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Abstract: Background and objective: Arrhythmia is a widely seen cardiologic ailment worldwide,
and is diagnosed using electrocardiogram (ECG) signals. The ECG signals can be translated manually
by human experts, but can also be scheduled to be carried out automatically by some agents. To
easily diagnose arrhythmia, an intelligent assistant can be used. Machine learning-based automatic
arrhythmia detection models have been proposed to create an intelligent assistant. Materials and
Methods: In this work, we have used an ECG dataset. This dataset contains 1000 ECG signals with
17 categories. A new hand-modeled learning network is developed on this dataset, and this model
uses a 3D shape (prismatoid) to create textural features. Moreover, a tunable Q wavelet transform
with low oscillatory parameters and a statistical feature extractor has been applied to extract features
at both low and high levels. The suggested prismatoid pattern and statistical feature extractor create
features from 53 sub-bands. A neighborhood component analysis has been used to choose the most
discriminative features. Two classifiers, k nearest neighbor (kNN) and support vector machine (SVM),
were used to classify the selected top features with 10-fold cross-validation. Results: The calculated
best accuracy rate of the proposed model is equal to 97.30% using the SVM classifier. Conclusion:
The computed results clearly indicate the success of the proposed prismatoid pattern-based model.

Keywords: homeomorphically irreducible tree pattern; maximum absolute pooling; Chi2 feature
selection; automated arrhythmia detection; ECG

1. Introduction

The sinoatrial node, which can be defined as the body’s natural battery, is located in
the right atrium [1,2]. The electrical current produced by the sinus node causes the muscles
in the atria to contract and the ventricles to pump blood [3]. Thus, the heartbeat, which is
formed by the contraction and relaxation of the heart muscle, takes place with the healthy
operation of electrical impulses [4]. A cluster of cells regulates the stimulus from the sinus
node, which is called the atrioventricular node, by keeping it waiting for a while after
contracting the atria. Thus, the electrical impulse to the heartbeat slows down before it
reaches the right and left ventricles, and this slowing ensures that the heart ventricles are
filled with blood [5,6]. The electrical activity then reaches the right and left ventricles, and
systole occurs. Thus, the right ventricle pumps blood to the lungs and the left ventricle
pumps blood to the body [7].

Electrical activity in the heart causes the heart to beat 60 to 100 times per minute. Thus,
the heart ensures the continuity of vital activities by pumping oxygenated clean blood from
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the lungs to the body [7,8]. The heart may beat faster or slower than it should, or irregularly,
due to the disruption of the electrical impulses that make the heart beat rhythmically. This
condition is known as heart arrhythmias. Rhythm disorders can occur for many different
reasons [9,10].

Arrhythmia can be seen at almost any age [11]. The incidence of arrhythmia, which is
more common in advancing ages, is 2% in the general population. Its incidence is around
10% in people over 80 years of age. Electrocardiogram (ECG) devices have been used to
measure the heart’s electrical activity, and ECG signals are very important to diagnose many
cardiac disorders [12,13]. Arrhythmias are diagnosed using ECG signals. However, manual
ECG signal interpretation/translation is very hard. Therefore, an intelligent assistant
should be developed to help medical professionals [14–19]. In this research, our main aim
is to propose a new intelligent ECG signal classification model. Table 1 summarizes studies
conducted on automated arrhythmia detection using ECG signals.

Table 1. Summary of works done on arrhythmia detection using ECG signals.

Study Method Classifier Number of
Beats/Subject

Number of
Rhythms/
Classes

Dataset Split Ratio Results (%)

Baygin et al.
[20] HIT pattern SVM 1. 10,494/10,494

2. 10,646/10,646
1. 7
2. 4

Zheng et al.
dataset [21] 90:10 1. 92.95

2. 97.18

Yildirim et al.
[22] Deep neural network Deep neural

network
1. 10,436/10,436
2. 10,588/10,588

1. 7
2. 4

Zheng et al.
dataset [21] 80:10:10 1. 92.24

2. 96.13

Ye et al. [23]
Independent

component analysis,
wavelet transform

SVM 84,707/- 15
MIT-BIH

Arrhythmia
Database [24]

