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Summary

Despite its simple acquisition technique, the chest X-ray remains the most
common first-line imaging tool for chest assessment globally. Recent evidence
for image analysis using modern machine learning points to possible improve-
ments in both the efficiency and the accuracy of chest X-ray interpretation.
While promising, these machine learning algorithms have not provided com-
prehensive assessment of findings in an image and do not account for clinical
history or other relevant clinical information. However, the rapid evolution
in technology and evidence base for its use suggests that the next generation
of comprehensive, well-tested machine learning algorithms will be a
revolution akin to early advances in X-ray technology. Current use cases,
strengths, limitations and applications of chest X-ray machine learning
systems are discussed.
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Introduction

The discovery of the X-ray by Wilhelm Rontgen in 1895
quickly led to the application of chest radiography and
fluoroscopy to diagnose numerous chest diseases,
including tuberculosis, pneumonia and pneumothorax.1

This diagnostic leap forward quickly established the chest
X-ray (CXR) as an essential component of the diagnostic
pathway for chest disease.

For the next half-century, extensive work identified
and validated anatomical and pathological signs on the
chest radiograph, leading to the principles of CXR inter-
pretation used today. X-ray imaging as a diagnostic tool

advanced quickly from initial work to describe imaging
appearances of different diseases, later validated in large
trials, to the physics of X-ray production and radiation
safety. CXR is now extensively used across medical prac-
tice, from the acute setting to disease surveillance and
screening. It accounts for around 30–40% of all X-ray
investigations conducted and compared to other imaging
techniques, it is fast, widely available and inexpensive
with a low radiation dose.2,3 It is used globally as a first-
line imaging tool for chest assessment.

Despite the ease with which chest radiographs can be
obtained, their interpretation can be challenging. The
CXR is fundamentally a 2-dimensional representation of
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a 3-dimensional anatomical structure. X-rays are
absorbed by multiple structures as they pass through the
thorax, with the overall attenuation of each ray produc-
ing the different pixel values in the X-ray image. The
composite attenuation of each X-ray beam limits the
assessment of the image; ribs and mediastinum obscure
up to 40% of the lung parenchyma,4 and depending on
where a pathological lesion is sited, the differences in
density between the pathology and adjacent normal
structures may be subtle. This may be exacerbated when
patient positioning or the degree of inspiration is subopti-
mal, medical devices or external objects are in the field
of view, or in patients with a larger body habitus.

Even with experienced radiologists and technological
advancements in chest radiography, the reported error
rates for CXR interpretation have remained constant for
decades.5–7 This may be at least partially due to the
unchanging principles of CXR interpretation used by radi-
ologists and other clinicians. The effect of non-image fac-
tors such as fatigue, interruptions to reporting,
environmental factors (temperature, lighting and ergo-
nomics), information system delays or failures, staffing
issues and workload may also contribute to radiologist
error.8 Error reduction is one of the key driving factors
behind the intense interest in machine learning-driven
diagnostic tools to facilitate CXR interpretation.

Biases and non-image factors affecting radiologist per-
formance, including satisfaction of report, satisfaction of
search,9 fatigue, interruptions and the work environ-
ment, do not influence machine learning models. A
machine learning model may assess the image for all
target findings, irrespective of the clinical presentation,
underlying disease processes, complexity of the anatomy
or study acquisition parameters. Similarly, while radiolo-
gists vary in experience and capability (residents, con-
sultants and subspecialists), a model can perform with
high accuracy consistently.

We summarise current standards in CXR machine
learning, outline factors that lead to successful delivery
of CXR machine learning and look to the future of tech-
nology and radiology practice.

Machine learning applications in CXR
interpretation

Over the last decade, advances in machine learning tech-
nology have led to the development of many new algo-
rithms, including those intended to assist clinicians in
interpreting CXR. Digitisation of radiology has allowed for
the curation of large, data-rich image collections that are
well suited for training deep convolutional neural net-
works (CNNs). CNNs are commonly used for image inter-
pretation and are based loosely on the functioning of
complex neural networks in the human brain.10,11 CNNs
are able to recognise salient clinical features in images
once trained on a large data set. While the requirement
for large volumes of data has previously been a barrier

to effective training, recent years have seen compelling
applications developed using well-curated, high-volume
CXR data sets.12

Convolutional neural networks have now been applied
to CXR analysis to successfully detect a wide range of
clinical findings. Assessment of diagnostic performance
is based on the calculation of many metrics, the most
common of which is the area under the receiver operat-
ing characteristic curve (AUC). This is a summary statis-
tic indicating diagnostic accuracy independent of disease
prevalence in the testing data set. Sensitivity and speci-
ficity are well-recognised metrics in clinical practice and
are also often reported. The Matthews correlation coeffi-
cient (MCC) has been highlighted as a preferred metric
for binary classification.13 Model performance may be
compared to that of clinicians and clinician performance
with and without model assistance can be assessed.

