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A wastewater treatment plant facilitates various processes (e.g., physical, chemical and biological) to treat
industrial wastewater and remove pollutants. This topic recently encourages much attention in different
fields to explore suitable methods to be able to remove chemical or biological elements from wastewater.
This paper presents a novel genetic based control algorithm for biological wastewater treatment plants,
intending to improve the quality of the effluent, and reduce the costs of operation. The proposed controller
allows adjusting the dissolved oxygen in the last basin, SO;5, according to the operational conditions, instead
of maintaining it at a constant value. genetic algorithm (GA) is used in the higher-level control design to ver-
ify the desired value of the lower level based on the Ammonium and ammonia nitrogen concentration in the
fourth tank, SNH;4, concentration values in the fourth tank. In order to modify the tuning parameters of the
higher level, an adjustment region is determined. Consequently, the effluent quality is improved, help to
decrease the total operational cost. Simulation results demonstrate the advantages of the proposed method.
� 2021 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Wastewater is water that is discharged after being used, or cre-
ated in a technological process, and is no longer directly useful for
that process. Wastewater can originate from activities of house-
holds, industry, commerce, agriculture, surface runoff, stormwater,
and flows into underground sewers or seepage. All wastewater
must be treated before being put into the environment. One of
the methods of wastewater treatment is the use of bio-activated
sludge treatment methods. Wastewater treatment plants (WWTP)
are complex nonlinear systems. It is a challenge to control the
effluent quality due to the complexity of biochemical, biological
processes, and fluctuations of input wastewater flow.
For decades, the main goals of treating either municipal or
industrial wastewater are to reduce contents of suspended solids,
oxygen-demanding materials, dissolved inorganic compounds,
harmful bacteria etc. Advanced biological methods of nitrogen
removal, chemical and physical methods, such as granular filtra-
tion and activated carbon absorption, are employed in different
fields. Control also take a very important place at the point of gen-
eration in WWTPs. Different control strategies to the WWTPs are
modelled the actual systems [1–3].

The Benchmark Simulation Model No.1 (BSM1) has been con-
sidered widely in different research in different fields [4–6].
BSM1 is utilized as a standard model for modeling, performance
assessment, and evaluation of control strategies [5–8]. This is
based on the most popular Activated Sludge Model No.1 (ASM1)
expanded by the International Association on Water Pollution
Research and Control [3]. The simulation model of Benchmark 1
has determined the wastewater treatment system layout, inlet
flow, testing process, and evaluation criteria. The diagram of
BSM1 is given in Fig 1. There are five basins in the biological reac-
tor: two anoxic sections (pre-nitrification) followed by three aer-
ated ones (nitrification). To maintain the microbiological
population, the sludge is fed back from the settler.
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Fig. 1. Benchmark Simulation Model 1 (BSM1).
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The Dissolved Oxygen (DO) concentration is an important con-
trol variable, which significantly influences many microbiological
processes occurring in the system. To maintain the desired aera-
tion in the biological tank, a DO controller is implemented. Besides,
DO level in the last tank is controlled that manipulates the aeration
coefficient for this basin K5

La. Besides, an outer control loop is used
to verify the nitrate removal by manipulating the internal recycle
flow-rate. This project implements a DO controller to maintain
the desired aeration in the biological tank is mainly focus.

There have been various control strategies successfully
improved control quality indexes: differential integration method
(IAE) and integrating the square of control deviation (ISE), com-
pared to the classical PI controller, such as model predictive con-
troller (MPC) [9–11], fuzzy controller [12,13] and Iterative
Learning Control (ILC) [14]. These methods, however, almost did
not improve the system performance indexes: operating cost index
(OCI) and output wastewater quality index (EQI). Thanks to the
good work in [15] that addresses many control technologies for
wastewater treatment processes. In ref. [16], some common tech-
niques are compared among the bee colony optimization (BCO),
differential evolution (DE), harmony search (HS) algorithms,
type-1 fuzzy logic system (T1FLS) and show the promissing point
related to fuzzy controller. The type 1 fuzzy parameter applying
in genetic algorithms (GA) to optimize the parameters of the mem-
bership functions for a type 2 fuzzy aggregation module is pro-
posed in [17] that improves GA to the problem of flight control.
Fuzzy controller and GA techniques support each other and pro-
vide different ways for wastewater treatment plants [18–20].

