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Abstract 

Background:  Copy number variants (CNVs) are the gain or loss of DNA segments in 
the genome. Studies have shown that CNVs are linked to various disorders, including 
autism, intellectual disability, and schizophrenia. Consequently, the interest in studying 
a possible association of CNVs to specific disease traits is growing. However, due to the 
specific multi-dimensional characteristics of the CNVs, methods for testing the associa-
tion between CNVs and the disease-related traits are still underdeveloped. We propose 
a novel multi-dimensional CNV kernel association test (MCKAT) in this paper. We aim 
to find significant associations between CNVs and disease-related traits using kernel-
based methods.

Results:  We address the multi-dimensionality in CNV characteristics. We first design 
a single pair CNV kernel, which contains three sub-kernels to summarize the similar-
ity between two CNVs considering all CNV characteristics. Then, aggregate single pair 
CNV kernel to the whole chromosome CNV kernel, which summarizes the similarity 
between CNVs in two or more chromosomes. Finally, the association between the 
CNVs and disease-related traits is evaluated by comparing the similarity in the trait with 
kernel-based similarity using a score test in a random effect model. We apply MCKAT 
on genome-wide CNV datasets to examine the association between CNVs and disease-
related traits, which demonstrates the potential usefulness the proposed method has 
for the CNV association tests. We compare the performance of MCKAT with CKAT, a uni-
dimensional kernel method. Based on the results, MCKAT indicates stronger evidence, 
smaller p-value, in detecting significant associations between CNVs and disease-related 
traits in both rare and common CNV datasets.

Conclusion:  A multi-dimensional copy number variant kernel association test can 
detect statistically significant associated CNV regions with any disease-related trait. 
MCKAT can provide biologists with CNV hot spots at the cytogenetic band level that 
CNVs on them may have a significant association with disease-related traits. Using 
MCKAT, biologists can narrow their investigation from the whole genome, including 
many genes and CNVs, to more specific cytogenetic bands that MCKAT identifies. 
Furthermore, MCKAT can help biologists detect significantly associated CNVs with 
disease-related traits across a patient group instead of examining each subject’s CNVs 
case by case.
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Background
Copy number variants (CNVs) are the gain or loss of DNA segments in the genome. 
CNVs are the most common form of structural genetic variations in the human 
genome, typically ranging in size from one kilobase to several megabases. The CNVs 
result in more or fewer copies of a DNA region with respect to the normal genome. In 
general, biologists assign CNVs to one of two major groups, depending on the length 
of the affected chromosomal region and occurrence frequency [1]. The first group 
involves copy number polymorphisms (CNPs), widespread in the general population, 
with an average occurrence frequency greater than one percent. The second CNV 
group is rare variants that are much longer than CNPs, ranging from hundreds of 
thousands of base pairs to over 1 million base pairs. Studies have detected large struc-
tural variants in patients with a disease like mental retardation, developmental delay, 
schizophrenia, and autism [2–11].

CNVs are described by three multidimensional characteristics: type, chromosomal 
position, and dosage. The type of CNV is either amplification or deletion. The chro-
mosomal position of the CNV is described by the start and end position of the CNV 
in the chromosome. Dosage represents the total number of copies of the CNV, with a 
value less than two for deletion and greater than two for amplification. Besides, CNVs 
have phenotypic heterogeneity effects. This means that different CNV types and dos-
ages at the same position in the chromosome can have a different impact.

Understanding the relationship between CNVs and diseases may provide important 
insights into genetic causes, leading to effective means in preventing and treating the 
disorders. As more CNVs are detected throughout the human genome, their potential 
role in developing diseases is being recognized. However, due to the specific multi-
dimensional characteristics of CNVs, methods for testing the association between 
CNVs and disease-related traits are still underdeveloped.