10-fold
cross

validation
99.91

Raj and Ray
[25]

Sparse
representation,

artificial bee colony,
particle swarm
optimization

Least-square
twin SVM-

particle swarm
optimization

110,109/48 16
MIT-BIH

Arrhythmia
Database [24]

14-fold
cross

validation
99,11

Alickovic and
Subasi [26]

Multiscale principal
component analysis,
autoregressive model

SVM with
sequential
minimal

optimization

1500/47 5
MIT-BIH

Arrhythmia
Database [24]

10-fold
cross

validation
99.93

Faust et al. [27] Residual neural
network

Residual
neural network 10,646/10,646 3 Zheng et al.

dataset [21]

10-fold
cross

validation
99.98

Zeng et al. [28]

Tunable Q-factor
wavelet transform

(TQWT), variational
mode decomposition,

phase space
reconstruction,

neural networks

Radial basis
function neural

networks
436/28 5

MIT-BIH
Arrhythmia

Database [24]

10-fold
cross

validation
98.72

Ullah et al. [29] Convolutional neural
network

Convolutional
neural network 110,000/47 5

MIT-BIH
Arrhythmia

Database [24]
Unspecified 99.02

Tao et al. [30] Hybrid neural
network Softmax 99,891/47 4

MIT-BIH
Arrhythmia

Database [24]
60:20:20 99.11

Wang et al.
[31]

Convolutional neural
networks, recurrent

neural network
Resnet33 109,446/47 5

MIT-BIH
Arrhythmia

Database [24]
98.64

Deep learning [32] models/networks are very popular, since they can easily yield
a high accuracy for classification problems [33]. Hence, most researchers have applied
deep models to reach a high classification accuracy [34–36]. However, these models need
special hardware for training, since they have a huge time complexity. In another respect,
hand-crafted models have a low time burden, but they are not successful like deep models.
Briefly, this model’s main objective is to extract an asymmetric pattern from ECG signals
using an asymmetric 3D shape to create features with a high classification ability.
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The next sections of this work are given as follows. The details about the chosen ECG
dataset are given in Section 2.1, details and steps of the proposed prismatoid pattern are
given in Sections 2.2 and 2.3 explains the proposed PrismatoidPatNet54 step by step, results
are detailed in Sections 3 and 4 discusses the findings of this research and conclusions are
given in Section 5.

2. Materials and Methods
2.1. Material

MIT-BIH ECG database is selected to develop a new learning network in this research.
This dataset contains 17 categories, and there are 1000 ECG signals in total. This ECG
signal dataset is heterogeneous. The length of each ECG signal is 10 s, and these ECG
signals were collected from 45 participants. This dataset is one of the commonly preferred
ECG cardiac arrhythmia signal datasets. Hence, we used it to obtain comparative results.
The categories of this ECG dataset are: normal sinus rhythm (283 observations); atrial
premature beat (66 observations); atrial flutter (20 observations); atrial fibrillation (135 ob-
servations); supraventricular tachyarrhythmia (13 observations); pre-excitation (21 ob-
servations); premature ventricular contraction (133 observations); ventricular bigeminy
(55 observations); ventricular trigemini (13 observations); ventricular tachycardia (10 ob-
servations); idioventricular rhythm (10 observations); ventricular flutter (10 observations);
the fusion of ventricular and normal beat (11 observations); left bundle branch block beat
(103 observations); right bundle branch block beat (62 observations); 2nd degree heart
block (10 observations) and pacemaker rhythm (45 observations) [24].

2.2. Method

A novel learning architecture has been suggested. By using our architecture, a novel
hand-modeled learning model, which is PrismatoidPatNet54, is presented. Prismatoid-
PatNet54 uses prismatoid shape [37,38] to create a graph-based textural extractor, and
this extractor is named as a prismatoid pattern. Four kernels (including upper and lower
ternaries) have been applied to improve this feature extractor to create binary features.
Prismatoid pattern creates textural features.