Genetic algorithms (GA) have been deployed in different ways
in WWTPs [21–23]. An intelligent controller design using neural
network and GA is proposed to control pH and Phosphorus concen-
tration [21]. A design for multiobjective control and auto tuning
fuzzy controller is proposed to change the control rules and focus
on Nitrate concentration and flow rate [22]. Genetic algorithm
and Neural Network in fuzzy logic control are combined to control
the combustion temperature and air pollution [23]. Techniques
based on GA and the others show promissing points for WWTPs.
Along with these methods, there are also many techniques focus
on such variables, Dissolved oxygen, Airflow rate, Biogas concen-
tration, Sludge concentration, Nitrate concentration, etc. [24–27].
These work provide significant references to motivate WWTPs
ahead.

Some of existing work focus on the strategies applied constant
setpoints for the dissolved oxygen (DO) concentration. Different to
the other work, in this paper, the authors apply WWTP utilizing GA
into the Benchmark Simulation Model 1 (BSM1). We realize that
variable setpoints at different times in a cycle (14 days) will cer-
tainly affect the quality of the system. Therefore, a two-level con-
trol is proposed, in which the GAs based higher-level stage is
designed to adjust the setpoint for the lower-level one. Conse-
quently, EQI and OCI indexes will be minimized according to the
different objectives: (1) Maintain EQI, and minimize OCI; (2) main-
tain OCI, and minimize EQI; and (3) minimize both OCI and EQI.
The system is modelled and analyzed following the GA’s steps.
873
The remainder of this paper is addressed as follows. The system
description is introduced in Section 2. Then, the proposed approach
is presented in Section 3. Simulation results and discussion are
provided in Section 4. Finally, Conclusions and future work in
Section 5.

2. System description

2.1. Modeling

The total zero-lift drag coefficient of the body is usually consid-
ered to be of three components; friction drag, wave drag, and base
drag as shown in Eq. (1). These different components are further
discussed in the following sub-sections.

The ASM1 describing the biological phenomena is shown in
Fig. 2 [29]. There are eight stages in the process, in which connec-
tions between layers vertically is modelled according to the model
of settling velocity double-exponentially [30].

Control of the concentration of DO from the conversion rate of
oxygen ðrOÞ. It is represented as follows [7].

rO ¼ � 1� YH

2:86YH
q1 þ

1
YA

q3; ð1Þ

where q1, q3 are two processes defined in ASM1.
q1 is the aerobic growth of heterotrophs:

q1 ¼ lH
SS

KS þ SS

� �
SO

KO;H þ SO

� �
XB;H; ð2Þ

q3 is the aerobic growth of autotrophs as:

q3 ¼ lA
SNH

KNH þ SNH

� �
SO

KO;A þ SO

� �
XB;A ð3Þ

where mA, mH, KS, KO, H, KNH and KO,A are the stoichiometric parame-
ters are listed in Table 1 and the kinetic parameters in Table 2. SO is
the dissolved oxygen concentration, SS is the readily biodegradable
substrate, SNH is the NH4 + and NH3 concentration, XB,H is the active
heterotrophic biomass and XB,A is active autotrophic biomass.

2.2. Evaluation criteria

The performance of the system is assessed by the control qual-
ity and plant quality. The former one is assessed by ISE (Integral of
the Squared Error) criterion [7].

where ek is the error in between the setpoint and the measured
value. The latter one uses the Effluent Quality Index (EQI) and the
Operational Cost Index (OCI), in which [7]:

ISEk ¼
Z tf

t0

e2kdt ð4Þ

EQI ¼ 1
T:1000

Z t¼14days

t¼7days
B:QeðtÞdt; ð5Þ

where

B ¼ BTSS � TSSeðtÞ þ BCOD � CODeðtÞ þ BNKi � SNKi;eðtÞ þ BNO � SNO;eðtÞ
þ BBOD5 � BOD5;eðtÞ;

