosis of vestibular disorders would consist of detailed history, physical
examination, and laboratory test data, as well as expert diagnoses, treatments, and their
outcomes, quantified by using validated questionnaires such as the Dizziness Handicap
Inventory (DHI) or the Vertigo Symptom Scale (VSS) [25,48]. Once data are collected and
pre-processed, a machine learning algorithm is chosen, and a model is trained on the
data. A model to be used for diagnostic assistance should exhibit high sensitivity and
high specificity.

3. Advantages and Disadvantages of Machine Learning Techniques and Selection
Criteria of Articles for Literature Review
3.1. Advantages and Disadvantages of Machine Learning Techniques

This section discusses the advantages and disadvantages of various machine learn-
ing algorithms utilized in the existing literature for classifying vertigo types in Table 1.
It includes support vector machines (SVM) [49,50], naïve Bayes (NB) [51,52], decision
trees (DT) [53,54], K-nearest neighbors (KNN) [55,56], neural networks [57], and genetic
algorithms [58].
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Table 1. Advantages and disadvantages of algorithms commonly used for vertigo classification.

Algorithm Advantages Disadvantages

Decision Trees
Requires less pre-processing, does not

need normalization and scaling, no need
of data imputation

Instability, complex calculations, high training
time, resource

expensive, and does not work with continuous values

Support Vector Machines
Efficient with distinctive classes, high

dimensional data spaces, memory
efficient, excellent for few data samples

Poor performance with large
datasets, sensitive to noise and overlapping classes,

underperforms when no. of
features >no. of samples

K-Nearest
Neighbor

No training period, faster
execution, supports dynamic data

addition, needs only two parameters

Poor performance with large datasets, inefficient with
high dimensional data, scaling, and normalization

required, sensitive to noise, outliers, and missing values

Naïve Bayes
Time inexpensive, supports multi-label

classification, needs less training samples,
best suited for categorical data

Less applicability in real-life
scenarios due to feature

independence, assigns zero
probability to missing values

Genetic
Algorithms

Highly accurate, provides optimal results,
robust and straightforward

Computation expensive, requires high
parameter optimization

Neural Networks
Automatic feature extraction, robust to
data variations, scalable to large data

volumes, adaptive to varying problems

Requires large training set,
resource expensive, high

computation time, complex to comprehend
and optimize

3.2. Selection Criteria of Articles for Literature Review

We conducted a targeted review of the scientific literature to examine and summarize
articles that explore directions in artificial intelligence towards the diagnosis of vertigo
and dizziness-related disorders. The search process involved defining a list of impactful
journals and reputed databases, identifying search terms, and defining specific inclusion
and exclusion criteria to filter out relevant articles for this study. The databases considered
for this study are Scopus, Google Scholar, PubMed, IEEE Xplore, ScienceDirect, NCBI, ACM,
Wiley, Taylor and Francis, and Springer Nature. Search terms included ‘machine learning
and vertigo diagnosis’, ‘vertigo diagnosis and artificial intelligence’, ‘vertigo classification
and machine learning’, ‘vertigo diagnosis and data mining’, ‘vertigo data analysis’, and
‘vertigo and dizziness diagnosis’. Synonyms and various combinations of these terms were
also used to conduct an exhaustive search. The primary criteria of shortlisting relevant
articles were to include all the studies involving the diagnosis of vertigo-related disorders
using artificial intelligence. We have included all the papers employing machine learning,
shallow learning, and deep learning for diagnosing vertigo-related disorders. We have
excluded research articles that employ artificial intelligence for medical purposes other
than the diagnosis of the disease. Articles focusing on artificial intelligence for clinical
management and treatment of vertigo-related disorders have been excluded from this
review; additionally, editorials, book reviews, and literature surveys were not considered.
We studied over 100 research papers from the above-mentioned digital libraries and
shortlisted 41 articles that we deemed relevant for this review. Thirty-five articles among
these are published in highly reputed journals and six are from international conferences.
We have reviewed articles published between the years 1999 and 2021. Figure 2 illustrates
the year-wise trend of relevant articles published in this domain. It is notable that the
number of published works has increased since 1999 and the research domain is gaining
considerable significance, which motivated us to study this area.
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4. Machine Learning Approaches Used in the Differential Diagnosis of Vertigo

