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Abstract: The design of rail tracks is often challenged by the highly compressible behaviour of soft
estuarine clays over which they must pass. It is prudent that the realistic long-term behaviour of
subgrade materials under repeated loading applied by fast moving heavy haul trains is properly
understood. One feature that should not be ignored when estimating the long-term performance of
track foundations is the continuous principal stress rotation (PSR) induced by moving wheel loads. The
main purpose of this research is to combine the traditional cyclic triaxial test results (fixed axes, no
PSR) with those obtained from the dynamic hollow cylinder apparatus (allowing PSR) to examine the
relative influence of cyclic stress ratio (CSR) and frequency on the behaviour of soft subgrade
subjected to simulated heavy haul train loading. Employing these two types of equipment applying
contrasting stress path regimes, a series of cyclic undrained laboratory tests was conducted on
reconstituted sandy clay specimens at varying frequencies (f = 0.1-1 Hz) and cyclic stress ratios
(CSR =0.2-0.3). The hollow cylinder test results have shown that higher CSR values and lower
frequencies induce greater permanent deformations and excess pore water pressures at a given
number of loading cycles (N). For CSR = 0.2, pore pressures and axial strains were found to increase
even after a large number of cycles (N =50,000). However, when the higher CSR value of 0.3 was
imposed, the soil failed in less than 300 cycles by reaching 5% of axial strain. Undoubtedly, PSR
adversely affected the accumulation of axial strains and soil degradation, whereas in contrast, the

development of pore water pressure was less influenced by PSR.
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1. Introduction

Over recent years, the rapid growth in population, urbanisation and congestion in highway transport
has promoted the adoption of increasingly heavier and faster trains, along with an increase in the
frequency of train services. In particular, for railway tracks constructed over soft estuarine subgrade
(e.g. silty clays), the long-term repeated train loading produces significant irrecoverable or permanent
deformations, and also induces excess pore water pressures in the soil foundation, which adversely
affects the design life of the track substructure while exacerbating the cost of maintenance [1-9].

It is well established that the magnitude and orientation of the principal stresses acting on track
foundation materials continuously change upon repeated traffic loadings. Fig. 1a illustrates the
rotation of the principal stresses acting on a soil element in a track foundation when subjected to
moving wheel loads. As the wheel approaches the soil element, the major principal stress (o)
increases and reaches its maximum magnitude when the applied load is directly above the soil
element. The major principal stress will then decrease once the wheel load moves away from the soil
element. The typical stress regime experienced by a soil element in a track foundation is shown in
Fig. 1b [10], and the appropriate stress path for this condition was clarified by Grdbe and Clayton [11,
12] using a Finite Element analysis.

In the past, numerous experimental studies have been conducted on fine-grained subgrade soils
under cyclic loading conditions to simulate the effects of traffic loading and thereby evaluate the
associated deformation behaviour. Although different tests have been performed using dynamic
equipment, such as the cyclic triaxial and the resonant column tests, they were often unable to model
continuous principal stress rotation (PSR) due to the inability of the test devices. Various studies
involving solid cylindrical specimens have been developed over the past few decades to evaluate the
effects of cyclic loading in an axisymmetric stress state [13-22]. In all the devices used in these studies,
the orientations of the major and minor principal stresses have traditionally been fixed as vertical and
horizontal, respectively, except for some loading conditions, such as two-way cyclic loading, in which

the direction of principal stresses can be instantaneously changed from 0° to 90° [14, 18]. The true
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triaxial apparatus enables independent control of the three principal stresses, but it cannot impose
the rotation of the principal axes [23-26]. Recent studies conducted using the true triaxial apparatus
have examined the three-dimensional stress state of saturated clays under undrained conditions at a
constant loading frequency, considering the effects of cyclic intermediate principal stress [24, 25]. Gu
etal. [24] introduced a parameter termed as the coefficient of cyclicintermediate principal stress (beyc)
to characterise the coupling effects of cyclic major and intermediate principal stresses, and showed
that the permanent major principal strains are inversely proportional to by.. Moreover, for the clay
used in the aforementioned study, a critical value of by = 0.48 could be determined, at which the
permanent intermediate principal strains transformed from tension to compression. Cyclic load tests
on soil specimens under nominal plane strain conditions can be performed using the cyclic simple
shear apparatus [27-32]. Although the cyclic simple shear device is capable of rotating the orientation
of the principal stresses from -45° to +45° relative to the vertical direction, the changes in the
magnitude and orientation of the principal stresses are generally unknown and uncontrollable [33,
34].

To overcome the aforementioned limitations associated with conventional cyclic equipment and
more realistically simulate the actual rail traffic-induced stresses in the field, it is necessary to use
a versatile equipment, enabling advanced control over both the magnitude and direction of the
principal stresses. In the past, the hollow cylinder apparatus has successfully been used to evaluate
the effects of PSR in soils, as it allows independent control of up to three principal stresses and the
rotation of the principal axes, making more generalised stress path testing possible [11, 12, 35-44].
However, only a few studies have investigated the cyclic stress—strain behaviour of clays under traffic
loading using the dynamic hollow cylinder apparatus. In particular, there has been very limited
research where laboratory observations from both cyclic hollow cylinder and cyclic triaxial testing
under realistic cyclic stress ratios and frequencies have been combined to interpret the soft soil
behaviour applicable for railway subgrade. The studies by Grabe and Clayton [11, 12, 36] involving