Furthermore, 40 statistical features have been utilized in this model. Textural and
statistical feature extractors are very effective, but they cannot create features. TQWT [39]
(an effective and third-generation transformation) has been applied to provide feature
extraction at a high level. By employing TQWT [39], 53 sub-bands have been created. Our
suggested/applied feature extraction functions generate features from these 53 sub-bands
and the original ECG signal. Therefore, it is named PrismatoidPatNet54, and it can select
the most discriminative feature vectors in the feature extraction phase. We suggested a com-
prehensive machine learning feature creation model, which uses neighborhood component
analysis (NCA) selector [40] and support vector machine (SVM) to calculate misclassifica-
tion rates of each generated feature vector [41,42]. The top 10 feature vectors are chosen
and combined to generate the final feature vector by deploying these loss values. In the
feature selection phase, NCA chooses the most informative 512 features. In order to show
the strength of the proposed feature extraction, two shallow classifiers have been chosen:
k nearest neighbors (kNN) [43] and SVM. By employing these classifiers, high classification
accuracies have been attained. Briefly, the fundamental aims of PrismatoidPatNet54 are:

• Classifying arrhythmia with high performance using a hand-modeled network;
• Denoting feature extraction ability of the prismatoid shape;
• Proposing alternative lightweight learning networks.
• The major contributions of PrismatoidPatNet54 are:
• Nowadays, graph-based models have widely been used in machine learning since

they are effective models. Therefore, a new generation graph-based classification
method is proposed using prismatoid shape in order to use this effectiveness;

• Iterative redundancy parameter-based low oscillatory TQWT decomposition is pre-
sented to obtain variable useful sub-bands for feature extraction;
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• A new learning architecture is proposed to generate the most discriminative features
for reaching high classification performance;

• The proposed PrismatoidPatNet54 reached high classification ability using an ECG
dataset with 17 arrhythmias.

This research presents a new feature extraction function that uses prismatoid. This
feature extractor is a local binary pattern (LBP)-like method. It uses overlapping blocks
with a length of 50. By deploying each overlapping block, two matrices (top and bottom)
with a size of 5 × 5 are created. Relations are determined using a directed graph, and
three kernels (signum, upper ternary and lower ternary) have been used. The inspired
shape, which is prismatoid, and the created directed graph (our suggested pattern) are
demonstrated in Figure 1.

Figure 1. Definition of the proposed prismatoid pattern.

As can be seen from Figure 1, there are 18 parameters for the prismatoid pattern. These
parameters are denoted using red, purple and black font colors. Red font color denotes
parameters of top matrix, purple demonstrates bottom parameters and black indicates
connections parameters. By using a kernel, 18 bits are generated using these 18 parameters.
However, 18-bit coded signal has a histogram with a length of 218. This dimensionality
is very high. Hence, we divided these bits into two fixed-size groups named left and
right. By deploying three kernels, six map signals are created. Histograms of these signals
are concatenated, and 29 × 6 = 3072-sized feature vector is obtained. The steps of this
extractor are:

1: Create signal into overlapping windows/blocks with a length of 50;
2: Divide the overlapping block into two fixed-size subblocks of length 25 to form two

5 × 5 matrices;
3: Use vector to matrix transformation and create two matrices (bottom and top) with

a size of 5 × 5;
4: Use three kernels (signum, upper ternary and low ternary) and parameters (see

Figure 1) to extract bits.

The mathematical definitions of the used kernels are given below.

S
(

p1, p2
)

=

{
0, p1 − p2 < 0
1, p1 − p2 ≥ 0

(1)

T+
(

p1, p2, t
)

=

{
0, p1 − p2 ≤ t
1, p1 − p2 > t

(2)

T−
(

p1, p2, t
)

=

{
0, p1 − p2 ≥ −t
1, p1 − p2 < −t

(3)



Symmetry 2021, 13, 1914 5 of 13

Herein, S(., .), T+(., ., .) and T−(., ., .) are signum, upper ternary and lower ternary
functions, p1, p2 are first and second values (they are denoted in Figure 1), the threshold
value for ternary kernels is defined as t and it is calculated automatically using half of
the standard deviation of the used signal. The defined three kernels have been used to
generate bits.

bS(j) = S
(

paramsj
)
, j ∈ {1, 2, . . . , 18} (4)

bT+
(j) = T+

(
paramsj

)
(5)

bT−(j) = T−
(

paramsj
)