There are two main approaches to study the association between CNVs and dis-
ease-related traits: collapsing methods and kernel-based methods. Collapsing meth-
ods have been widely used in single nucleotide polymorphism (SNP) studies, and rare 
variants association analysis [12, 13]. Based on the procedures used for collapsing 
genetic variant information and the assumptions made for modeling genetic variant 
effect, collapsing methods are classified into fixed effect and random effect methods. 
Briefly, fixed effect collapsing methods assume that all variants have the same effect 
on disease-related traits. In contrast, random effect methods consider different direc-
tion effects, either positive, negative, or neutral for variants [13]. However, collaps-
ing methods can not deal with the multi-dimensional features of CNVs effectively. 
For example, CNV collapsing random effects test (CCRET) [14] is an extension of the 
random effect collapsing method applicable to variants measured on a multi-categor-
ical scale that aims to detect any association of the CNV effect collected from CNV 
features with disease risk. CCRET has some limitations in dealing with the character-
istics of the CNVs and does not exploit the full information in CNVs while measuring 
the similarity between CNV profiles. It chooses one feature of CNVs like dosage as a 
feature of interest. It models it using random effects and considers the remaining fea-
tures as background features, using fixed effects to model them.
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This paper focuses on kernel-based methods to utilize all features of the CNVs in 
association tests. Genetic association studies have widely used kernels as a similar-
ity measure to construct statistical tests. Different studies [12, 15] have shown that a 
kernel is capable of pooling information across multiple genetic variants and enhanc-
ing the association signal between phenotype and genotype, which can lead to robust 
tests. A typical kernel-based association test has the two following steps. First, simi-
larities between two genetic variants x1 and x2 , are summed by an appropriate ker-
nel function k(x1, x2) . Then, the captured similarity is compared to the phenotype 
similarity to test whether there is an association between them. A strong correlation 
between genotypic similarity and phenotypic similarity may suggest the existence of 
an association.

The CNV kernel association test (CKAT) is a kernel-based method that tests the 
association between CNVs and disease-related traits by using two kernels [16]. One 
kernel measures the similarity between a CNV pair, and another kernel measures the 
similarity between CNV profiles of different subjects. Like CCRET, CKAT has limita-
tions. CKAT does not exploit all CNV features or consider all possible CNV pairs to 
measure CNV profiles’ similarity.

Motivated by CKAT, we propose a multi-dimensional CNV kernel association test 
(MCKAT) that utilizes both multi-dimensional features of the CNVs and their het-
erogeneity effect. The MCKAT is not only capable of indicating stronger evidence in 
detecting significant associations between CNVs and disease-related traits, but it is 
applicable to both rare and common CNV datasets.

Method
We design a multi-dimensional kernel framework capable of measuring the similar-
ity between CNV profiles utilizing all CNV characteristics. It contains two kernels. 
The first kernel, the single-pair CNV kernel, measures the similarity between a single 
CNV pair. It includes three sub-kernels. Each sub-kernel is responsible for measur-
ing the similarity between two CNVs with respect to one of three CNV characteris-
tics. The second sub-kernel, the whole chromosome kernel, aggregates the similarity 
between every possible CNV pair to measure the total similarity between the CNV 
profiles of the subjects. Finally, the association between CNVs across a chromosome 
and disease-related traits is tested by comparing the similarity in CNV profiles to that 
in the trait using an association test.

Single‑pair CNV kernel

All CNV features including chromosomal position, type and dosage are used to meas-
ure the similarity between a single pair CNV. Let X = (X (1),X (2),X (3),X (4)) denote a 
CNV, where X (1) and X (2) are the start and end chromosomal positions of the CNV 
respectively, X (3) is the type information of the CNV taking the value 1 for a dele-
tion and 3 for a amplification, and X (4) is the dosage information of the CNV taking 
the value of 0 or 1 for deletion, and > 2 for amplification. Considering two arbitrary 
CNVs X1 and X2 , we define the kernel function between a CNV pair as
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the first term is the CNV chromosomal position’s contribution, which is described by 
measuring the mutual presence of a CNV with a specific start and end chromosomal 
position. It is defined as the size of the intersection of two CNVs divided by the size of 
their union. The maximum value for chromosomal position contribution is 1 when two 
CNVs have the same start and end position and 0 when two CNVs do not intersect.

