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Abstract: For large-scale dome structures subjected to earthquake ground motions, the need for accurate and 

efficient approaches that account for uncertainties in design, material properties, loads, damping, and 

manufacturing processes has grown significantly. In uncertainty analyses, the theory of probability, uncertainty 

quantification, and reliability analysis approaches are commonly used. However, because of computing efficiency 

and capability, the space scale of dome structures is severely limited. As a result, the complex dynamic reliability 

issues that super large-scale dome structures face during earthquakes have not been thoroughly investigated. The 

uncertainties of the dynamic demands of a super large-scale lattice dome with multiple variables are quantified 

using a novel stochastic finite element method (SFEM) with nonlinear time-history analysis developed in this 

paper. The dynamic reliability problems are investigated using the efficient Latin Hypercube sampling (LHS) 

technique to reduce the number of repeated time-consuming calculations. To improve the efficiency and accuracy 

of the analysis, an optimization approach based on the genetic algorithm (GA) is used to obtain the probability of 

structural failure and the reliability index. The results show that these methods are efficient for super large-scale 

structures. A sensitivity analysis based on variable randomness is conducted to further evaluate the effects of 

unknown variables on structural performance using various evaluation methods. The stochastic finite element 

modelling is incorporated into the nonlinear dynamic time-history analysis of larger-scale systems to address 

engineering reliability issues. 

Key words: super large-scale dome; uncertainty; Latin Hypercube sampling; genetic algorithm; seismic 

performance 

 
1．Introduction 
  The core of performance-based seismic engineering (PBEE) is to accurately predict structural 
seismic performance [1]. Nevertheless, it is important to note that almost all of the parameters in 
practical structures have uncertain characteristics due to aleatory randomness and epistemic errors. 
These uncertain parameters are divided into two categories: the low level and the high level 
uncertainties [2]. The low-level uncertainties are concerned with the stress-strain relationships of the 
materials or the force-deformation relationships of the members, while the high-level uncertainties are 
concerned with structural systems such as the structural shape, structural imperfections, structural 
damping characteristics, and loads. The estimation of structural seismic performance is complicated by 
these uncertain variables. 
  Several previous studies [3-5] have shown that when various sources of uncertainty are considered, 
the accuracy of structural performance assessments can be significantly improved in the nonlinear 
seismic response of structures. There are a few methods to address the effects of uncertain sources on 
structures. In the traditional assessment method known as load and resistance factor design (LRFD), 
various uncertainties in a structure are taken into account by reducing resistance parameters and 



magnifying loadings to ensure structural safety. This type of evaluation method is usually deterministic 
in nature. Deterministic methods have been used for structural studies for a long time. Although the 
deterministic strategy can ensure structural safety with high reliability, it is imprecise and cannot 
disclose the true seismic performance of structures because it cannot explicitly model uncertainties of 
variables. 
  Dealing with uncertainty by introducing probability theory, which can describe the properties of 
variables [3], is an important and advanced analysis method. Researchers and engineers have been 
paying closer attention to structural probabilistic analysis (SPA) in recent years. The SPA is able to 
evaluate structural seismic performance with greater robustness, higher precision, and less conservative 
estimates than conventional evaluation methods [2]. Furthermore, by determining whether the limit 
state function is exceeded, probabilistic structural analysis can evaluate the probability of structural 
failure. As a result, deterministic evaluation methods based on the LRFD strategy can be greatly 
improved. 
  As early as more than three decades ago, Cruse and Wu et al. [6] reported an advanced algorithm for 
simulating the probabilistic distribution of structural responses due to statistical uncertainties in loads, 
geometry, material properties and boundary conditions. Uncertainty analysis (UA) and probabilistic 
analysis for the evaluation of structural performance have gained more attention in the last two decades 
[7]. Matthies et al. [8] addressed the new techniques in stochastic modelling in depth for uncertain 
variables involved in structural analysis using stochastic finite element methods. Taking into account 
the variability of geometric shapes, Haukaas and Scott [9] suggested a unified and systematic treatment 
method for variations of the nodal coordinates and global shape parameters of inelastic frame structures. 
Zhang et al. [10, 11] developed an interval Monte Carlo method that combined a simulation process 
with interval analysis and predicted the probabilities of failure of planar steel structures. Considering 
uncertainties in both material properties and static loads, Le and Xue [12] calculated the occurrence 
probabilities of various damage degrees of planar frame structures. Liel and Haselton [13] used the 
response surface and first-order second moment (FOSM) methods to perform detailed probabilistic 
collapse risk assessments of frame buildings, taking into account uncertain parameters such as 
structural component strength, stiffness, deformability, and cyclic deterioration. Other typical studies of 
probabilistic analyses of structures with variables have been reported [14-17]. 
  In SPA, the sampling technique plays an important role. For probabilistic evaluations, direct Monte 
Carlo sampling is not efficient, particularly when the failure probability is low. However, due to its 
universal applicability, it is only used as a last resort if no other alternatives are available. To improve 
the efficiency of probabilistic structural analysis, several probabilistic methods and algorithms have 
been developed in recent years. Zhang et al. [18] introduced a new structural reliability quantification 
method based on random variables, and the reliability of simple structures was evaluated using the 
developed probability-uncertainty hybrid model. Jiang et al. [19] proposed a hybrid uncertain 
model-based reliability analysis methodology for uncertain structures. Králik [20] used Monte Carlo 
(MC), importance sampling (IS), Latin hypercube sampling (LHS), and response surface methods to 
conduct probabilistic analyses for a high-rise building in static situations and discussed the advantages 
and drawbacks of these methods. Hariri-Ardebilia and Sudret [21] applied the polynomial chaos 
expansion (PCE) to the uncertainty quantification of dam structures with variables, and it was found 
that the PCE is an effective technique for uncertainty quantification in concrete dams. Wang et al. [22] 
proposed an extremum kriging method (EKM) with a multi-population genetic algorithm (MPGA) to 
improve the computational efficiency of dynamic probabilistic analysis for complex structures. 



