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Abstract: The proliferation of wireless applications, the ever-increasing spectrum crowdedness,
as well as cell densification makes the issue of interference increasingly severe in many emerging
wireless applications. Most interference management/mitigation methods in the literature are
problem-specific and require some cooperation/coordination between different radio frequency
systems. Aiming to seek a more versatile solution to counteracting strong interference, we resort
to the hybrid array of analog subarrays and suppress interference in the analog domain so as to
greatly reduce the required quantization bits of the analog-to-digital converters and their power
consumption. To this end, we design a real-time algorithm to steer nulls towards the interference
directions and maintain flat in non-interference directions, solely using constant-modulus phase
shifters. To ensure sufficient null depth for interference suppression, we also develop a two-stage
method for accurately estimating interference directions. The proposed solution can be applicable to
most (if not all) wireless systems as neither training/reference signal nor cooperation/coordination
is required. Extensive simulations show that more than 65 dB of suppression can be achieved for
3 spatially resolvable interference signals yet with random directions.

Keywords: interference suppression; hybrid antenna array; null steering; constant-modulus phase
shifter; beamforming; angle-of-arrival (AoA) estimation

1. Introduction

Due to the proliferation of wireless systems, the ever-increasing spectrum crowded-
ness, as well as the densification of cellular networks, radio frequency (RF) interference
has reappeared to be a major challenge in many emerging wireless applications [1–8]. This,
for instance, happens in wirelessly powered communications (WPC) [2], where the range
difference between power and information transfers makes the information signal weaker
than the power transfer signal by many orders of magnitude [3]. Another example where
the interference is highly detrimental can be found in the convergence of radar sensing and
wireless communications that has attracted extensive attention recently [4–6]. Given its high
transmission power, a radar can cause strong interference to the nearby communication
system [7]. A further example showing the destructive impact of the strong interference is
in the increasingly popular full-duplex communications; refer to [8] for details.

Numerous interference management/mitigation methods have been proposed. The
resource scheduling is applied for relieving the mutual interference in WPC [9,10] and
also in the co-existence of radar and communications (CRC) [11]. As pointed out in [2],
this method can reduce spectral efficiency and puts strict requirement on time synchro-
nization between different RF systems. Moreover, this method relies on the information
exchange between participant RF systems [12]. Another popular method of suppressing RF
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interference is the null-space projection-based transmission, as applied in CRC [13,14] and
full-duplex communications [15]. In particular, this method designs the transmitting beam-
forming/precoding to project transmitted signals onto the null-space of the interference
matrix between the involved RF systems. Despite the effectiveness of the above methods,
they require specially designed training signals between the participating RF systems for
estimating the aforementioned inference matrix. In the case of massive MIMO systems,
the training overhead can be heavy. To this end, it is desirable if a receiver itself has the
capability of suppressing strong interference signals without requiring lengthy training
from nearby transmitters or RF sources.

Antenna-array-based receivers can suppress interference signals by performing adap-
tive beamforming [16,17]. The well-known optimum criteria for adaptive beamforming in-
clude the minimum variance distortion-less response (also known as Capon), the maximum
signal-to-interference-plus-noise ratio, and the linear constraints minimum variance [18].
These adaptive beamforming criteria generally rely on the fully digitized signal samples
and hence require a high-dynamic-range front end and ADC to be equipped for each
antenna. This requirement further leads to the high power consumption and cost of the
digital-array-based receiver [19]. Moreover, given the limited dynamic range, information-
bearing signals can be severely corrupted by clipping or quantization noises [2,20]. This
makes the conventional adaptive beamforming-based interference suppression not suf-
ficiently effective due to the potential loss/distortion of the direction information in the
expected signals.

In contrast to the fully digital array, the hybrid antenna array of analog subarrays, as
illustrated in Figure 1, has been recognized as a cost-effective and energy-efficient solution
to counteracting strong RF interference [21,22]. This is attributed to its two significant
benefits. One is that the analog subarrays can suppress strong interference signals prior
to frequency conversion and digitization, hence easing the dynamic range requirements
and reducing the power consumption of RF chains [23]. The other benefit of using a hybrid
array is that the spatial degrees of freedom (DoF) are preserved given multiple analog
subarrays. However, to enjoy these benefits of hybrid arrays, we need an efficient design
of the analog beamformer that flexibly steers nulls towards strong interference signals
while maintaining a flat amplitude response in the spatial passband, i.e., non-interference
directions [2,23,24]. Hereafter, we refer to such a beamformer as the analog interference-
nullifying beamformer (AINB).

So far, only a few works have specifically considered the AINB design in hybrid arrays.
In [2], the AINB is constructed as a Kronecker product of component vectors, and each vec-
tor is designed based on the truncated Fourier/Hardamard matrices. However, this design
only focuses on forming nulls, which may lead to severe attenuation in the spatial passband.
In [24], the AINB is designed by successively approximating the desired beamformer as a
linear combination of implementable analog beamformers. This method requires a refer-
ence signal which, however, would be fully corrupted by the strong quantization noises in
the presence of interference signals, and the reference signal may not always be available.
In [23], the AINB is achieved by optimizing the RF input impedance with the phase shifters
used for shifting the null to the interference direction. Since only a single null is steered,
this design can be incompetent in the presence of multiple interference signals.

To address the issues in the above works, we design a novel AINB by minimizing the
spatial responses towards the interference directions and approximately maximizing the
beam flatness in the spatial passband. Such a design can quickly adapt to the dynamic
interference environment and form multiple nulls as required. However, due to the constant
modulus constraints on the phase shifters in an analog subarray, the AINB design problem
is highly non-convex and non-trivial to be solved efficiently in real time. Moreover, to steer
nulls towards interference signals, the accurate estimations of the interference directions
are required. In this paper, we consider the case where the power difference between
interference and information-bearing signals is greater than the dynamic range of a receiver.
In such a case, the AGCs in RF chains will reduce the receiving gains to prevent signal
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clipping, as illustrated in Figure 1. As a result, information-bearing signals will have too
large quantization noises, which makes it infeasible to estimate the directions of interference
signals. The AINB sequentially designed can substantially suppress interference signals,
triggering the AGCs to adjust for the reception of information-bearing signals. The key
contributions and novelties of this paper are summarized as follows.
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Figure 1. Illustration of the proposed scheme for suppressing strong interference signals based on a
uniform linear array with the antenna spacing denoted by d. The array is divided into M subarrays,
each having N antennas.