This section reviews the existing literature on machine learning approaches used
for vertigo classification. We follow a feature-based approach instead of the traditional
technology-based approach to organize the literature. This is due to the sparsity of literature
in the usage of machine learning algorithms. Fellow researchers have employed multiple
varying algorithms on specific target problems. It is easier to map the applications and
group them together according to the types of data or features used, or both. Organizing the
literature in accordance with algorithm usage makes it relatively difficult due to the huge
number of existing algorithms, which leaves us with a greater number of subsections with
fewer articles focusing on a given algorithm. Feature-based organization broadly arranges
the literature into four major types of features studied or employed for vertigo classification,
making the arrangement comprehensible and compact. The feature-based approach that we
followed allowed us to understand the ongoing development in individual sub-domains
and threw light on the algorithms already being employed for specific features, paving
the way for future directions. Section 4.1 examines the literary sources that implemented
machine learning algorithms on dataset ONE. Section 4.2 elaborates on the works utilizing
questionnaire-based features, while Section 4.3 discusses the techniques using nystagmus
features, and finally, Section 4.4 reviews the literature that uses posturography and gait
features for vertigo identification.

4.1. Machine Learning Applications on ONE Dataset

ONE [44], an early expert system for vertigo, was developed as a diagnostic aid to
assist teaching and implement a research database. The database of ONE consisted of
patients’ responses to 170 questions relating to symptoms, background medical history, and
vestibular test findings. A method based on pattern recognition was used in the reasoning
process with attribute weights initially set by neuro-otology experts. Kentala E. et al. [59]
developed Galactica, a genetic algorithm approach to discover differential diagnostic rules
to classify data into six dissimilar vestibular disorders (BPV, Meniere disease, sudden
hearing loss, vestibular neuritis, vestibular schwannoma, traumatic vertigo) taken from
ONE’s database. Their proposed genetic algorithm developed IF–THEN rules from the
questionnaire dataset, annotated as positive or negative. The authors used a sample size
of 200 patients, setting 150 as the number of generations and keeping 0.95 and 0.01 as
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the probabilities of crossover and mutation, respectively. The accuracy of the rules was
above 90% for all diseases except Meniere disease, for which the accuracy level was 81%.
Varpa K. et al. [60] noted that combining machine-learnt weights with expert knowledge
gave the best classification results, classifying 82.5–84.7% of cases correctly within the first
and second diagnostic suggestions.

Missing data limits the applicability of various machine learning algorithms. Data
imputation is used to overcome this drawback, where missing values in continuous data
are replaced by the mean or median of the specific feature and replaced by the mode in
categorical values. The results achieved by machine learning after imputation depend on
the size of missing values, where accuracy decreases with the rise in the number of missing
items. Laurikkala et al. [61] studied the usefulness of different imputation techniques
such as means, regression, expectation maximization, and random imputation to treat
missing values in this dataset, to allow for multivariate statistical analysis. They found
that the discriminant functions obtained from imputed data were highly accurate for all
the methods (93–96%). Their findings indicated that the missing data did not adversely
affect disease classification. Miettinen et al. [62] employed Bayesian methods on the
ONE database to classify diseases accurately. Bayesian probabilistic models could also
reveal dependence relations between attributes used for classification. Juhola et al. [23]
compared KNN, discriminant analysis, k-means clustering, decision trees, multi-layer
perceptron (MLP) networks, and Kohonen networks on this data, after data preprocessing
with principal component analysis (PCA). Linear discriminant analysis performed the best,
followed by MLP networks.