cyclic hollow cylinder tests have revealed that PSR during cyclic loading has a significant and
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detrimental effect on the accumulation of permanent deformations and on the resilient modulus of
certain types of railroad materials, thus it cannot be ignored when evaluating the actual behaviour of
rail tracks. Guo et al. [38] studied the undrained behaviour of a natural clay under traffic loading using
a dynamic hollow cylinder apparatus, and they observed that both the cyclic stress magnitude and the
loading frequency have a significant influence on the development of vertical strains. Furthermore,
compared to the cyclic stress magnitude, the impact of frequency on the resilience behaviour seemed
to be secondary. Qian et al. [39] carried out cyclic loading tests using a dynamic hollow cylinder
apparatus in addition to cyclic triaxial undrained testing on soft clay, and showed that the accumulated
soil deformation responses at different stress levels could be described by the shakedown approach.
Cai et al. [41] performed a series of hollow cylinder experiments on soft clay mimicking cardioid-
shaped stress paths under different cyclic axial stress and shear stress levels. They observed that when
the cyclic stress ratio (CSR) was below a threshold value, the shear stress level had little influence on
the dynamic behaviour of soft clay. However, with increasing values of CSR, the effect of shear stress
became more significant, and based on this insightful experimental work, a new model for degradation
index was then established.

It is noteworthy that much of the existing cyclic loading research on subgrade soils has been
conducted in relation to high-speed rail (i.e. high frequencies and low CSR), and that strikingly
contrasting conditions prevail for heavy haul rail operations characterised by relatively low speed but
much higher axle loads. In the context of heavy haul train loading, the key objective in this study was
to combine the traditional cyclic loading triaxial test results (fixed loading axes) with those from
dynamic hollow cylinder apparatus (allowing PSR) to examine the relative influence of CSR and
frequency on the irrecoverable (plastic) soil deformations, build-up of excess pore water pressures
and the degradation of soil resilient modulus. In view of the above, the authors have conducted a
series of cyclic undrained laboratory tests on reconstituted sandy clay specimens using a dynamic
hollow cylinder apparatus (DYNHCA) and a cyclic triaxial apparatus (CTA) employing different

frequencies (f = 0.1-1 Hz) and cyclic stress ratios (CSR = 0.2-0.3).
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Using the Boussinesq theory and the attenuation factors of dynamic stress [2], the stress applied
to the point located at a depth of 2.5m from the surface of subgrade corresponds to a CSR (defined as
the ratio between the deviator stress and twice the effective confining pressure, CSR=q /2 o) of
0.27 for an axle load of 25 tonnes that is typical of most Australian heavy haul trains. The CSR values
(0.2 and 0.3) and frequencies (0.1 to 1 Hz) adopted in this study aim to simulate the cyclic loads
induced at a depth of 2.5m from the subgrade surface by heavy haul trains travelling at speeds
between 40-80 km/h. On a standard gauge track in Australia, while the top of ballast may experience
frequencies of up to 20 Hz (i.e. approximately 100 km/h speeds) [45, 46], these attenuate rapidly with
depth to the soft subgrade to be of much smaller values, depending on the thickness of subballast and
the damping of structural fill over the natural subgrade [47-49]. The selected frequencies in this study
(0.1 to 1 Hz) for testing the subgrade soil corroborate mainly with heavy haul trains which only travel
at 40-80 km/h in most cases, and very rarely up to 100 km/h.

Although the DYNHCA is capable of applying combined axial-torsional loadings and simulating
complex stress paths, some difficulties have been encountered with respect to the test procedures
and specimen preparation. In some past studies, hollow cylinder specimens have been prepared from
undisturbed block specimens by coring and trimming [37, 50, 51], which may have induced varying
levels of disturbance to the mechanical properties of soil. Reconstituted hollow cylinder specimens
have been used in this study to ensure the reproducibility and homogeneity of the test specimens.

Hence, any influence of the inherent (in situ) soil fabric has been ignored herein.

2. Materials and Methods

2.1. Test Apparatus

The tests reported in this paper were conducted at the University of Wollongong (NSW, Australia),
using a dynamic hollow cylinder apparatus, DYNHCA (Fig. 2a) and a cyclic triaxial apparatus, CTA. In
the DYNHCA, the external loadings, such as outer cell pressure (P,), inner cell pressure (P;), axial load

(W) and torque (My), can be applied and controlled independently, which allows simulation of a wide
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range of stress paths for studying the effects of anisotropy, intermediate principal stress ratio and
principal stress rotation. Since the axial and torsional loadings are applied simultaneously using
frictional end boundary conditions, additional radial stresses are experienced by the soil specimen,
which leads to non-linear deformations. Hence, the interpretation of the stress and deformation state
within the test specimen requires certain assumptions. In particular, stresses acting along the
specimen height and stresses across the wall thickness are assumed to be uniform. The DYNHCA has
a configuration for testing under an axial load up to 15kN and a torque up to 400Nm, and it can
accommodate hollow cylinder specimens with outer radius (r.) of 50mm, inner radius (r;) of 30mm
and height (H) of 200mm. By using these specimen dimensions, the stress non-uniformity due to the
specimen curvature and the end restraint are reduced to acceptable levels by satisfying the conditions
previously recommended by Sayao and Vaid [52] in terms of: (i) wall thickness: r. — r; = 20 to 26mm,
(ii) inner radius: 0.65 < r; /r. < 0.82 (a slightly lower value, r; /r. = 0.6 is obtained with this equipment)
and (iii) height: 1.8 < H/2r. < 2.2.