1. We develop an efficient solver for designing the phase-only AINB under the frame-
work of majorization–minimization (MM). In particular, we design the objective
function in such a way that we are able to simplify it substantially based on the newly
unveiled relation between the spatial responses in the interference directions and the
spatial passband. Thanks to the simplification of the objective function, we then pro-
pose a low-complexity method of constructing the majorization function, where we
manage to remove the need of computationally intensive eigenvalue decomposition
(EVD) required in the conventional construction. We further derive an iterative solver
for the AINB design, where a closed-form solution with low complexity is achieved in
each iteration. In addition, the impact of the initial solution to the proposed solver is
investigated, based on which a high-quality initialization for the solver is established;

2. We develop a two-stage angle of arrival (AoA) estimation method based on the
conventional ESPRIT (estimation of signal parameters via invariance techniques). A
major innovation of the method is the design of subarray beamforming in the two
stages. In particular, an omnidirectionally flat beam is produced at each subarray
in the first stage, while in the second stage the beam is created towards each of the
AoA estimates obtained previously. To the best of our knowledge, it has not been
investigated in the literature to use specially optimized flat beams for improving the
AoA estimation performance of ESPRIT in hybrid antenna arrays.

3. We provide extensive simulation results to validate the effectiveness of the proposed
designs. As for the AINB, we cannot find similar designs in the literature. Thus, we
comprehensively evaluate and observe numerous performance metrics, including
spatial responses, interference suppression capability, and convergence curves for
designing AINBs over tens of thousands of independent trials. As for the AoA
estimation method, we employ the state-of-the-art [25] as a benchmark for the reasons
to be explained at the beginning of Section 5. Due to the proposed use of deliberately
optimized flat beams, the AoA estimation performance is substantially improved
over the prior art [25]. Moreover, thanks to the high accuracy of the proposed AoA
estimation method, the proposed AINB design can efficiently steer deep nulls towards
interference signals.
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It should be pointed out that it is not the first effort to apply ESPRIT to the hybrid
arrays. The state of the art, such as that in [25], does so by focusing on augmenting the
signal subspace at the expense of estimation time. Our study was motivated to achieve a
large dimension of the signal subspace in the hybrid array that is not limited to the number
of RF chains. This, however, is not a severe issue in our case, since the number of strong
interference signals that are required to be suppressed in the analog domain is generally
small [23]. We also remark that the hybrid array, which is also called a massive MIMO
arrays, has been extensively studied in the context of the millimeter-wave (mmWave) and
also terahertz communications for 5G and beyond [26–30]. Given the sparse nature of the
mmWave channels, the AoA estimation methods recently developed for hybrid arrays,
e.g., [31–33], mainly target at the LoS-dominated scenarios. In contrast, our design here
assumes several strong interference signals.

The remainder of the paper is organized as follows. Section 2 formulates the AINB de-
sign problem, along with the signal model established. Section 3 elaborates the MM-based
algorithm for designing AINB, with the objective simplification, algorithm development,
and initialization detailed in three subsections. Section 4 illustrates the proposed two-stage
AoA estimation method. The simulation results are provided in Section 5, followed by
Section 6, which concludes the paper.

2. Problem Formulation

As shown in Figure 1, we consider a uniform linear array of M analog subarrays. Each
subarray, having N antennas, performs analog beamforming using phase shifters. The
spacing between any adjacent antennas is identical, as denoted by d. Note that the antenna
coupling can be very small when d ≥ λ/2 [21], where λ denotes the wavelength. Thus, to
focus on introducing the proposed interference suppression scheme, we assume d ≥ λ/2
and ignore antenna coupling in this work. In the normal receiving array, the signals,
impinging on the antennas, are first combined through subarray beamforming in the
analog domain; then, each subarray output is processed by an individual radio frequency
chain, including amplifying, down-converting in frequency, and filtering; and, finally, the
baseband (or intermediate frequency, IF) signal is sampled and digitized through an analog-
to-digital converter (ADC). A central digital signal processor collects the digitized subarray
outputs for the sequential processing. In the presence of strong interference signals, AINB
needs to be designed and performed across analog subarrays so that low-bit ADC can be
used for better power efficiency, as illustrated in Section 1.

Considering the far-field receiving, the subarrays “see” interference signals from the
same direction. Thus, the same AINB can be applied for all the subarrays. Letting w collect
the beamforming weights of the AINB, we have:

w = [ejφ0 , · · · , ejφn , · · · , ejφN−1 ]T, (1)

where φn is the value of the phase shifter connected to antenna n. As commonly performed
in the beamformer design, we divide the angular region of [−90◦, 90◦] evenly into the
following set:

Θ = {−90◦,−90◦ + δθ · · · , 0◦, · · · , 90◦}, (2)

where δθ is the minimum angular interval. Then, we design w to make the spatial responses
at the discrete angles approach the desired spatial responses. Let Θj denote the set of angles
in Θ that are closest to interference AoAs and Θs = Θ/Θj denote the set difference between
Θ and Θj. For notation clarity, we add subscripts “(·)j” and “(·)s” for the variables related
to interference and useful signals, respectively.

