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ABSTRACT Distributed artificial intelligence (AI) is becoming an efficient approach to fulfill the high and
diverse requirements for future vehicular networks. However, distributed intelligence tasks generated by
vehicles often require diverse resources. A customized resource provision scheme is required to improve the
utilization of multi-dimensional resources. In this work, a slice selection-based online offloading (SSOO)
algorithm is proposed for distributed intelligence in future vehicular networks. First, the response time
and energy consumption are reduced for processing tasks locally on the vehicles. Then, the offloading
overheads, including latency and energy consumption, are calculated by considering the available resource
amount, wireless channel states and vehicle conditions. The slice selection results is obtained by the deep
reinforcement learning (DRL)-based method. Based on the selection solution, resource allocation results
are achieved by KKT conditions and bisection method. Finally, the experimental results depict that the
proposed SSOO algorithm outperforms other comparing algorithms in terms of energy consumption and
task completion rate.

INDEX TERMS Resource slice, slice selection, computation offloading, distributed intelligence.

I. INTRODUCTION
Artificial intelligence (AI) is becoming an efficient method
to enhance future vehicular networks [1], [2]. With the fea-
ture of high mobility of vehicles, centralized AI models are
not suitable for highly varying environments and diversified
network architectures. Thus, distributed intelligence based
frameworks are applied for systems with multiple vehicles.
For instance, vehicles collect and process data for intelligence
tasks to achieve autonomous control. It imposes a noticeable
challenge on the vehicles with limited computation capacities
to process the intelligence tasks. Cloud computing enhances
the vehicles by providing a shared pool of storage and com-
putation resources [3]. However, it is costly to offload intelli-
gence tasks to the remote cloud. As a result, multi-access edge
computing (MEC) can provide adequate resources near the
vehicles [4]–[6].

In edge and cloud computing systems, sophisticated
network management strategies are required to control the
hierarchical network architecture comprehensively.

Software-defined networking (SDN) can reduce network
management costs and improve network flexibility [7].
SDN leverages the software-defined concepts to manage
and control the network. Meanwhile, centralized SDN
controllers are deployed to provide global views of the
network. With network functions virtualization (NFV) [8]
and SDN technologies, many service-oriented resource slices
are offered for intelligence tasks over a common network
infrastructure [9], [10].

Vehicles should select resource slices to offload the in-
telligence tasks to obtain the services provided by the edge
layer. However, if the resources provided by resource slices
are unable to fulfill the resource demands of tasks, the ser-
vice qualities will be degraded. Moreover, resource utiliza-
tion will be reduced by only considering the available re-
sources of resource slices when tasks are offloaded. To address
these issues, this work proposed a slice selection-based online
offloading (SSOO) algorithm for distributed intelligence in
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future vehicular networks. The main contributions are listed
as follows.
� A slice selection-based computation offloading prob-

lem for distributed AI is formulated by considering the
available resource amount, wireless channel states and
vehicle conditions. In the aforementioned problem, the
objective function is to reduce the energy costs.

� A slice selection-based online offloading (SSOO) algo-
rithm is proposed. A DRL-based method is leveraged to
obtain the slice selection results, which can reduce the
time complexity dramatically. Based on the selection so-
lution, resource allocation results are achieved by KKT
conditions and bisection method.

� We conduct extensive experiments in a testbed with six
edge servers and real-world datasets. As observed from
the experimental results, comparing with other base-
line schemes, our SSOO algorithm can reduce the sys-
tem energy costs and improve the task completion rate
significantly.

The rest of the paper is organized as follows. Section II
reviews the recent work. Section III proposes the system
model of the slice selection-based computation offloading.
Section IV presents the SSOO algorithm. In Section V, ex-
tensive experiments are conducted with six edge servers and
real-world datasets. Finally, Section VI concludes the work.