(6)

where bS, bT+
and bT− are signum, upper ternary and lower ternary binary features with

a length of 18, and params are parameters and are denoted in the table of Figure 1;

5: Create map signals using the generated bits.

mapi(k) =
9

∑
k=1

bS(k + 9× (i− 1)) × 2k−1, i ∈ {1, 2} (7)

mapi+2(k) =
9

∑
k=1

bT+
(k + 9× (i− 1)) × 2k−1 (8)

mapi+4(k) =
9

∑
k=1

bT−(k + 9× (i− 1)) × 2k−1 (9)

By using Equations (7)–(9), six map signals are created with nine coded bits;

6: Create histograms of the generated six map values;
7: Merge histograms and obtain a feature vector with a length of 3072.

These seven steps define our proposed histogram-based prismatoid pattern, and this
extractor generates textural features.

2.3. PrismatoidPatNet54

Deep learning models have been successfully adopted in classification tasks, but
they are very computationally demanding. Thus, we need a lightweight and accurate
model. A hand-modeled learning network is presented to achieve this aim. Moreover, it is
a graph-based learning architecture. This architecture has three phases: (i) TQWT [39] and
hand-crafted extractors (prismatoid pattern and statistical features)-based smart feature
extraction method, (ii) the most meaningful features selection deploying NCA [40], and
(iii) classification by using SVM or kNN. The graphical overview of this model is shown in
Figure 2.

Figure 2 summarizes the proposed PrismPatNet. This work applies an iterative
redundancy parameter low oscillatory TQWT to the ECG signal, and 53 sub-bands (SB)
are created. The proposed prismatoid pattern and statistical feature extractor generate
3072 + 40 = 3112 features from each sub-band and raw ECG signal. In this step, 54 feature
vectors are created. The dimensions of the generated 54 feature vectors are reduced from
3112 to 256 by deploying the NCA selector. Then, loss/misclassification values of each
vector are calculated using the kNN classifier. By using the calculated loss rates, top
features are chosen and merged to create final features. In this work, the top 10 vectors
are chosen to create final features. Therefore, the length of the final features is equal to
2560. NCA selected 512 of these 2560 features, and classification is performed using kNN
or SVM classifier. The details of the PrismatoidPatNet54 are given below phase by phase.
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Figure 2. The graphical summarization of the proposed PrismatoidPatNet54: (a) schematic denota-
tion of the proposed PrismatoidPatNet54; (b) fused feature extraction process of this model.

2.3.1. Feature Extraction

The first and the most crucial phase of the PrismatoidPatNet54 is feature extraction.
A machine learning model is proposed as feature extraction method in this architecture.
The steps of this phase are given below.

Step 1: Apply TQWT to ECG signal in order to obtain sub-bands.

sbj = tqwt(ECG, 1, i, ni−1), i ∈ {2, 3, 4, 5}, n ∈ {6, 10, 14, 19}, j ∈ {1, 2, . . . , 53} (10)

By deploying the given TQWT (tqwt(., ., ., .)) parameters, 53 sub-bands (sb) are gener-
ated using an ECG (ECG) signal. This decomposition is used to demonstrate the redun-
dancy parameter effect of the TQWT on the feature extraction;

Step 2: Extract features using the proposed prismatoid pattern and statistical functions.
The proposed prismatoid pattern is described in Section 3. Statistical features are extracted
to the strength feature extraction step. The used statistical moments to extract statistical
features are given in Table 2 [44].

Table 2. The statistical moments used for feature extraction.