Steering deep nulls towards the directions of interference signals can be fulfilled by
the following optimization:

f (w) u 0 s.t. f (w) = AH
j w; Aj = [aj([Θj]0), · · · , aj([Θj]Lj−1)], (3)
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where f (w) collects the beamforming gains achieved by w towards the directions in Θj,
[Θj]lj takes the lj-th entry in the set Θj, and Lj is the total number of angles in Θj. The
dimensions of zero/one vector and identity matrix can be readily deduced given the
context and hence are not explicitly noted in this paper. The steering vector aj([Θj]lj) can
be written as:

aj([Θj]lj) = [e−jnπ sin[Θj]0 , · · · , e
−jnπ sin[Θj]Lj−1 ]T, (4)

where the antenna spacing d has taken half the wavelength to simplify the phase terms. To
achieve a flat beam response in the spatial passband, i.e., non-interference directions, we
generally minimize the `∞-norm of the spatial responses. However, we use the `2-norm here
to make it tractable to jointly achieve the interference suppression and flat beam response
in non-interference directions. This will be seen shortly in Section 3.1. In particular, we
formulate the following problem:

max
w

g(w) s.t. g(w) =
1
Ls
‖AH

s w‖2
2; As = [as([Θs]0), · · · , as([Θs]Ls−1)], (5)

where Ls denotes the cardinality of Θs, and as([Θs]ls) can be obtained by replacing [Θj]lj
in (4) with [Θs]ls . Combining (3) and (5), the AINB design can be formulated into the
following optimization problem:

min
w

h(w), s.t. h(w) =

1
Lj
‖ f (w)‖2

2

g(w)
; |w| = 1, (6)

where the numerator is the normalized power of the spatial responses in Θj, and | · | takes
the point-wise modulus. Due to the constant modulus constraint, problem (6) is highly
non-convex and hence non-trivial to solve efficiently (in real time).

Using `2-norm in (5) can greatly simplify the non-convex problem (6), as will be
illustrated in Section 3.1. The simplification further enables us to develop a real-time solver
for problem (6), as will be presented in Section 3.2. Moreover, we unveil in Section 3.3
that initializing the solver properly can help enhance the flatness of the AINB in the non-
jamming angular region. The AINB design to be detailed is based on the accurate AoAs
of interference signals. Thus, an accurate AoA estimation method will be developed in
Section 4.

3. AINB Design

In this section, an efficient solver to problem (6) is proposed under the framework
of MM. Specifically, we first simplify the objective function using signal processing tech-
niques/properties, then develop MM-based solver, and finally propose a high-quality
initialization for the solver.

3.1. Simplifying Beamformer Design Problem

We notice that there is a relationship between the numerator and denominator of the
objective function given in (6). In particular, based on (3)–(5), we have:

‖ f (w)‖2
2 + Lsg(w) = ‖AHw‖2

2 = ∑
l=0,··· ,L−1

∣∣∣∣∣ 1
N

N−1

∑
n=0

wne−jnπ sin θl

∣∣∣∣∣
2

= ∑
l=0,··· ,L−1

∣∣∣∣∣N−1

∑
n=0

wne−jnul

∣∣∣∣∣
2

, ul = π sin θl

where A = [Aj, As], wn is the n-th entry of w given in (1), L = |Θ| denotes the cardinality
of Θ given in (2), and θl is the l-th element in Θ. In the final result of the above derivation,
∑N−1

n=0 wne−jnul can be seen as the sampling of the discrete time Fourier transform (DTFT)
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of w at ul . When L is sufficiently large, ul approaches a continuous u in [−π, π]. Thus,
provided a large L, we have:

(
‖ f (w)‖2

2 + Lsg(w)
)/

L u 1
2π

lim
L→∞

2π

L ∑
l=0,··· ,L−1︸ ︷︷ ︸∫ π

−π du

∣∣∣∣∣N−1

∑
n=0

wne−jnul

∣∣∣∣∣
2

=
1

2π

∫ π

−π
|w̃(u)|2du

(a)
=

N−1

∑
n=0
|wn|2

(b)
= N, (7)

where w̃(u) denotes the DTFT of wn, the equation
(a)
= is due to the Parseval’s theorem of

DTFT [34], and the equation
(b)
= is a result of the constant-modulus constraint on w; see (6).

The derivation in (7) further leads to:

g(w) =
(

NL− ‖ f (w)‖2
2
)/

Ls.

Substituting this into (6), the objective function becomes:

h(w) =

Ls
Lj
‖ f (w)‖2

2

NL− ‖ f (w)‖2
2

,

which is a monotonically increasing function of ‖ f (w)‖2
2. To this end, h(w) is minimized

when ‖ f (w)‖2
2 takes the minimum. The above derivation and analysis are formally sum-

marized into the following lemma.

Lemma 1. Provided a large L, the problem (6) is approximately equivalent to the following simpli-
fied minimization:

min
w
‖ f (w)‖2

2 = wHRjw, s.t. Rj = AjAH
j ; |w| = 1, (8)

where Aj is given in (3).

3.2. MM-Based Iterative Solver for Problem (8)

Under the framework of the MM technique, problem (8) can be iteratively solved
by: majorizing f (w) at wi (the solution at iteration i), leading to the majorization function
denoted by f̃ (w, wi) and minimizing f̃ (w, wi) subject to the constraint in (8). We see from (8)
that the objective function is in a quadratic form. According to [35], a quadratic function
xHLx can be majorized at any x0 by the following function:

xHMx + 2<{xH
0 (L−M)x}+ xH

0 (M− L)x0, (9)

where L and M � L are Hermitian matrices. Therefore, to majorize the objective function
of (8), we need to find a Hermitian matrix R̃j such that R̃j � Rj. A straightforward selection
of R̃j is λmax{Rj}I, where λmax{Rj} denotes the maximum eigenvalue. Such a selection,
however, needs the eigenvalue decomposition of the N-dimensional matrix Rj. This can be
avoided applying the following result.

Lemma 2. The maximum eigenvalue of Rj is upper bounded by:

λmax{Rj} ≤ λ̄ = NLj, (10)

where Lj is the cardinality of Θ given in (3).
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Proof. The maximum eigenvalue of a Hermitian matrix can be expressed as the following
Rayleigh quotient [Theorem 7.16] [36]:

λmax{Rj} = max
‖x‖2

2=1

xHRjx
xHx

. (11)

Substituting Rj = AjAH
j into the above definition, we have:

λmax{Rj} = max
‖x‖2

2=1
∑

lj=0,
··· ,Lj−1

|xHaj([Θj]lj)|
2

≤ ∑
lj=0,
··· ,Lj−1

(xHx)×
(

aH
j ([Θj]lj)aj([Θj]lj)

)
= NLj, (12)

where “≤” is based on the Cauchy–Schwartz inequality ([36], Sec. 1.4).