The second term is the contribution from the CNV type. When two CNVs have the 
same type (both deletion or amplification), it takes the value of 1 and 0 when CNVs are 
of different types. The last term is the contribution of CNV dosage information. The 
similarity between two CNVs based on their dosage information is measured by a func-
tion called the Difference from the Reference (DR) as DR(dosage) = |dosage − 2| . We 
use 2 as a reference value. According to equation (1), the smaller difference between the 
DR value of two CNVs results in a greater similarity between them.

Whole chromosome CNV kernel

After measuring the similarity between two CNVs, we need another kernel to compare 
the whole CNVs in a specific chromosome of one subject with another subject to calcu-
late their similarity. To do this, we propose another kernel that is capable of measuring 
the similarity between all CNVs of two subjects in a chromosome.

Let Ri = (Xi
1
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let i = 1, 2, . . . , n be the subjects and yi the status of the phenotype. yi = 1 denotes the 
existence of that phenotype and yi = 0 denotes its absence. Z is the covariate matrix 
which could include phenotype contributing factors such as certain inherited condition, 
gender and age. f ( . ) is a function of the CNV information, such as the CNV type and 
dosage, characterized by the whole chromosome CNV kernel Kw( . , . ).

According to Eq. (3), the association between the existence of a phenotype and CNVs 
can be examined by testing the hypothesis H0 : f (.) = 0 . To do this, we treat the f(.) as 
a random effect vector with N (0, τK ) distribution. τ is a variance component parameter 
and k is the n× n similarity matrix generated by the whole chromosome CNV kernel 
Kw . Demonstrated in [17], testing H0 : f ( . ) = 0 is equivalent to test H0 : τ = 0 under 
the logistic mixed effect model. Following [12, 16, 17], we use a restricted maximum 
likelihood-based score test which is Q = (y− ŷ)′K (y− ŷ).

The ŷ is the estimate of y in Eq. (3) under the null model logit[Pr(yi = 1)] = β0 + Zβ . 
Then, we calculate the p-values of association between the status of the phenotype and 
CNVs by using Davies method [18] as implemented in the CKAT R package [16].

Simulations
We conduct simulations to evaluate the performance of MCKAT and ensure that it can 
properly handle type I and II errors as well as having relatively high power in detecting 
existing associations. We focus on assessing MCKAT performance in detecting associa-
tions using chromosomal region × type × dosage effects in both rare and common CNV 
datasets. Besides MCKAT, the CKAT is also studied. We conduct our simulation studies 
under two main scenarios. In the first scenario, each subject can have a maximum of 
five CNVs in their CNV profile to mimic rare CNV profile while in the second scenario 
there is no restriction on the number of CNVs to mimic common CNV profile. The dos-
age can take 0 or 1 for deletions and any value greater than two for amplifications in 
both scenarios. We compare the empirical power of the MCKAT with CKAT under both 
simulation scenarios which are described in the following.

The CKAT evaluates the association between CNVs and disease related traits through 
the following model:

where Xij = (X
(1)
ij ,X

(2)
ij ) is the jth CNV of ith subject, πi = Pr(Yi = 1) , β0 is the preva-
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of deletions to amplifications is almost 0.35–0.65 in all three datasets. The dosage value 
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is 1 and 3 for all deletions and amplifications respectively in the datasets. We randomly 
generate other values for the CNV dosage to conduct our simulation study and investi-
gate the dosage effect in identifying existing associations. The simulated dosage value 
can take 0 or 1 for deletion types and 3, 4,..., 7 for amplification types. We use equal 
probabilities when generating random dosage values for deletion and amplification, 0.5 
and 0.2 respectively.

After preparing CNV data, we generate the case-control label Yi from the following 
logistic model

where i = 1, . . . ,N  indexes individuals, and j = 1, . . . ,mi indexes the CNVs of individual 
i. Xij = (X

(1)
ij ,X

(2)
ij ,X

(3)
ij ,X

(4)
ij ) is the jth CNV of the ith individual as defined previously. 
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j  controls the effect of chromosomal posi-
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In the first scenario, we apply MCKAT and CKAT on a random chromosome to have 

limited number of CNVs for each subject to mimic a rare CNV dataset. In the second 
scenario, we apply both methods on the CNVs across whole genome to assess their per-
formance in dealing with common CNV datasets. We simulated 105 datasets for each 
simulation scenario.