TSSe ¼ 0:75ðXS;e þ XI;e þ XB;H;e þ XB;A;e þ XP;eÞ; ð6Þ

CODe ¼ SS;e þ SI;e þ XS;e þ XI;e þ XB;H;e þ XB;A;e þ XP;eÞ; ð7Þ

SKNj;e ¼ SNH;e þ SND;e þ XND;e þ iXBðXB;H;e þ XX;A;eÞ þ iXPðXP;e þ Xi;eÞ;
ð8Þ

BOD5;e ¼ 0:25ðSS;e þ XS;e þ ð1� f pÞ: ðXB;H;e þ XB;A;eÞÞ; ð9Þ



Fig. 2. Overview of ASM1.

Table 1
Stoichiometric parameters.

Parameter Unit Value

YA g N oxidized)�1 0.24
YH (g COD oxidized)�1 0.67

Table 2
Kinetic parameters.

Parameter Unit Value

mH d�1 4.0
KS g COD.m-3 10.0
KO, H g (�COD).m-3 0.2
mA d�1 0.5
KNH g NH3-N.m�3 1.0
KO, A g (�COD).m�3 0.4
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in which Qe is the rate of output effluent flow and T is time (14 days
in simulation). In BMS1 model, the reaction coefficients are given as
follows: BTSS ¼ 2; BCOD ¼ 1; BTKN ¼ 30; BNO ¼ 10, and BBOD5 ¼ 2 are
coefficients.

OCI ¼ AEþ PEþ 5:SPtotal þ 3:EC þME ð10Þ
In which AE is the aerating energy calculated according to the

formula [7]:
With Vas,k is the tank’s volume, KLak is the oxygen transferring

coefficient at 15 �C and Ssat;15O ¼ 8 mg=l is the concentration of the
oxygen saturation at 15 �C.

AE ¼ Ssat;15O

T:1;8:1000

Z t¼14day

t¼7day

X5
k¼1

Vas;k:KLakðtÞdt ð11Þ

PE is the pump’s energy:

PE ¼ 1
T

Z t¼14day

t¼7day
ð0:004:QintðtÞ þ 0:008:QrðtÞ þ 0:05:QwðtÞÞdt ð12Þ

SPtotal is the total sludge production:

SPtotal ¼ 1
T
ðTSSð14dayÞ � TSSð7dayÞ þ 0:75

Z t¼14 days

t¼7 days
ðXS;w

þ XI;w þ XB;H;wXB;A;wÞ:QwðtÞ:dtÞ ð13Þ
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EC the cost of the carbon source:

EC ¼ CODEC

T:1000

Z t¼14 days

t¼7 days
ð
Xk¼n

k¼1

QEC;kÞdt ð14Þ

The mixing energy (ME) provided to the tanks when the aera-
tion process was not enough to maintain the activated sludge oper-
ating condition is calculated as follows [7]:

ME ¼ 24
T

Z t¼14days

t¼7days

Xk¼5

k¼1

0;005:Vas;k if KLak tð Þ < 20d�1
h i

:dt ð15Þ
3. Proposed approach

3.1. Brief Introduction to GA

Genetic algorithm (GA) is a global random searching method
that simulates natural evolution. GA begins without knowledge
of the correct solution and it is completely dependent on environ-
mental responses by exploiting evolutions (reproduction, cross-
over, and mutation) to obtain the best solution. By starting at
some standalone searching points and searching parallel, GA
avoids local extremes as well as convergence to substitute optimal
solutions. Therefore, GA has been proven to be able to search with
high performance in complicated spaces without the hassles asso-
ciated with the dimensionality of space. It differs from gradient
techniques or optimizing search methods based on information
of the derivative. Due to the WWTP systems are highly non-
linear, GAs could be used as soft-calculation tools for such systems.