Narrow vs comprehensive machine
learning models

One useful way to characterise machine learning models
is by distinguishing between those that are ‘narrow’ and
those that are ‘comprehensive’. Narrow models are
trained to complete a single or small number of clinical
diagnostic tasks for a given image modality. Whereas
comprehensive models are trained to assess an image
modality in its entirety for many clinical findings, com-
pleting most or all of the tasks that a human expert
would be expected to perform in clinical practice.

Many narrow machine learning models have been
developed to detect a single finding. The rationale for
these has been based on clinical need for particularly
salient findings. For example, lung cancer is the most
common cancer worldwide and the most common cause
of cancer death, with a poor prognosis overall.14 While
computed tomography has greater sensitivity for lung
cancer detection in screening programs, the widespread
use of CXR across medicine means that it often provides
the first opportunity for early diagnosis. However, ninety
per cent of missed lung cancers are due to CXR diagnos-
tic errors.15 Recent evidence suggests that machine
learning models designed to identify lung cancer on CXR
are highly sensitive.16 Other studies have demonstrated
strong performance of narrow models designed to detect
pneumonia,17 pneumothorax,18 pneumoconiosis,19 car-
diomegaly,20 pulmonary hypertension21 and tuberculo-
sis.22 However, narrow models may be problematic in
that they draw attention to the presence or absence of
the finding they were trained to detect, which may dis-
tract the interpreting clinician from other subtle but sali-
ent clinical findings.

Comprehensive machine learning models are more
clinically useful, removing the need for the application of
multiple narrow models and providing valuable informa-
tion about model performance in images that contain
combinations of findings. Some recently developed
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comprehensive CNN models have demonstrated high
performance in identifying a wide range of pathologies
on CXR.23–25 Comprehensive deep learning software can
match and exceed the performance of human readers in
a non-clinical environment. One CNN model achieved
radiologist-level performance for 11 of 14 pathologies.23

Assessment of a machine learning model capable of
detecting 72 findings showed good overall performance
compared to radiology residents.24 The most compre-
hensive model validated to date outperformed radiolo-
gists in a non-clinical environment in the detection of
118 findings on chest radiographs and was non-inferior
in a total of 124 findings.25 Across all 124 findings, radi-
ologist macro-averaged AUC was 0.713 and model
macro-averaged AUC was 0.956 when compared to a
gold standard of thoracic radiologist panel consensus. It
is worth noting that the comprehensiveness of these
models lies on a spectrum. A model that detects 14
pathologies simultaneously is likely to be more clinically
useful than a narrow model, but is less useful than a
model detecting 72 findings, which in turn may have less
impact than a model that accurately recognises 124 find-
ings. As machine learning models approach the level of
comprehensiveness we expect from highly trained
human experts, they are becoming more clinically useful.

After a standalone model performance assessment,
the next logical step is to assess whether clinician perfor-
mance is improved when machine learning software is
used to assist interpretation. Narrow models have been
shown to improve radiologist diagnostic performance for
pneumonia, lung nodules and tuberculosis.26–28 However,
it is in multiple disease detection and comprehensive
clinical interpretation where machine learning has the
greatest potential to deliver substantial improvements to
radiologist performance. Several recent studies have
shown significant improvements in radiologist perfor-
mance when assisted by comprehensive CXR machine
learning models. One study assessed a machine learning
model used to assist radiology residents, demonstrating
improved performance in interpreting chest radiographs
obtained in the emergency department setting across a
range of findings.29 Most recently, the model developed
by Seah et al.25 demonstrated improved radiologist accu-
racy in over 100 CXR findings comprising a range of
acute and non-acute findings.