Substituting x = w, M = Rj = AjAH
j , x0 = wi and L = λ̄I into (9), the objective

function of (8) is majorized at a known point wi ∈ CN×1 by the following function:

f̃ (w, wi) = −2<{rH
i w}, s.t. ri = (λ̄I−AjAH

j )
Hwi (13)

where λ̄ is given in (10), and the terms independent of w are dropped for brevity. Taking
wi as the solution to problem (8) in the i-th iteration, f̃ (w, wi) is minimized when the
real-taking operator achieves the maximum. Due to the constant modulus constraint on w
given in (8), the maximum is achieved when the phases of w are aligned with those of ri in
a pointwise manner. To this end, we achieve the following efficient solver for problem (8).

Proposition 1. The iterative solver to problem (8) is given by:

wi+1 = ej arg{ri}, s.t. ri =

(
Lj

N
I−AjAH

j

)H

wi, (14)

where wi is the solution in iteration i, e(·), and arg{·} are pointwise operators, and λ̄ is derived in
Lemma 2.

Note that the iterative solver has a low computational complexity in each iteration. In
particular, the complexity is in the order of O(N2), which is dominated by computing ri
given in (14). This owes to the simplification of the objective function achieved in Lemma 1
and the construction of the majorization based on the upper bound derived in Lemma 2.

3.3. Initializing w0

Given the non-convex nature of problem (8), the iterative solution achieved in Proposi-
tion 1 tends to converge to a local minimum. Namely, the convergence performance of (14)
is closely related to the initialization, i.e., w0. Below, we first investigate the impact of
w0 on the quality of AINB that is measured by the null depth and beam flatness in the
spatial passband, and accordingly design a high-quality w0. The investigation is performed
through a set of simulations.

Figure 2 observes the value of the objective function given in (8) under the itera-
tive solution given in (14), where N = 16, δθ = 0.1◦, Θj = {30.5◦, 60.9◦,−50.3◦}, and
I = 800 denotes the total iteration number. Three independent trials are performed, where
the initial beamforming weight vector, i.e., w0, is independently and randomly generated
for each trial. We see that all the three trials have monotonically decreasing value of the
objective function before convergence. This validates the effectiveness of the solver devel-
oped in Proposition 1. From Figure 2, we also see that the convergence speed is affected by
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the initialization of w0. In particular, the number of iterations required for convergence
increases from about 180 to 300 when comparing the second trial with the third one.

100 200 300 400 500 600 700 800

10
-15

10
-10

10
-5

-60

-40

-20

0

20

40

60

80

trial 1

trial 2

trial 3

Figure 2. Left: The value of the objective function given in (8) under the iterative solution given
in (14), where N = 16, δθ = 0.1◦, Θj = {30.5◦, 60.9◦,−50.3◦} and I = 800 is the total number of
iterations. Right: Features of the obtained beam in the spatial passband. Three trials are performed
with w0 randomly and independently generated for each trial.

Figure 2 also observes the features of the optimized beams in the spatial passband,
where 10 log10{wH

i Rswi/Ls} denotes the average power of the beam steered by wi in the

spatial passband, while 20 log10

{
max{|wH

i As|}
min{|wH

i As|}

}
depicts the flatness of the beam, where

Rs = AsAH
s with As given in (5). Note that the larger 20 log10

{
max{|wH

i As|}
min{|wH

i As|}

}
is, the less flat

the beam becomes. We see from Figure 2 that the average powers of the optimized beams
in the spatial passband are almost identical. This validates the proposed simplification
of the objective function for AINB design, as illustrated in Lemma 1. In contrast to the
average power, we see from Figure 2 that the flatness of the optimized beams in the spatial
passband can substantially vary given different initializations of w0. In particular, the
difference of the beam flatness is larger than 10 dB between trials 2 and 3.

Figure 3 plots the amplitude responses of the beams steered by wI ’s obtained from
the three independent trials. We see that three deep nulls are produced by the beams
obtained in the three trials, and the null depth is below −300 dB. This validates the strong
interference suppression ability achieved by the beamformer design problem formulated
in Lemma 1 and the iterative solver derived in Proposition 1. We also see from the figure
(particular the zoomed-in sub-figure in the middle) that the passband variations in the
obtained beams can be subatantially different. This is consistent with what has been
observed in Figure 2.

Figure 4 observes the impact of the initialization on the convergence performance of
the proposed solver (14). In particular, the left y-axis gives the amplitude variance, i.e.,
the beam flatness, of the beam steered by wI with respect to that of the beam steered by
w0, while the converging value of the objective function is shown on the right y-axis. We
see that similar converging values of the objective function keep steady regardless of the
initialized w0. We also see that the flatness of the beam steered by the final wI increases
linearly overall with that of the beam steered by the initial w0.
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Figure 3. Illustrating the beams steered by the beamformers obtained in Figure 2.
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Figure 4. The impact of the initialization on the convergence performance, where the left axis observes
the beam flatness and the right one observes the converging value of the objective function in (8).