As mentioned, the height of the hollow cylinder specimen is 200mm. The pore water pressures
are set to zero at the mid-height of the specimen (i.e. excess pore water pressures are measured at
the specimen mid-height). Lateral (radial) pressure is applied by de-aired water against the interior
and exterior walls of the test specimen. Digital pressure-volume controllers are connected to the
appropriate valves to keep the outer and inner cell pressure as well as the back pressure constant. A
dedicated controller applies the back pressure and records the corresponding volume change of the
specimen, while the inner and outer cell pressure-volume controllers measure the volume changes
inside and outside of the hollow cylinder specimen, respectively. The apparatus has two servo motors,
one controlling the axial movement (or load) and the other controlling the torsional movement (or
torque). Similar to other types of triaxial apparatus, the axial force and deformation are applied by an
actuator at the base of the cell. The torque is applied through the rotation of the same ram imposing

the vertical load. The values of axial force and torque are monitored by an internal (submersible)
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combined load and torque transducer. The axial displacements and rotations are measured through
high resolution encoders read by a Digital Control System.

The cyclic triaxial apparatus enables application of a deviatoric cyclic stress while keeping the cell
pressure constant throughout the test process. Since it is a conventional device which has been used

by several researchers [21, 53], further details about the equipment have been omitted for brevity.

2.2. Specimen Preparation
In this study, reconstituted soil specimens were produced in the laboratory to ensure reproducibility
and uniformity. A sandy clay subgrade was simulated by blending kaolin clay with sand in the ratio of
1:1 (based on dry mass), and the basic properties of the kaolin, sand and resulting reconstituted soil
are summarised in Table 1.
The hollow cylinder specimens were prepared by using the one-dimensional slurry consolidation
method [54-56] according to the following steps:
(1) Sand sieved through the 425um sieve was mixed with dry kaolin. The soil mixture was
thoroughly mixed with de-aired water to obtain a water content of two times the liquid limit
[21].
(2) Two custom-made moulds (one mould with inner diameter of 100mm and another with outer
diameter of 60mm) were positioned by a 20mm wide annular porous disk at the bottom
(Fig. 2b).
(3) The slurry was poured into the cavity between the two moulds which were lubricated with
silicone grease at the surfaces (Fig. 2c).
(4) Another 20mm wide annular porous disk was placed on top of the slurry to allow drainage at
both ends. The surface of the outer mould was perforated to promote the consolidation
process by including radial drainage. The perforated surface was covered with filter paper

strips to avoid clogging by soil particles (Fig. 2d).
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(5) The specimen was consolidated to a pre-consolidation pressure of 50 kPa in four stages of
step loading (i.e., 2 kPa, 7 kPa, 20 kPa and 50 kPa) with approximately 24 hour intervals, when
there was no further dissipation of excess pore pressure (Fig. 2e).

(6) Once the consolidation process was completed (after approximately two weeks), according to
the ASTM D2435 [57], the hollow cylinder specimen was extruded and trimmed to the desired
height. Since an intact hollow cylinder shape was obtained, no coring was required, thereby
preventing specimen disturbance. The specimen was then grooved on both top and bottom
to fit into the fins of the top and bottom caps of the hollow cylinder chamber (Fig. 2f).

It is noteworthy that clay specimens require different installation procedures from those of sand
specimens prior to testing. While sand specimens can be prepared inside the hollow cylinder chamber
using dry or moist tamping or pluviation methods, for clay specimens special care needs to be taken
while installing the inner and outer rubber membranes, filling inner cell water and fitting fins into the

grooved surface of the test specimen after its preparation is completed.

2.3 Saturation and Consolidation

Once the specimen was set up inside the hollow cylinder chamber and filled up with de-aired water,
it was saturated by a back pressure of 300 kPa for 72 hours until a Skempton’s pore pressure
coefficient, B > 0.96 was attained. After saturation, the specimen was isotropically consolidated under
a mean effective pressure of 50 kPa by applying the same inner and outer cell pressures. This value of
stress was chosen to mimic the appropriate confining pressure acting at a depth of around 2.5m from

the subgrade surface.

2.4 Test Program
Following isotropic consolidation, a number of cyclic hollow cylinder tests and cyclic triaxial tests were
performed under undrained conditions to investigate the effect of frequency, cyclic stress ratio and

principal stress rotation on the mechanical behaviour of the test specimens. The undrained conditions
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herein adopted aim to reproduce the impeded drainage between wheel load cycles under fast moving
trains. Loading frequencies ranging from 0.1 to 1 Hz and cyclic stress ratios of 0.2 and 0.3 were
employed, whereby all tests were conducted under a constant effective confining pressure of 50 kPa
over 50,000 cycles or until failure occurred. Table 2 presents the summary of the testing programme.

The cyclic stress ratio is calculated from the values of the deviator stress (g) and effective confining

pressure (%), as:

CSR = -2 (1)
207

[

where g varies cyclically (see later as also represented by Eq. 10).
The resilient modulus (Mg) is a key parameter in the design of railway foundations characterising
the foundation soil stiffness with respect to the recoverable strains under repeated loading and

unloading imposed by moving traffic. The resilient modulus can thus be determined as:

Mg = - ()

Ea,r

where g, is the recoverable (resilient) axial strain during unloading [36, 58].

2.5 Stress Status and Stress Paths
The idealised stress state of an element of the hollow cylinder specimen is shown in Fig. 3. Average
stresses such as the vertical stress (o), radial stress (o;), circumferential stress (os) and shear stress
(7z6) and average strains such as vertical strain (&), radial strain (&), circumferential strain (o) and
shear strain (j46) on a soil element were estimated according to Hight et al. [59]. The outer (P,) and
inner (P;) cell pressures were kept equal to minimise the stress non-uniformity across the wall of the
soil specimen, resulting in o; and os being equal to the cell pressure. The ratio of the deviator stress
to the shear stress was taken as 2.14 [60].