Additionally, Cui and Sheng [23] presented a genetic algorithm (GA) method that was integrated into 
the displacement finite element method for probabilistic failure analysis of geotechnical structures, 
indicating that GA offers new opportunities for probabilistic finite element analysis of engineering 
structures. To keep the computational effort acceptable in reliability analysis, adaptive techniques 
based on artificial neural networks (ANNs) were proposed using surrogate models [24, 25]. In essence, 
the above methods are approximate and data-driven, only the input-output behaviour is important and 
the system is assumed to be a black-box structure; however, the number of samples is also important 
since a small number of samples cannot completely reflect the properties of the structure system. This 
problem can now be solved with a large sampling size due to the development of high-performance 
computing. Evidently, structural reliability analysis still relies on probabilistic estimates with a 
sufficient sample size. Furthermore, the studies described above are more focused on the global 
sensitivity analysis of structural systems, and these methods have drawbacks in engineering 
applications when considering the randomness at the local level. 
  Although nonlinear time-history analysis (NTHA) has been widely used for estimating dynamic 
demands and structural seismic performance in PBEE frames and the use of SPA methods in 
combination with NTHA may enhance the evaluation of structural seismic performance and ensure 
structural safety, most researchers consider that performing dynamic probabilistic analysis is extremely 
time-consuming. As a result, ²static equivalent² methods for dynamic analysis have been developed to 
reduce the computational burden caused by structural complexity. However, for real-world structures, 
combining SPA with NTHA is important because it accurately explains real-world structural 
performance during earthquakes. Furthermore, probabilistic structural dynamics provides unparalleled 
tools for evaluating uncertainties in structural design, and it may eventually replace traditional 
deterministic analysis approaches.  
  Structural reliability research is currently emerging in the areas of structural dynamic reliability, 
structural fatigue reliability, structural fracture reliability, structural system reliability, structural 
optimization design based on reliability, and generalized reliability with fuzzy factors [26, 27]. 
However, current research on structural reliability is based on simple structures and component levels, 
and the dynamic reliability for complex full-scale structures during earthquakes has not been 
extensively investigated.  

In this paper, a stochastic finite element method (SFEM) is developed using the probabilistic 
principle and the finite element method to understand the performance of structures with variables. The 
structural dynamic reliability analysis of a super large-scale lattice dome is carried out based on the 
SFEM. Highly efficient LHS methodology, parallel computing, and genetic algorithms (GAs) are 
implemented in dynamic reliability analyses to improve computational efficiency and accuracy. Finally, 
different evaluation indices are used to measure the effects of variables on structure performance. 
2．Uncertainty modelling 
2.1 Quantification of uncertainty 
  Quantifications of uncertainties in engineering structures are usually expressed as a probability 
distribution, which indicates how likely each possible value is. The most common form of distribution 
in engineering is the normal distribution is, as shown in Fig. 1. The value range of variable 𝑋 can be 
expressed by Eq. (1), 

𝑋 ∈ {𝜇 − 𝑐𝜎, 𝜇 + 𝑐𝜎}                               (1) 
where 𝜇 and 𝜎 represent the mean and standard deviation of the variable 𝑋, respectively, and 𝑐 is 
the scale factor of 𝜎. Low probability events are classified as those with a probability of less than 5%, 



according to hypothesis testing theory. According to the “3-sigma” principle, the odds of variable 𝑋 
being the intervals of {𝜇 − 3𝜎, 𝜇 + 3𝜎} and {𝜇 − 2𝜎, 𝜇 + 2𝜎} are less than 3‰ and 5%, respectively. 
Since it is considered that events with a probability of 3‰ do not occur in realistic structural 
engineering, the interval {𝜇 − 3𝜎, 𝜇 + 3𝜎} can be considered the potential interval of the random 
variable 𝑋. The true interval for engineering issues can be even smaller due to engineering quality 
control and assurance. In probabilistic models, the ranges of the potential values of the variables should 
be carefully considered. Truncated distribution functions are used to model the distribution 
characteristics of the variables in this paper.  

 
Fig. 1 Probability density function (PDF) of the normal distribution 

2.2 Uncertainty modelling methods 
The main sources of uncertainty for large-scale domes have been established [17], which includes 

the elastic modulus 𝐸, yielding strength 𝑓!, and strain-hardening ratio 𝑏 at the material level and 
several uncertain parameters at the structural level, such as various structural shape imperfections, the 
wall-thickness of member 𝑡", the structural damping ratio x, and internal loads 𝑚. External excitation 
is a special form of uncertainty source. Previously, probabilistic analysis was conducted on structures 
with just a few uncertain parameters; however, it has not been widely applied to structures with all of 
the variables listed above. 

 
Fig. 2 Uncertainty modelling	

Fig. 2 shows the modelling details for the uncertainties of the 𝑛#$ member in a structure, where 
{∆𝑅%,'} is the node error vector of the member. The literature [17] offers more modelling information 
for this uncertain source, and this paper follows the simulation method suggested in this reference. The 
coordinate error vector {∆𝑅(} = {∆𝑥( + ∆𝑦( + ∆𝑧(} of the span-middle node 𝑘 is used to model the 
initial imperfection of a member. However, unlike previous modelling methods, this paper assigns the 
values of each low-level variable and the wall-thickness parameter to each member, making each 
member unique. According to equivalence, internal loads are treated as an uncertain node mass 𝑚, 
resulting in an uncertain static node load. The entire structure is assigned an uncertain damping ratio, 
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and the uncertainty of the external excitations is realized by taking into account the uncertainties of the 
three-directional amplitudes of the excitations. 