Varpa K. et al. [63] compared attribute weighting methods with decision support
system ONE and one-vs.-all (OVA) KNN classifiers to classify nine vertiginous diseases
(see Table 2). The best total accuracy was achieved with the attribute-weighted 5-nearest
neighbor OVA method using the scatter weights. Varpa K. et al. [64] used a genetic
algorithm-based approach for attribute weighting in ONE, class weighted KNN, and OVA
weighted KNN, which improved disease classification accuracy, median, and true positive
rates of all the methods. Varpa K. et al. [30] compared one-vs.-all and one-vs.-one methods
in KNN and SVM and found that using multiple binary classifiers (one-vs.-one) improved
the true positive rates of disease classes. Joutsijoki H. et al. [65] used half-against-half (HAH)
architecture with SVM, KNN, and naïve Bayes (NB) methods with HAH–SVM reaching
similar accuracy as OVO–SVM. Juhola M. et al. [66] tested the classification capability
of neural networks on ONE database. Since the data had unbalanced distribution, MLP
and Kohonen networks could detect the big classes with high specificity but failed to
detect the smaller classes. Siermala M. et al. [31] creates a set of neural networks for each
disease class and artificial cases for smaller classes. It was found that this methodology
could successfully deal with class imbalance, giving high classification accuracy even for
smaller classes. Shilaskar et al. [32] dealt with a class imbalance on this dataset by synthetic
oversampling of minority class and under-sampling of majority class and using modified
PSO algorithm for feature selection and SVM for improving accuracy.
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Table 2. Performance of machine learning algorithms on ONE dataset.

Year ML Algorithm Target Sample
Size Evaluation

Performance

Acc. Sens. Spec. F1

2000 [61]
Discriminant analysis and

regression
imputation

VS vs. BPPV vs.
MD vs. SD vs. TV

vs. VNE
564 176 test

cases 95 95 90 -

2008 [23]

k-nearest neighbor
(k = 5)

VS vs. BPPV vs.
MD vs. SD vs
TV vs. VNE

815 10-fold CV

93.5 85.45 - -

Linear discriminant analysis 95.5 91.81 - -
K-means clustering

(k = 20) 92.9 84.83 - -

Decision trees 89.4 71.45 - -
Multi-layer perceptron

network 95.0 90.46 - -

Kohonen network 92.7 82.95 - -

2008 [31] Perceptron neural
networks

ANE vs. BPPV vs.
MD vs. SD vs. TV
vs. VNE vs. BRV
vs. CL vs. VES

815 815 95 85 83 -

2010 [62]
Naïve Bayes ANE vs. BPPV vs.

MD vs. SD vs. TV
vs. VNE

815 10-fold CV
97 90 - -

tree augmented naïve Bayes 97 89 - -
General Bayesian

network 97 91 - -

2011 [30]

k-nearest neighbor
(k = 5) ANE vs. BPPV vs.

MD vs. SD vs. TV
vs. VNE vs. BRV
vs. CL vs. VES

1030 10-fold CV

79.8 77.9 - -

One-vs.-one support vector
Machine-linear 77.4 82.4 - -

One-vs.-one k-nearest
neighbor (k = 5) 82.4 88.2 - -

One-vs.-all support vector
machines-rbf 79.4 78.6 - -

One-vs.-all k-nearest neighbor
(k = 5) 78.8 77.7 - -

2013 [65]

Half and half
Support vector
Machine-linear ANE vs. BPPV vs.

MD vs. SD vs. TV
vs. VNE vs. BRV

1030 10-fold CV

76.9 - - -

Half and half k- nearest
neighbor

(k = 9)
61.5 - - -

Half and half naïve Bayes 65.9 - - -
Multinomial logistic

regression 68.3 - - -

2014 [64]

Genetic algorithm class
weighted k-nearest neighbor

(k = 9)
ANE vs. BPPV vs.
MD vs. SD vs. TV
vs. VNE vs. BRV

951 10-fold CV
68.8 64.1 - -

Genetic algorithm One-vs.-all
weighted k-nearest neighbor

(k = 3)
79.5 74.9 - -

2016 [32]