Given the observations made above, we conclude that an initialized w0 leading to a
flat amplitude response in the spatial passband is better in the sense that the optimized beam can
also have better flatness in the spatial passband in addition to the strong ability of interference
suppression. On the other hand, we notice that a flat beam under the constant modulus
constraint given in (8) is difficult to realize. The spatial response of the beam steered by w
is given by:

P(ul) =
N−1

∑
n=0

wne−jnul , l = 0, 1, · · · , L− 1, (15)

where wn is the n-th entry of w, ul = π sin θl , and θl is the l-th element in Θ given in (2).
Regarding ul ∈ [−π, π] as the angular frequency, we obtain that P(ul) is the (discrete)
Fourier transform of wn. According to the uncertainty principle of Fourier transform [34], a
signal spreading out in one domain corresponds to a signal localized (such as the Dirac
delta function) in the dual domain. In our case, the beam flatness implies that P(ul) spreads
out across ul , and hence, wn is expected to be a localized signal sequence. This, however,
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contradicts with the constant modulus constraint on w, i.e., |wn| = 1 ∀n. To steer a beam as
flat as possible in the spatial passband, we formulate the following problem to reduce the
maximum amplitude variation:

w∗0 : argminw0

max{|wH
0 A|}

min{|wH
0 A|}

, s.t. |w0| = 1, (16)

where A is the union of Aj and As given in (3) and (5), respectively. Since the initial w0
is designed offline, we can resort to the bio-inspired optimization tools, e.g., the genetic
algorithm (GA) and the currently popular grey wolf optimizer [37], etc., to solve the highly
non-convex problem (16).

3.4. Speeding up Convergence

As seen from Figure 2, directly solving (14) can lead to a number of iterations in the
order of 102. To improve the convergence speed, we employ the widely used squared
expectation maximization (SQUAREM) [38] to solve (14) and summarize the overall iter-
ative processing in Algorithm 1. SQUAREM is a gradient descent method in essence. It
performs Cauchy and Barzilai–Borwein (BB) methods in succession in each iteration. Both
Cauchy and BB methods perform gradient descent using different step sizes; refer to [38]for
details. This leads to the update of w, as enclosed in the projector P(·); see Steps 9 and 12
of Algorithm 1. The BB step size [39] is adopted in SQUAREM, which results in the update
of α, as given in Step 8. Updating α uses the intermediate outcomes from Steps 6 and 7.
Steps 11 and 12 perform backtracking, a widely used trick in adjusting step size [40], to
keep the objective non-increasing. Finally, Algorithm 1 terminates when the condition in
either Step 3 or 15 is reached.

Algorithm 1 MM-based Analog Beamformer Design.

1: Input: Θ, Θj, N and w∗0 ;
2: Initialize the iteration index i = 0 and set ε, such as 10−6, for example; . ε is used for examining

convergence.
3: while i ≤ Imax do . Imax is the maximum iteration number.

4: Solving (14) based on wi gives w(1)
i+1;

5: Solving (14) again based on w(1)
i+1 gives w(2)

i+1;

6: v1 = w(1)
i+1 −wi;

7: v2 = w(2)
i+1 −w(1)

i+1 − v1;

8: α = − ‖v1‖
‖v2‖ ;

9: w = P(wi − 2αv1 + α2v2); . P(x) = x
|x| (point-wise).

10: while ‖ f (w)‖2
2 > ‖ f (wi)‖2

2 do
11: Update α = (α− 1)/2;
12: w = P(wi − 2αv1 + α2v2);
13: end while
14: Obtain wi+1 = w and i = i + 1;
15: Terminate iteration if ‖ f (wi+1)‖2

2 − ‖ f (wi)‖2
2 < ε;

16: end while
17: Return w = wi.

Algorithm 1 is developed based on the MM framework, which converges to a finite
value for the problem such as (8) with the quadratic objective bounded by zero. Following
the convergence analysis in ([41], Section V) , one can readily show that solving (14)
iteratively for problem (8) certainly converges to a stationary point. However, due to
the use of SQUAREM, the convergence of Algorithm 1 can only be achieved when the
algorithm starts in the vicinity of a stationary point already [42]. As will be shown in
Section 5, enabled by the proposed initialization method, Algorithm 1 converges within a
few tens of iterations with satisfactory AINBs achieved.
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4. Estimation of Interference AoAs

As illustrated in Section 3.3, the uncertainty principle determines that the constant-
modulus w can only yield a highly localized AINB. This is beneficial in the sense that a
deep null can be achieved, as shown in Figure 3. On the other hand, this limits the null
width to be as small as possible. The limitation of null width further requires the AoA
estimates of the interference signals to be highly accurate. In this section, a two-stage AoA
estimation method is developed for the hybrid antenna arrays illustrated in Figure 1. At
the core of the method is the conventional ESPRIT. A key problem of applying ESPRIT to
the hybrid antenna array is how to design subarray beamforming. This is solved below.

Assume that there are P strong interference signals to be suppressed. Denote the p-th
interference signal as sp(k) and its AoA as θp, where k denotes the index of discrete time,
also known as snapshot. We consider a short time period during which θp ∀p does not
change. The signals impinging on the N antennas of subarray m can be collected by the
following vector:

xm(k) =
P−1

∑
p=0

sp(k)ejmNup aN(up), up = π sin θp, (17)

where ejmNup is caused by the phase offset between the m-th and the first (i.e., reference)
subarray, and aN(θp) is an N × 1 steering vector. Specifically, aN(θp) is written as:

aN(up) =
[
1, ejup , · · · , ejπ(N−1)up

]T
. (18)

Let wm(k) denote the analog beamforming weight vector of subarray m at the k-th
snapshot. The subarray output is the inner product between wm(k) and xm, as given by:

ym(k) =
P−1

∑
p=0

sp(k)ejmNup wH
m(k)aN(up) + ξm(k), (19)

where ξm(k) is an AWGN. Stacking the M subarray outputs into a vector gives:

ỹ(k) =
P−1

∑
p=0

ΛpWH(k)aN(up)sp(k) + z(k), (20)

s.t. Λp = diag{aM(Nup)}, W(k) = [· · · , wm(k), · · · ];

aM(Nup) =
[
· · · , ejmNup , · · ·

]T
;

z(k) = [· · · , ξm(k), · · · ]T,

where diag{·} generates a diagonal matrix. Provided that the same beamformer is applied
across the M subarrays over K snapshots, i.e.:

wm(k) = wm′(k
′) = w (∀m 6= m′, ∀k 6= k′), (21)

we can simplify ỹ(k) into:

y(k) =
P−1

∑
p=0

aM(Nup)gpsp(k) + z(k) = As(k) + z(k) (22)

s.t. A =
[
· · · , aM(Nup), · · ·

]
; s(k) =

[
· · · , gpsp(k), · · ·

]T,

where gp = wHaN(up) is the subarray beamforming gain on the p-th interference signal.
From (22), we see that ESPRIT is now applicable provided that (C1) M > P and (C2)

the P interference signals are not coherent. For (C1), we remark that only those interference
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signals that are strong enough to cause signal clipping are of interest, and the number of
such interference signals can be limited. If P > M, we can trade the time-domain degree of
freedom (DoF) for the spatial ones, as designed in [25]. As for the second condition (C2),
we remark that techniques such as spatial smoothing [18] can be employed to de-correlate
incident signals, as derived in (22). Given the above reasons, we proceed to assume that
both conditions are satisfied and focus on the selection of w for accurate AoA estimation.