The classical deterministic finite element method is extended to SFEM in this paper based on the 
above modelling technologies for uncertainties. SFEM has received considerable attention because of 
the tremendous growth of computing capacity over the last 20 years. Direct modelling of structures 
with multiple variables is a major challenge in SFEM. Most commercial finite element programs 
currently available cannot perform finite element analysis of stochastic structures in the true sense, and 
what they can do is more analogous to a global sensitivity analysis of structures. However, the methods 
and compiled program provided in this paper can solve this problem, and the study of stochastic 
structures with variables can be realized, including the external time-history loads. 
3．Structural reliability estimation 
3.1 Structural reliability 

Structural reliability is a quantitative index that is used as a probabilistic measure of structural safety 
and is currently a popular design philosophy. When loads and resistances are explicit and have their 
own independent function, the probability of failure can generally be expressed as follows [6],  

𝑃) = 𝑃(𝑔(𝑋) < 0) = ∫ 𝑓*(𝑥)F+(𝑥)
,
-, 𝑑𝑥 = ∫ F*(𝑥)

,
-, 𝑓+(𝑥)𝑑𝑥             (2) 

where 𝑃)  is the probability of failure, 𝑔(𝑋)  is the failure function, 𝑓*(𝑥)  and 𝑓+(𝑥)  are the 
probability density functions of load effects and resistance, respectively, and F*(𝑥) and F+(𝑥) are 
the corresponding cumulative distribution functions. The integral of Eq. (2) can only be solved 
analytically for simple cases; for complicated cases, the function expressions are not actually clear, and 
analytical solutions are difficult to obtain. The probability of failure can be determined using a 
sampling simulation. 
  The reliability index 𝛽  is widely used in engineering to define structural safety. The failure 
probability can be used to measure the reliability index 𝛽 by a normally distributed limit state function, 

                       𝛽 = −F-.(𝑃))                                  (3) 

where F is the standardized normal cumulative distribution function.  
3.2 Sampling method 

In a Monte Carlo simulation, Latin hypercube sampling (LHS) is a variance reduction technique for 
generating random samples of parameter values. It can save computing time in Monte Carlo 
simulations by significantly reducing the number of runs needed to obtain a fairly accurate result. It has 
been reported that this method can reduce the computing time by up to 50% compared to regular Monte 
Carlo sampling [20]. Furthermore, by using a simple sampling method to generate random samples, the 
data may be over-aggregated, while the LHS method can avoid this case. The standard LHS steps are 
as follows [28], 
� The number of generated samples, 𝑁, is defined first in LHS. 

  � According to the uniform distribution, the interval [0, 1] is divided into 𝑁 equal small intervals, 
and a random value 𝑝/,0 is generated in each interval of [𝑖/𝑁, (𝑖 + 1)/𝑁], as shown in Fig. 3. Each 
value represents the cumulative probability for the stochastic value of a variable. This value is equal to 
(𝛿 + 𝑖)/𝑁, where 𝛿 is a random value with a uniform distribution. 𝛿 and 𝑖 are in the ranges of 
[0, 1] and [0, 𝑁 − 1], respectively. 
  �The 𝑁 random values are sorted at random.  
�Using the above 𝑁 random values, the inverse function of the unique probability distribution 

function 𝐹-.(·) is used to generate 𝑁 values of the variable. 



The LHS in this paper can better explain the distribution characteristics of variables and improve 
modelling and computational simulation. The random value 𝑝/ is set to 𝑖/(𝑁 − 1), where 𝑖 is within 
the range of [0, (𝑁 − 1)]. The maximum, minimum, and other values of the variable can be obtained 
in this manner. Fig. 4 provides a comparison of the above two methods for probability density 
functions using a sample size of 320. The current method fully fits the real curve and presents the 
probability characteristics of the variable, while the conventional method cannot obtain values 
corresponding to a small probability density. 

  
            Fig. 3 LHS method                      Fig. 4 A comparison of two methods 

3.3 Advanced optimization methods for PDFs of structural demands 
For practical engineering problems, sufficient sampling structures are not always usable, and 

obtaining them can be difficult and time-consuming with a large sample size. The sampling method 
must be effective enough under the condition of a finite sample size, as described in Section 3.2 and 
illustrated in Fig. 4, and the LHS method completely explains the probability properties of variables 
with a small sampling size. However, numerical fitting techniques with high precision are needed to 
optimize the PDF and cumulative probability function (CDF) based on discrete demand values 
obtained from a finite sample size.  

The generalized extreme value (GEV) distribution, which is commonly used in ecology, hydrology, 
engineering, climate, and finance [29, 30], is a well-accepted optimizing model for PDFs and CDFs. 
The GEV distribution is defined as [31], 

𝑓(𝑥) = .
1
𝑡(𝑥)(2.𝑒𝑥𝑝	(−𝑡(𝑥))                         (4) 

where 

𝑡(𝑥) = O
(1 + 𝑘 3-45

1
)-./(					𝑖𝑓	𝑘 ≠ 0

𝑒𝑥𝑝	(− 3-45
1
)											𝑖𝑓	𝑘 = 0

                      (5) 

and 𝑘, 𝑚𝑢, 𝛿 are the shape, location, and scale parameters, respectively, and R1 + 𝑘 3-45
1
S must be 

greater than zero. The cumulative distribution function is defined as follows [31]: 
𝐹(𝑥) = 𝑒𝑥𝑝(−𝑡(𝑥))                             (6) 

The genetic algorithm (GA) is considered in this paper to carry out the optimization for the obtained 
PDFs using the GEV probability model to further improve the optimization accuracy. GA is a machine 
learning search technique inspired by the process of natural selection that belongs to the larger class of 
evolutionary algorithms (EAs). GAs rely on biologically inspired operators such as mutation, crossover 
and selection to produce high-quality solutions to optimization and search problems. Further 
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information about GA can be found in the literature [32]. The steps for GA to improve PDFs are as 
follows, 
�The discrete values of the structural demands are obtained through dynamic analyses of the 

sampling structures using SFEM. 
�The GEV model is used to fit the PDF based on the calculated histogram shape of the structural 

demand. 
�A fitness function is designed to optimize the unknown parameters in the GEV model. 
The selection of the fitness function in GA has a direct effect on the convergence rate of GA; as a 

result, the fitness function should be as simple as possible to reduce calculation complexity. The fitness 
function for the PDF in this paper is designed as follows,  

∆𝑦 = (∑ 𝑎𝑏𝑠(𝑦),% − 𝑦7,%))/𝑛8
%9.                         (7) 

where ∆𝑦 is the value of the fitness function, 𝑦),% and 𝑦7,% are the 𝑖#$ fitting value and real value, 
respectively, and 𝑛 is the number of data points to fit. The constraint function is written as follows, 

1 + 𝑘 3-45
1

> 0                               (8) 

The values of the essential parameters in the GA are summarized and listed in Table 1 based on 
experience from a wide body of literature. The unknown variables in Eqs. (4) and (5) are optimized in 
this paper based on the results. 