Genetic algorithms are founded upon the principle of evolution
and are applicable to many hard optimization problems, soon to be
applied widely [28]. The algorithm includes 6 steps: (1) Creating
populations of chromosomes; (2) Find the adaptive function and
determine the adaptive value of each chromosome; (3) Selective;
(4) Crossover; (5) Mutation; and (6) Converging. The maximum
number of evolutionary generations (Gmax) is chosen as the stop-
ping condition. The optimization process will end when the cur-
rent generation number exceeds the Gmax value.



Fig. 4. A hierarchical control structure is proposed.
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3.2. Two-level control for WWTPs

To improve the system performance indexes, a hierarchical con-
trol structure is proposed, as depicted in Fig 4.

In the lower-level control (LLC), DO is fed through the aeration
system, by manipulating the oxygen transfer coefficient, KLa;5 to
achieve the desired DO concentration. In this project, we applied
Iterative Learning Control combined with a PI regulator for this
stage due to this method gives the best control tracking perfor-
mance. Detail of this method can be found in [14]. In particular,
the energy for aeration (AE) accounts for most of the system’s
power consumption, approximately 50% [31]. Therefore, to mini-
mize the OCI, it is necessary to provide enough oxygen according
to the current needs of the microbiological system, avoiding over-
production (increasing costs) or lack of oxygen (reduction of the
water treatment quality).

Eq. (1) shows that oxygen is used by both autotrophic and het-
erotrophic bacteria in aerobic tanks to create biomass, to remove
carbon and nitrogen in wastewater. Substituting the parameters
in Table 2 into Eq. (1) gives:

ro ¼ �0:4925:q1 � 18:0417:q3 ð16Þ
However, due to the structure of BSM1 with the first two non-

aerated tanks (anoxic tanks), most organic matter is used by bacte-
ria in these two tanks, the concentration of organic substrates SS in
the remaining tanks is very low, less than 2 [gCOD/m3]. As a result,
the heterotrophic growth rate in Eq. (2) is very small. The most dis-
solved oxygen is used by autotrophic biomass with speed given by
Eq. (3).

Autotrophic biomass using ammonia (NH) as an energy source,
combined with oxygen to convert ammonia to nitrate according to
the reaction equation [32]:

NHþ
4 þ 1:86O2 þ 1:98HCO�

3 ¼ 0:02C5H7NO2 þ 0:98NO�
3

þ 1:88H2CO3 þ 1:04H2O ð17Þ
Thus, the oxygen demand of the biomass is determined mainly

by the amount of ammonia in the reactor. As ammonia level rises,
microorganisms need more oxygen to oxidize to nitrate, and vice
versa when the ammonia level reduces, the necessary amount of
oxygen also reduces. From the above analysis, it can be seen that
the amount of oxygen supplied to the tank must be calculated
according to the ammonia concentration of the wastewater. This
is impossible with a default PI set.
Fig. 3. Genetic Algorithm applying for WWTPs.
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From Eq. (17), the author finds that the relationship between
NH4 and O2 is linear. So, a higher-level control to manipulate the
desired value for the lower-level control is proposed as follows:

SO;5sp ¼ K:SNH;4 þ B;

where K and B are parameters of higher-level controller.

3.3. Genetic algorithms applying into BSM1

To find the value of K and B in Eq. (18), genetic algorithm (GA) is
utilized. This is the optimal search method based on natural selec-
tion, genetic and evolutionary mechanisms. They select genes that
have a string structure that adapts to the natural selection process,
exchanging information about genetic structure randomly to cre-
ate a generation that is more adaptive than the previous one under
a specific condition. GA uses natural selection as a navigation tool
and harnesses past information to forecast new search points in
the hope of improving the string structure.

GAs is a type of evolutional algorithm used to identify and opti-
mize parameters of an input–output map. By starting at several
independent search points and parallel searching, GA will avoid
local extremes and converge to optimal solutions. It differs from
gradient techniques or optimizes search methods based on deriva-
tive information. GAs are computationally expensive algorithms.
This method, however, can be implemented offline.