Simulation results

The QQ-plots of p-values of MCKAT and CKAT under both simulation scenarios are 
presented in Fig. 1.

As is shown in QQ-plot a, MCKAT is on the 45◦ line under different nominal sig-
nificance levels even as low as 10−5 . This indicates that MCKAT can have the correct 
type I and II error rate when testing an association between rare CNVs and disease-
related traits. CKAT is more conservative when the significance level is small. QQ-plot 
(b) presents the p-values of MCKAT and CKAT under the second simulation scenario. 
As shown, MCKAT can protect the correct type I and II error rate at different nominal 
significance levels in the second scenario as well. However, CKAT can not identify any 
significant association in the common CNV data.

The empirical powers of MCKAT and CKAT under the first and second scenarios 
are presented in Figs. 2 and 3 respectively. We observe that MCKAT has better power 
compared with CKAT under both scenarios. One reason might be that the MCKAT is 
designed to detect the dosage and the chromosomal position × type × dosage signals 
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but CKAT struggles to pick up the signals due to its design. Another reason for 
CKAT’s low power, especially under the second scenario, could be its scanning algo-
rithm for aligning CNVs. CKAT’s shift-by-one scanning algorithm may result in not 
capturing signals when dealing with greater numbers of CNVs in common CNV data.

Fig. 1  P-value based QQ-plots of MCKAT and CKAT under first (a) and second (b) simulation scenarios

Fig. 2  Empirical power of MCKAT and CKAT under first simulation scenario, rare CNV data

Fig. 3  Empirical power of MCKAT and CKAT under second simulation scenario, common CNV data
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Real data application results
In real data applications we conduct the association test on autism and rhabdomyo-
sarcoma datasets. First, we applied the MCKAT and CKAT on every chromosomes to 
test if there is any association between CNVs and disease related traits. Then, we par-
titioned the chromosomes into smaller regions, cytogenetic bands, to see if MCKAT 
is capable of detecting more specific CNV regions that CNVs on them are signifi-
cantly associated with disease related traits. The datasets and analysis results are 
described in the following.

Autism and rhabdomyosarcoma data

We apply MCKAT on both rare and common CNV public domain genome sequenc-
ing data sets to evaluate the performance. The two CNV datasets used in this study 
are from individuals with autism spectrum disorder (ASD) and rhabdomyosarcoma 
(RMS) cancer. The ASD data set contains a total of 2359 CNVs of 588 subjects publi-
cally available [19]. Most of the CNVs in the ASD data set are large and rare, while 
the RMS dataset contains common and small CNVs. The raw RMS dataset is publicly 
available through the National Institute of Health (NIH), the database of Genotypes 
and Phenotypes (dbGaP). We use 59,131 processed whole-genome CNV data of 44 
subjects [20]. In both datasets, each CNV is presented by four characteristics: start 
and end position in the chromosome, type, and dosage. The type is either deletion or 
amplification, and the dosage is less than 2 for deletion and greater than 2 for amplifi-
cation. Both MCKAT and CKAT are applied to the RMS and ASD CNV data.

Real data results

We conduct MCKAT analysis on each of 23 chromosome pairs to test the association 
between CNVs in each chromosome and disease-related traits. The disease-related 
traits are cancer subtype and disease status in RMS and ASD CNV data sets, respec-
tively. Then, we compare MCKAT results with those obtained from CKAT.

CNV analysis on rhabdomyosarcoma data set

First, we conduct the experiment on the RMS CNV data. The RMS occurs as two 
major histological subtypes, embryonal (ERMS) and alveolar (ARMS). The classi-
fication of the RMS subtype has a direct effect on the patients’ treatment options. 
The RMS CNV data includes a total of 59,131 CNVs for 25 alveolar and 19 embry-
onal cancers. The p-values of MCKAT and CKAT are reported in Table  1. Bonfer-
roni correction is used for adjusting the multiple testing to control the family-wise 
error rate (FWER) of α = 0.05 . Since 22 chromosomes and sex chromosome are being 
tested, the p-value threshold for a whole-chromosome significance is calculated as 
0.05/23 = 2.2× 10−3.