The major (o1) and minor (o3) principal stresses were calculated based on the vertical, radial,

circumferential and shear stresses, whereas the intermediate principal stress (o2) was equal to the

10
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radial (or) and circumferential stress (os). The three principal stresses for the dynamic loading imposed

in the hollow cylinder apparatus can be expressed as:

z + or z — Or
o = e \/(%)2 T 102 a)
o, = Oy (4)
= loto) _ f%=0roy o o2 5
03 = 2 ( 2 ) 720 ( )

The magnitude of the intermediate principal stress (oz) with respect to the major (o) and minor
(o3) principal stresses can be characterised by the intermediate principal stress ratio (b):

h=22 (6)

01— 03
The inclination of the major principal stress direction to the vertical axis («) can then be calculated

from the known stress components as follows:

271,
tan2q = =22

(7)

0z~ Op

For the particular case of equal internal and external pressures, the relationship between a and b
can be expressed by:

b =sin’a (8)

In the present study, the intermediate principal stress ratio oscillated from 0 to 0.41 during the
loading and unloading process.

To simulate the repetitive train loadings acting on the subgrade, the axial load was first applied to
induce a cyclic deviator stress on the specimen. When the maximum deviator stress was reached, a
cyclic torsional load was initiated from zero value. A phase difference of 90° between sinusoidal axial
and torsional loadings was then established.

When the train wheel load approaches a given soil element, the inclination of the major principal
stress reduces from -40° with respect to the vertical direction. The principal stress rotation angle will
be zero when the wheel load is directly above the soil element. Then, the orientation of the major

principal stress increases to reach a maximum value of +40° as the wheel load moves away from the
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soil element. The rotation angle will gradually change from +40° to -40° for the next approaching
wheel load depending on the spacing between two consecutive wheels. This way, the angle of rotation
of the principal stress axis would change between -40° to +40° for every wheel load (Fig. 4a). The value
of the rotation angle falls within the range obtained from the study by Grabe and Clayton [12], which
shows that depending on the depth below the track structure, the principal stresses rotate from +/-
90° to +/- 30° before the arrival of the next wheel load. The combination of axial and torsional cyclic
loadings produces continuous rotation of the principal stress direction in a circular path, as illustrated
in Fig. 4b, which also elaborates how the angle of rotation changes with the shear stress variation.
Actual values measured in one representative test (T4) have been compared with predicted
(computed) values in Fig. 4 to demonstrate the accuracy of the relatively complex stress path
simulated in the hollow cylinder apparatus.

To compare the results from cyclic triaxial apparatus and dynamic hollow cylinder apparatus, the
total stress paths should be compared. The mean effective stress (p’) and deviator stress (q) have been

calculated for both types of test using the following equations [61]:

pr — (0"1+0"32+0"3) — (U’z+0"3r+0"e) (9)
— )2 — 522 — 52)2
q = \/(01 02)%+(01 203) +(o2 — 03) — \/(O-z — 0y)2+ 3 Tzez (10)

As shown in Fig. 5, the total stress paths for cyclic loading with and without PSR follow a similar
trend. Therefore, it is reasonable to compare the results obtained from cyclic triaxial tests and hollow

cylinder tests.

3. Results and Discussion

Itis well known that soil properties are considerably affected by the fabric, stress history and confining
pressure [31, 32, 62]. Therefore, these factors were kept constant in this study. A comparison was
made between the hollow cylinder test results obtained for different frequencies and cyclic stress

ratios in terms of variation of axial deformation, excess pore water pressure and resilient modulus
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over time (i.e., in relation to the number of cycles). Since all the tests were conducted under undrained
conditions, the total volumetric strain (€,) was expected to be zero (Eq. 11), and this could be validated
by measuring the axial strain (&), radial strain (€,) and circumferential strain (€g) of the test specimens,
where g, = - (&, + €o), based on test T4 (Fig. 6a).

& =&t &+ =0 (11)

3.1 Permanent Axial Deformation

Fig. 6b illustrates the axial deformation behaviour of a test specimen during the loading cycles, when
a frequency of 1 Hz and a cyclic stress ratio of 0.2 were used (test T4). Also shown here are the
measured total, resilient and permanent strains, whereby the increment in the band width of the
strain envelope confirms that the resilient strain (4,) increases with the number of cycles (N). For
clarity and to facilitate the comparison of the axial strains obtained for different test conditions, only
the upper and lower limits of the strain envelopes have been plotted in Figs. 7-9.

The effect of frequency on the accumulation of axial strains for cyclic stress ratios of 0.2 and 0.3
is shown in Fig. 7a and b, respectively. As expected, the axial deformations of the test specimens
increased with the number of cycles. Regardless of the CSR value, the total axial strains were found to
decrease with the increasing frequency. For instance, for CSR = 0.2 (Fig. 7a), a maximum axial strain of
0.35% was obtained (after N = 50,000) under 1 Hz frequency loading, whereas considerably higher
strains of 0.48% and 0.58% were reached under lower frequencies (0.5 and 0.1 Hz, respectively). A
similar trend was identified in terms of the permanent axial strains (i.e., in general, a low frequency
loading induced higher permanent strains when compared to a relatively high frequency loading). It is
widely accepted that the loading rate influences the stress-strain behaviour and the yield stress of sail,
as the soil yielding is a time-dependent phenomenon. The undrained shear strength of saturated clays
increases with the axial strain rate, which can be attributed to lower magnitudes of excess pore water
pressures generated during higher strain rates [63-66]. Based on laboratory results from undrained

cyclic triaxial testing, Indraratna et al. [67] showed that a lower frequency implies a longer duration
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for the load to be acting on the soil before unloading within a given cycle, thereby leading to the
generation of larger excess pore pressures. As a result, the effective stress decreases and the axial
strain increases. Furthermore, for a given imposed stress level, higher strains are developed for slower
rates of loading, since adjacent soil particles have time to rearrange themselves in a contractive
manner, while creep at inter-particle contacts causes further strain to accumulate [68].