Table 1 Values of important parameters in the GA. 

Parameter PopulationSize 

 

CrossoverFraction 

 

MigrationFraction 

 

Generations 

 

TolFun 

 Common case [20, 100] [0.4, 0.99] [1e-4, 0.1] [100, 500] 1e-50 
Current work [40, 60] [0.7, 0.8] [0.04, 0.09] [200, 400] 1e-50 

  The predictive squared correlation coefficient (𝑄:) is used as an evaluation criterion to compare the 
fitting performance of different methods. The expression for 𝑄: is as follows [33], 

𝑄: = 1 −
∑ (!!,#-!$,#)
#%&
#%'

(

∑ (!!,#-!>!,#)#%&
#%'

(                            (9) 

 

Fig. 1 Fitness value in a typical GA optimization 

𝑦),% should be equal to 𝑦7,% for perfect fitting in the PDF. The value of 𝑄: varies from -1 to 1, and 
the higher the value of 𝑄:, the better the fitting effectiveness. Models with a value greater than 0.8 
have a high goodness-of-fit. As shown in Fig. 5, in typical GA optimization for a PDF, the fitness tends 
to improve as the iteration continues. This happens quickly at first and then gradually slows down as 
the algorithm finds better solutions that are more difficult to improve. 
4．Numerical analysis 
4.1 Numerical model 
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  The effectiveness of the above methods for determining the structural dynamic reliability is 
demonstrated using a super large-scale Kiewitt (K6) single-layer lattice dome with welded joints. Some 
of the design parameters are taken from the literature [34]. The structure has a 300-metre span-length 
and a 45.21-metre height. It is made of seamless steel pipes with inner and outer radii of 0.4452 m and 
0.4572 m, respectively. The structure has 331 welding connections and 930 members. 

Using the OpenSeesPy program, a three-dimensional finite element model of the perfect dome is 
shown in Fig. 6. This paper, unlike previous studies, uses a parameterized modelling mode. Every steel 
pipe is divided into two displacement-based beam-column elements to model the initial imperfections. 
There are 1261 nodes and 1860 elements in the finite element model. The cross section of the steel pipe 
is dispersed into 20 and 3 fibres in the circumferential and radial directions, respectively. In this paper, 
the torsion effect of the cross section is considered. Steel fibres have a bilinear stress-strain material 
property. The uniform roof mass is concentrated to the nodes of the finite element model based on mass 
equivalence. The positions of certain members are marked in Fig. 6 for the output of the axial force. 

 
Fig. 6 Finite element model 

4.2 Variables 
Uncertain parameters are listed in Table 2. The stochastic variability of the low-level parameters, 

such as the elastic modulus, yield strength, and strain-hardening ratio of steel material, as well as the 
stochastic variability of the high-level parameters, such as the node error, member imperfection, 
wall-thickness of the steel pipes, node load (mass), structural damping ratio, and acceleration 
amplitudes of earthquake ground motions, are included in the structural reliability analysis. 
Uncertainties of ground motions are complex, and only the variability of acceleration amplitudes 
(aleatoric uncertainty) is taken into account in this paper. Most engineering variables obey truncated 
normal distributions according to the literature [35-42]. Thus, variable intervals can be described in the 
range of 𝜇 ± 𝑐𝜎, and the cases of 𝑐 = 1, 2, 3 are discussed. Furthermore, these variables are assumed 
to be independent. Figs. 7-9 show the histograms, PDF curves, CDF curves, and fitted curves for the 
variables in Table 2, in which the sampling size is 320 and the constant 𝑐 is equal to 3. The fitted 
curves are completely compatible with the real curves, and the sample size of 320 fully reflects the 
stochastic characteristics of the variables. Thus, the sample size of 320 is adequate for evaluating the 
variables. 

Table 2 Variables for dynamic reliability analysis [35-42] 

Level Variable (𝑿) Mean (𝝁)  Sd (𝝈) Bound Distribution 

Low-level 

uncertainties 

Elastic modulus, 𝐸/Pa 𝜇=2.06e11  0.04× 𝜇  

{𝜇 − 𝑐𝜎, 𝜇 + 𝑐𝜎} 
𝑋!~𝑁𝑜𝑟𝑚(𝜇, σ) 

(Truncated) 

Yield strength, 𝑓"/Pa 𝜇 = 235𝑒6    0.1× 𝜇  

Strain-hardening ratio, 𝑏 𝜇 = 0.015 0.2× 𝜇  

High-level Node error (x, y, or z), 𝑁#$$/m 0 0.013 
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uncertainties Member imperfection (x, y, or z), 𝑀%&'/m 0 𝑙/5196  

Wall-thickness of the steel pipe, 𝑡(/m 𝜇 = 0.012 0.067× 𝜇  

Node load, 𝑁)/kg 𝜇 = 10193.7 0.1× 𝜇  

Damping ratio, x 𝜇 = 0.02 0.3× 𝜇  

Scale factor (earthquake), 𝑺𝒇 𝝁=𝒈 0.1× 𝝁  

 
Fig. 7 Material parameters 

 
Fig. 8 Structural imperfections 

 
Fig. 9 Nodal mass, damping ratio, and scale factor 

  The damping ratio is the most discrete variable in Table 2. The effects of different sample sizes on 
stochastic properties are discussed in this paper based on this variable, as shown in Fig. 10. In the fitted 
PDF curves, the effects of the sample size on the stochastic and statistical properties are noticeable, 
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particularly in the extreme value regions. A sample size between 300 and 400 is considered to be the 
most appropriate since sample sizes greater than 300 have no effect on the stochastic and statistical 
properties. 