No Moment No Moment

1 Median 11 Log energy entropy
2 Average 12 Sure entropy
3 Standard deviation 13 Norm entropy
4 Root mean square 14 Skewness
5 Mean absolute deviation 15 Kurtosis
6 Energy 16 Mode
7 Information entropy 17 Threshold entropy
8 Maximum 18 Median/standard deviation
9 Minimum 19 Median/standard deviation
10 Range 20 Variance

The tabulated 20 statistical moments are deployed to both signal and absolute values
of the signal. Therefore, 40 statistical features are generated from a signal.
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In this step, 54 feature vectors are created with a length of 3112, and this feature vector
creation phase is given below.

f 1 = conc(sg(ECG), PrP(ECG)) (11)

f j+1 = conc
(

sg
(

sbj
)

, PrP
(

sbj
))

, j ∈ {1, 2, . . . , 53} (12)

Herein, f defines feature vector with a length of 3112 and, by using Equations (11) and (12),
54 feature vectors have been generated. Moreover, sg(.) represents statistical generators,
and extracts 40 features, and PrP(.) is the presented prismatoid pattern and extracts 3072
features from a one-dimensional signal. The generated textural and statistical features are
combined using conc(., .) function;

Step 3: Apply NCA to select the top 256 features of each vector.

idxt = NCA
(

f t, y
)
, t ∈ {1, 2, . . . , 54} (13)

f st(k, i) = f t(k, idxt(i)
)
, k ∈ {1, 2, . . . , dm}, i ∈ {1, 2, . . . , 256} (14)

where idxt is sorted indexes of the tth feature vector, NCA(., .) function is NCA feature
selector and generates sorted indexes, y defines real labels, dm is number of instances of
the used dataset and f st is the selected feature vector with a length of 256;

Step 4: Calculate the misclassification rate of each feature vector using the kNN
classifier. We utilized the kNN classifier to calculate misclassification rates since kNN has
low time complexity. By deploying kNN, the error matrix is promptly generated. In order
to calculate robust error values, 10-fold cross-validation is chosen.

mr(t) = kNN
(

f st, y
)
, t ∈ {1, 2, . . . ., 54} (15)

Herein, mr defines a misclassification rate array with a length of 54;

Step 5: Select the top 10 feature vectors according to the error array;
Step 6: Combine the chosen top 10 feature vectors and create a feature vector with

a length of 2560.

2560 features are created using these six steps. As can be seen in these steps, a machine
learning method is proposed as a feature extractor. In addition, two feature selection steps
have been used in this phase: NCA and loss value-based feature vector selection.

2.3.2. Feature Selection

This phase uses NCA to choose the most informative 512 features. NCA is a distance-
based selector and uses L1-norm (Manhattan distance) to assign weights of features. The
bigger weights define the informative features, and smaller weights assign the redundant
features. Moreover, stochastic gradient descend (SGD) optimizer has been used to find
optimal weights. NCA is one of the most effective selectors in the literature, and many
high (over 95% accuracy) accurate machine learning methods have used NCA selectors.
In fact, NCA is a feature selection version of the kNN. Therefore, effective/high accurate
machine learning models have been proposed using NCA and kNN together, since NCA is
a feature selection version of the kNN.

The feature-choosing step is given below.

Step 7: Choose the top 512 features from the generated 2560 features.

ind = NCA( f eat, y) (16)

X(k, i) = f eat(k, ind(i)), k ∈ {1, 2, . . . , dm}, i ∈ {1, 2, . . . , 512} (17)

where f eat, ind and X are the generated feature vector, calculated sorted indexes deploying
NCA and the selected feature vector, respectively.
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2.3.3. Classification

The last phase of the proposed PrismatoidPatNet54 is classification. Two shallow
classifiers have been used in this phase, and these classifiers are kNN [43] and SVM [41,42].
A 10-fold cross-validation has also been selected to obtain robust test results. These two con-
ventional classifiers have been selected to show excellent feature creation performance of
the PrismatoidPatNet54 without using any fine-tuning. We selected these classifiers using
the MATLAB classification learner toolbox. The properties of the used classifiers are:

kNN: k is 1, Manhattan distance is the adopted metric and voting is none;
SVM: 3rd degree (cubic) polynomial kernel, box constraint level is one and coding is

one vs. one.

Step 8: Classify the chosen feature vector (X) using kNN or SVM employing a 10-fold
cross-validation technique.

3. Results

PrismatoidPatNet54 is a hand-modeled learning network. Therefore, there is no need
to use specific hardware to implement this model on an ECG signal dataset. A simple
configured personal computer has been used. This computer has 16 GB memory, an i7
7700 processor and a 512 GB solid-state disk. Our PrismatoidPatNet54 was programmed
using linear coding (without using parallel programming). The used components for this
model have a low time burden. Therefore, our network is lightweight.