II. RELATED WORK
A. DISTRIBUTED INTELLIGENCE
Distributed intelligence enables the effective management and
orchestration of the multi-dimensional resources for future
vehicular networks [11]–[15]. Yao et al. [11] proposed a
cross-layer artificial intelligence-based architecture to fulfill
the requirements on 5 G and beyond. For autonomous driving
systems, base stations can learn the behaviors of vehicles to
assist the transportation systems. Ning et al. [12] proposed
an offloading scheme for vehicular networks by a DRL-based
approach. The communication costs between the macrocell
and vehicles were reduced significantly with the distributed
DRL-based approach. Zhou et al. [13] proposed a secure
computing framework, where the distributed intelligence sys-
tem often suffers from byzantine attacks. In the proposed
scheme, the blockchain technology is utilized to improve the
security. Gopalswamy et al. [14] studied a novel distributed
intelligence scheme for autonomous driving systems. In the
proposed architecture, a bayesian network model is leveraged
to assess the risks and benefits. Ioannou et al. [15] presented
a decentralized intelligent algorithm to manage the generation
of device-to-device (D2D) networks. The proposed algorithm
can improve the data rate and reduce the energy costs.

Differ from the above work, this paper leverages the re-
source slices to offer customized resources for various dis-
tributed intelligence applications with different requirements.

B. RESOURCE SLICING
Resource slicing is expected to provide customized resources
for distributed intelligence applications [16]–[20]. Sun et

al. [16] presented a dynamic resource slicing method for radio
access networks. The virtual resources were controlled by
the DRL-based algorithm to improve the average quality of
service utility. Bega et al. [17] proposed an AI-based slicing
framework, where AI technologies were introduced to im-
prove the performance in the whole slicing life cycle. Van
et al. [18] proposed a fast resource slicing architecture to
maximize the long-term returns of network providers. The
deep dueling Q-learning algorithm was leveraged to achieve
the optimal results more quickly. Zhang et al. [19] studied a
service-oriented soft resource slicing scheme for the vehic-
ular networks. The resources were reused at inter-slice and
intra-slice levels to improve resource utilization. Al-Khatib
et al. [20] proposed a priority and reservation-based slicing
scheme for different vehicular applications. The proposed
resource slicing algorithm can improve network resource
utilization.

Differ from the above work, this paper selects the optimal
resource slices to offload intelligence applications in the ve-
hicular networks to improve utilization of multi-dimensional
resources.

C. COMPUTATION OFFLOADING
DRL-based technologies are promising solutions for com-
putation offloading in vehicular networks [21]–[25]. Ke et
al. [21] proposed an adaptive offloading algorithm in hetero-
geneous vehicular networks, which was based on the DRL.
The proposed algorithm considered the stochastic tasks and
the variety of environments. Wang et al. [22] presented a
mobility-aware partial offloading scheme in vehicular net-
works. Compared with full offloading, partial offloading can
improve the flexibility of intelligence applications. Li et
al. [23] presented a collaborative task offloading algorithm
based on the DRL in vehicular networks. First, the execution
order of a task was determined. Then, the task offloading
and result delivery results were obtained by the DRL-based
approach. Peng et al. [24] studied a distributed DRL-based
resource management algorithm for vehicular networks with
unmanned aerial vehicles. The centralized controller was not
required to train the deep neural networks with multiple
agents. Qiu et al. [25] presented a novel online offloading
algorithm based on the DRL. The proposed algorithm can
improve resource utilization of both mining and AI tasks in
the blockchain-empowered edge computing environment.

Differ from the above work, the resource slices are lever-
aged for computation offloading. Each vehicle selects the
optimal slice to conduct offloading to improve utilization of
multi-dimensional resources in the vehicular networks.

III. SYSTEM MODEL
A. SYSTEM ARCHITECTURE
Fig. 1 describes the system architecture, including vehicles,
edge servers, an SDN controller, and a slice orchestrator.
Let Di indicate i-th vehicle, where i ∈ M = {1, 2, . . . , NM}.
Let A j denote j-th access point (AP), where j ∈ O =
{1, 2, . . . , NO}. Let Sl represent l-th resource slice, where l ∈
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FIGURE 1. System architecture.

TABLE 1. Key Notations

P = {1, 2, . . . , NP}. The amount of computation resources of
slice Sl is denoted by COMl and the bandwidth of slice Sl is
denoted by Bl . The bandwidth provided by AP A j in slice Sl is
represented by Bl

j . Each vehicle generates an intelligence task
with input λi and deadline τi. The tasks can be processed by
vehicles locally or transmitted to the edge layer. The vehicle
can process the task locally or offload the task to the edge
layer. Let xi ∈ {0, 1} denote the indicator variable to depict
whether the task is transmitted to the edge layer or not. Table 1
depicts the key notations.