Based on the results reported in Table 1, MCKAT identifies CNVs in 4 chromosomes 
significantly associated with distinguishing RMS subtype at FWER = 2.2× 10−3 : 
chromosomes 2, 8, 11, and 13. These results are consistent with the existing biological 
knowledge, which shows the capability of the MCKAT in identifying chromosomes 
significantly associated with specific disease-related traits.
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For example, [21] shows that RMS is associated with specific chromosomal abnor-
malities that differentiate ARMS and ERMS. According to their study, approximately 
80% of ARMS tumors show translocation between the FOXO1 transcription factor 
gene located on chromosome 13 and the PAX3 transcription factor gene on chromo-
some 2, and ERMS tumors demonstrate a higher frequency of specific genetic muta-
tion on chromosome 11 compared with ARMS. The same has been revealed earlier in 
[22]. In addition to the association between chromosomal abnormalities on chromo-
somes 2, 11, and 13, [23] has found the ARMS subtype is significantly associated with 
amplifications on chromosome 8. Our findings show another mechanism like CNVs 
can play a significant role in causing any disease-related traits besides gene mutations 
and chromosomal translocations.

We apply CKAT on the RMS data set to compare its performance with MCKAT. As 
shown in Table  1, CKAT has low performance on the RMS data set, which includes 
common and small CNVs, and does not identify any chromosomes significantly asso-
ciated with the RMS subtype. CKAT uses a parsimonious scanning algorithm to align 
pairs of CNVs based on their ordinal position. Using this strategy, each CNV is com-
pared only with a limited number of adjacent CNVs resulting in not optimal capture of 
the similarity between all possible CNV pairs. Furthermore, CKAT does not utilize CNV 

Table 1  P-values of testing the association between RMS subtype and CNVs in each chromosome

*Significant association between RMS subtype and CNVs by CKAT and MCKAT

# The total number of CNVs on that chromosome

Chromosome # CNVs MCKAT CKAT

chr1 4382 1.257× 10
−1

4.427× 10
−1

chr2 5584 1.188× 10
−3* 3.757× 10

−1

chr3 2925 1.424× 10
−1

4.502× 10
−1

chr4 3068 4.606× 10
−1

4.110× 10
−1

chr5 3237 7.607× 10
−2 4.505× 10

−1

chr6 2777 5.054× 10
−1

4.200× 10
−1

chr7 3549 4.421× 10
−1

4.657× 10
−1

chr8 5365 4.308× 10
−7* 4.064× 10

−1

chr9 2474 5.666× 10
−2 4.584× 10

−1

chr10 2378 9.667× 10
−2 4.436× 10

−1

chr11 3449 1.107× 10
−3* 3.655× 10

−1

chr12 3773 3.638× 10
−1

4.875× 10
−1

chr13 2462 1.241× 10
−3* 3.916× 10

−1

chr14 1219 3.187× 10
−1

4.613× 10
−1

chr15 1389 3.952× 10
−1

4.659× 10
−1

chr16 1565 2.002× 10
−1

4.960× 10
−1

chr17 1862 2.416× 10
−1

4.658× 10
−1

chr18 1120 1.961× 10
−1

4.717× 10
−1

chr19 1584 1.967× 10
−1

4.948× 10
−1

chr20 1835 5.859× 10
−3 4.237× 10

−1

chr21 648 3.531× 10
−2 3.939× 10

−1

chr22 780 1.124× 10
−1

4.327× 10
−1

chr X 1421 7.495× 10
−1

4.917× 10
−1

chr Y 250 6.802× 10
−1

4.755× 10
−1
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dosage and chromosomal position information in measuring the similarity between 
CNV profiles.

CNV analysis on autism data set

We apply MCKAT on the ASD data set to evaluate its performance on data sets that 
include large and rare CNVs. We aim to test if there is any association between CNVs 
and disease status. The ASD data set contains 1285 rare CNVs on 310 individuals with 
ASD and 1074 rare CNVs on 278 healthy individuals. Three factors characterize each 
CNV: the start and end chromosomal position and the type information.