The results presented in Fig. 7a also indicate that for the lower CSR value (CSR = 0.2), the axial
strains increased sharply at the beginning of cyclic loading, with a decreasing increment rate being
observed during subsequent cycling. For example, in test T4 (frequency of 1 Hz), the permanent strain
reached 0.11% after the first 1000 cycles, whereas an increment of only 0.015% was observed over
10,000 cycles at a later stage (i.e., from cycle 30,000 to cycle 40,000). Moreover, when the highest
frequency was applied, the induced permanent deformations nearly stabilised after around 30,000
cycles. However, for the lower frequencies no stabilization occurred during the entire cyclic process.
This contrasts with the results from conventional triaxial tests where a steady state is generally
reached upon a large number of cycles [16, 21, 53]. As shown in Fig. 7b, for the highest cyclic stress
ratio (CSR = 0.3), the rate of accumulation of axial deformations tended to increase sharply with the
number of cycles, revealing unstable soil behaviour or failure at all frequencies (0.1 to 1 Hz). In fact, in
these tests, the specimens failed after a relatively small number of cycles (N < 300) by reaching about
5% of axial strain.

Fig. 7c presents the recorded axial strains plotted against time for CSR = 0.3 and different loading
frequencies. It is observed that the axial deformations produced during a given time interval
substantially increase with the loading rate, which can be attributed to the increased number of cycles
imposed during that particular period. Indeed, although the magnitude of axial strains decreased with
increasing frequency for a given number of loading cycles (Fig. 7b), for the same loading period the
higher frequencies lead to more pronounced axial deformations. This is associated with the fact that,

for a higher value of CSR, the axial deformations increased sharply with increasing number of cycles
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and therefore, the effect of the number of cycles was predominant concerning the development of
axial strains.

To better understand the effect of CSR on the accumulation of axial deformations during cyclic
loading, Fig. 8 compares the axial strain curves obtained for CSR values of 0.2 and 0.3 under the
frequency of 0.5 Hz. The plotted results clearly indicate that the CSR has a predominant influence on
the development of axial strains during the cyclic loading process. For instance, for N > 100, the
permanent axial strain recorded under CSR = 0.3 was about 0.72%, significantly exceeding the value
of permanent strain corresponding to CSR = 0.2 (0.02%). The total axial strains attained for the same
number of cycles increased by tenfold when CSR was increased from 0.2 to 0.3. In fact, regardless of
the loading rate, the increase in CSR led to a substantial increment in both the permanent and total
axial strains measured in the tests. This substantial difference in response attributed to an increase in
CSR from 0.2 to 0.3 indicates that the critical value of CSR (i.e. the threshold value beyond which the
soil behaves differently, or in an unstable manner) falls between 0.2 and 0.3 for this particular soil
when subjected to PSR.

The effect of principal stress rotation on the axial deformation behaviour of soil over the number
of cycles for a cyclic stress ratio of 0.2 and different frequencies is presented in Fig. 9a. Regardless of
the frequency, the total axial strain at the end of cyclic loading (N > 50,000) was considerably higher
when PSR was imposed (i.e. using the DYNHCA). However, within the first 2,000 cycles, the axial strains
induced by cyclic loading without PSR (i.e. using the CTA) exceeded the values obtained from loading
with PSR for the frequency of 1 Hz. Regardless of the effect of PSR, the increment rate of axial strain
tended to reduce with the number of cycles. While under cyclic loading without PSR, the increment in
axial strain was almost negligible after about 40,000 cycles, the axial strain increased continuously
with the number of cycles, particularly for the frequency of 0.1 Hz, when PSR was applied. For
example, for CSR = 0.2 and frequency of 0.1 Hz, the increment in the total axial strain from 40,000 to
50,000 cycles was only 0.012% without PSR, while a higher increment of 0.049% was observed under

PSR. Generally, higher axial strain was developed when the cyclic loading was applied with PSR.
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For CSR of 0.3, the PSR highly affected the development of axial strains, regardless of the
frequency (Fig. 9b). At any moment of cyclic loading, the increment of total/plastic axial strain under
PSR was significantly higher than that without PSR. For the same CSR value (CSR = 0.3), soil elements
showed a stable behaviour up to 1,000 cycles without PSR, whereas failure was observed within 300
cycles when soil was subjected to PSR. The increment rate of axial strain increased with the loading
cycles when the specimen underwent continuous PSR, while without PSR the increment rate tended
to reduce throughout the test. For 0.1 Hz frequency loading and after 100 cycles, the total axial strain
reached 1% when the load was applied without PSR, whereas an axial strain of 2.5% was obtained in
the presence of continuous PSR. Therefore, the threshold value of CSR for the soil tested in this study
(physical properties specified in Table 1) falls between 0.2 and 0.3 when it is subjected to PSR.
However, this critical threshold value of CSR exceeds 0.3 when the soil is tested in the triaxial

apparatus without any PSR (Fig. 9).