Feed forward neural networks
ANE vs. BPPV vs.
MD vs. SD vs. TV

vs. VNE
815 5-fold CV

84 84 97 84
Grid-based SVM 91 91 98 91
Forward feature

selection-based SVM 90 90 98 90

Genetic algorithm-based SVM 92 92 98 92
Modified PSO

algorithm-based SVM 94 94 99 94

2017 [63]
Weighted one-vs-all k-nearest

neighbor
(k = 5)

ANE vs. BPPV vs.
MD vs. SD vs. TV
vs. VNE vs. BRV

1030 10-fold CV 79.7 75.2 - -
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Table 2 summarizes the results for studies done on the dataset ONE, showing the mean
accuracy (Acc.), mean specificity (Spec.), mean sensitivity (Sens.), and mean F1 score (F1)
for all target classes. The other notations used in the Table 2 are as follows: VS—vestibular
schwannoma; BPPV—benign paroxysmal positional vertigo; MD—Meniere disease; SD—
sudden deafness; TV—traumatic vertigo; VNE—vestibular neuritis; VES—vestibulopatia;
BRV—benign recurrent vertigo; CL—central lesion; ANE—acoustic neuroma.

4.2. Machine Learning Applications to Questionnaire-Based Information and Multi-Feature of
DHI and DizzyReg Dataset

Machine learning and statistical techniques applied to other questionnaires and multi-
feature databases containing relevant information about the patients’ history, vestibu-
lar test findings, symptoms, etc., have also been used for creating intelligent diagnostic
systems [21,24,33,37,39,40,43,45,67,68]. Ahmadi, S.A. et al. [21] compared machine learning
approaches on multi-feature data sets (including a standardized assessment of symptom
features, cardiovascular risk factors, and detailed quantitative testing of ocular motor,
vestibular, and postural function) vs. clinical scores such as HINTS, ABCD2 for differential
diagnosis of vestibular stroke, and vestibular neuritis. Logistic regression, random forest,
artificial neural network (ANN), and geometric matrix completion (e.g., Single or Multi-
GMC) were used where MultiGMC outperformed clinical scores. Random forest was used
to rank features based on their discriminative power to understand the diagnosis better.

Masankaran, L. et al. [33] use the DHI questionnaire to distinguish between BPPV
types. Recursive feature elimination and feature importance with extra trees classifier
selected the Gaussian naïve Bayes classifier that gave the best performance, with 73.91%
accuracy. Grözinger, M. et al. [37] used deep neural networks trained on DizzyReg [47] for
diagnosing vestibular migraine and Meniere disease in clinical practice. Strobl, R. et al. [67]
used classification and regression trees to diagnose eight different vestibular disorders
based on only eight critical variables from the DizzyReg dataset. Kim, B.J. et al. [68]
compared various classification models such as SVM, logistic regression, and random forest
Catboost to differentiate between central and non-central causes of dizziness by using
simple clinical information such as demographics, medical history, systolic and diastolic
blood pressure, and heart rate. Additionally, the Shapley additive explanations (SHAP)
value was used to explain the importance of each variable in the clinical information for
diagnosis. Exarchos, T.P. et al.’s study [24] consists of a recommendation tool to guide the
general practitioners and experts and a diagnostic model for 12 balance disorders. It uses
wrapper feature selection methods with decision trees enhanced with AdaBoost trained on
a dataset with 350 features containing detailed patient information to create 1 binary model
each for 12 different balance disorders. Richburg, H. et al. [39] suggests a survey-based
support system for diagnosing BPPV, which does not require a physician interfacing with
the software. It uses attribute selection filters and wrappers and decision trees on patient
data collected through a questionnaire. Rasku, J. et al. [45] created a computerized peer
support system for Meniere disease program that can verify and assess the diagnosis of
Meniere disease by using a pattern recognition method.