As shown in Table 2, both MCKAT and CKAT detect some chromosomes significantly 
associated with ASD status. The performance of MCKAT and CKAT are similar for the 
ASD dataset since this data set only contains rare and large CNVs. Therefore, the par-
simonious scanning algorithm used in CKAT has a smaller adverse effect in measur-
ing optimal similarity between CNV profiles. Among the detected chromosomes, both 
MCKAT and CKAT identify CNVs in chromosome 3 and 22 as the most significant 
associated CNVs with ASD status. These results are consistent with previous biological 

Table 2  P-values of the testing association between ASD status and CNVs in each chromosome by 
MCKAT and CKAT

*Significant association between ASD and CNVs

# The number of total CNVs on that chromosome

Chromosome # CNVs MCKAT CKAT

chr1 175 7.5× 10
−1

8.2× 10
−2

chr2 45 2.3× 10
−5* 1.7× 10

−4*

chr3 49 0.0* 0.0*

chr4 112 7.5× 10
−1

8.2× 10
−1

chr5 242 5.15× 10
−2

2.3× 10
−2

chr6 17 2.9× 10
−3 1.2× 10

−4*

chr7 25 1.0× 10
−1

1.2× 10
−4*

chr8 3 2.6× 10
−1

0.1× 10
−1

chr9 13 1.0× 10
−1

7.7× 10
−1

chr10 130 4.3× 10
−1

4.7× 10
−1

chr11 257 1.6× 10
−3* 8.8× 10

−1

chr12 3 3.8× 10
−1

2.7× 10
−1

chr13 5 4.2× 10
−1

7.4× 10
−1

chr14 2 4.0× 10
−1

1.8× 10
−1

chr15 919 4.0× 10
−1

5.4× 10
−1

chr16 140 1.7× 10
−3 3.7× 10

−1

chr17 27 2.8× 10
−2

2.3× 10
−3

chr18 6 4.2× 10
−1 1.0

chr19 1584 1.9× 10
−1

4.9× 10
−1

chr20 17 4.4× 10
−1

1.3× 10
−1

chr21 0 1.0 1.0

chr22 166 0.0* 0.0*

chr X 2 3.2× 10
−1

1.4× 10
−2

chr Y 1 2.9× 10
−1

2.9× 10
−1
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studies, which identify chromosome 3 and 22 being widely associated with the autism 
[19, 24, 25].

CNV analysis on cytogenetic bands in RMS

We partitioned each chromosome into smaller regions based on the cytogenetic bands. 
We applied MCKAT on each chromosome band to check if MCKAT is capable of 
detecting more specific regions rather than whole chromosomes. Figure  4 shows the 
significance level of all cytogenetic bands across each chromosome. We consider the 
p-value threshold for each chromosome as 2.2× 10−3 . CNVs within the bands with a 
calculated p-value above this threshold have a statistically significant association with 
the two main RMS subtypes. As is shown in Fig. 4 there are 22 cytogenetic bands across 
the genome, specifically across chromosomes 2, 8, 11, and 13, that CNVs in these bands 
are significantly associated with the RMS subtype.

Table  3 contains the p-values of the association test between the RMS subtype and 
CNVs in each cytogenetic bands in chromosome 8. Besides, Table 4 contains all bands 
across the genome that are identified as significantly associated with the RMS subtype. 
We use chromosomal ideograms to visualize the chromosomal position of these 22 
cytogenetic bands identified as significantly associated with the RMS subtype. In Fig. 5, 
we plot the calculated p-values against cytogenetic bands. It includes the four identified 
significant chromosomes: 2, 8, 11, and 13. The CNVs within the bands with a p-value 
that passes the threshold are significantly able to distinguish the RMS subtype. The chro-
mosomal ideograms for the whole genome are available in Additional file 1.