B. LOCAL COMPUTATION MODEL
If xi = 0, the vehicle will execute the task locally. Let Cyci

indicate the required computation resources for processing
one-bit task, which is measured by the number of clock cy-
cles. The CPU-cycle frequency of vehicle Di is denoted by
fi ∈ [0, fi,max], where fi,max is the maximum value. Then, the
task execution delay of vehicle Di is obtained as [26]

T l
i =

λi ·Cyci

fi
.∀i ∈ M. (1)

The energy costs of vehicle Di to process a task is calculated
as [26]

El
i = λi ·Cyci ·Ci · ( fi )

2,∀i ∈ M. (2)

where Ci is the capacitance of vehicle Di. As shown in Equa-
tions (1) and (2), the task execution overheads are mainly
determined by the CPU-cycle frequency.

C. SLICE SELECTION MODEL FOR COMPUTATION
OFFLOADING
If a vehicle offloads a task to the edge layer, there are the fol-
lowing three steps. First, the vehicle should select a resource
slice for computation offloading. Then, the task is transmitted
and executed by the resources provided by the slice. Finally,
the computed result is downloaded from the edge layer. We
ignore the transmission latency of the computed results, since
the size of the result is small enough [27], [28].

If xi = 1, an indicator variable yl
i ∈ {0, 1} is introduced to

show whether vehicle Di select resource slice Sl to offload the
task or not. In each slice, the wireless resources are offered by
multiple APs. An AP can be accessed by various vehicles in
a resource slice. Moreover, it can be accessed by vehicles in
different resource slices. Thus, a binary variable zl

i, j is intro-
duced to indicate whether vehicle Di select resource slice Sl

and use the wireless resources provided by AP A j or not. In the
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resource slice, a vehicle can only connect with an AP. Let ρl
i, j

denote the amount of wireless resources that are provided by
AP A j and allocated to vehicle Di in resource slice Sl . Then,
the achievable transmission rate for vehicle Di is achieved
as [29], [30]

Rl
i, j=ρl

i, j · B j,l log

⎛
⎜⎜⎝1+ pi · hi, j

σ + ∑
m∈M\{i}:∑l∈Q zl

i, j=1

pm · hm, j

⎞
⎟⎟⎠ ,

(3)
where B j,l denotes the bandwidth, pi is the transmission
power of vehicle Di, hi, j is the channel gain between vehi-
cle Di and AP A j , and σ represents the noise. As shown in
Equation (3), the transmission rate is mainly calculated by the
amount of wireless resources and the number of vehicles in
the slice. Then, the task transmission delay of vehicle Di is
achieved as

T tx,l
i, j =

λi

Rl
i, j

,∀Rl
i, j > 0. (4)

The energy costs for task transmission is obtained as

Etx,l
i, j = T tx,l

i, j · pi,∀Rl
i, j > 0. (5)

When the task is transmitted to the edge layer, the selected
slice will assign computation resources. As the amount of
resources provided by an edge server is often limited, the edge
servers cooperate in the slice. Let ηl

i represent the amount
of computation resources allocated to vehicle Di in slice Sl .
Then, the task execution delay in resource slice Sl is obtained
as

T ex,l
i = λi ·Cyci

ηl
i ·Coml

,∀η j
i > 0. (6)

The energy consumption for task execution is achieved as

El
i = T ex,l

i · Pl ,∀η j
i > 0, (7)

where Pl is the average task execution power of servers in
resource slice Sl .

D. PROBLEM FORMULATION
The energy consumption can be considered as a key metric in
future vehicular networks. Then, the total energy consumption
of vehicles are denoted as

E1 =
∑
i∈M

(1− xi )E
l
i +

∑
i∈M

∑
j∈O

∑
l∈P

xi · yl
i · Etx,l

i, j . (8)

The total energy consumption of the edge layer is repre-
sented as

E2 =
∑
i∈M

∑
l∈P

xi · yl
i · El

i . (9)

Consequently, the resource slice-based computation of-
floading problem is formulated as