From the signal model derived in (22), we see that the subarray beamforming intro-
duces a coefficient gp to the p-th interference signal. To ensure high SNRs for the AoA
estimation, we expect that gp, if not enhancing, does not attenuate the incident signal too
much. However, in the initial stage, we do not have any a priori information on the AoAs of
interference signals. Thus, an omnidirectionally flat beam is suggested for a first-stage AoA
estimation. Such a beam has been designed in Section 3.3, where the analog beamformer is
initialized for the proposed AINB design. In particular, the beamformer is represented by
w∗0 that is optimized via solving (16) (offline).

By taking w = w∗0 in (21), a first stage of AoA estimation is performed, as summa-
rized in Algorithm 2, where the well-developed ESPRIT is encapsulated as a function
based on ([18], Section 9.3). Note that performing ESPRIT based on subarray outputs
obtained in (22) only estimates Nup. According to (17), up has the range of [−π, π], given
θp ∈ [−90◦, 90◦]. Thus, we have Nup ∈ [−Nπ, Nπ]. Since the angle-taking in Step 25 of
Algorithm 2 only returns the angle between ±π. Thus, there is an estimation ambiguity in
N̂up, which leads to the following N possible estimates of up:

ûp(n) =
(

N̂up + 2nπ
)/

N, n = 0, 1, · · · , N − 1. (23)

Algorithm 2 An Accurate Two-Stage AoA Estimation Method.

1: procedure STAGE 1(Initial Estimation)
2: Take w = w∗0 and perform N̂up =ESPRIT

(
w∗0 , y(k), K

)
;

3: Extract ûp(n) from N̂up, as performed in (23);

4: The final estimate is û(1)
p = ûp(n∗) with n∗ given in (24);

5: end procedure
6: procedure STAGE 2(AoA Refinement)
7: for all û(1)

p (p = 0, 1, · · · ) do

8: Take w = aN(û(1)
p ); see (18) and (21);

9: Perform N̂u
(2)
p =ESPRIT

(
aN(û(1)

p ), y(k), K
)
;

10: Get û(2)
p (n) (n = 0, · · · , N − 1) from N̂u

(2)
p ; see (23);

11: The final estimate is: ûp = min
û(2)

p (n)
|û(2)

p (n)− û(1)
p |.

12: end for
13: end procedure
14: function N̂up =ESPRIT

(
w, y(k), K

)
15: Perform subarray beamforming using w, as performed in (21);

16: Compute R
(
= 1

K ∑K−1
k=0 y(k)yH(k)

)
; see (22) for y(k);

17: Estimate the number of paths based on R, yielding P̂;
18: The EVD of R gives Rλi = viλi with λi > λi+1;

19: Construct Us =
[
v0, · · · , vP̂−1

]
;

20: Denote U1 = [Us]0:M−2,: and U2 = [Us]2:M−1,:;

21: Compute C =
[

UH
1

UH
2

]
[U1, U2].

22: The EVD of C leads to C =
[

V11 V12
V21 V22

]
Λ
[

VH
11 VH

12
VH

21 VH
22

]
;

23: Compute Φ = −V12V−1
22 ;

24: Find the eigenvalues of Φ: λp (p = 0, · · · , P̂− 1);
25: Return N̂up = arg{λp}. . arg{} takes angle.
26: end function
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This ambiguity can be suppressed by enumerating the possible estimates and identify-
ing the one leading to the largest receiving power as the final estimate [25]. In particular,
the following problem is formulated for removing the ambiguity:

n∗ : max
n

∑K̃
k=0 |ym(k)|2

K̃
, s.t. wm(n) = aN(ûp(n)), (24)

where ym(k) is obtained by plugging the above wm(n) into (19), while wm(n) is obtained
by taking up = ûp(n) in (18). For ease of exposition, we use the m-th subarray in (24) to
illustrate the idea of removing the estimation ambiguity in (23). Given M subarrays, we
can simultaneously test M estimates. Being straightforward, the details are suppressed.
Let the final estimate of the first stage be denoted by û(1)

p . As performed in Steps 7–12

of Algorithm 2, the subarrays point towards each of û(1)
p ’s, and ESPRIT is performed

again with the a greater beamforming gain exploited for better estimation performance, as
compared with the first stage.

Next, we remark that the computational complexity of Algorithm 2 is in the order of
O
(
KM2 + 8(M− 1)3), which is generally low due to the small value of M. Note that the

first part O
(
KM2) is for computing R in Step 16. Normally, we do not include this part in

evaluating the complexity of ESPRIT. Here, due to the small value of M, O
(
KM2) can be

comparable to or even larger than the second part, i.e., O
(
8(M− 1)3). This second part

is for the EVD in Step 22 and is an upper limit obtained based on the maximum value of
P̂(= M− 1). The complexity of the other EVD in Step 18 is in the order of O(M3), which
is generally lower than O

(
8(M− 1)3) for small M’s. Thus, the later is used in the overall

computational complexity.