 
Fig. 10 Statistical properties under different sampling sizes 

Because of the effect of uncertainty propagation in a structural system, the number of sample 
structures should be greater than that of the variables. The following is an empirical formula for the 
minimum number of samples [43], 

𝑁 ≈ 𝑍?/::𝐶𝑜𝑣: ℎ:⁄                               (10) 
in which 𝑍?/:  is the reliability coefficient; the values of 𝑍?/:  are equal to 1.96 and 1.645, 
respectively, when the confidence levels are 95% and 90%; 𝐶𝑜𝑣 is the variation coefficient; and ℎ is 
the relative sampling error. The relative sampling error, as listed in Table 3, can be used to measure the 
sample size using Eq. (10). Table 3 shows that increasing confidence and coefficient of variation, as 
well as decreasing relative error, results in a larger sample size. In engineering, a confidence level of 95% 
is generally considered, and a relative error of less than 2% is appropriate.  

Table 3 Relationship between the confidence level and the relative sampling error 

Variation coefficient Confidence level 
Error 

1% 2% 3% 4% 5% 

0.3 
95% 3457 864 384 216 138 

90% 2435 609 270 152 97 

0.1 
95% 384 96 43 24 15 

90% 271 68 30 17 11 

4.3 Structural failure 
The structural instability in single-layer domes denotes structural failure. Overall dynamic instability 

and local dynamic instability are two forms of dynamic instability. The concaveness in a particular 
region of the dome is referred to as a local instability. Local dynamic instability typically occurs before 
overall dynamic instability. The overall dynamic instability occurs as the area of local dynamic 
instability continues to expand, and the structure collapses. A single-layer dome is typically more 
vulnerable to buckling than a double-layer dome. As a consequence, the deformation can be used to 
monitor the dynamic instability of the dome. According to a Chinese industry standard [37], the 
maximum vertical deflection of a dome is limited to 1 𝑛@⁄  of its span-length; thus, the structural 
failure function 𝑔(𝑋) can be written as, 

𝑔(𝑋) = 1 𝑛@a × 𝐷 −𝑚𝑎𝑥	{𝑑%,A,4B3 d
𝑖 = 𝑛𝑢𝑚
𝑖 = 1 }                    (11) 

where 𝑛@  is a constant, 𝐷  is the span-length, 𝑑%,A,4B3  is the maximum deformation in the 
time-history series of vertical displacement of the 𝑖#$ connection in the –𝑍 direction, and 𝑛𝑢𝑚 is 
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the number of connections within the structure. The value of 𝑛@ is approximately equal to 200 [44] 
when a perfect dome loses global stability. For a dome with variables, the value of 𝑛@ is large, and the 
different values of 𝑛@ are discussed for structural reliability analysis in this paper. 
4.4 Earthquake ground motion 

Three typical earthquake ground motion records are chosen as the external excitations of the dome 
from the PEER Strong Ground Motion Database. Table 3 lists the details of these ground motions, 
which represent minor, moderate, and major earthquakes applied to the structure according to their 
acceleration amplitudes. The acceleration peaks of these ground motions are considered to be uncertain, 
as discussed above and are adjusted according to the scale factors determined in Table 2.  

Table 3 Earthquake ground motion records. 

No. Event Station Year 
PGA/(g) 

Duration/s 
x y z 

1 Imperial Valley-06 Calipatria Fire Station 10/15/1979 0.129 0.079 0.056 38 

2 Imperial Valley-06 Chihuahua 10/15/1979 0.27 0.254 0.216 50 

3 Northridge-01 Newhall - Fire Station 1/17/1994 0.566 0.590 0.548 40 

4.5 Computational procedure of SFEM 
Fig. 11 shows a universal flowchart for steel structures subjected to a single group of earthquake 

ground motions to better understand the core computational framework for structural reliability 
analysis. A group of variables in Table 2 are first generated using the LHS method based on the 
sampling size and number of variables during the computational process. The finite element model of a 
perfect dome is modified using the 𝑖#$ group of variable arrays for the 𝑖#$ sample structure until all 
the uncertain structures are evaluated. The GA is used to perform regression analysis on the PDF of 
structural demand, and then, the stochastic and statistical characteristics of the structural failure 
function are predicted.  

The computational program for SFEM is completely coded in the OpenSeesPy framework based on 
the Python programming language. The SFEM in this paper can be extended to include almost all 
potentially uncertain variables with probabilistic properties.  



 
Fig. 11 Computational procedure for SFEM for each ground motion 

4.6 Parallel computing 
Although advanced sampling techniques have been used to calculate the dynamic reliability of 

large-scale complex engineering structures, computing is still time-consuming. To improve computing 
efficiency, parallel processing is a commonly used mode of operation, and tasks are performed in 
multiple processors on the same computer at the same time. In Python, the multiprocessing module 
runs parallel processes independently using child processes instead of threads. Because multiple 
processors can be used on a single computer, processes can run in completely separate memory 
locations. In multiprocessing, there are two main modes for parallel execution: the pool mode and the 
process mode. A time-consumption comparison suggests that the pool mode is the mode best suited for 
parallel computing in this paper. Using a standard desktop computer with 16 CPUs, it takes only 8.36 
hours per 1000 sampling structures under one earthquake record according to a test. 
5. Results and discussion 
5.1 Sample stability for results 

The improved LHS method is used in this paper to reduce the sampling size to accelerate the 
computational process. Although the sampling size of 320 is adequate to analyse the variables in Table 
2, it can only ensure that the value of a variable (𝑥% or 𝑥') is not repeatedly selected in the interval. 
However, the uncertainty propagation is nonlinear due to the effect of the combination of multiple 
variables on structural dynamic demands in SFEM, which means that the combination of stochastic 
values of different variables may lead to the same structural demand values. This leads to the 
aggregation of structural demand values in dynamic analyses. To avoid this, the number of sampling 
structures in this paper was increased considerably; a sample size of 1000 is used in a single analysis.  
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Although the determination of the sample size required for the reliability studies is subjective, the 
rationality of the sample size can be confirmed by the convergence of results in structural analyses. The 
sensitivity of the mean values and the standard deviations of the dynamic demands to sample size is 
shown in Fig. 12. Here, an unfavourable case under the Northridge-01 earthquake and c=3 is used to 
validate the reliability of the results, as the PGAs in this earthquake are the largest and c=3 reflects the 
widest range of variable values. It can be seen from the figure that hundreds of samples lead to unstable 
results. As the sample size increases, the results gradually stabilize to their mean values. When the 
sample size reaches 1000, the results are stable.  