In order to evaluate the proposed PrismatoidPatNet54, the F1-score, precision, recall
and accuracy were selected. This ECG dataset (see Section 2.1) is imbalanced and contains
17 categories. Therefore, overall results have been calculated. Moreover, two shallow
classifiers were selected in this work. These classifiers are SVM and kNN. The validation
technique that was selected was 10-fold cross-validation. The calculated results of the
presented PrismatoidPatNet54 were tabulated in Table 3 per the chosen classifier.

Table 3. Performance results of the presented PrismatoidPatNet54 deploying kNN and SVM classifiers.

Result (%) kNN SVM

Accuracy 97.10 97.30
Precision 97.73 98.31

Recall 95.32 94.33
F1-score 96.38 96.09

As noted from Table 3, the proposed PrismatoidPatNet54 attained 97.10% and 97.30%
classification accuracies using kNN and SVM classifiers, respectively.

Moreover, class-wise accuracies are denoted in Figure 3.

Figure 3. Class-wise accuracies using kNN and SVM classifiers.
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As can be seen from Figure 3, kNN attained an excellent class-wise accuracy (100%)
on the seven classes (3rd, 6th, 11th, 12th, 14th, 16th, and 17th categories), and the worst
class-wise accuracy was calculated as 80% on the 10th class. On the other hand, the SVM
classifier yielded a 100% class-wise accuracy on six classes (6th, 11th, 12th, 14th, 16th,
and 17th categories). The worst class-wise accuracy was equal to 72.73% in the 13th class.
However, the overall accuracy of the SVM was 0.2% greater than the kNN classifier.

In order to demonstrate the superiority of the proposed PrismatoidPatNet54, compar-
ative results were tabulated in Table 4.

Table 4. Comparative results for 17 classes.

Study Results (%)

Plawiak [45] Evolutionary neural system
Acc: 90.00, Sen: 90.20

Plawiak [46] Genetic ensemble of classifiers
Acc: 91.26, Sen: 91.00, Rec:87.05, Pre:93.19

Yildirim et al. [47] 1D-CNN
Acc: 91.30, Rec: 83.32, Pre:89.58

Tuncer et al. [48] kNN
Acc: 95.00, Rec: 92.47, Pre: 96.21

Plawiak and Acharya [14] Deep genetic ensemble of classifiers:
Acc: 94.62, Rec: 93.53, Pre:95.47

Subasi et al. [49] Deep neural network: 97.10

Our PrismatoidPatNet54 kNN Acc:97.10, Rec: 95.32, Pre: 97.73
SVM Acc:97.30, Rec:94.33, Pre:98.31

Acc: accuracy; Sen: sensitivity; Rec: recall; Pre: precision.

4. Discussion

Deep learning models have a very high classification performance. Therefore, many
researchers have proposed/applied deep models to solve their classification problems, and
the development of feature engineering has slowed down. By using feature engineering
models, learning models with a low computational complexity can be proposed. Therefore,
we presented a feature engineering model to propose a lightweight learning model. A new
learning architecture is proposed to reach a high classification accuracy like deep models.
Moreover, a graph-based new generation local feature extractor (prismatoid pattern) was
proposed in this work. The proposed learning model is called PrismatoidPatNet54. The
presented PrismatoidPatNet54 created 54 feature vectors by deploying TQWT, a prismatoid
pattern and a statistical feature extractor. NCA has deployed these vectors to select the top
256 features, and the loss values of these vectors are calculated to create the optimal feature
vector. The calculated individual accuracies (vector-wise) are denoted in Figure 4.

Figure 4. The calculated feature vector-wise accuracies using kNN classifier with 10-fold cross validation.
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Figure 4 denotes the vector-wise accuracies and the proposed model attained from
31.20% to 94.30% classification accuracies. The top 10 feature vectors (4th, 1st, 13th, 26th,
5th, 27th, 15th, 42nd, 28th and 43rd) are selected using the calculated accuracies, and
the concatenation operator is applied to the selected feature vectors. NCA chooses the
most informative 512 features. The concatenation process and NCA selector increase the
accuracy from 94.30% to 97.10%.