P1: min E = E1 + E2 (10a)

s.t. 0 ≤ fi ≤ fi,max, 0 ≤ pi ≤ pi,max,∀i ∈ M, (10b)

0 ≤
∑
i∈M

ρl
i, j ≤ 1,∀ j ∈ O, l ∈ P, (10c)

ρl
i, j ≤ zl

i, j ≤ v1ρ
l
i, j,∀i ∈ M, j ∈ O, l ∈ P, (10d)

xi ≥
∑
l∈P

yl
i ,∀i ∈ M (10e)

yl
i ≥

∑
j∈O

zl
i, j,∀i ∈ M, l ∈ P, (10f)

0 ≤
∑
i∈M

ηl
i ≤ 1,∀l ∈ P, (10g)

ηl
i ≤ yl

i ≤ v2η
l
i ,∀i ∈ M, l ∈ P, (10h)

(1− xi ) · T l
i +

∑
j∈O

∑
l∈P

xi · yl
i · (T tx,l

i, j + T ex,l
i ) ≤ τi,∀i ∈ M,

(10i)

xi, yl
i , zl

i, j ∈ 0, 1,∀i ∈ M, j ∈ O, l ∈ P, (10j)

ρl
i, j, η

l
i ∈ [0, 1],∀i ∈ M, j ∈ O, l ∈ P, (10k)

where pi,max is the maximum transmission power of vehicle
Di, v1 and v2 are arbitrarily large numbers. Constraint (10b)
ensures limitations of the CPU-cycle frequencies and trans-
mission powers. Constraints (10c)-(10h) guarantee that vehi-
cles leverage the resources provided by the selected slices.
Constraint (10i) ensures that tasks are processed before their
deadlines. Then, the NP-hardness of problem P1 is discussed
in Lemma 1.

Lemma 1: P1 is an NP-hard problem.
Proof: Assume that all vehicles offload the tasks, and trans-

mission power is set to maximum value, there is only one AP,
the deadlines of tasks are enough large, and the wireless and
computation resources are allocated to vehicles equally. That
is to say, it holds that |O| = 1, xi = 1, τi = +∞, pi = pi,max,
ρl

i,1 = 1/a1, and ηl
i = 1/a2, where a1 and a2 are constants. In

this case, the energy consumption of vehicle Di for selecting
slice Sl can be calculated as

El,∗
i =

a1 · λi · pi,max

Bl · log
(

1+ pi,max·hi∑
m∈M\{i} pm,max·hm

) . (11)

Then, P1 is reduced to the following problem:

P2: min
∑
i∈M

∑
l∈P

yl
i · El,∗

i (12a)

s.t.
∑
l∈P

yl
i = 1,∀i ∈ M, yl

i ∈ {0, 1},∀i ∈ M, l ∈ P, (12b)

∑
i∈M

∑
l∈P

yl
i · ρl

i,1 ≤ 1,
∑
i∈M

∑
l∈P

yl
i · ηl

i ≤ 1. (12c)

Then, the new optimization problem P2 is mapped to a multi-
dimensional multi-choice knapsack problem (MMKP) [31].
As P2 is NP-hard, P1 is a generalization of the MMKP, which
is also NP-hard. �
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IV. THE SSOO ALGORITHM
In this section, we present a slice selection-based online of-
floading (SSOO) algorithm to minimize the system energy
costs. As observed from P1, it is hard to deal with the binary
variables with a large feasible region. In this work, a DRL
algorithm is applied to achieve the resource slice selection
problem [32]. The DRL algorithm can make decisions by an
agent with a deep neural network (DNN). Then, the best slice
selection results are attained by efficiently learning the current
system environment. The input of the DNN is composed of
wireless channel gains, input sizes and deadlines of tasks.
This input is collected by the SDN controller. In time slot t ,
the channel gain set is denoted by Ht = {hi, j(t )|i ∈ M, j ∈ O},
the task input set is represented by λ(t ) = {λi(t )|i ∈ M}, and
the deadline set is defined as τ (t ) = {τi|i ∈ M}, where t =
1, 2, · · · . The slot length is defined as T . To guarantee the
quality of services, it holds that T ≤ max{τ1, τ2, . . . , τNM}.
The initial parameter setting of the DNN is denoted by θ1.
The output of DNN is the relaxed slice selection set, which
is denoted by Z = {zl

i, j ∈ [0, 1], i ∈ M, j ∈ O, l ∈ P}. For the
DNN, the activation functions of both hidden and output
layers are rectified linear unit (ReLU) and sigmoid function
respectively. After achieving the relaxed slice selection set,
these relaxed decisions should be transformed into integral
solutions, as follows.