The dynamic uncertain causality graph (DUCG) [36] is a newly proposed probabilistic
graphical model, which can deal with systems with logic cycles, dynamics, and uncertain-
ties. Dong, C. et al. [40] proposes a novel diagnostic and reasoning modeling to identify
between 22 etiologies, based on investigations and relevant characteristics of vertigo using
DUCG methodology. Dong, C.-L. et al. [43] uses a DUCG based differential diagnostic
model for subtype differentiation of benign paroxysmal positional vertigo (BPPV). The
symptoms, signs, findings of examinations, medical histories, etiologies, and pathogeneses
are incorporated in both diagnostic models. They manifest higher diagnostic correctness
than other ML-based methods, good robustness to incomplete medical data, and provide a
rationale for choosing a disease.

Table 3 shows the results for studies done on other questionnaires and multimodal
databases showing mean accuracy (Acc.), mean specificity (Spec.), mean sensitivity (Sens.),
and mean F1 score (F1) for all target classes. The other notations used in Table 3 are as fol-
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lows: CV—cross validation; BPPV—benign paroxysmal positional vertigo; MD—Meniere
disease; VNE—vestibular neuritis; CL—central lesion; ANE—acoustic neuroma; VP—
vestibular paroxysmia; VM—vestibular migraine; t-BPPV—typical benign paroxysmal po-
sitional vertigo; a-BPPV—atypical benign paroxysmal positional vertigo; PPPD—persistent
postural perceptual dizziness; UPD—unilateral peripheral dysfunction; BVD—bilateral
vestibular dysfunction; AVS—acute vestibular syndrome nystagmus; UVP—unilateral
vestibulopathy; BVP—bilateral vestibulopathy, FD—functional dizziness.

Table 3. Performance of machine learning techniques on questionnaires and multi-features of DHI and DizzyReg dataset.

Year ML Algorithm Target Sample
Size Evaluation

Performance

Acc. Sens. Spec. F1

2016 [24]
Decision trees enhanced with

Adaboost and expert
knowledge

ANE vs. t-BPPV vs.
a-BPPV vs. VP vs.
VM vs. MD vs. CL
vs. PPD vs. VNE
vs. UPD vs. BVD

vs. others

985 10-fold CV 82.65 81.61 83.6 -

2018 [39] Decision tree BPPV 45 45 training
cases 92 88 95 -

2018 [33]

Gaussian naïve Bayes

BPPV 114 10-fold CV

73.91 - - 72.73
K-nearest neighbor

(k = 11) 69.57 - - 69.68

Support vector
machines—poly 65.22 - - 64.53

Random forest 65.22 - - 65.35

2020 [37]
Deep neural networks

VM vs. MD 346 10-fold CV
98.2 87.65 - -

Boosted decision trees 88.9 63.9 - -

2020 [21]
Logistic regression Vestibular stroke

vs. Peripheral AVS 40 5-fold CV
52 - - -

Multi-geometric matrix
completion 82 - - -

2021 [68]

Support vector machine
Central vs.
non-central
dizziness

3116 1310 test
cases

- 99.2 11.6 -
Logistic regression - 99.2 6.8 -

Random forest - 99.2 6.0 -
Catboost - 100 4.6 -

2021 [67] Classification and
regression trees

MD vs. BPPV vs.
VM vs. UVP vs.