The optimizing membership function parameters using GA is
shown in Fig 3. A population of 20–100 individuals is randomly
chosen to initiate the GA. Each individual is chromosomes, which
is a real or binary sequence. A cost function is employed to evalu-
ate the performance of each chromosome. Through the fitness-
based process, chromosomes with lower-cost value have a higher
fitness, and hence have more advance to the next generation. There
is a set of genetic rules, including selection, crossover, and muta-
tion. This selection rule replicates the most successful solution
found in a population, the crossover decomposes two distinct solu-
tions, then arbitrary mix their parts to create new solutions, and
the mutation changes a candidate solution randomly [28].

The fitness function is chosen as below:

fiti ¼ W1:OCI þW2:EQI ð19Þ
In whichW1 andW2 are weighting factor. In Objective 1, to min-

imize OCI while maintaining EQI, we set W1 = 1 and W2 = 0. In
Objective 2, to minimize EQI while maintain OCI, we set W1 = 0.
and W2 = 1. In Objective 3, to minimize both OCI and EQI.

In order to find the weights of W1, and W2 of Eq. (19), the GA
algorithm available in matlab tools is deployed with the following
settings for the program to run as follows:

- Number of optimized parameters: 2 (W1, and W2)
- Population size: 150 (individuals).
- Generation number: 300.
- Combination probability: Pc ¼ 0:8
- Mutation probability: Pm ¼ 0:001
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The GA algorithm then performs the steps as described in Fig. 3
til the stop condition of the program is satisfied. This genetic algo-
rithm has two basic stopping conditions: (i) Based on the chromo-
some structure, controlling the number of genes that are
converged, if the number of genes converged exceeds a certain per-
centage of the total number of genes, then the search will end; (ii)
based on the particular significance of a chromosome, measuring
the algorithm’s progress over a given number of generations, if this
progress is less than a specified constant of e, then the search will
end. After finishing (about 24 h per algorithm), we will find the
optimal values of fiti. Because GA genetic algorithm is a random
search process, each time we execute the algorithm, an optimal
value of fiti is chosen. These optimal values of fiti are compared
among the time of running implementation, until the optimal
value of fiti does not change. We finally find the appropriate
weights of W1 and W2. These weights that are presented corre-
sponding to different weather condition are listed in Table 3.

4. Results and discussion

Fig 5 shows the Simulink model, in which the higher-level con-
trollers are depicted in Fig 6.

Three dynamic data input files defined in the Benchmark Simu-
lation Model describe different weather conditions. They are con-
sidered to investigate control performance concerning
disturbance rejection. The dynamic model used for the control
investigations captures the main dynamic features of the biological
wastewater treatment plant.

Applying genetic algorithms, KSO;5 and BSO;5 for the lower-level
controller are found satisfying objectives of the desired problem,
as illustrated in Table 4.
Table 3
Values of weighting factors.

Weather W1 W2

Dry 0:28 0:72
Rainy 0:33 0:67
Stormy 0:3 0:7

Fig. 5. Simulat
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These estimated values of KSO;5 and BSO;5 in the higher-level con-
trol are applied into the lower-level controller, as shown in Fig 6.
The simulation results will be compared with the strategy that
has only the lower controller, which is ILC combined a PI regulator,
with the same wastewater input profile in 3 considered weather
conditions. Fig. 7 illustrates the simulation results of concentra-
tions of nitrogen and oxygen at the outlet of the tank 5 in dry
weather condition.

From Fig 7, we see that the oxygen concentration always fol-
lows the change of nitrogen concentration. Besides, the average
oxygen concentration when using the higher-level control is lower
than when only the lower-level control is used. As a result, system
quality indexes will be improved.

Tables 5–7 show the results of the system corresponding to
objectives 1, 2 and 3, in all 3 different weather conditions.

In Table 5, compared to the strategy without a higher-level con-
troller, the EQIs are almost unchanged, while the OCIs using the GA
based hierarchical control are reduced noticeably, above 1% in all
three different weather conditions. In contrast, Table 6 shows a sig-
nificant decrease in the EQIs, while the OCIs are kept almost con-
stantly. In dry weather conditions, especially, the EQI is reduced
by almost up to 2%. In Table 7, the results indicate that both OCI
and EQI using GA based hierarchical control are all lower than
those of using default PI, meeting the objective 3. In dry weather,
for illustrate, the EQI is decreased by 1.46%, and the OCI is dropped
0.61%.