gK : Z (t )← {
Zk|Zk ∈ 0, 1N , k = 1, 2, . . . , K

}
, (13)

where Zk denotes the slice selection sets, K ∈ [1, 2N ], and
N = NM · NP · NO represents the size of decision space. To
reduce the complexity of the proposed algorithm, it holds that
1 ≤ K ≤ N + 1. If zl

i, j ≥ zl ′
i,′ j′ , it holds that zl,k

i, j ≥ zl,′k′
i,′ j′ . The

iterative process for obtaining slice selection decision set is
summarized as follows.
� First, the initial slice selection decision is obtained ac-

cording to the output of the DNN, as follows.

zl,1
i, j =

⎧⎨
⎩

1, zl
i, j ≥ 0.5,

0, zl
i, j ≤ 0.5,

(14)

where i ∈ M, j ∈ O, l ∈ P.
� Then, the relaxed solutions are sorted by the following

rule.
∣∣z(1)(t )−0.5

∣∣≤· · ·≤ ∣∣z(n)(t )− 0.5
∣∣≤· · · ∣∣z(N )(t )− 0.5

∣∣ ,
(15)

where z(n)(t ) is the n-th relaxed slice selection result.
� Finally, the other K − 1 slice selection results are

achieved according to the aforementioned sequence, as
follows.

zl,k
i, j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, zl
i, j (t ) ≥ z(k−1)(t ),

1, zl
i, j (t ) = z(k−1)(t ) and z(k−1)(t ) ≤ 0.5,

0, zl
i, j (t ) = z(k−1)(t ) and z(k−1)(t ) > 0.5

0, zl
i, j (t ) < 0.5,

(16)

where i ∈ M, j ∈ O, l ∈ P.
After obtaining the slice selection decisions, P1 is divided

into tree sub-problems, including the resource allocation prob-
lem for vehicles, the wireless resource allocation problem,
and the resource allocation problem for the edge layer. Let
f (t ) = { fi(t )|0 ≤ fi(t ) ≤ fi,max,∀i ∈ M} denote the resource
allocation decision set for vehicles. Let p(t ) = {pi(t )|0 ≤
pi(t ) ≤ pi,max,∀i ∈ M} be the transmission power set for
vehicles. Let η(t ) = {ηl

i (t )|ηl
i (t ) ∈ [0, 1], i ∈ M, l ∈ P} indi-

cate the resource allocation decision set for the edge layer.
Let ρ(t ) = {ρl

i, j (t )|ρl
i, j (t ) ∈ [0, 1], i ∈ M, j ∈ O, l ∈ P} rep-

resent the wireless resource allocation decision set. When
slice selection decision Zk is given, a resource allocation de-
cision { fk (t ), pk (t ), ρk (t ), ηk (t )} and the energy consumption
Ek can be obtained. In time slot t , the optimal resource allo-
cation decision, {Z∗(t ), f ∗(t ), p∗(t ), ρ∗(t ), η∗(t )}, is the one
with minimal energy consumption.

If
∑

j∈O

∑
l∈P zl,k

i, j = 0, vehicle Di will process the task
locally. As shown in equations (1) and (2), these two equations
are convex functions of fi. Thus, we use the Karush-Kuhn-
Tucker (KKT) conditions as an efficient method for computa-
tion resource management problem of vehicles.

If If
∑

j∈O

∑
l∈P zl,k

i, j = 1, vehicle Di will offload task to
the edge layer. As observed from equations (6) and (7), these
two equations are convex functions of ηl

i . Similarly, we use
the KKT conditions as an efficient method for computation
resource management problem of the edge layer. Then, the
joint transmission setting and wireless resource management
problem is formulated as

P3: min
∑
i∈M

∑
j∈O

∑
l∈P

Etx,l
i, j (17a)

s.t. ρl
i, j ∈ [0, 1],∀i ∈ M, j ∈ O, l ∈ P, (17b)

0 ≤ pi ≤ pi,max,∀i ∈ M. (17c)

It is difficult to solve the optimal problem P3 due to equa-
tion (3). To simplify the problem, we use the following equa-
tion instead of equation (3).