BVP vs. VP
1066 10-fold CV 42.2 - - -

4.3. Machine Learning Applications to Nystagmus and Vestibulo-Ocular Reflex (VOR) Tests

Nystagmus is defined as an involuntary rapid and rhythmic movement of the eyeball
and is often associated with vertigo. Amine, B.S. et al. [29] proposed a videonystagmog-
raphy (VNG)-based machine learning approach to identify vestibular neuritis. These
investigators video recorded nystagmus, used a pupil tracking algorithm to measure
nystagmus metrics, and then used Fischer criteria for feature selection and SVM for classifi-
cation, which gave classification results higher than K-nearest neighbor and artificial neural
networks with an accuracy of 94.1%. BPPV can affect any one of the three semicircular
canals, but most often affects the posterior or horizontal canal which can be identified with
nystagmus patterns. Lim, E.C. et al. [35] used a deep learning model trained on extracted
image data from nystagmus videos induced by positional tests to classify the affected
canal in BPPV patients. More recently, a novel deep learning based framework involving
convolutional neural networks was introduced for automatic detection of torsional up
beating nystagmus of PC BPV from nystagmus videos [38]. When tested on a clinically
collected torsional nystagmus video dataset, the method showed promising results in
frame-level identification of torsional motion and final torsional nystagmus segment local-
ization, which can help clinicians improve their diagnostic accuracy. Juhola M., et al. [25]
used a signal analysis technique on video head impulse tests which assess the vestibulo-
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ocular reflex to differentiate healthy subjects from those with vestibular loss affecting the
semicircular canals. These investigators sought to separate controls from acoustic neu-
roma and used KNN, linear discriminant analysis, naïve Bayes, SVM, k-means clustering,
MLP network, Kohonen network, and decision trees, with decision trees yielding the best
accuracy of 89.8%.

Table 4 shows the results for studies done on nystagmus data showing mean accuracy
(Acc.), mean specificity (Spec.), mean sensitivity (Sens.), and mean F1 score (F1) for all
target classes. The other notations used in the Table 4 are as follows: CV—cross validation;
VNE—vestibular neuritis; ANE—acoustic neuroma; PC-BPPV—posterior canal benign
paroxysmal positional vertigo; HC-BPPV—horizontal canal benign paroxysmal positional
vertigo; T-BPPV—torsional canal benign paroxysmal positional vertigo.

Table 4. Performance of machine learning techniques on nystagmus and vestibulo-ocular reflex tests.

Year ML Algorithm Target Sample
Size Evaluation

Performance

Acc. Sens. Spec. F1

2008 [25]

K-nearest neighbor (k = 5)

ANE 44 10-fold CV

87.7 79.2 94.2 -
Linear discriminant analysis 87.6 81.1 92.5 -

Quadratic discriminant analysis 87 84.9 88.6 -
Naïve Bayes 88.3 82.7 92.5 -

K-means clustering (k = 2) 85 78.2 90.2 -
Decision trees 89.8 83.6 94.7 -

Multi-layer perceptron networks
(16 hidden nodes) 88.8 82.9 93.4 -

Kohonen networks 7 × 7 nodes 87.6 78.9 94.2 -
support vector machines (radial) 89.4 82.7 94.6 -

2019 [29]
K-nearest neighbor

VNE 60 5-fold CV
85.3 86.5 87.6 -

Artificial neural network 86.8 88.3 89.5 -
Fischer-support vector machine 94.1 93.2 95.9 -

2019 [35] Convolutional neural network
PC-BPPV vs.
HC-BPPV vs.

T-BPPV
3457 10-fold CV - 80.8 97.1 79.4

2021 [38] Convolutional neural network T-BPPV 8000
8:2

Train–Test
Split

85.7 78.9 - 81.0

4.4. Machine Learning Applications to Posturography and Gait Features

To diagnose disorders related to human balance systems, clinicians sometimes use
methods of recording body sway. Machine learning techniques applied to posturography
and gait analysis parameters could potentially aid the diagnosis of balance disorders.
Pradhan, C. et al. [26] used pattern recognition techniques on posturography and spa-
tiotemporal gait data of 150 samples acquired on a gait mat to identify gait disorders.
SVM and ANN differentiated the gait patterns with higher sensitivity and specificity com-
pared with KNN and NB. SVM reported highest results with 93% sensitivity and 97%
specificity. Ahmadi, S.A. et al. [27] used static posturography signal patterns for automatic
classification into eight disorders, including Parkinson’s disease, phobic postural vertigo,
acute vestibular syndrome, and cerebellar disorders. KNN, SVM, ANN, logistic regression,
random forest, and extra forest were used for classification where extra forest performed
better than others. An ensemble method (stacking classifier) combining all these classi-
fiers gave the best performance. The t-distributed stochastic neighbor embedding (t-SNE)
technique was used to plot the data into two dimensions that showed clear clusters of
diseases. Ikizoglu, S. et al. [28] compared two feature selection techniques (T-test and
sequential backward selection) and two feature transformation techniques (principal com-
ponent analysis and kernel principal component analysis with Gaussian and polynomial
kernels) for dimensionality reduction on data obtained from dynamic posturography to be
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used with SVM. Feature transformation techniques resulted in more accurate models, and
dimensionality reduction helped in reducing the computation time.