Additional benefits to machine learning
in CXR

In addition to assisting in the detection of pathology,
machine learning has the potential to improve quantitative
assessment, such as volumes and distances. These include
estimates of lung nodule size or density, positioning of
lines and tubes relative to anatomical landmarks, lung vol-
ume or cardiothoracic ratio estimates.30 Machine learning
systems are well suited to facilitating these tasks, provid-
ing accurate estimates quickly without requiring substantial

human input. They contribute additional useful clinical
information without the cost of workflow disruption. On a
similar theme, bone and calcium suppression to improve
lung and mediastinal visibility on CXR studies is typically
performed by dual-energy X-ray machines, requiring spe-
cialised hardware.31 Deep learning-based bone suppres-
sion systems may offer similar benefits, increasing soft
tissue conspicuity and improving the diagnostic accuracy of
clinicians,32 but solely through software, which is much
more accessible, particularly in low-resource settings.33

In addition to improving radiologist accuracy, machine
learning models have the capacity to integrate with
workflow systems to triage studies, identifying and serv-
ing high priority, time-sensitive findings for faster report-
ing. Studies suggest that these systems reduce reporting
time and alleviate radiologist workloads.28,34,35 Triage
functionality is likely to become more effective as
machine learning solutions become more comprehen-
sive; a model that only looks for a single finding (such as
pneumothorax) can up-triage cases where that pathol-
ogy is identified, however, in doing so it will necessarily
down-triage cases with other serious or urgent problems
(such as free sub-diaphragmatic gas).

Limitations

Machine learning systems, however, are susceptible to
their own limitations.

The generalisability of trained machine learning algo-
rithms is a salient issue. Models may perform well in one
context and poorly in another because of variations in
imaging infrastructure, patient population characteristics,
disease distributions and overfitting.36 This may lead to
over- or under-estimation of clinical findings in some
population subgroups or in different clinical environ-
ments. The data set used to train a model must be care-
fully selected and should reflect the patient population to
which the model will be applied.

Expanding the use of a machine learning model into
populations of patients and disease spectrums different to
those represented by the training data set is contingent
on responsible consideration of the evidence underpinning
the model. Broad generalisability needs to be tested in
different local populations, and across a variety of differ-
ent diseases and clinical contexts.37,38 Clear and clinically
relevant language within machine learning model accu-
racy validation studies, including describing the patient
and disease distributions in the training and test data
sets, as well as the potential limitations of model applica-
bility and error rates, is likely to help set appropriate
expectations for clinical users. Further research to support
the application of machine learning models in wider
patient and disease populations is ongoing.

Evidence demonstrating model accuracy and clinician
performance improvement must be robust as the mecha-
nisms of a trained algorithm’s decision-making processes
are often opaque.39 In CXR interpretation, where some
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findings may be subjective, model opacity may lead to
over- or under-confidence in generated results. This may
reduce support for system implementation and degrade
clinician adoption.40 Research on improving algorithm
interpretability is generating useful potential solu-
tions.41,42 Interrogating black box models to assess the
reasons for their conclusions can be useful in minimising
internal system bias. One method for assessing the areas
in an image given most attention by a machine learning
model is to visualise a heat map overlaid onto image pix-
els. This graphs the attention given to each region of the
image over the multiple layers of the model network
(Fig. 1). However, heatmaps are often difficult to inter-
pret and may be misleading.43

One well-known consequence of low machine learning
model transparency is hidden stratification. Hidden strat-
ification is a phenomenon that can lead to poor model
performance on clinically important patient subsets.
While a system may demonstrate high performance
overall on a broad disease category, it may perform
poorly on clinically meaningful subtypes44 and lead to
failure to detect high-risk pathologies. The archetypal
example is that of detecting pneumothoraces without
chest drains. As chest drains are visually obvious and
inserted to treat pneumothoraces, deep learning models
trained to detect pneumothoraces often rely on the
absence or presence of the chest drain to achieve high
performance. However, when tested on the clinically rel-
evant subset of pneumothoraces without chest drains,
they often perform poorly.45

Analysing model performance in clinically relevant sub-
sets of cases is therefore important. This may be difficult
if labelling of the training and test data sets is not suffi-
ciently detailed to distinguish between subsets of cases46

and if there is inadequate disease variation in the train-
ing data set.44 Recent evidence suggests that training a
machine learning model to both classify the presence of
a finding and to provide a localisation (or segmentation)
overlay map can reduce the effect of hidden stratifica-
tion.45 High-quality CXR interpretation systems intended
for implementation will need to appropriately address

hidden stratification. The development of comprehensive
models that record concurrent relevant findings and
improved labelling of training data sets will help.