However, WWTPs are non-lear problems that cannot be opti-
mized based on one or two parameters. The cost, the time consum-
ing, and the complexity, etc. in the systems always have a trade-off.
This proposed method reduce the cost but may increase the
ion model.

Fig. 6. Higher-level controller.



Fig. 7. Simulation results in dry weather condition

Table 5
Comparison of results using GA-based hierarchical controller with only the lower
level controller (only LLC) in Objective 1.

Index

Weather EQI
(kg/d)

OCI
(Euro/d)

Reduction
of OCI (%)

Dry Only LLC 6096.71 16366.26
GA based hierarchical
control

6090.69 16177.90 �1.15

Rainy Only LLC 8176.75 15994.35
GA based hierarchical
control

8176.16 15823.17 �1,02

Stormy Only LLC 7212.89 17248.67
GA based hierarchical
control

7210.77 17066.77 �1,06

Table 6
Comparison of results using GA based hierarchical controller with only the lower-
level controller (only LLC) in Objective 2.

Index

Weather EQI
(kg/d)

OCI
(Euro/d)

Reduction of
EQI (%)

Dry Only LLC 6096.71 16366.26
GA-based hierarchical control 5979.32 16366.92 �1.93

Rainy Only LLC 8176.75 15994.35
GA-based hierarchical control 8063.59 15993.14 �1,38

Stormy Only LLC 7212.89 17248.67
GA-based hierarchical control 7096.76 17242.81 �1,61

Table 7
Comparison of results using GA-based hierarchical controller with only the lower
level controller (only LLC) in Objective 3.

Index

Weather EQI
(kg/d)

OCI
(Euro/d)

%EQI %OCI

Dry Only LLC 6096.71 16366.26
GA - based hierarchical
control

6007.12 16267.14 �1.46 �0.61

Rainy Only LLC 8176.75 15994.35
GA - based hierarchical
control

8158.57 15834.33 �0.22 �1,00

Stormy Only LLC 7212.89 17248.67
GA - based hierarchical
control

7140.35 17143.25 �1.01 �0.61

Table 4
Obtained parameters K_(SO,5) and B_(SO,5).

Weather Objective

Obj. 1 Obj. 2 Obj. 3

KSO5 BSO5 KSO5 BSO5 KSO5 BSO5

Dry 0.290 0.455 0.895 1.391 0.4 0.391
Rainy 0.288 0.176 0.613 0.381 0.263 0.135
Stormy 0.252 0.153 0.578 0.498 0.345 0.199
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complexity and also the processing time to be able to complete the
algorithm as GA. Currently, there are many techniques being con-
sidered to be able to deploy in such systems to treat the parame-
ters in different ways. Different number of tanks can be
877
considered to apply the methods. The condition of environment
to process the tanks is also considered. In this work, ony one tank
is applied GA to treat the wastewater. There are still many opening
space in this field to explore in our future work. We would like to
optimize the problems in different conditions utilzing techniques.
The trade-off could be found to provide appropriate methods for
specific conditions.

5. Conclusions and future work

In this paper, a GA based hierarchical controller was proposed
in which the lower-level one controls SO;5 by manipulating KLa;5,
and the higher-level controller regulates the SO;5 setpoint of the
lower-level controller according to the SNH;4. In the higher-level
control, GA is used to determine KSO;5 and BSO;5 to obtain three
designed objectives in different weather conditions. The results
obtained by applying a higher-level control are promising. That
is, the overall operating cost of the system OCIor/and the output
effluent quality index EQIare reduced significantly, especially in
dry weather. The results show promissing points for WWTPs.

The application of the proposed control has just applied at tank
5. Therefore, to further reduce the OCI and EQI, the proposed
method could be used for other tanks. This is our on-going study.
Theoretical or qualitative analysis of the GA could be explored. In
addition, the time consuming could be reduce by utilizing PSO,
DE or ACO in appropriate methods.
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