Moreover, our network attained a higher classification accuracy than other state-of-
the-art models (see Table 4). In particular, the proposed hand-modeled network attained
greater accuracy rates than deep networks for this problem.

The benefits of the PrismatoidPatNet54 are:

• The prismatoid is a well-known 3D shape. In this research, the feature extraction
ability of the prismatoid is investigated using a graph-based model and it is named as
a prismatoid pattern;

• An accurate and effective hand-modeled network is proposed (PrismatoidPatNet54);
• The implementation of PrismatoidPatNet54 is very easy;
• PrismatoidPatNet54 reached over 97% using two shallow classifiers;
• A simple configured computer can be used to implement the proposed PrismatoidPat-

Net54. In this respect, an embedded device can be developed using our network to
detect arrhythmias automatically.

The limitations are:

• Larger/bigger arrhythmia datasets can be used to test PrismatoidPatNet54.

We intend to propose a wearable device to contribute precision/personalized medicine.
By using this wearable device, arrhythmia can be easily diagnosed. A snapshot of our
intended personal device is shown in Figure 5.

Figure 5. The developed PrismatoidPatNet54-based wearable personalized arrhythmia detection
device. By using a simple ECG acquisition device, ECG signals are obtained. The generated and
selected features using PrismatoidPatNet54 are sent to a trained ECG dataset, and results are obtained.

5. Conclusions

In this research, a hand-modeled learning architecture is suggested and is named
PrismatoidPatNet54. The novel side of this paper is to present a textural feature generation
function, and this feature function is modeled using a prismatoid shape (which is an
asymmetric shape). This model has been developed on a widely used ECG dataset to
classify arrhythmias. PrismatoidPatNet54 utilized two shallow classifiers to indicate an
excellent feature extraction ability and attained a 97.10% and 97.30% classification accuracy
by deploying kNN and SVM classifiers, respectively. This dataset is one of the difficult
problems for machine learning. By only using ECG signals and NCA, 33.6% (with kNN)
and 37.4% (with SVM) classification accuracies have been yielded only using the raw
ECG signals, and the NCA selector and calculated precision rates are approximately 20%.
The PrismatoidPatNet54 attained over 97% by deploying these two classifiers (kNN and
SVM). Furthermore, our proposal has attained performances that are superior to other
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state-of-the-art classification models (see Table 4). These results depict the discriminative
feature extraction ability of the prismatoid pattern for ECG signals.

In the near future, new generation hand-modeled learning architectures can be pro-
posed that are similar to our PrismatoidPatNet54 in order to solve other signal classification
problems. Moreover, the findings and results obviously demonstrate the success of our
proposal and can be used in medical centers to detect arrhythmias automatically.
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Resampling Improves Classification Performance. Int. J. Environ. Res. Public Health 2020, 17, 7923. [CrossRef]

18. Nedyalkova, M.; Madurga, S.; Simeonov, V. Combinatorial k-means clustering as a machine learning tool applied to diabetes
mellitus type 2. Int. J. Environ. Res. Public Health 2021, 18, 1919. [CrossRef]

19. Nedyalkova, M.; Madurga, S.; Ballabio, D.; Robeva, R.; Romanova, J.; Kichev, I.; Elenkova, A.; Simeonov, V. Diabetes mellitus
type 2: Exploratory data analysis based on clinical reading. Open Chem. 2020, 18, 1041–1053. [CrossRef]

20. Baygin, M.; Tuncer, T.; Dogan, S.; Tan, R.-S.; Acharya, U.R. Automated arrhythmia detection with homeomorphically irreducible
tree technique using more than 10,000 individual subject ECG records. Inf. Sci. 2021, 575, 323–337. [CrossRef]

21. Zheng, J.; Zhang, J.; Danioko, S.; Yao, H.; Guo, H.; Rakovski, C. A 12-lead electrocardiogram database for arrhythmia research
covering more than 10,000 patients. Sci. Data 2020, 7, 1–8. [CrossRef]

22. Yildirim, O.; Talo, M.; Ciaccio, E.J.; San Tan, R.; Acharya, U.R. Accurate deep neural network model to detect cardiac arrhythmia
on more than 10,000 individual subject ECG records. Comput. Methods Programs Biomed. 2020, 197, 105740. [CrossRef]

23. Ye, C.; Coimbra, M.T.; Kumar, B.V. Arrhythmia detection and classification using morphological and dynamic features of ECG
signals. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos
Aires, Argentina, 31 August–4 September 2010; pp. 1918–1921.