  

 

Fig. 12 Convergence of results 

5.2 Dynamic demands 
5.2.1 Statistical characteristics of the dynamic demands  
When a structural probability analysis is carried out, the structural demands experience intervals 

since the different variable values lead to different structural demands, while the structural demands in 
the deterministic methods are constant. Fig. 13 shows the statistical histograms of the maximum 
dynamic demands and the values of the deterministic dynamic demands for two earthquake records. 
Fig. 13(a) shows the peak displacement at the top in the X, Y, and Z directions. The mean values of 
these dynamic demands are slightly larger than those of the perfect dome. However, the mean values of 
the peak axial force in members 1, 2, and 3, which represent the diagonal member, hoop member, and 
ridge member, are less than the values of the axial force in the perfect dome, as shown in Fig. 13(b). 
Obviously, the uncertain variables in the structure lead to an increase in deformation and a decrease in 
bearing capacity, and the coefficients of variation (COVs) of these dynamic demands are 
approximately 10%-15%.  

The estimated distribution interval of the structural demands describes the effect of variable 
uncertainties on the structural system. An index 𝑢C is defined to further quantify the uncertainty of the 
results, 

𝑢C =
A)*+-A)#&

D,
                                 (12) 
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where 𝑣4B3 and 𝑣4%8 are the maximum and minimum values of the structural demands at an interval, 
respectively, and 𝜇E is the mean value of the structure demands. According to Eq. (12), a high value of 
𝑢C  leads to a significant uncertainty in the results. From the estimated results in the figure, in 
displacement, the values of 𝑢C are 0.89, 0.91, and 0.84 for the maximum displacements at the top in 
the X, Y, and Z directions, respectively. In terms of the axial force, the values of 𝑢C are 0.82, 0.85, 
and 0.88 for members 1, 2, and 3, respectively. Generally, the variables in Table 2 have a more 
significant effect on the deformations than on the axial forces of the members.  

    
Fig. 13 Statistical histograms of maximum dynamic demands 

5.2.2 Maximum vertical deflection in the dome 
The evaluation of various statistical parameters, such as the probability distribution intervals of the 

maximum vertical deflection of the dome, plays an important role in reliability analysis. Based on the 
SFEM, the PDFs and CDFs of the maximum vertical deflections of 1000 sample structures under 
ground motion No. 1 (Imperial Valley-06, Calipatria Fire Station) and c=1, 2, and 3 are shown in Fig. 
14, and the fitting statistical parameters for the PDFs are listed in Table 4. Here, two methods are 
compared: PDFs and CDFs obtained using the GEV model and the GA+GEV model. It is observed that 
the interval range of structural demand increases with the increase in the scale factor 𝑐, particularly for 
the upper bound, while the lower bound is almost unaffected by the scale factor. The COVs for the 
scale factors 𝑐=1, 2, and 3 are approximately 4.3%, 5.7%, and 6.1%, respectively, and the difference 
for the PDFs or CDFs decreases with the increase in the scale factor. The scale factor 𝑐 should be 
chosen carefully, as shown in Fig. 14(b), since the small values of the scale factor may lead to an 
overestimation of the reliability of the dome. According to Table 4, it is observed that the values of 𝑄: 
are greater than 0.9, indicating excellent robustness of the two methods for PDFs, while the GA 
optimization improves the fitting precision of PDFs obtained only through the GEV model. Particularly 
for the case of 𝑐=3, the PDFs and CDFs are clearly improved. The observed values and predicted 
values for PDFs are plotted in Fig. 15. Both models have a high degree of goodness-of-fit. 

  
Fig. 14 PDFs and CDFs of maximum vertical deflection 
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Table 4 Fitting values of unknown variables for PDFs of the maximum vertical deflection. 

Method 
𝒄=1 𝒄=2 𝒄=3 

𝑘 𝛿/𝑚 𝑚𝑢/𝑚 𝑄2 𝑘 𝛿/m 𝑚𝑢/𝑚 𝑄2 𝑘 𝛿/𝑚 𝑚𝑢/𝑚 𝑄2 

GEV -0.1278 1.6e-3 0.0374 0.94 -0.0564 0.0022 0.0387 0.97 -0.0619 0.0024 0.0393 0.97 

GA+GEV -0.0847 1.6e-3 0.0374 0.96 -0.0787 0.0022 0.0387 0.97 -0.08 0.0023 0.0393 0.99 

 
Fig. 15 Validation for optimizing the PDF 

5.2.3 Maximum axial force of the dome 
The members of the dome are primarily subjected to axial forces. The maximum axial force in all 

members varies in each SFEM analysis. The maximum values of the axial force, including 
compression and tension, are statistically evaluated in this paper. The PDFs and CDFs of the maximum 
axial force in the dome under ground motion No. 2 (Imperial Valley-06, Chihuahua) and 𝑐=1, 2, and 3 
are shown in Fig. 16. The fitting parameters for PDFs with the GEV model and the GA+GEV model 
are listed in Table 5. With the increase in the scale factor 𝑐, the maximum axial force varies 
considerably, and the distribution interval increases significantly. The COVs are approximately 4%, 
6.5%, and 7.6% for the scale factors 𝑐=1, 2, and 3, respectively. However, the change in the mean 
values (the location parameter) of the maximum axial force is not obvious. According to Table 5, the 
GA can further optimize the shape parameter 𝑘  and find the optimal location 𝑚𝑢  and scale 
parameter 𝛿; as a result, the GA optimization increases the fitting precision of the GEV model and 
improves the performance of SPA. 