3.2 Excess Pore Water Pressure
Fig. 10a shows the influence of loading rate on the excess pore water pressures generated over the
number of cycles for a cyclic stress ratio of 0.2 (i.e., deviator stress of 20 kPa). It can be observed that
higher increments of pore water pressure were developed under lower frequencies. Regardless of the
frequency, the increment rate of the excess pore water pressures decreased with the number of
cycles. For instance, for f = 0.1 Hz, the excess pore water pressure reached 25.8 kPa after the first
10,000 cycles, whereas an increment of only 0.33 kPa was observed over 10,000 cycles at a later stage
(i.e., from cycle 30,000 to cycle 40,000). For the highest frequency (1 Hz) the pore water pressures
stabilised in less than 20,000 cycles, whereas more than 40,000 cycles were required to reach
stabilisation of pore water pressure under a lower frequency of 0.1 Hz.

The evolution of the excess pore water pressures with the number of cycles for a higher CSR value
(CSR =0.3) is illustrated in Fig. 10b. Similar to what was observed for the lower CSR value of 0.2, the

pore water pressures recorded during cyclic loading decreased with increasing frequency. Eventually,
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the soil failed by reaching 5% of axial strain in less than 200 cycles at a frequency of 0.1 Hz, and after
about 300 cycles at a significantly higher frequency of 1 Hz. For the same number of cycles, a low
frequency loading showed a more detrimental effect on the soft clay response than a higher frequency
loading. As previously mentioned, under lower frequencies, the soil fabric has a greater chance to
rearrange itself in a contractive manner (i.e. reduced porosity for the same water content), which
leads to an increased axial deformation and higher excess pore water pressure. In fact, pore pressure
development is time-dependent, and if the frequency is too high, then for the same number of applied
loading cycles the loading time of a soil element can be too short to induce significant pore pressure
build-up. A similar behaviour has been reported in previous related studies [21, 64, 69]. Consequently,
a lower number of cycles would be needed to reach a specified value of excess pore water pressure
under a slower rate of loading.

However, if the results are analysed in terms of time rather than the number of cycles (i.e. by
plotting the variation of excess pore water pressures with time, as shown in Fig. 10c and d), higher
frequency loading generally results in greater excess pore water pressure at a given time. This suggests
that at a higher frequency, a larger number of cycles would be required to make the soil unstable, but
this could result in an earlier failure, because at a higher frequency more loading cycles are imposed
on the soil per unit time. For instance, a train operating at a higher speed could take less time to reach
instability, despite needing a larger number of loading cycles.

The effect of the cyclic stress ratio on the evolution of pore water pressures with the number of
cycles was also investigated for different frequencies. Fig. 11a compares the variation of excess pore
pressures over the number of cycles for CSR values of 0.2 and 0.3. As expected, higher stress values
lead to higher pore water pressure generation after a given number of cycles, regardless of the
frequency. The evolution of excess pore water pressures with time for different CSR values as shown
in Fig. 11b indicates that higher CSR values lead generally to greater excess pore pressure development
at a given time. Furthermore, for the test conditions considered herein (i.e. relatively high values of

CSR corroborating with heavy haul trains), the variation of CSR was found to have a greater influence
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on the development of pore water pressures than the variation of frequency (Fig. 11). For instance,
for N = 200 cycles, and if a constant CSR value of 0.3 is considered, the increment of pore water
pressure attributed to the variation of frequency from 1 to 0.1 Hz was 9.2 kPa, whereas a larger
increment of pore water pressure of 21.1 kPa was observed upon the variation of CSR from 0.2 t0 0.3,
considering a constant frequency of 0.1 Hz and for N = 200 cycles (Fig. 11a). In this study, the
accumulation of excess pore water pressures upon cyclic loading increased up to 193% with increasing
CSR (from 0.2 to 0.3) and up to 40% with the decreasing frequency (from 1 to 0.1 Hz). These results
clearly imply that when considering heavy haul loading conditions, the development of excess pore
water pressures is primarily a function of the applied CSR (axle loads) and of secondary influence of
frequency (speed) at high CSR values. At high CSR values corroborating with heavy haul trains with
axle loads of up to 35 tonnes (common in Australia), their much slower speeds often less than 70 km/h
allow this high axle loading to be applied over a longer period of time for the same number of cycles.
Therefore, under prevailing undrained conditions, the build-up of pore water pressures can be greater
than for situations corresponding to higher frequencies applied over a much shorter period of time.
Fig. 12 illustrates the influence of continuous rotation of principal stress direction on the
accumulation of excess pore water pressure for CSR of 0.2 (Fig. 12a) and 0.3 (Fig. 12b). It can be
observed that the excess pore water pressure increased with the number of cycles at a progressively
decreasing rate, regardless of the frequency and PSR. For CSR = 0.2, the presence of PSR (i.e. in the
DYNHCA tests) had no significant effect on the increment of pore water pressure with the number of
cycles. Even though the values of excess pore water pressure achieved after 50,000 cycles were similar
both with and without PSR, the stabilisation of pore pressure occurred at a lower number of cycles
when no PSR was applied. For example, for f = 0.1 Hz loading from cycle 10,000 to cycle 20,000, the
increment of the excess pore water pressure was 2.15 kPa when the specimen was subjected to
continuous PSR, whereas the increment was only 0.04 kPa when the soil was not subjected to PSR