5. Simulation Results

In this section, the simulation results are provided to validate the proposed designs.
Unless otherwise specified, the following parameters are used: N = 16, M = 4, K = 30,
up ∼ U[−π,π], sp ∼ CN (0, σ2

i ), and σ2
n = 0.01 Watt, where sp denotes the p-th (p =

0, 1, · · · , P− 1) interference signal, as given in (17), and σ2
n is the power of the AWGN in the

subarray output, i.e., ξm(k) given in (19). When applicable, Ntrial = 2× 104 independent
trials are performed to obtain an averaged performance. When designing AINB, the whole
angular region given in (2) is considered, and the angle step δθ takes 0.1◦. Moreover, to
evaluate the proposed AoA estimation method, the state-of-the-art hybrid ESPRIT (H-
ESPRIT) [25] is simulated for comparison. Note that H-ESPRIT runs Stage 1 of Algorithm 2
by taking w = wr, where wr denotes the subarray beamforming vector with randomly
generated phases. The random subarray beamforming used by H-ESPRIT can handle
the case that the number of subarrays is smaller than that of incident sources, while the
proposed algorithm cannot. However, from the open literature, H-ESPRIT can be most
related to the proposed Algorithm 2 in the sense that they are both for hybrid antenna arrays
and can estimate the whole angular region. Thus, we employ H-ESPRIT as a benchmark.

For reproducibility, we provide in (25) the omnidirectionally flat beams for N = 8, 16
and 24, respectively.

These beams are obtained by solving problem (16) using the GA toolbox in MAT-
LAB [43]. They are used in the following simulations. Figure 5 plots the amplitude response
of the beams steered by w∗0 given above, in comparison with the beams steered by wr with
randomly generated phases in [0, 2π]. We see that the optimized w∗0 has substantially better
beam flatness than wr.
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w∗0 = exp[j(0.2988, 1.1812, 2.6686, 1.3361, 0.0484, −3.0455,−0.5214, 3.1145)]; (25)
w∗0 = exp[j(2.9280,−1.4330,−2.7477, 0.3015,−0.4253, 2.1168, 0.9070, 1.5538,−1.3083, 1.5321, 1.8232, · · ·

1.3972,−0.0852, 0.4551,−2.0871,−2.5000)]; and
w∗0 = exp[j(2.4481,−2.6471, 2.2376,−1.6242,−2.4315, − 2.7266,−0.5203,−2.6060,−1.1905, 3.0591, · · ·

0.5462,−1.8140, 2.7608, 1.9835, 1.6974,−1.5860, 0.3268,−1.8279,−1.2872, 1.1163, · · ·
2.4170,−2.5172,−0.5398,−1.0528)].
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Figure 5. The amplitude response of the beams steered by the analog subarray, where subfigures (a–c)
are obtained using w∗0 given in (25), and subfigures (d–f) correspond to wr with randomly generated
phases. The left, middle, and right columns are for N = 8, 16, and 24, respectively.

Figure 6 plots the MSE of AoA estimates as the INR, the ratio between σ2
i and σ2

n,
increases. A single source is considered in this simulation to focus on illustrating the
benefits of using a flat beam for subarrays and adding a second stage of AoA refinement.
We see that the AoA estimates from the first stage of the proposed Algorithm 2, using w∗0
given in (25), improve over H-ESPRIT [25]. In particular, to achieve the same estimation
accuracy, the proposed method reduces the SNR requirement over 10 dB, compared with
H-ESPRIT. This manifests the importance of steering an omnidirectionally flat beam for
the accurate AoA estimation. We also see from the figure that the AoA estimates from
the second stage are further improved over those from the first stage. This is owed to the
greater beamforming gain achieved by the directional beam used in the second stage of
Algorithm 2.

Figure 7 plots the CDF of the interference suppression after applying the proposed
AINB at a subarray. The AINB is designed by running the proposed Algorithm 1, where
the AoA estimates obtained for plotting Figure 6 are used for constructing Θj required by
the algorithm. We see that using the proposed AoA estimation method achieves better
interference suppression, as compared with using H-ESPRIT [25]. Take σ2

i = −10 dB for
instance. More than 95% of the independent trials suppress interference to lower than
−30 dB when using the proposed method for AoA estimation, while only less than 80% of
the trials can achieve the equivalent interference suppression when using H-ESPRIT.

Next, we consider the case of multiple interference signals. Figure 8 (upper) plots
the CDF of the sum of the absolute AoA estimation errors of multiple signals. We see that
the proposed Algorithm 2 achieves better estimation performance than H-ESPRIT. For the
proposed method, we see that the second-stage AoA estimation substantially outperforms
the first stage. In particular, the absolute estimation error after the second stage is almost
always smaller than 0.0531◦. This is because the mutual interference between different



Sensors 2022, 22, 2417 15 of 20

incident signals can be smaller in the second stage that use a directional beam, as compared
with the first stage that uses omnidirectional beams illustrated in Figure 5.
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Figure 6. MSE of the AoA estimates versus INR (=σ2
i /σ2

n), where P = 1. The curves with circle,
square, and triangle markers are for N = 8, 16, and 24, respectively.
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Figure 7. CDF of interference power after subarray beamforming, where N = 16. The curves with
circle, square, and triangle markers are for σ2

i = −10 dB, −4 dB, and 8 dB, respectively.

Figure 8 (lower) illustrates the interference suppression ability achieved under differ-
ent sets of AoA estimates from the upper sub-figure. We see that a better AoA estimation
results in a stronger interference suppression. This is reasonable, since the estimates used
for the upper sub-figure are passed to Algorithm 2 for designing the AINBs. It is worth
pointing out that jointly running Algorithms 1 and 2, the interference suppression is always
greater than −65 dB. This not only validates the high performance of the proposed AoA
estimation and AINB design but also demonstrates the feasibility of using hybrid antenna
arrays to counteract strong interference signals. In addition, from Figure 8, we can observe
the impact of angle quantization error (which is resembled by the angle estimation error)
on interference suppression.
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Figure 8. (Upper) CDF of the sum of the absolute AoA estimation errors of multiple signals, where
N = 16, P = 3, K = 50, and σ2

i = 0 dB; (lower) illustrating the jamming suppression ability achieved
using different sets of AoA estimates, where square, plus, and triangular markers denote H-ESPRIT,
the first stage of the proposed method, and the second stage, respectively.