Rl
i, j=ρl

i, j · B j,l log

⎛
⎜⎜⎝1+ pi · hi, j

σ + ∑
m∈M\{i}:∑l∈Q zl

i, j=1

pm,max · hm, j

⎞
⎟⎟⎠ .

(18)
Equation (18) is a quasi-convex function of ρl

i, j and pi. The
optimal wireless allocation and transmission power setting
results are calculated by the bisection method, which can be
denoted by ρ∗k (t ) and p∗k (t ).

Finally, optimal slice selection solution Z∗(t ) is obtained
with minimum energy consumption. Moreover, the data
{H (t ), λ(t ), τ (t ), Z∗(t )} is added to the sample dataset. The
parameters of the DNN are updated periodically by selecting
a training dataset A(t ). In this work, the mean square error
is used as the loss function. To update the parameters of the
DNN, we use Adam as an optimizer.
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Algorithm 1: The SSOO Algorithm.
Input:Wireless channel gain H (t ), task input size λ(t ),
and task deadline τ (t )

Output:Offloading result
{Z∗(t ), f ∗(t ), p∗(t ), ρ∗(t ), η∗(t )}

1: Initialize the parameter θ1 of the DNN;
2: Set the maximum iteration number ζ and training

interval δ;
3: for t = 1, 2, . . . , ζ do
4: Obtain relaxed slice selection solution Z

(
t )

according to H (t ), λ(t ), and τ (t );
5: Generate the initial slice selection result;
6: Generate K − 1 slice selection results according

to the initial result;
7: for k = 1, 2, . . . , N + 1 do
8: Obtain computation resource allocation

solutions fk (t ) and ηk (t ) with KKT conditions;
9: Obtain the wireless resource allocation solution

ρk (t ) and transmission power setting result
pk (t ) with bisection method;

10: Calculate the system energy consumption Ek ;
11: end for
12: end for
13: Select the optimal offloading result

{Z∗(t ), f ∗(t ), p∗(t ), ρ∗(t ), η∗(t )} with minimum
energy consumption;

14: Add {H (t ), λ(t ), τ (t ), Z∗(t )} to the sample dateset;
15: if t mod δ = 0 then
16: Select a training dataset A(t ) randomly;
17: Obtain the optimal parameter θ∗t with MSE and

Adam optimizer;
18: end if
19: return {Z∗(t ), f ∗(t ), p∗(t ), ρ∗(t ), η∗(t )}

Algorithm 1 summarizes the aforementioned ideas. First,
the relaxed slice selection solution is achieved by wireless
channel gains, input data sizes, and task deadlines (line 4).
Then, K slice selection results are obtained based on the re-
laxed slice selection solution (line 5-line 6). With each slice
selection result, the optimal resource allocation solution is
achieved. The slice selection and resource allocation result
with minimum energy consumption is the optimal offloading
solution (line 7-line 11). Finally, the parameters of the DNN
are updated periodically (line 12-line18).

As shown in Algorithm 1, the time complexity of obtaining
the relaxed slice selection result is O(NM · NP · NO). The
time consumption for achieving the initial slice selection so-
lution is also O(NM · NP · NO), while the time complexity
of generating other K − 1 slice selection results is O(K − 1).
The time complexity of calculating the computation resource
allocation results is O(NM · NP)+ O(NM ). The time con-
sumption of calculating the wireless resource allocation and
transmission power setting results is O(NM · NP · NO). In

TABLE 2. Configurations of End Devices and Servers

summary, the total complexity of the SSOO algorithm is
O(NM · NP · NO)

V. EVALUATION
A. EXPERIMENTAL ENVIRONMENT
The experimental environment includes some end devices, six
edge servers (ESs), an SDN controller and a slice orchestrator.
The configurations of end devices and servers are shown in Ta-
ble 2. The SDN controller is installed based on OpenDaylight.
The ESs are controlled by Kubernetes. Finally, an End-to-End
Orchestrator [33] is installed as a slice orchestrator. Fig. 2
describes the detailed experimental environment.