Heydarov, S. et al. [22] compared SVM, SVM with Gaussian kernel, and decision
tree on gait data to classify vestibular system disorders and found SVM with Gaussian
kernel to perform better than others. Krafczyk et al. [69] used ANN to classify four
neurological and vestibular disorders, based on static posturography characteristics with
high overall sensitivity. Zhang et al. [48] proposed an SVM-based method for determining
gait disturbances of BPPV by collecting data in clinical settings with the help of wearable
accelerometers. The data was collected from 27 outpatients and 27 healthy subjects by
observing different temporal–spatial and gait-specific variables while they walked wearing
the sensor. The data collected was used for training SVM with a linear kernel with 5-fold
cross-validation. This study suggested that wearable technologies are an excellent source
for collecting data that can be used to train ML models for diagnosing vertigo and related
illnesses. Such technologies, interfaced with smart devices, are easier to integrate within
users’ everyday routines and collect information at regular intervals. They reduce the
need of clinical tests, offering the users a remote environment to record their health data.
Kamogashira, T. et al. [70] used ensemble algorithms such as gradient boosting classifier,
bagging tree on center of pressure (COP) sway during foam posturography measured from
patients with dizziness, to predict vestibular dysfunction. Gradient boosting achieved
82% sensitivity followed by random forest and logistic regression with 81% and 78%
sensitivity, respectively.

Table 5 shows the results for studies done on posturography and gait data showing
mean accuracy (Acc.), mean specificity (Spec.), mean sensitivity (Sens.), and mean F1
score (F1) for all target classes. The other notations used in the Table 5 are as follows:
VNE—vestibular neuritis; ANE—acoustic neuroma; PPV—phobic postural vertigo; CA—
cerebellar ataxia; BV—bilateral vestibulopathy; PSP—progressive supranuclear palsy;
OT—orthostatic tumor; DN—downbeat nystagmus; AVS—acute unilateral vestibulopathy;
PD—Parkinson’s disease; PNP—poly-neuropathy.

Table 5. Performance of machine learning techniques on posturography and gait features.

Year ML Algorithm Target Sample
Size Evaluation

Performance

Acc. Sens. Spec. F1

2006 [69] Artificial neural network PV vs. CA vs.
VNE 60

60
validation

cases
- 93 93 -

2015 [26]

Artificial neural network
PPV vs. CA vs.

PSP vs. BV
150 10-fold CV

- 90.6 96.1 -
Support vector machine - 93 97 -

K-nearest neighbor - 73.3 92.3 -
Naïve Bayes - 77 93.8 -

2017 [22]
Support vector machine Vestibular

system disorders
vs. healthy

18 5-fold CV
75 - - -

Support vector machine with
Gaussian kernel 81.3 - - -

Decision tree 62.5 - - -

2019 [27]
K-nearest neighbor OT vs. PPV vs.

CA vs. DN vs.
AVS. vs. PNP

293 50-fold CV
64.5 - - -

Extra forest 80.7 - - -
Stacked classifier 82.7 - - -

2020 [28]
Support vector

machine–polynomial
Vestibular

system disorders
vs. healthy

37 - 81.0 - - -

Support vector
machine–Gaussian 89.2 - - -

2020 [70]

gradient boosting
classifier

Vestibular
dysfunction vs.

healthy
238 5- fold CV

- 82 - -

Logistic regression - 78 - -
Random forest - 81 - -
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5. Discussion and Potential Directions