24. Moody, G.B.; Mark, R.G. The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 2001, 20, 45–50. [CrossRef]
25. Raj, S.; Ray, K.C. Sparse representation of ECG signals for automated recognition of cardiac arrhythmias. Expert Syst. Appl. 2018,

105, 49–64. [CrossRef]
26. Alickovic, E.; Subasi, A. Effect of multiscale PCA de-noising in ECG beat classification for diagnosis of cardiovascular diseases.

Circuits Syst. Signal Process. 2015, 34, 513–533. [CrossRef]
27. Faust, O.; Kareem, M.; Ali, A.; Ciaccio, E.J.; Acharya, U.R. Automated Arrhythmia Detection Based on RR Intervals. Diagnostics

2021, 11, 1446. [CrossRef]
28. Zeng, W.; Yuan, J.; Yuan, C.; Wang, Q.; Liu, F.; Wang, Y. A novel technique for the detection of myocardial dysfunction using ECG

signals based on hybrid signal processing and neural networks. Soft Comput. 2021, 25, 4571–4595. [CrossRef]
29. Ullah, A.; Tu, S.; Mehmood, R.M.; Ehatisham-ul-haq, M. A Hybrid Deep CNN Model for Abnormal Arrhythmia Detection Based

on Cardiac ECG Signal. Sensors 2021, 21, 951. [CrossRef] [PubMed]
30. Tao, L.; Liu, B.; Liang, W. Automated Detection of Arrhythmia for Hybrid Neural Network of LSTM-Residual with Multi-

Information Fusion. Math. Probl. Eng. 2021, 2021, 1–9.
31. Wang, J.; Qiao, X.; Liu, C.; Wang, X.; Liu, Y.; Yao, L. Automated ECG classification using a non-local convolutional block attention

module. Comput. Methods Programs Biomed. 2021, 203, 106006. [CrossRef] [PubMed]
32. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
33. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
34. Amin, S.U.; Alsulaiman, M.; Muhammad, G.; Mekhtiche, M.A.; Hossain, M.S. Deep Learning for EEG motor imagery classification

based on multi-layer CNNs feature fusion. Future Gener. Comput. Syst. 2019, 101, 542–554. [CrossRef]
35. Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A deep learning approach to network intrusion detection. IEEE Trans. Emerg. Top.

Comput. Intell. 2018, 2, 41–50. [CrossRef]
36. Lamothe-Fernández, P.; Alaminos, D.; Lamothe-López, P.; Fernández-Gámez, M.A. Deep learning methods for modeling bitcoin

price. Mathematics 2020, 8, 1245. [CrossRef]
37. Prismatoid. Available online: https://en.wikipedia.org/wiki/Prismatoid (accessed on 5 March 2021).
38. Bajaj, C.L.; Coyle, E.J.; Lin, K.-N. Tetrahedral meshes from planar cross-sections. Comput. Methods Appl. Mech. Eng. 1999, 179,

31–52. [CrossRef]
39. Selesnick, I.W. Wavelet transform with tunable Q-factor. IEEE Trans. Signal Process. 2011, 59, 3560–3575. [CrossRef]
40. Goldberger, J.; Hinton, G.E.; Roweis, S.; Salakhutdinov, R.R. Neighbourhood components analysis. Adv. Neural Inf. Process. Syst.

2004, 17, 513–520.
41. Vapnik, V. The support vector method of function estimation. In Nonlinear Modeling; Springer: Boston, MA, USA, 1998; pp. 55–85.
42. Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: New York, NY, USA, 2013.
43. Maillo, J.; Ramírez, S.; Triguero, I.; Herrera, F. kNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors classifier for

big data. Knowl.-Based Syst. 2017, 117, 3–15. [CrossRef]
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