Figure 9 illustrates the amplitude responses of the AINBs designed using Algorithm 1,
where the target and array parameters set for Figure 2 are used here, and 103 trials are
carried out with independently and randomly generated interference signals and noises.
From Figure 9 (top), we see that the absolute AoA estimation errors of all the three sources
are consistently smaller than 0.05 over 103 independent trials. Thus, the AoA estimations do
not have dependencies over the trials. However, in each trial, the obtained AoA estimates
are used for designing the AINB by performing the proposed Algorithm 1. The spatial
amplitude responses of all AINBs are plotted in Figure 9 (bottom). We see that, due to the
consistently accurate AoA estimates, the AINBs obtained in the 103 trials overlap.

Moreover, we see from Figure 9 (bottom) that the nulls deeper than −200 dB are
achieved in the directions of three interference signals in all the 103 independent trials.
Moreover, we see that the beam flatness in the spatial passband is much better than that
achieved in Figure 3. This validates the high quality of the initial solution (for solver (14)),
as designed in Section 3.3. Lastly, given the overlapping beams obtained over 103 trials, we
conclude that the proposed Algorithm 1 is reliable in terms of the convergence performance.

Figure 10 plots the convergence curves of performing Algorithm 1 when designing
AINBs for Figures 7 and 9. From Figure 10a, we see that, for single-source cases, the
proposed Algorithm 1 can converge within 10 iterations. Note that the difference among
the convergence curves is caused by the randomly changing AoAs over independent trials
in Figure 7. In Figure 10b, we see that, when there are 3 interference signals to nullify,
Algorithm 1 converges within 15 iterations. We also see that the convergence curves
overlap with each other. This is owed to the high accuracy of the AoA estimates illustrated
in Figure 9. Combining all the simulation results presented above, the proposed interference
suppression scheme, consisting of Algorithms 1 and 2, can quickly and effectively suppress
strong interference signals using hybrid antenna arrays.
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Figure 9. Illustration of the amplitude responses of AINB beams designed by Algorithm 1, where
N = 16, P = 3, K = 50, σ2

i = 0, and the angles set in Figure 2 are used. The upper figure plots the
AoA estimation errors over 103 independent trials, where plus, triangle, and square markers are for
30.5◦, 60.9◦, and −50.3◦, respectively. Note that the second inset from the left in the lower sub-figure
is the copy of Figure 9 with the y-axis limited to [−40, 0] dB. It is provided to highlight the spatial
amplitude response in the region of non-interference directions.
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Figure 10. Convergence curves of performing Algorithm 1, where N = 16, σ2
i = 0 dB, and sub-

figures (a,b) are for the AINB designs in Figures 7 and 9, respectively. Among all the independent
trials performed for the figures, 10 trials are randomly selected with their convergence curves
presented here.

Figure 11 illustrates the impact of the quantization bit of the phase shifters in analog
subarrays on the proposed design, where the same 2× 104 independent trials from Figure 8
are rerun here. In the method development, we employ the continuous phase shifters, while
this can only be approximated in practice. For a phase shifter with B bits, it can take 2B

states, i.e., ej
2πb

B , b = 0, 1, · · · , 2B− 1. To count for the phase shifter quantization, we replace
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each entry of w?, which is the optimal result of Algorithm 1, with the closest value the
phase shifter can take. From Figure 11, we see that the number of quantization bits of the
phase shifters has a substantial impact on the interference suppression ability. As the num-
ber of quantization bits increases, the optimal w? can be better approximated, hence also
leading to stronger interference suppression. From Figure 11, we also see that, even for the
small 5-bit quantization, the proposed design can achieve greater than 38 dB interference
suppression for all 2× 104 independent trials (with random interference directions over
trials). Though the interference signals may not be thoroughly suppressed, the power dif-
ference between interference and information-bearing signals can be substantially reduced.
Consequently, AGCs will readjust, allowing the reception of information-bearing signals
without being clipped. This further enables the suppression digital-domain interference,
such as the null projection reusing the estimated interference AoAs.
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Figure 11. Illustrating the impact of the quantization bit of phase shifters in subarrays on interfer-
ence suppression.

6. Conclusions and Future Works

In this paper, we develop a versatile solution for suppressing strong interference
signals using the hybrid array of subarrays. This is achieved by a real-time solver for
designing the phase-only AINB that steers deep nulls towards the interference directions
and maintains flat in the spatial passband. This is also accomplished by an accurate
AoA estimation method using the ESPRIT algorithm. In particular, to achieve the same
estimation accuracy, the proposed method reduces the SNR requirement by more than
10 dB, compared with state-of-the-art H-ESPRIT [25]. However, we would point out
that H-ESPRIT has the capability of augmenting signal subspace dimension, while the
proposed method does not have this capability. Moreover, simulation results show that,
employing a uniform linear array of four subarrays each with 16 antennas, the proposed
solution can provide the interference suppression of 65 dB or higher in the presence of
three resolvable interference signals with randomly distributed directions. In addition, the
interference suppression larger than 200 dB is also observed when deliberately setting the
three interference directions apart. Since the hybrid array has been extensively studied in
numerous use cases of mmWave and THz communications, our design is promising to
counteract strong interference in many scenarios.

In this work, we rely on the uncertainty principle of the Fourier transform and mini-
mize the null depth to approximately maintain the beam flatness in the spatial passband.
However, we notice from Figure 9 that the flatness in the spatial passband can be uneven.
This may affect some tasks, e.g., radar/radio sensing, that have stringent requirements on
signal strength. As a future work, we will consider to impose the equi-ripple constraints
on the beam response in the spatial passband. This is in light of the Parks–McClellan
filter design [34], suggesting that the equi-ripple constraint can help increase the minimum
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mainlobe level. However, due to the non-convexity of the design problem, such a constraint
may affect the efficiency and convergence speed/performance of a solver.
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