It has been difficult to obtain large data sets with high-
quality, comprehensive labels for model training. While
natural language processing techniques are often used to
transform free-text reports into categorical labels, these
may be inaccurate and subject to bias,46 partly due to
variations in language used in reports. The lack of stan-
dardisation in medical terminology and approach to
reporting are significant challenges that have inhibited
the widespread implementation of structured reporting.47

RECIST is one example.48 Structured reporting has been
an aspiration for radiology professional bodies for many
years.49

Considerations in machine learning CXR
implementation

The rapid evolution of CXR machine learning technology
and associated evidence to support its implementation
has not yet translated well into widespread adoption.
High performing but narrow scope systems produce
questionable value for clinical users. This has under-
pinned pessimistic implementation predictions. However,
the development of comprehensive models and evidence
demonstrating their real-world clinical effectiveness in
both workflow triage and improved clinician reporting
performance appears to be changing this landscape.

As clinical use becomes more widespread, the devel-
opment of guidelines and professional standards to
address acknowledged risks associated with machine
learning systems in radiology safeguards patient
safety.40,50,51 Teams developing, testing and validating
machine learning decision support tools should apply
these frameworks. Clinicians implementing and using
machine learning systems must carefully consider how
they were developed and evaluated, including the nature
of the training and testing data set populations, general-
isability to their own clinical practice and clinical rele-
vance of model outputs.

(a) (b)

Fig. 1. (a) Heatmap investigating an exemplar algorithm25 in classifying pneumothorax, demonstrating its focus on the right apical pneumothorax rather

than the right-sided intercostal drain. (b) Original image demonstrating right apical pneumothorax.
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Regulatory frameworks across global jurisdictions are
variable. This may drive delays in achieving clearance for
clinical use. Regulatory variations may lead to variations
in tool accessibility, which in turn may lead to discrepan-
cies in patient care and outcomes. This is especially rele-
vant for comprehensive models that assess a large
number of findings, as thorough testing across all find-
ings is required. Small variations in regulatory require-
ments may require significant effort to satisfy. There is a
need for global harmonisation of regulatory frameworks
and the development of guidance and standards in rela-
tion to good machine learning practices as well as a com-
mon minimum standard of evidence to facilitate
innovation and implementation while ensuring patient
safety.

In addition to these considerations, other factors have,
until now, acted as barriers to the widespread implemen-
tation of CXR decision support. These include variable
awareness of machine learning models across the radiol-
ogy community, apprehension regarding cost and imple-
mentation complexity, patient privacy protection
concerns, and uncertain liability for suboptimal clinical
outcomes.52 However, as evidence accumulates suggest-
ing performance improvements associated with machine
learning-augmented reporting, the case for the imple-
mentation and use of CXR machine learning systems
becomes more compelling.

Looking to the future

Comprehensive image analysis and workflow augmenta-
tion comprise the new frontier in applied CXR machine
learning practice. It includes systems trained to detect
many clinical findings simultaneously, effective calibra-
tion to mitigate hidden stratification and generalisation
issues, integration into clinical information systems with
minimal workflow disruption and identification of time-
sensitive findings for faster report generation. The best
of these systems promise to augment radiologist clinical
performance and increase efficiency. In future, models
that effectively incorporate patient-specific information
as input (e.g. clinical history and previous imaging) will
provide more nuanced and tailored output, facilitating
the advancement of precision medicine.

The quality of clinical machine learning decision
support systems is dependent on the quality of the full
product development lifecycle, from initial design to
post-implementation monitoring. Careful data curation
and processing are required to ensure that data is
broadly representative of clinical populations, to manage
label fidelity and to ensure quality model training and
validation.53 Robust clinical evidence is required to
demonstrate reliability, validity, safety and beneficial
clinical impact. Usability and interpretability for clinical
end users are critical to adoption, and effective post-
implementation performance and safety monitoring is

key to quality management and ensuring patient care
improvement.

Machine learning is undoubtedly part of the future of
radiology, which may require a shift in mindset regarding
achievable outcomes, and careful consideration of how
to mitigate possible harms. Being a part of the machine
learning development process and driving the implemen-
tation of high-quality machine learning systems will be a
key responsibility and motivator for radiologists. Part of
the role of clinicians is to demand quality machine learn-
ing systems and to hold these products to high clinical
standards. Radiologists are the guardians of clinical
excellence and will play a key role in quality control as
powerful and mature machine learning systems begin to
filter into clinical practice for the benefit of patients.

Data availability statement

Data sharing not applicable – no new data generated.
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