 
Fig. 16 PDFs and CDFs of the maximum axial force 

Table 5 Fitting values of unknown variables for the maximum axial force. 

Method 
𝒄=1 𝒄=2 𝒄=3 

𝑘 𝛿/𝑘𝑁 𝑚𝑢/𝑘𝑁 𝑄2 𝑘 𝛿/𝑘𝑁 𝑚𝑢/𝑘𝑁 𝑄2 𝑘 𝛿/𝑘𝑁 𝑚𝑢/kN 𝑄2 

GEV -0.1605 53.99 1.347e3 0.96 -0.1498 88.55 1.358e3 0.97 -0.0642 103.44 1.365e3 0.97 

GA+G

EV 

-0.2127 56.38 1.349e3 0.97 -0.2122 88.51 1.361e3 0.99 -0.1320 101.53 1.366e3 0.99 

5.2.4 Maximum total vertical reaction force (MTVRF) at supports 
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The vertical reaction force at the supports, which has been investigated in previous literature because 
it reflects the structural bearing capacity, is one of several important mechanical parameters of the 
dome. The MTVRF is found in this paper by extracting and summing the time-history data for the 
vertical reaction force at 60 supports. Following that, as shown in Fig. 17, the values of the MTVRF for 
1000 sampling structures under ground motion No. 3 (Northridge-01) and 𝑐=1, 2, and 3 are 
statistically analysed. With the increase in the scale factor 𝑐, the values of the MTVRF vary within a 
wider interval, although their mean values are nearly identical and close to the values in the 
deterministic analysis. Their CDFs for scale factors 𝑐=2 and 3 are very similar. For scale factors 𝑐=1, 
2, and 3, the COVs are approximately 3.4%, 5.1%, and 5.4%, respectively. Table 6 lists the PDFs’ 
parameters that are fitted. Clearly, the GA further increases the fitting precision of the PDFs.  

 
Fig. 17 PDFs and CDFs of MTVRF at supports 

Table 6 Fitting values of unknown variables for MTVRF at supports. 

Method 
𝒄=1 𝒄=2 𝒄=3 

𝑘 𝛿/𝑘𝑁 𝑚𝑢/𝑘𝑁 𝑄2 𝑘 𝛿/𝑘𝑁 𝑚𝑢/𝑘𝑁 𝑄2 𝑘 𝛿/𝑘𝑁 𝑚𝑢/𝑘𝑁 𝑄2 

GEV -0.2472 1.63e3 5.4e4 0.94 -0.2404 2.59e3 5.3e4 0.97 -0.2277 2.9e3 5.3e4 0.96 

GA+GEV -0.3182 1.86e3 5.4e4 0.97 -0.2675 2.71e3 5.3e4 0.99 -0.2627 2.9e3 5.3e4 0.97 

5.3 Structural reliability analysis 
The CDFs of the maximum vertical deflection under different earthquakes and interval parameters 

can be obtained based on the GA+GEV model with a high precision, as shown in Fig. 18. Table 7 lists 
the fitting parameters. From the figure, the constant 𝑐 has a major influence on the CDFs and the 
intervals of variables should be carefully considered. The structural reliability under an earthquake 
usually decreases as the constant 𝑐 increases. The cumulative probabilities of the maximum vertical 
deflection are given by these CDFs. The structural reliability 𝑃F can be calculated using the fitted 
parameters and Eq. (6) when a displacement threshold is defined.  

The goal of structural reliability is to develop design criteria and verification procedures that ensure 
that structures designed according to specifications can perform as expected in terms of safety and 
serviceability. In structural reliability analysis, the aim is to calculate the probability of failure, where 
failure is defined as a violation of the limit state function, as expressed in Eq. (11). The following is a 
formula for the relationship between structural reliability and failure probability, 

𝑃) = 1 − 𝑃F                                  (13) 
Table 8 lists the failure probability and corresponding structural reliability index 𝛽 under the 

earthquake Northridge-01 and 𝑐=3 according to the parameters in Table 7 and Eq. (13). The FOSM 
method and the current method are compared. The different values of 𝑛@ in Eq. (11) are discussed. 
The results show that the probabilities of failure are low under this earthquake, and the structure has 
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high dynamic reliability index values. Compared with the current method, the FOSM leads to a higher 
structural reliability, which overestimates the structural safety. 

 
Fig. 18 CDFs of maximum vertical deflection under three earthquakes 

Table 7 Fitting values of unknown variables under different earthquakes. 

Earthquake 
𝒄=1 𝒄=2 𝒄=3 

𝑘 𝛿/𝑚 𝑚𝑢/𝑚 𝑘 𝛿/𝑚 𝑚𝑢/𝑚 𝑘 𝛿/𝑚 𝑚𝑢/𝑚 

Ground motion No. 1 -0.0847 0.0016 0.0374 -0.0787 0.0022 0.0387 -0.08 0.0023 0.0393 

Ground motion No. 2 -0.1015 0.0042 0.0684 -0.0985 0.0065 0.0693 -0.0493 0.0065 0.0702 

Ground motion No. 3 -0.1118 0.0143 0.155 -0.0212 0.0202 0.1569 0.0147 0.0231 0.1598 

Table 8 Probability of structural failure and reliability index (𝑐=3). 