Could the integration of artificial intelligence into medical diagnosis significantly im-
prove the speed and accuracy of diagnosing vestibular disorders? The answers are unclear
for several reasons, as follows: (1) Investigators have sometimes sought to answer a given
diagnostic question without using the highest yield data (for example, diagnosing BPV
with a questionnaire or with posturography, when nystagmus profiles provide the answer).
(2) Seeking to separate large numbers of disorders rather than a few differential diagnoses
for a single presentation. (3) Modern laboratory tests that diagnose specific vestibular
disorders (vHIT for vestibular neuritis [71], ictal nystagmus for Meniere disease [72], VEMP
for superior canal dehiscence [73]) have not been used in ML endeavors. The merits of in-
creased AI usage in medical diagnosis include the following: (1) bringing machine learning
expertise where human expertise is unavailable; (2) reducing manual tasks and the freeing
up of a given physician’s time; (3) increasing efficiency and productivity by providing a
scalable application.

Kim, B.J. et al. [68] applied ML algorithms on simple clinical information such as demo-
graphics and medical histories, obtained at early stages or emergency centers, can perform
a differential diagnosis for vertigo disorders. Such algorithms, once optimized, could assist
non-expert physicians treating vertigo in the frontline. There is a scope of using embedded
systems with trained ML models to help in the early diagnosis of acute vertigo. Attribute
weighting and selection methods, Bayesian networks, dynamic, uncertain casualty graphs,
decision trees, and random forests can help assess the relative importance of attributes for
disease classification [40,43,62]. Lim, E.C. et al. [35] suggest the possibility of using a deep
learning architecture embedded on any device that can record eye movement to classify
nystagmus types into subtypes of BPPV directly. Filippopulos et al. [74] suggests using
an AI-based, computerized clinical decision support system with an easy-to-use mobile
application and systematic expert support to improve diagnostic accuracy and outcomes
of patients presenting with acute vertigo syndromes in primary care.

Existing studies that have utilized machine learning algorithms have highlighted the
limited availability of large-size clinical datasets [39,46]. Small sizes of clinical datasets and
missing values in clinical records, such as demographics, medical history, and results from
clinical tests tend to reduce the performance of machine learning algorithms. Training on
large clinical datasets is imperative for machine learning models to yield robustness and
high classification results. High-dimensional data with multiple types of features such as
demographics, patients’ medical histories, several clinical test results, increases the search
space, and algorithmic computation time. Various irrelevant features that do not contribute
as an identification factor of a disease among such high-dimensional data need to be
identified and excluded to reduce the feature-set dimension. Few studies have focused on
feature extraction and feature transformation methods to reduce the feature-set dimension,
achieving increased classification accuracy, also preventing overfitting [23,28,29]. The
machine learning techniques in existing literature provide an automated procedure for
disease prediction by interpreting complex clinical data, mainly resorting solely to model
selection and parameter determination. It is important to focus on the underlying patho-
genesis and pathophysiology instead of solely relying on machine learning classification
models. Future studies should consider merging the intelligent diagnostic system with the
physician’s interpretation in clinical medicine.

The studies suggest that there is a need to develop a decision support system (DSS)
that can cover a wide range of vertiginous diseases [39,45,68], which should be able to
collect the input data into a database that may be later used to retrain models and improve
accuracy. Figure 3 illustrates the suggested model of such a decision support system for
disease diagnosis. The AI algorithm of the system maps the input data to the most plausible
diagnosis. An ensemble of different machine learning models should work better than
individual classifiers for predicting the disease. The DSS should also handle cases with
incomplete clinical evidence either through extrapolating from the previous database or
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using methods capable of working with incomplete inputs, thereby achieving robustness
and higher accuracies in vertigo classification.
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6. Conclusions

Vertigo is a common symptom arising from many etiologies, ranging from benign
to potentially severe. This paper summarizes the use of modern artificial intelligence
techniques in the differential diagnosis of acute vertigo. Despite the long history of using AI
for neuro-otological diagnoses, a superior diagnostic support system has not yet emerged.
Publicly available datasets of patients with diverse vertigo presentations and the results of
their interrogation with new, widely available audiovestibular tests are likely to encourage
future researchers to undertake much-needed work in this domain.
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