We form a new CNV profile for each subject for more investigation. These new 
CNV profiles include only CNVs in 22 cytogenetic bands that have been identi-
fied significantly associated with RMS subtype shown in Tables  3 and  4. Then, we 
applied the MCKAT on these manually created CNV profiles. Based on the results, 

Fig. 4  Manhattan plot showing CNVs in 22 cytogenetic bands, those their value are above the threshold line, 
are significantly associated with the RMS subtype



Page 12 of 16Maus Esfahani et al. BMC Bioinformatics          (2021) 22:588 

Table 3  P-values of the testing association between RMS subtype and CNVs in each cytogenetic 
bands of chromosome 8 by MCKAT

*Significant association between RMS subtype and CNVs

# The number of total CNVs on the band

Arm Band Start Stop #CNVs P-value

p 23.3 1 2,300,000 113 3.4× 10
−4*

p 23.2 2,300,001 6,300,000 85 2.0× 10
−2

p 23.1 6,300,001 12,800,000 304 4.7× 10
−8*

p 22.0 12,800,001 19,200,000 101 8.2× 10
−3

p 21.3 19,200,001 23,500,000 102 2.5× 10
−2

p 21.2 23,500,001 27,500,000 82 3.6× 10
−2

p 21.1 27,500,001 29,000,000 50 1.6× 10
−2

p 12.0 29,000,001 36,700,000 190 3.7× 10
−5*

p 11.23 36,700,001 38,500,000 48 3.7× 10
−3

p 11.22 38,500,001 39,900,000 57 8.4× 10
−3

p 11.21 39,900,001 43,200,000 147 1.0× 10
−4*

p 11.1 43,200,001 45,200,000 72 2.8× 10
−2

q 11.1 45,200,001 47,200,000 41 2.1× 10
−2

q 11.21 47,200,001 51,300,000 200 8.4× 10
−5*

q 11.22 51,300,001 51,700,000 6 4.7× 10
−2

q 11.23 51,700,001 54,600,000 61 6.1× 10
−2

q 12.1 54,600,001 60,600,000 177 7.0× 10
−4*

q 12.2 60,600,001 61,300,000 18 3.3× 10
−2

q 12.3 61,300,001 65,100,000 134 1.1× 10
−2

q 13.1 65,100,001 67,100,000 71 5.8× 10
−3

q 13.2 67,100,001 69,600,000 54 4.3× 10
−3

q 13.3 69,600,001 72,000,000 62 1.8× 10
−3

q 21.11 72,000,001 74,600,000 144 8.4× 10
−3

q 21.12 74,600,001 74,700,000 1 1.0

q 21.13 74,700,001 83,500,000 308 2.6× 10
−3*

q 21.2 83,500,001 85,900,000 56 2.9× 10
−2

q 21.3 85,900,001 92,300,000 185 1.0× 10
−4*

q 22.1 92,300,001 97,900,000 182 1.0× 10
−2

q 22.2 97,900,001 100,500,000 103 3.9× 10
−3

q 22.3 100,500,001 105,100,000 162 4.6× 10
−3

q 23.1 105,100,001 109,500,000 135 2.5× 10
−3*

q 23.2 109,500,001 111,100,000 33 8.0× 10
−1

q 23.3 111,100,001 116,700,000 185 2.3× 10
−3*

q 24.11 116,700,001 118,300,000 53 2.6× 10
−2

q 24.12 118,300,001 121,500,000 109 2.2× 10
−3*

q 24.13 121,500,001 126,300,000 151 6.0× 10
−3

q 24.21 126,300,001 130,400,000 208 1.9× 10
−2

q 24.22 130,400,001 135,400,000 155 1.5× 10
−2

q 24.23 135,400,001 138,900,000 162 7.7× 10
−3

q 24.3 138,900,001 145,138,636 354 2.5× 10
−8*
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the combination of CNVs located in these bands has a statistically higher significant 
association with the RMS subtype of p-value equals to zero. This finding shows the 
combination of CNVs in cytogenetic bands that have been identified significantly 
associated with the RMS subtype has a high potential to be used in RMS subtype 
identification.