Parameters 𝒏𝑫=600  𝒏𝑫=400  𝒏𝑫=300  

𝑃" (Current study) 1.623e-6 3.782e-10 2.2e-13 
𝛽 (Current study) 4.65 6.15 7.24 

𝛽 (FOSM) 11.08 19.56 28.04 
𝑷𝒇 (FOSM) 7.8e-29 1.7e-85 2.6e-173 

5.4 Sensitivity of estimated dynamic reliability parameters to sample size 
The value of the probability of failure obtained from the sampling methods is found to be sensitive to 

the sample size [28]. The effect of sample size on the estimated dynamic reliability parameters is 
discussed in this paper using the Northridge-01 earthquake and 𝑐=3. Here, 𝑛@ is set to 600. Fig. 19 
shows the failure probabilities and the corresponding reliability indices for different sampling sizes. 
The sample size has a significant effect on the estimated dynamic reliability parameters, as shown; 
hundreds of samples can result in a high probability of failure and a low reliability index. The values of 
the reliability index begin to converge after the sample size reaches 400. Therefore, a larger sampling 
size is needed for higher calculation precision of failure probability. 

 
Fig. 19 Probability of failure and structural reliability index 

6. Effects of variables on structural performance 
The effects of variables on the structural performance need to be investigated for a comprehensive 

reliability analysis to determine the variables that have the greatest effect on structural performance. 
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Using the Northridge-01 earthquake and 𝑐=3, the following results are obtained. Here, the effect of 
variables on structural dynamic performance is assessed using three different methods. Because the 
values of the variables in each member are unique, the following analyses are different from traditional 
sensitivity analyses except for the structural damping ratio. Here, each analysis for each variable is 
based on 1000 sample structures. 
6.1 Effect of variables on structural performance based on COV 

According to the analyses in Sections 5.2 and 5.3, changing the value of a variable causes a variation 
in dynamic demands, and a large variation interval of dynamic demand values indicates a large effect 
of the variable on structure performance. As stated in the literature [45], the standard deviation of the 
results is a measure of the uncertainty for a variable. Therefore, COV is defined to evaluate the effect,  

𝑆% = 𝑠𝑡𝑑(𝑑%)/𝑚𝑒𝑎𝑛(𝑑%)                           (14) 
where 𝑠𝑡𝑑(𝑑%) refers to the standard deviation of the maximum vertical deflection 𝑑% in the dome 
caused by the 𝑖#$  variable, and 𝑚𝑒𝑎𝑛(𝑑%) represents the mean value of 𝑑% . A large standard 
deviation means that structural demands can vary significantly from the mean value. Therefore, the 
larger the value of 𝑆% is, the greater the effect of the variable on the structure. The normalized value of 
𝑆% is determined using 1000 sampling structures for each variable, as shown in Fig. 20. The damping 
ratio x, roof load 𝑁G, scale factor of ground motion 𝑆), and wall-thickness of the steel pipe 𝑡" are 
found to be the four most important variables that affect the interval of the dynamic demand. The 
parameters of the steel material 𝑓! and 𝑏 have the least effect on the structure.  

 
Fig. 20 Effect of variables on maximum vertical deflection 

6.2 Effect of variables on the structural performance based on the probability of failure 𝑷𝒇 
Calculations based on 𝑃) typically yield valuable information about the effect of random variables 

on the structural performance. The importance of the effect of variables on structural performance is 
assessed. To increase the identification accuracy, the parameter 𝑛@ is set to 1000. Based on the 
maximum vertical deflection, Fig. 21 shows the structural probability of failure induced by each 
variable. The roof load 𝑁G, damping ratio x, scale factor of ground motion 𝑆), and wall-thickness of 
the steel pipe 𝑡" are the four most important variables that affect the structural failure probability. The 
parameters of the steel material 𝑓! and 𝑏, node error 𝑁I77, and member imperfection 𝑀%4J have the 
least effect on the structure. 
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Fig. 21 Effect of variables on probability of failure 

6.3 Effect of variables on structural performance based on the index 𝒖𝒒 
Eq. (12) reflects the effect of a variable on the structural demands. This index 𝑢C is used to 

investigate the effect of variables on the maximum vertical deflection of the dome in this section. Fig. 
22 shows the value of the normalized index for each variable. It is observed that there is only a slight 
difference between the evaluation based on the COV in Section 6.1 and the evaluation based on the 
index 𝑢C. The damping ratio x, roof load 𝑁G, scale factor of ground motion 𝑆), and wall-thickness of 
the steel pipe 𝑡" are the four most important variables in the dome with variables.  

 
Fig. 22 Effect of variables on the structural demands using the index 𝜇$ 

6.4 Discussion 
From the above analysis, the effect of different variables on the structural performance is varied with 

the evaluation method. The damping ratio, external excitation, and roof load are the three most 
important variables in structural dynamic analysis, and these variables should be carefully considered. 
There are several approaches to improve structural performance and increase the reliability of the dome 
under uncertain conditions:  
•Change the mean values of important variables, e.g., appropriately increase or decrease the mean 
values of variables that are favourable or unfavourable for structural reliability. 
•Reduce the variance of variables, e.g., reduce all types of errors. 
•Reduce the variation intervals of important variables, e.g., improve quality control in the 
construction process. 

7. Conclusions 
The new SFEM method for solving structural dynamic reliability using the NTHA has been 

developed and the results show its effectiveness and high accuracy for super large structures. The 
computational performance has been boosted by integrating the highly efficient LHS sampling process, 
GA for optimization, and parallel computing. The uncertain quantification per 1000 super large-scale 
domes only takes less than 10 hours on a standard desktop computer. It largely expands the spatial scale 
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of the structure and computational capability in dynamic reliability problems.  
Considering that the uncertainties lead to an increase in the mean values of deformation demands 

and a reduction in the mean values of axial force in members compared to the perfect dome, these 
maximum dynamic demands have a COV of approximately 4%-8% in sample structures. There is no 
obvious change in the mean values of MTVRF. However, the MTVRF has a COV of approximately 
3%-5.5% in sample structures. Compared with the GEV model, GA optimization can further improve 
the PDFs and CDFs of structural demands. It is also found that as the intervals of variables become 
wider, the structural reliability decreases. When calculating the probabilities of failure, the FOSM 
method overestimates the structural safety compared with the current method. The damping ratio x, 
roof load 𝑁G, scale factor of ground motion 𝑆), and wall-thickness of the steel pipe 𝑡" are the four 
most important variables of the dome according to an investigation of the effects of variables on the 
structural performance.  
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