(Fig. 12a).
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Fig. 12b compares the evolution of excess pore water pressure as function of the number of cycles
with and without PSR (i.e. during DYNHCA and CTA tests, respectively) for a CSR value of 0.3. Under a
relatively low frequency of 0.1 Hz, the effect of PSR on the development of excess pore water pressure
can be considered negligible. However, at a higher frequency of 1 Hz, a visible increment in pore
pressure was observed when PSR was applied. For instance, after 200 cycles, the increments in excess
pore water pressure were 0.2 kPa and 10 kPa for the frequencies of 0.1 and 1 Hz, respectively. For a
frequency of 0.1 Hz, the soil specimen under PSR failed in 200 cycles by reaching an excess pore
pressure of 32 kPa, whereas without PSR the soil showed a stable behaviour up to 1,000 cycles and
the excess pore water pressure increased up to 40 kPa. This is because the soil specimen failed by
reaching an axial strain of 5% after 200 cycles, when the specimen was subjected to continuous

rotation of principal stress direction.

3.3. Resilient Modulus

The hysteretic (stress-strain) loops allow investigating the degradation behaviour of the soil specimen
under cyclic loading. This can be characterised by the variation of the resilient modulus. In the current
study, the resilient modulus (Mg) was computed according to Eq. (2) at specific numbers of cycles, and
subsequently normalised with respect to the value obtained in the first cycle (N = 1). This ratio can be

designated as the degradation index (), as proposed by Idriss et al [27]:

q

(MR)N (€a,r)N (€a,r) 1
5= = Lanw _ Ca 12
MRy - (Fardn (12)

To evaluate the effect of frequency on the resilient strain of the test specimens, the variation of
the normalised Mg with the number of cycles (degradation curve) was plotted in Fig. 13a for the CSR
value of 0.2. Fig. 13b illustrates the influence of CSR on the degradation of Mz during cyclic loading.
Regardless of the frequency and CSR values, the test results could be fitted well to a logarithm trend
line with R?>0.95, as given by:

§=aln(N)+1 (13)
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where, a is an empirical constant depending on frequency.

According to the results presented in Fig. 13, a relatively fast degradation of Mz occurred in the
first few cycles with a more gradual decreasing trend being observed during subsequent cycling. In
particular, for CSR = 0.2 (Fig. 13a) and frequency of 1 Hz, the normalised Mk decreased from 1 to 0.68
in the first 1,000 cycles while a slight reduction of 0.03 was observed between 40,000 and 50,000
cycles, which implies that the slope of the hysteretic loop was reduced at a higher rate within the first
1,000 cycles, and the rate of reduction in slope was diminished in the subsequent cycles [32, 61].
Additionally, the reduction in the magnitude of Mz was more pronounced at lower frequencies,
regardless of the CSR value. For example, for CSR=0.2, the slope of the logarithm line (a) was
determined as -0.087 for 0.1 Hz, whereas the value of -0.056 was obtained for 1 Hz. As expected, the
higher the CSR value, the greater would be the degradation of Mz with increasing N (Fig. 13b).

Fig. 14a compares the values of the normalised Mg measured in the tests conducted with and
without PSR (i.e. using the DYNHCA and the CTA, respectively) for a CSR of 0.2 and different
frequencies. Regardless of PSR, the normalised Mg decreased sharply at the early stage of cyclic
loading and the reduction rate declined during subsequent cycling. Regardless of the frequency, the
influence of PSR on the degradation of Mz was substantial with the soil specimen showing more
pronounced degradation behaviour when subjected to PSR (i.e. during DYNHCA tests). The effect of
PSR on o for CSR of 0.3 is shown in Fig. 14b, which clearly indicates that the inclusion of continuous
PSR led to a quicker degradation, and the soil failure occurred in a few cycles. In particular, for 0.1 Hz
frequency, the application of the first 100 loading cycles without PSR degraded the normalised Mg of
soil from 1 to 0.79, whereas the normalised Mg decreased to 0.19 under the same number of cycles
when continuous PSR was imposed. Fig. 14b also shows that lower frequency loading induced greater
degradation compared to the higher frequency loading both with and without PSR. In a heavy haul
loading perspective, these results infer that the soil deformation in relation to the resilient modulus

will be significantly underestimated if the effect of PSR is not considered [61].
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The values of the initial Mg (i.e., Mg measured in the first load cycle) obtained from the cyclic
hollow cylinder tests for different test conditions are presented in Fig. 15. It can be observed that the
initial Mg increases with the loading frequency at a progressively decreasing rate. Higher values of
initial Mg were obtained for the CSR of 0.2, in comparison to those for CSR of 0.3. In fact, when a CSR
of 0.3 was imposed, the resilient axial strains measured in the first load cycle were significantly greater
than those for CSR of 0.2. As a result, the values of the initial Mg for CSR = 0.3 were about 23-31%
lower than those for CSR = 0.2, depending on the loading frequency. Therefore, the selection of the
appropriate resilient modulus for a specific soft subgrade depending on the applied stress level (axle

load) and the train speed is vital in practice.