We apply vehicle detection and viewpoint prediction tasks
as the benchmark tasks to depict the benefits of the proposed
SSOO algorithm for distributed intelligence. The input of the
vehicle detection tasks is the KITTI dataset, while the input of
viewpoint prediction tasks is the video viewing dataset.

B. BASELINE SCHEMES AND EVALUATION METRICS
The proposed SSOO algorithm is compared with the follow-
ing three baseline schemes, including the energy and time
efficient task offloading and resource allocation (ETCORA)
algorithm [34], deep reinforcement learning-based computa-
tion offloading and resource allocation (DRL-CORA) algo-
rithm [35], and genetic algorithm-based network slice selec-
tion (GA-NSS) algorithm [36].

In experiments, evaluation metrics are composed of average
device energy consumption, total energy consumption, task
completion rate and the number of tasks processed by slices.
The average device energy costs are measured by the amount
of energy consumed by the devices for executing and trans-
mitting tasks. The system energy costs are determined by the
amount of energy consumed by both end devices and edge
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FIGURE 2. Experimental environment.

servers. The task completion rate is calculated by the number
of tasks that are completed within the deadlines. The number
of tasks processed by slices is achieved by the number of tasks
received by each slice.

C. BASIC SETTINGS
The basic settings of the experiment are shown in this sub-
section. The number of resource slices for vehicle detection
tasks is 2, including 28 vCPU cores and 20 MHz bandwidth.
The number of resource slices for viewpoint prediction tasks
is 2, including 14 vCPU cores and 40 MHz bandwidth. In
each experimental group, average result values are calculated
to reduce the randomness impacts. For the DNN, the number
of hidden layers is 2.

D. IMPACTS OF NUMBERS OF END DEVICES
In this experimental group, the deadlines of vehicle detection
and viewpoint prediction tasks are set to 0.8 s and 1 s re-
spectively. The inputs of these two tasks follow exponential
distributions with the means of 16 MB and 32 MB. Then,
how the number of end devices affects system performance
is investigated.

As shown in Fig. 3(a), the total energy costs increase with
the increase of the number of end devices. This is since
more energy is required for processing more tasks. When the
number of devices is 5, there are no significant differences
among these four schemes. Compared with GA-NSS algo-
rithm, DRL-CORA algorithm and GA-NSS algorithm, the
proposed SSOO algorithm can reduce the total energy con-
sumption by 25.56%, 39.12% and 50.84% when the number
of devices is 25. Fig. 3(b) plots the increasing trends of the
average device energy consumption. This is because more en-
ergy is needed for transmitting tasks to the edge layer with the
increase of the number of end devices. When the number of
devices is 25, compared with GA-NSS algorithm, the SSOO
algorithm can reduce the average device energy consumption
by 22.31%. This is because the SSOO algorithm can improve
resource utilization for distributed intelligence by selecting
optimal slices.

As observed from Fig. 4, the task completion rate reduces
when the number of devices increases. This is due to the

FIGURE 3. Impacts of numbers of end devices on (a) the total energy
consumption, (b) the average device energy consumption.

fact that the amount of resources provided by the system is
limited. It is hard to offer adequate resources for each task.
Compared with the ETCORA scheme, the SSOO algorithm
can increase the task completion rate by 17.69% when the
number of devices is 15. This is because the ETCORA al-
gorithm cannot provide customized resources for tasks with
various requirements, which results in lower task completion
rates. As shown in Fig. 5, the number of tasks processed by
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FIGURE 4. Impacts of numbers of end devices on the task completion rate.

FIGURE 5. Impacts of numbers of devices on the number of tasks
processed by each slice.

each slice increases when the number of devices increases.
Under the proposed SSOO algorithm, the ratio of the number
of tasks processed by Slice 1 to that of tasks processed by
Slice 2 is 3 : 2.

E. IMPACTS OF TASK DEADLINES
In this experimental group, the number of devices is 20. The
inputs of these two tasks follow exponential distributions with
the means of 16 MB and 32 MB. Then, how task deadline
affects system performance is studied.