To summarize, the proposed MCKAT approach can evaluate the association 
between CNVs and disease-related traits not only in small and common CNVs but in 
rare and large CNVs. Disease-related studies identify significant CNV regions based 
on quantitative observations and CNVs compared between different subjects case by 
case. The MCKAT approach can provide a flexible statistical testing framework for 
CNV data, which can bring new insights for previous biological studies.

Table 4  The cytogenetic bands across the whole genome identified as significantly associated with 
the RMS subtype by MCKAT

# The number of CNVs on the band

Chr. Arm Band Start Stop #CNVs P-value

2 p 25.3 1 4,400,000 111 1.0× 10
−4

2 p 22.3 31,800,000 36,300,000 117 1.0× 10
−4

2 p 11.2 83,100,001 91,800,000 314 2.0× 10
−4

11 p 15.5 1 2,800,000 304 4.7× 10
−8

11 p 15.4 2,800,001 11,700,000 269 3.0× 10
−4

11 q 14.1 27,200,001 31,000,000 100 2.0× 10
−4

11 q 13.3 68,700,001 70,500,000 46 1.0× 10
−4

11 q 22.3 103,000,001 110,600,000 145 1.9× 10
−3

13 q 34.0 109,600,001 114,364,328 115 4.0× 10
−4

Fig. 5  Chromosomal ideograms showing significantly associated cytogenetic bands with the RMS subtype 
for chromosomes 2, 8, 11 and 13
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Discussion
MCKAT is an advanced approach to test the association between CNVs and disease-
related traits. Our approach has several advantages over the existing methods. Firstly, 
as the CNVs have more complicated multi-dimensional features in comparison with 
other types of genetic variants like SNPs, this is the first time that all multi-dimen-
sional features, including chromosomal position, type, dosage, and heterogeneity 
effect of the CNVs are utilized in testing the association between CNVs and disease-
related traits.

Secondly, the previous kernel-based methods do not measure the similarity between 
CNV profiles in an optimal way due to deficiencies in the algorithm they used to pair 
CNVs. In our proposed approach, we measure the similarity between CNVs profiles 
in an optimal way by considering the similarity between all possible CNV pairs in two 
CNV profiles. Third, the previous methods can only deal with a limited number of 
CNVs in chromosomal regions or rare CNV datasets. The results show that MCKAT 
is applicable to not only rare and large CNVs but also common and small CNVs.

Finally, MCKAT can help biologists detect significantly associated CNVs with any 
disease-related trait across a patient group instead of examining the CNVs case by 
case in each subject.

Although our experimental results are promising and outperform the state-of-the-
art kernel approach, this study has limitations. There are not many publicly available 
CNV datasets. Besides, most available ones do not contain all CNV features together, 
in particular the dosage information. Consequently, our method is tested only on one 
dataset that includes all multi-dimensional CNV characteristics, the RMS dataset. 
For the other dataset, the ASD dataset, we consider a dosage greater than two for 
all amplifications and less than two for all deletions to make most of the proposed 
method’s capability. Applying MCKAT to more datasets containing all CNV features 
can help to determine its strengths and weakness.

Our study shows that CNVs in some chromosomal regions can have statistically sig-
nificant association with disease-related traits, but it has the potential to reveal more 
new findings by conducting more comprehensive analysis. We will consider analysis 
for deep deletions and amplifications in our future work to identify specific CNVs 
that cause disease-related traits besides their chromosomal locations. Furthermore, 
we will check if CNVs are randomly distributed on the chromosomes or their posi-
tional orders are significant and have associations with disease-related traits.

Conclusion
This paper presents a genetic association test identifying associations between 
CNVs and disease-rated traits using all multi-dimensional CNV characteristics. Our 
method, MCKAT, uses kernels to measure the similarity between the CNV pro-
files utilizing CNV chromosomal position, type, and dosage. The similarity in CNV 
profiles is compared to the similarity in disease-related traits’ status to test for an 
association.

The evaluation was conducted on two types of CNV datasets, a rare large CNV 
dataset and a common small CNV dataset. Results indicate that our method provides 
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improved outcomes for detecting significant associations between CNV types, rare 
and common, and disease-related traits by indicating stronger evidence and smaller 
p-value than the state-of-the-art kernel approach.
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