4. Conclusions

A series of tests was conducted using a dynamic hollow cylinder apparatus (DYNHCA) and a cyclic
triaxial apparatus to investigate the mechanical response of soft soil under continuous cyclic loading.
Reconstituted (sandy clay) hollow cylinder specimens were produced using a slurry consolidation
method. The effect of frequency, cyclic stress ratio (CSR) and principal stress rotation (PSR) on the
evolution of permanent deformations, excess pore water pressures and degradation of resilient
modulus (Mg) was evaluated and discussed. Based on the obtained results, the following conclusions
can be drawn.

e Complex stress paths involving PSR can be simulated using the DYNHCA with 90° phase
difference between sinusoidal axial and torsional loadings. The intended stress paths were
successfully controlled in the apparatus.

e Both resilient (recoverable) and plastic axial strains are induced by cyclic PSR. As expected,
the axial deformations of the test specimens increased with the number of cycles. Higher
stress values (CSR = 0.3) and lower frequencies (0.1 and 0.5 Hz) led to increased permanent
deformations. For the test conditions analysed, the influence of the CSR on the accumulation

of permanent strains was found to be more significant than that of frequency.
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e The accumulation of excess pore water pressures upon cyclic loading increased with the CSR
(up to 193%) and with the decreasing frequency (up to 40%).

e The slope of the stress-strain hysteretic loops decreased with the number of cycles (N),
representing the degradation of Mg. The reduction in Mz was more pronounced under lower
frequencies (0.1 and 0.5 Hz) and higher CSR (CSR =0.3). For CSR=0.2, the degradation
increased progressively and no steady state was reached after about N = 50,000.

e The value of Mg recorded in the first load cycle of the hollow cylinder tests increased with the
loading rate (up to 28%) and with the decreasing CSR (up to 46%).

o Theinfluence of PSR on the development of axial strains under cyclic loading was relevant and
became more pronounced with increasing CSR. However, in general, PSR did not significantly
affect the pore water pressure increment, particularly when the lower CSR value was applied
(CSR =0.2).

e Regardless of frequency and CSR, the degradation of Mg increased substantially by the
presence of PSR.

The results reported herein provide important insight into the long-term performance of low-
plasticity soft soil (reconstituted sandy clay) subjected to moving wheel loads, considering the role of
PSR. Future studies involving additional parameters, such as soil plasticity, anisotropy and stress level
would be useful to provide further insight following the above conclusions. Since the degradation of
Mz may have a predominant influence on the design life of railway foundations (natural subgrade),
practitioners should consider the variations of M evaluated under realistic loading (incorporating PSR)

for improved track design and performance evaluation.
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Figure Captions

Fig. 1. (a) Principal stress rotation in soil under moving wheel loads; (b) stress conditions under a single
moving wheel load (after Brown 1996)

Fig. 2. (a) Schematic diagram of the hollow cylinder apparatus; (b) moulds positioned by the bottom
porous disk; (c) pouring slurry; (d) top porous disk positioned over slurry; (e) consolidation; (f) grooved
soil specimen

Fig. 3. Stress status in a hollow cylinder specimen: (a) external loadings; (b) local stresses on an
element; (c) principal stresses on an element

Fig. 4. Effect of moving wheel loads on: (a) rotation angle; (b) shear stresses

Fig. 5. Comparison of total stress path for cyclic loading with and without PSR

Fig. 6. (a) Variation of mean values of axial, radial and circumferential strain with the number of cycles
(test T4); (b) variation of axial strain with the number of cycles showing the different strain
components (test T4)

Fig. 7. Effect of frequency on the accumulation of axial deformations: (a) CSR = 0.2; (b)

CSR =0.3 (strains plotted against the number of cycles); (c) CSR = 0.3 (strains plotted

against time)

Fig. 8. Effect of CSR on the accumulation of axial deformations (f = 0.5 Hz)

Fig. 9. Effect of PSR on the accumulation of axial deformations: (a) CSR =0.2; (b) CSR=0.3

Fig. 10. Effect of frequency on the development of excess pore water pressures: (a) CSR = 0.2 (plotted
against the number of cycles; (b) CSR = 0.3 (plotted against the number of cycles); (c) CSR = 0.2 (plotted
against time); (d) CSR = 0.3 (plotted against time)

Fig. 11. Effect of CSR on the development of excess pore water pressures: (a) plotted against the
number of cycles; (b) plotted against time

Fig. 12. Effect of PSR on the development of excess pore water pressures: (a) CSR =0.2; (b) CSR=0.3
Fig. 13. Degradation of resilient modulus: (a) effect of frequency for CSR = 0.2 (up to 50000 cycles); (b)

effect of CSR
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749

750

Fig. 14. Effect of PSR on the degradation of the resilient modulus: (a) CSR = 0.2; (b) CSR = 0.3

Fig. 15. Effect of frequency and CSR on the initial resilient modulus
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751  Table 1. Properties of the kaolin, sand and reconstituted soil specimens

752
Soil type Specific Liquid Limit Plastic Limit  Plasticity Index USCS soil
gravity classification
Clay of high
Kaolin 2.7 plasticity
(CH)
Well-graded
Sand 2.61 Non-plastic
sand (SW)
Reconstituted Clay of low
2.66
soil plasticity (CL)

753 Note: USCS = Unified Soil Classification System.
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754

755

756

757

Table 2. Testing programme

Test Number Cyclic Stress Ratio Frequency Apparatus
(Hz)

T1 0.2 0.1 DYNHCA
T2 0.2 0.1 CTA
T3 0.2 0.5 DYNHCA
T4 0.2 1.0 DYNHCA
T5 0.2 1.0 CTA
T6 0.3 0.1 DYNHCA
T7 0.3 0.1 CTA
T8 0.3 0.5 DYNHCA
T9 0.3 1.0 DYNHCA
T10 0.3 1.0 CTA

Note: DYNHCA = dynamic hollow cylinder apparatus; CTA = cyclic triaxial apparatus.
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762 Fig. 1. (a) Principal stress rotation in soil under moving wheel loads; (b) stress conditions under a
763 single moving wheel load (after Brown 1996)
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