Fig. 6(a) plots the decreasing trends of the total energy
consumption when the task deadline increases. This is because
the tasks with larger deadlines can be processed with fewer
resources. When the deadline is set to 1.2 s/1.4 s, there is not
any difference between the GA-NSS algorithm and SSOO al-
gorithm. When the deadline is set to 0.4 s/0.6 s, compared with
the GA-NSS algorithm, DRL-CORA algorithm and ETCORA
algorithm, the SSOO algorithm can reduce the total energy
consumption by 30.25%, 42.16% and 49.82%. As shown in
Fig. 6(b), the average device energy consumption increases
rapidly with the decrease of the task deadlines. Compared
with the GA-NSS algorithm, our proposed SSOO algorithm

FIGURE 6. Impacts of task deadlines on (a) the total energy consumption,
(b) the average device energy consumption.

FIGURE 7. Impacts of task deadlines on the task completion rate.

reduces the average device energy consumption by 13.49%
when the deadline is set to 1.2 s/1.4 s. This is because the
SSOO algorithm can improve the resource utilization of each
slice.

As shown in Fig. 7, the task completion rate acts as an
increasing function of the task deadline. When the deadline
is set to 1.2 s/1.4 s, the task completion rates under both
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FIGURE 8. Impacts of task deadlines on the number of tasks processed by
each slice.

FIGURE 9. Impacts of task input sizes on (a) the total energy consumption,
(b) the average device energy consumption.

GA-NSS algorithm and SSOO algorithm are near 100%. This
is because the resource slice can improve resource utiliza-
tion. When the deadline is set to 0.8 s/1s, compared with
the ETCORA algorithm, the proposed SSOO algorithm can
improve the task completion rate by 27.33%. Fig. 8 plots a
decreasing trend of the task completion rate when the task
deadline increases. With larger deadlines, more tasks can be
finished within the deadlines.

F. IMPACTS OF TASK INPUT SIZES
In this experimental group, the deadlines of vehicle detec-
tion and viewpoint prediction tasks are set to 0.8 s and 1 s

FIGURE 10. Impacts of task input sizes on the task completion rate.

FIGURE 11. Impacts of task input sizes on the number of tasks processed
by each slice.

respectively. The number of end devices is set to 20. Then,
how the task input sizes affect the system performance is
investigated.

As shown in Fig. 9(a), the total energy consumption in-
creases when the task input size increases. This is because
more network and computation resources are required to pro-
cess these tasks. When the input size is set to 8 MB/16 MB,
there are no significant differences among all schemes. This
is because all tasks can be processed within the deadlines.
Compared with the GA-NSS algorithm, the SSOO algorithm
can reduce the total energy consumption by 23.06% when the
input size is set to 24 MB/48 MB. As observed from Fig. 9(b),
the average device energy consumption acts as an increasing
function of the task input sizes. This is because end devices
need more resources to process the tasks with larger inputs.

Fig. 10 plots a decreasing trend of the task completion
rate when the task input sizes increase. This is due to the
fact that fewer tasks are finished within deadlines with larger
inputs. When the input size is set to 8 MB/16 MB, the per-
formance of all schemes is near. When the input size is set
to 24 MB/48 MB, the performance of the GA-NSS algorithm
and SSOO algorithm is better than that of DRL-CORA algo-
rithm and ETCORA algorithm. In Fig. 11, the ratio of task
numbers in Slice 1 and Slice 2 is near 3:2 under the proposed
SSOO algorithm, while the ratio of task numbers in Slice 1
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and Slice 2 changes under the GA-NSS algorithm. This is
because the proposed SSOO algorithm can select the optimal
slices for tasks.

VI. CONCLUSION
In this work, the SSOO algorithm for distributed intelligence
tasks in future vehicular networks is proposed. First, the dy-
namic voltage and frequency scaling technology is applied to
reduce the response time and energy consumption for pro-
cessing tasks locally. Then, the response time and energy
consumption for offloading are calculated by considering the
available resource amount, wireless channel states and vehicle
conditions. A DRL-based method is leveraged to obtain the
slice selection results. Based on the selection solution, re-
source allocation results are achieved by KKT conditions and
bisection method. Finally, the experimental results depict that
the proposed SSOO algorithm outperforms other comparing
algorithms in terms of energy consumption and task comple-
tion rate. In future studies, more virtual network functions
of the resource slices will be included and discussed for the
distributed AI.
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